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Abstract—Using new results on the general Monge was shown by Pillai and Shankar that the existence of
parametrization (see [25] and the references therein) recently a parametrization of a multidimensional linear system
obtained in [21], i.e., on the possibility to extend the con- yefined hy PDEs with constant coefficients is equivalent

cept of image representation to non-controllable multidimen- o - -
sional linear systems, we show that we can transform some to the C>-controllability of the system in terms of the

quadratic variational problems (e.g., optimal control prob-  POssibility to patch two solutions ([11]). This last result
lems) with differential constraints into free variational ones extends forn-D linear systems with constant coefficients
direCtt!y SOl\ﬁ]t?le by Irtneans Olf thefStandafd EtU"ﬁr-lt-)lagranl@tle a result of J. C. Willems obtained for 1-D linear systems
equations. This result generalizes for non-controllable multi-
dimensional linear systems the results obtained in [11], [19] ([13]). See also [14], [16], [17].
for controllable ones. In particular, in the 1-D case, this result . . .
allows us to avoid the controllability condition commonly Multidimensional optimal control theory has recently
used in the behavioural approach literature for the study of been developed in [11], [14], [19], [20]. Let us recall one
optimal control problems with a finite horizon and replace it of the main results. We refer to [11], [14], [19], [20] for
Ey _the stabilizability condition for the ones with an infinite more mathematical information.

orizon.

Keywords—Monge problem, parametrizability, multidi- Theorem 1 ([11], [14], [19], [20]): Let R € D?*P, F
mensional optimal control, variational problems, controlla- ~ a left D-module andker(R.) = {n € F¥ | Rn =0} a
bility, autonomous elements, stabilizability. linear system of PDEs of order Let us suppose that we

have the following parametrization
. INTRODUCTION

Let D = A[0, ..., 0,] be aring of differential operators n=Q¢ VEEFT,
with coefficients in the differential ringA (e.g., A =  of the systemkerz(R.), i.e., kerz(R.) = QF™, where
R, Rlz1,... 2], R(21,...,2,)), 0; = 0/0z;. Moreover () e Dp*™_ |et us consider the problem of extremizing

let R € D?*P be a matrix of differential operators afl  the quadratic cost
a left D-module (e.g.C>(R™)), namely, it satisfies: )
I:/in;TLm dx,

VPl, PQED,Vyl, yQE‘F: P1y1—|—P2y26f.

A linear system of partial differential equations (PDEs) igvhere:

then defined by: me = (00 =0 ...00n, 0<|a| = ar+...+a, <7)

kerz(R.) £ {n € F¥| Rn =0}, and L is a symmetric matrix with entries id, under the
ker#(R.) is calledbehaviourin the behavioural approach differential constraint?s = 0. The optimal system is then
to multidimensional linear systems ([11], [13], [24]). defined by

The classical Monge problem questions the existence n=Q¢ VeEe Fm
of a matrix of differential operatorg) € DP*" which A& =0, ’
satisfies: .
with n = (m)1<i<p,
. A m

kerr(R.) =im#(Q.) = QF™. 0 = Z Lglﬁ n, A=Q-B-Q,
See [25] for more historical details. If such a matrix 1<I<p,0<|B|<r
Q exists, then we say thaf) is a parametrization where
of the systemkerr(R.). In the behavioural approach T
to multidimensional linear systems, we say that the
behaviour kerz(R.) admits an image representation Bn=1| > (-p*o~ap
([11], [13], [18], [24]). We refer to [3], [22] for an 0<|al<r 1<k<p

introduction to the Monge problem and new results. It ~
gep and Q denotes the formal adjoint of) obtained by

A. Quadrat is with INRIA Sophia Antipolis, CAFE project, 200 contracting@ £ by a vector of test functiong € DP and

Route des Lucioles BP 93, 06902 Sophia Antipolis Cedex, d&an j i i A )
Aban. Quadr at @ophi a. i nria fr. D Roberw is with 1edraing by parts, ief, (¢, Q&) dr = J5. (Q ¢, &) du,

Lehrstuhl B fir Mathematik, RWTH - Aachen, Templergraben 64, so0sevhere( -, -) denotes the standard inner productiof.
Aachen, Germanylani el @mono. mat h. r wt h- aachen. de.



Let us illustrate this result on two explicit examples. to be parametrizable by means of the quadri-potential

(A, V), i.e.
Example 1:Let us consider the quadratic optimal prob- 55 o
lem to minimize 9P GANE=0 s__gy_d4
5 | P+ utn?)de W | v.5=0 B-VAA
2 Jo | ©)

under the differential constraint defined by the Kalman Hence, if we substitute (5) into (3), we then obtain
systemz(t) + z(t) — u(t) = 0 and the initial condition a variational problem inA and V' without differential

z(0) = zo. constraint. Then, the Euler-Lagrange equations and the
We can easily check that the = C*°(R)-solutions of Lorentz gauge condition, namely,
the systemi(t) 4+ x(t) — u(t) = 0 are parametrized by:
S 1
VA+ < — =0,
z(t) = £(1), . ) 2 ot
u(t) = £(t) + £(t), fer. 2) give the following electromagnetic waves traveling at the

speed of lightc = 1/4/(e in the vacuum:
Therefore, by substituting (2) into the cost functional, (1) P I [V o)

we are then led to minimize the free variational problem, 1 924 CAA—0
i.e., the variational problem without differential corssi, 2 Ot? -
defined by: 1 82V AV —
1T, 24 2oz AV
3 | €F @ an N
Therefore, the computation of the Euler-Lagrange equa- . 9A -
tions then gives the following optimal system: V- =k
§(t) = x(t),
1 b — ult [I. M ODULE-THEORETIC APPROACH TO LINEAR
§(t) + &(t) = u(t), SYSTEMS
£(t) —2€(t) =0, In this section, we recall the module-theoretic
é(T) FE(T) =0 background ([23], [9]) for the study of multidimensional
’ linear systems that follows. We refer to [3] for more details
Integrating this last system and eliminating the initial L&t D = A[01,...,d,] be aring of differential opera-
conditionzo from wu(t) andz(¢) finally gives the optimal tors', whereA is a differential ring which is also an algebra
controller: over a fieldk containingQ as in Section | (e.g.k = R).
B s With a given linear system of partial differential equasgon
u(t) = —eV2(T) 4 o~ V2T) 2(t). Rn =0, R € D?*?, for unknown functionsy, ..., 7,
(1 —v/2)eV2(t=T) — (1 4 /2) e~ V2(t-T) of independent variables,, ..., z,, we associate the left
D-module:

M = D'? /(D' *R).
We now illustrate Theorem 1 on a variational problem o .
studied in mathematical physics. If all coefficients of the linear system are real numbers,

then the coefficient domaid of D can be chosen to
Example 2:Let us extremize the electromagnetism LaPe R so thatD is a commutative polynomial ring and

grangian defined by M is a D-module. More generally, if all coefficients
of Rp = 0 are polynomials inzy, ..., =, (resp.,

/(1 | B |? _f [ E|2> dry duo dusdt, (3) rational functions inzi, ..., z,), then we choose
2p 2 A =R[zy,...,x,] (resp.,A = R(zy,...,x,)). Then,D

where 1o (resp., o) denotes the dielectric (magnetic)is a Weyl algebra ([9]), which is a non-commutative ring,
constant and the electromagnetism fi¢ld, £) satisfies andM = D'*?/(D'*? R) is a left D-module as a factor

the following equations: module of the leftD-module D'*?.
V.B =0, . The left D-module M which is associated with the
VAE+ @ _ (4) given linear system is an intrinsic object, by which we

. 1Al notions and statements of this section can be appliedeémtiore
If © is an open convex subset &', then theC>(Q)- general framework of Ore algebra3, but we shall consider only the

solutions of the first set of Maxwell equations (4) is knowrcaseD = A[dy, ..., 8,] in what follows.



mean that two equivalent systems of equatiéhs; = 0 Definition 3: [23] Let M be a finitely generated left
and Ry = 0 give rise to the same modulg/. This D-module.

can be seen by viewing the row vectarse D'*? as

representatives of equationsy = 0. By construction 1) M is said to be free if there exists
of M, it is then clear that the equationdn = 0 and r € Z, = {0,1,2,...} such thatM = D'*r,
all their left D-linear combinations (i.e., consequences) where= denotes isomorphism of lefo-modules.
are represented by zero it. Therefore, the structural

properties of the linear system can be studied with 2) M is said to beprojectiveif there existr € Z, and
algebraic methods by considering the modife a left D-module P such thatM @ P =~ D7,

For the algebraic characterization of parametrizability 3y A7 is said to betorsion-freeif ¢(M) = 0.
of a linear system (and also controllability), the follogin

submodule ofM is of particular importance. 4) M is said to betorsionif M = t(M).
Definition 1: Let M be a leftD-module. Then We have the following implications for the module-
HM)2 {meM|30£PeD:Pm=0} theoretic concepts introduced in the previous definition.

is called thetorsion submoduleof M. Its elements are  Proposition 1 ([23]): Let M be a finitely generated
the torsion elementsf M. left D-module. If M is free, thenM is projective. If M
is projective, then{ is torsion-free.
We introduce a few notations from homological algebra.
We refer to [23] for more details. We are going to recall the characterization of the above
module properties in the language of homological algebra.
Definition 2: 1) A family of left D-modules (resp., For more details, see [15], [18], [3].
abelian groups)P;);cz together with a family of
homomorphisms of lefD-modules (resp. of abelian  Definition 4: Let M be a finitely generated lefD-
groups)(d;)icz, Wwhered, : P, — P;_1, is called a module. An exact sequence of ldit-modules
CompleXif d; o di-‘rl =0, i.e.,im di-‘rl C kerd;, for
alli € Z. o= DY Ay D plxpe Do np g (6)

2) A complex is said to beexact at P, if IS called afree resolutionof M.

imd,;; = kerd,. It is said to beexact if it ) o
is exact atP; for all i € Z. Then, it is also called an ~ Remark 1:If a given left D-module M has afinite

exact sequencf left D-modules, resp., of abelian Presentations/ = D'*?/(D'*% R), where R € D*?
groups). has full row-rank, then

. 1xq R 1xp
3) If only three consecutive modules of an exact 0 =D =D"F —M—0

sequence are non-zero, then it is calleshart exact s 5 free resolution of\. More generally, starting with a
sequence finite presentation of\/, a free resolution of\/ can be
constructed by iteratively computing generating sets ef th
Example 3:Let M be a left D-module andN a sub- | arnels ofd; (syzygies) > 1, starting withd; = (.R). In
module of M. Then the cases which are relevant here, iR.= A[0y,...,0,]
0— N—M— M/N —0 is a commgtative po!ynomial ring ora Weyl algebra over
a field which containsQ, every finitely generated left
is a short exact sequence of Iéftmodules, where the first D-module has a free resolution in which at madst d;,

non-zero map is the canonical injection &finto M and ..., d,, are non-zero morphisms.

the following morphism is the canonical projection bf

onto M/N. In particular, Definition 5: Let M be a finitely generated leff-
module,F a left D-module and let (6) be a free resolution

O—>t(M)—>M—>]V[/t(M)—>O of M. Then

is a short exact sequence of létmodules. 1x ax 1x
.. «— homp(D*Pr | F) «— homp (D *Pr—1 F)

The following notions will be of crucial importance in dros

what follows. They form only a part of a more detailed
classification of module properties. is a complex of abelian groups, whe## is defined by
d(f) = fod; for f € homp(D*Pi-1 F). The defects

I homp (DX, F) 0



of exactness of this complex are denoted by: 2) [23] A left D-moduleF is calledcogeneratotif, for
every left D-module M, we have:

exth(M,F) = ker(d}),
exth(M,F) = ker(dy,,)/im(d}), i>1. homp(M,F)=0 = M =0.
Proposition 2 ([23]): The abelian groupsxtt, (M, F) We note the following (non-constructive) existence

only depend onM and not on the free resolution @f/ theorem.

which is chosen to definext’, (M, F).
! ) Theorem 3 ([23]): An injective cogenerator leftD-

Effective methods for computing these homologicaMPduleZ exists for every ringD.
invariants were described in [3] and have been

implemented in the Maple package REMODULES Lemma 1. 1) If F is an injective left D-module,
[2]. We recall only two of the important characterizations thenhom (-, F) transforms exact sequences of left
of module properties in the language of homological D-modules into exact sequences of abelian groups.
algebra. ) o
2) If the left D-module F is an injective cogenerator,

Theorem 2 ([3]):Let D = A[9, d,] be a ring then the exactness of the complex of abelian groups
of differential operators which is either a commutative obtained by applying the functdromp (-, F) to a
polynomial ring or a Weyl algebraR € D?*? and complex of left D-modules implies the exactness of
M = D'*?/(D'*4 R) a finitely presented lefD-module. this latter complex.

We define the leftD-module N = D!*4/(D*? R), ,
where R denotes the formal adjoint d&. Then we have: ~ We give a few examples of modules over the

commutative polynomial ringR[d4,...,0,] and the
~ . . : localized Weyl algebraR(t) [£] which are injective
~ 1 - dt
1) t(M) = extp(N, D). In particular, M is torsion cogenerators.

free if and only ifext}, (N, D) = 0.

Example 4: 1) If Q is an open convex subset Bf’,
then the space”>(Q) (resp., D’'(?)) of smooth
functions (resp., distributions) of is an injective
cogenerator module over the rigo,,...,0,] of
differential operators with coefficients iR [8].

2) M is projective if and only ifextiD(N,D) =0 for
ali=1,...,n.

Using the module-theoretic approach to linear systems,
structural properties of the behaviokir ~(R.), where F
is a left D-module as in Section |, are deduced from the 2
properties of the leftD-module M = D'*?/(D'*9 R)
which is associated with the linear systeRm = 0.
However, the relations betweeker-(R.) and M also
depend on the properties of the Iéftmodule F. A good
duality between behavioutsr-(R.) and left D-modules
M only holds for injective cogeneratorg ([10]). We
may think of an injective cogeneratdf as a sufficiently
rich space of functions. Before recalling the definition o
an injective cogenerator, we state the following important
remark by B. Malgrange ([8]).

) [26] If F denotes the set of all functions that
are smooth onR except for a finite number of
points, then F is an injective cogenerator left
R(t) [4]-module.

We finish this section by recalling the characterization
of parametrizability of a behaviour in terms of the
fassociated module.

Proposition 3 ([3]): Let R € D?*P and F an injective
cogenerator leftD-module. The behavioukerz(R.) has
a parametrization (or image representatigh)e DP*™,
i.e., kerz(R.) = QF™, if and only if the left D-module
M = D'*?/(D'*4 R) which is associated with the linear
kerz(R.) = homp (M, F) systemRn = 0 is torsion-free. By Theorem 2)/ is
torsion-free if and only ifextl, (N, D) = 0 for the left
as abelian groups (ok-vector spaces), i.e., the set of p-module:

solutions of Rn = 0 in FP and the set of leftD-
morphisms fromM to F are isomorphic abelian groups
(resp.k-vector spaces).

Remark 2:Let R € D and M = D'*?/(D'*4 R).
Then, we have

N = D' /(D"? R).

IIl. M AIN RESULTS ON THE GENERALMONGE

PROBLEM
Definition 6: 1) [23] A left D-module F is called

injectiveif, for every left D-module M, and, for all The first main purpose of this paper is to prove the
i > 1, we haveext’, (M, F) = 0. following new theorem.



Theorem 4:Let R € D9*P, M = D'*P/(D'*9 R), F
an injective cogenerator lef2-module ([3], [8], [11], [18],
[24]) and consider the linear system

kerg(R.) ={n€ F?| Rn=0}.

Then, we obtain a parametrization dferr(R.) by
applying the following algorithm:

kerz(R'.) = QF™.

6) Finally, the general solution dRn = 0 in F? is of
the form:

n=n+Q¢§ VEeF™ 8

Proof: We are going to verify the assertions stated

in the given algorithm.

1) Following the constructive algorithms developed in
[2], [3], [16], computeR’ € D7 *P andR" € D1*4
such that:

R=R'R

t(M) = (D7 R')/(D**" R),

M/t(M) = D¥*? /(D> R/).
Compute a matrix) € DP*™ such that:

kerp(.Q) = (D' R).

2)

This is always possible and general algorithms are

given in [3], [16] and implemented in REMOD-
ULES ([2]). Then, using the fact thaF is an injective
left D-module, we obtain

kerz(R'.) = QF™,
i.e., @ is a parametrization of the systetar-(R’.)
(3], [11], [18]).

3) Compute a matriZ’ € D" % such that:
kerp(.R') = D' T,

i.e., compute the first syzygy module ab'*¢" R)
[2], [3]. Using the fact thatF is an injective left
D-module, we then have:

kerz(T.) = R FP.

4) Find a fundamental solutio € F7 of the au-
tonomous linear system:

R'T =0,

TT=0.
Such a fundamental solution always exists7ass
a cogenerator lefD-module.

(7)

5) Find the general solution of the inhomogeneous

linear system:
R'n=7, neF".

It is well-known that this problem can be
decomposed into the following two subproblems:

a) Find a particular solution; € FP of the
inhomogeneous linear systeRi7j = 7.

b) Find the general solution @’ = 0. However,
we already know that we have:

1) An algorithm to computeR’ € D?*? such that
M/t(M) = DY¥r/(D'*¢ R') was described in
[3]. The existence and the possibility to compute
R" € D4 satisfying R” R’ = R was explained
in [21]. Using OREMODULES [2], R” can be
computed using the commark@ct ori ze.

2) We have the exact sequence of IBffmodules
Dlxq’ iDlXP £>D1><m.
Since F is injective, by Lemma 1 1) the complex
]:q/ (i FP (i Fm
is also exact, i.ekerg(R'.) = QF™.

3) Similarly to 2), the injectivity of 7 implies that
homp(-,F) transforms the exact sequence of left
D-modules

D1><7’/ l}Dlxq’ iDlxp
into the exact sequence
' I o i yad
which meansker#(T.) = R’ FP.

4) By combining Remark 2 and Definition 6 2) we
conclude that a fundamental solutigrof (7) always
exists inF9 .

5) is clear.

6) Finally, we show that (8) is the general solution of

Rn=0Iin FP. Due to step 1)Rn = 0 is equivalent
to R” R'n = 0, and therefore equivalent to

R'T=0,

T=DRn.
Because of step 3) we know thBt 77 = ker #(T".).
Hence, the component of every solution(r,n)
of (9) satisfies (7), and conversely, every solution
7 of (7) yields a solution(r, R'n) of (9). Having
computed a fundamental solution of (7) in step 4),
the second equation in (9) is solved fgre F? in
step 5). Therefore, the algorithm described in this

theorem determines the general solutionfof = 0
in FP.

9)



m Using the previous parametrization of &fl-solutions of
Remark 3:If ¢(M) = 0 in Theorem 4, then we can the homogeneous part of (10), we obtain the following
chooseR’ = R and R” as the identity matrix. Then the parametrization okerx(R.):

algorithm can already be stopped in step 2) because .
{ y(t) = Ct + > &1(t) + 1 &a(t) — E2(t),

kerg(R.) = kerr(R'.) = QF™. . .
FUL) = ferr (7 u(t) = tE1 (1) + 26 (1) + (1),
In this case all solutions ofRn = 0 in FP are

parametrized in terms of arbitrary functiogs ..., &, of ~Finally, we can easily prove that = 4(0).

the independent variables,, ..., x,,. Whent¢(M) # 0, ) . )
the algorithm described in Theorem 4 constructs a L€t us now give an example of a multidimensional
parametrization ofker#(R.) in terms of such arbitrary linear system defined by PDEs.

functions, (integration) constants and arbitrary funusio

depending only on certain of the independent variables. Example 6:We consider the systegrad (div B) = q,
ie.:

V&, & eF.

O (81 Bi + 09 By +83B3) =0,

Let us illustrate Theorem 4 first on a simple ordinary
differential example. 03 (01 B1 + 02 B2 + 03 B3) = 0, (11)
63 (81 B1 + 82 Bg + 83 Bg) =0.
Example 5:Let us parametrize allF = C*°(R)-

This system commonly appears in mathematical physics
([6], [7]). Let us parametrize all theF = C°°(R3)-
§(t) —ta(t) —u(t) =0. solutions of (11). Using the algorithms developed in [3],

We considerD = A, (R) = R[f] [%] and: [15], [16], we obtain the following matrices:

solutions of the time-varying linear system:

J2 d R =grad (div), R =div, R’ =grad, T =0.
R (it ep
di dt See [2] for explicit computations. Therefore, there is one
We can check thaR” — di R — (di —t) andT =0 autonomous element in (11) defined by:
. t’ . t . ' .
Then, we need to find alF-solutions of: 7= div B,
y(t) —tu(t) =C, CeR. (10) O =0,
We easily check thaty, wu,)? = (Ct 0)T is a par- O 7 =0,
ticular solution of (10). Hence, we only need to find a 037 =0.

parametrization of allF-solutions of the homogeneous
linear systemy(t) — tw(t) = 0. But, it is well-known
that F is not an injective cogenerator le2-module ([5]).
However, we can prove that we have the followisglit divB=0C, CEeR. (12)
exact sequence

Hence, we need to parametrize &af-solutions of the
following PDE:

R 0 P We then easily check that a particular solution of (12) is
O_)D'_>D1><2'_>D1><2-_>D_>O

) given by:
where B,=(Cz 0 0.
B ( t2 td 1 ) e Therefore, allF-solutions of (11) are finally given by
td+2 L B=5, +culd, VUer,
and d where curl denotes the standard curl operataR#n
P= ( @ ) € D%

) ) We can wonder when it is possible to obtain a particular

apply the functorhomp (-, 7) to the previous split exact = ¢ x4 js fixed, by means of purely algebraic techniques,

sequence, we then obtain the exact sequence i.e., by means of a kind ofariation of constantsvhich
0 F B p2Q 2 oo 0, ?201?5 not use any integration. This problem was solved in

which shows that we have the following parametrization

of kerx(R'.): Theorem 5 ([21]):Let R € D?%*P and the left D-

{ y(t) = £ €0(8) + téa(t) — Ea(t), e oo Ln;/céuleM = D1*?/(D'*4 R) presented byk. Then, we
ut) =tb(0) +260 + 60, M = 1(M) & (M/H(M)) (13)



if and only if there existS € DP*¢ andV € D7 *4 such Therefore, we need to:
that:

R —R SR =VR. (14) 1) Find a particular solutiod, of the inhomogeneous
linear system (16). Using Theorem 5, we can try
to find S = (S, Sy S3)7 € D> andV € D
satisfying (14), namely:

We note that (14) always holds i is a left hereditary
ring as, for instance) = K [4], whereK is adifferential
field [16] (e.g., K = R, R(¢)), or if D is the first Weyl

algebraA; (k) = k[t] [£]. Moreover, (14) also holds if o 3
M/t(M) is a projective leftD-module, a fact that can R—-RSR=VR & Y 85 -VPO) =1
be constructively checked ([3], [15]). Finally, constiivet i=1
algorithms have been developed in [21] for computing & (01,0,05,P(0)) =D < P(0) #0.
the matricesS and V' appearing in (14). See [2] for the Hence, if P(0) # 0, then we obtain (13), where
implementations of all these algorithms irREM ODULES. M = D¥*3/(D (P(d) div)) and:
We then have the following interesting corollary of M/t(M) = D'*?/(Ddiv).
Theorem 5.

Then, by Corollary 1, we get that

Corollary 1 ([21]): We assume the same notations and B, =(S S, S3)T'7
hypotheses as in Theorem 4. Let us consider a fundamental

solutionT € F4¢' of the following system: is a particular solution of the inhomogeneous linear

system (16) as we have:
pro 9 0y 03)B -
Tr=0 (01 0y 03)B.=(1+VPO)T=T7

2) Find a general solution afiv A = 0. However, it is
Then, S7 is a particular solution of the inhomogeneous well-known that we have ([3], [11], [24]):

linear systemR’'ny = 7 and the general solution of oL - R - 5
kerz(R.) is exactly of the form: divB=0 & B=cul?¥, TeF.
n=ST+QE VEeF™ We finally obtain the following parametrization of (15):

B=(S S S)T7+curl¥, VUeF

Finally, we note that ifP(9) = 94, then P(0) = 0, and
Let us illustrate Theorem 5 and Corollary 1 on twothus, (13) does not hold over the ridg = R[dy, ds, d5].
explicit examples. However, if we consider the non-commutative ring
A3(R) = R[z1, 22, x3][01, 02, 03] instead ofD, we easily
Example 7:Let us considerD = R[0;,0s,05], the check thatS = (z; 0 0)7 satisfies
divergence operatativ = (01 92 Js) and the leftD- , , ,
module F = C*°(R3). We parametrize the linear system R -R SR =uxR,
of PDEs which proves that (13) holds ovet;(R). By Corollary 1,
P(D) (8y By+02By+05Bs) =0, 0+ P(d) € D, (15 a particular solution of the |nhomoger_1eous linear system
(9) (91 B1+0,B5+05 Bs) 7 P9) (15) div B = ®(x5,23), where® € C*>°(R?) is a fundamental
namely,ker =((P div).). Using the constructive algorithms solution of 9; 7 = 0, is given by:
developed in [3], [15], [16], we obtain: B, — (21 (29, 75) 0 0)T.

R’ = div, : .5 : )
All F-solutions ofo, div B = 0 are then given by:
R" = P(9). S - -
B=B,+curl¥, VUeF3
Therefore, kerz((Pdiv).) admits the following au-
tonomous element: Finally, let us finish by giving another example

{ 7= 0yBy + 8, By + 05 B, appearing in linear elasticity [7].

PO)T =0. Example 8:In linear elasticity, we sometimes need to

Let 7 € F be a fundamental solution aP(9)7 = 0 solve the following PDE

(it always exists becausg& = C*°(R*) was recalled in AAA=cAV, A=0?+02, ccR\{0}, (17)

Example 4 1) to be an injective cogenerator). We then . . ) .
have to solve the inhomogeneous system: whereA is theAiry functionandV apotential See [19] for

~ more details. Let us parametrize &= D’(R?)-solutions
divB =T. (16) of (17).



Let us introduce the rind = R[9;, 8] and the matrix and L is a symmetric matrix with entries id, under the

R = (AA —cA) € D2 Using the algorithms differential constraintz = 0. The optimal system is then
developed in [3], [15], [16], we easily obtain the following defined by
matrices: B
n=n+Q¢, -
R'=A, R=(A —¢, T=0, Q=1 A/e)T. Ac+ (D B)i—0. §erm,
In particular, (17) admits the following trivial autonom®u \heres = (m)1<1<p and:
element: . -
r=AA—cV, = > Lyfdm, A=Q-B-Q
AT =0, 1<i<p,0<IBI<r
: . L and
A fundamental solution ofA 7 = 0 in F is given by: T
_ Bnp=|{ Y (-n*o*xp
7=1In <1/ 2+ 13) : (Oﬁalé'r Lehey
Now, the matrixS = (0 —1/c)? satisfies

RS-l o R-RSE—-0 = V-0 Proof: In [19], it was shown that the optimal system

is given by
. Rn =0,
which shows that { - (18)
Bn—RA=0,
a0\ o 07 ) U]
v, )2 T where R is the formal adjoint ofR and X is Lagrange
c multiplier. We denote by the formal adjoint ofQ). Due

is a particular solution of the inhomogeneous linear equde step 2) of the algorithm described by Theorem 4, we
tion A A — ¢V = 7. Finally, all F-solutions of (17) are have R'Q = 0, where the factorizatiolR = R" R’ is

then given by: obtained in step 1) of the same algorithm. Therefore, we
have
A=A, L
VAeF. R=QR'R=QR R'"=RQR'=0.
V= 1 (AA-T7T), @ @ - @ @
¢ By multiplying @ on the left of the second equation in

We note that theD-module M /t(M) = D'*2/(DR') (18), we thus find
is free (i.e., projective), explaining why a right-inverse QBn=0. (19)

of R’ gives a particular solution of the inhomogeneouiIOW we have
equation. See [21] for more details. '
Rn=0 & n=10+Q& €EtcF™.  (20)

IV. APPLICATIONS TO MULTIDIMENSIONAL OPTIMAL Substitution easily shows that (19) together with the first
CONTROL equation in (18) is equivalent to

The second main purpose of this paper is to present the n=n+Q¢,
following application of Theorem 4 to multidimensional @ BEH+QE) =0

optimal control.
which proves the theorem.

Theorem 6:Let R € D9*P, F a left D-module and o . u
kerr(R.) = {n € F? | Ry = 0} a linear system of Remark 4: 1) By substituting the parametrization of

PDEs of order-. Let us suppose that we have the general  the behavioutkerx(R.), the Lagrange multiplien

parametrization is eliminated.
n=n+Q¢§ VEeFT, 2) If all solutions of R = 0 in F™ are parametrized
by means of the matrix of differential operatdpsc

of ker=(R.) given by Theorem 4. We consider the problem
of extremizing the quadratic cost

1
1= [ 5o Lo do

Dprxm je.,
Rn=0 & n=Q¢ ¢&eF"

holds instead of (20), then the same argument as
in the previous proof gives a proof of Theorem 1,
which is a particular case of Theorem 6.

where

Ny =(0%n=07"...00"n, 0<|a|=ar1+...+a, <r)



We point out that no controllability hypothesis iswhere P(t) and Q(¢) are given in (27) resp. (28). Elimi-
required in Theorem 6, as it was the case in [l1]pating the initial conditions — 29 andz$ from (26), we
[14], [19], [20]. Hence, Theorem 6 generalizes forfinally obtain the optimal controller
non-controllable multidimensional linear systems with 21()
constant coefficients the results obtained in [11], [14], u(t) = K(t) ( xl(t) ),

[19], [20] for controllable ones. In particular, in the 1-D 2

case, this result allows us to remove the controllabilityvhere K () is given in (29). Finally, we note that i’
condition used in the behavioural approach literaturéends to+oo, we only need the system to be stabilizable
in the study of optimal control problems with a finiteand not controllable as it is usually required in the
horizon and replace it by the stabilizability condition forbehavioural approach to optimal control. See [11] and the
the ones with an infinite horizon. In particular, this lasteferences therein.

result shows that, within the behavioural approach, we

can recover the general results previously developed in The computations given in Theorem 6 have been
the literature on optimal control of 1-D linear systemgmplemented in the 1-D case in the libranREMODULES.
([1], [4]) and generalize them to multidimensional linearSee [2] for more details and examples.

systems defined by partial differential equations.

Example 10:Let us consider the following multidimen-

Let us illustrate Theorem 6 on two examples. sional linear system:

01+1)(0 x)+0 z)) =0. 30
Example 9:Let us consider the following quadratic O+ 1) Gr1n(@) + Baya() (30)
optimal problem Let us extremize the cost defined by
T — 1 2 2
0

. . ) ] under the differential constraint formed by the system .(30)
under the differential constraint defined by the Kalman a| r = ¢ (R?)-solutions of (30) are given by

system:
1= X2 + U, y1(x) = ®(22) e™ " — 02 §(7), (32)
ya(z) = 01 (),

172:I1+U7

21(0) = 29 22)  tor all & € Fand® € C*(R). Hence, by substituting
b (32) into (31), we obtain a variational problem without
3(0) = 3. differential constraint. Euler-Lagrange equations thiee:g

Ag(z) = (z2) e,
y1(x) = (w2) e™™ — 02 {(x),
yo(x) = 01 &().

Let us denote byF = C*°(]0, +o0[). Using Theorem 4, we
can prove that all thé=-solutions of (22) are parametrized

by:

w1(t) = (af — 23) e™" +£(1),

z2(t) = £(1), VEeF. REFERENCES
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