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Introduction

Dense Sphere Packings, Extremal Lattices, and Modular Forms
The problem of the densest sphere packing is an interesting problem of both geom-
etry and number theory.

The densest way to cover the plane with equal-radius circles is to put six circles
around one circle, and then continue in the same way.

Figure 1: Cover of the plane with circles.

In three dimensions, the analogous problem is to pack as many equal-sized
spheres as possible in the space. A configuration is called a sphere packing. In
1611 Johannes Keppler claimed in his paper “Strena seu de nive sexangula” (“On
the six-cornered snowflake”, [Kepl1]) that the sphere packing As is the densest. It
took a long time to prove Kepler’s conjecture. Finally at the beginning of the millen-

nium, Thomas Hales [Hal05] gave a computational proof and Hales et al.
gave a formal proof.

Figure 2: Kepler or Az-packing.

In higher dimensions, little is known about dense packings of generalized spheres.
Recently, Maryna Viazovska [Vial6] proved that the Eg-packing is the densest in
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6 Extremal Lattices and Hilbert Modular Forms

8 dimensions, and Cohn et al. [Coh™16] proved that the Leech packing is the densest
in 24 dimensions.

All these packings are in some sense regular. In each case, the centers of the
circles, which determine the packing, form a Z-lattice (i.e. a Z-span of a basis).
Such packings defined by lattices are called lattice packings. Many of the best known
packings are lattice packings.

If L is a lattice, then its theta series

Or(q) = Z_: [L(m)|q™ € Cllq]]

is the generating function of the “layers” L(m) = {¢ € L | (¢,£) = 2m} of L.
A fascinating property of theta series is that

H—C, z+— 0, (62””)

is an elliptic modular form of level one if L is even and unimodular (i.e. (¢,¢) € 2Z
for all £ € L and L* = L). Since much is known about elliptic modular forms, this
is a very useful property. Carl Ludwig Siegel [Sie69] showed for instance that the
minimum of L satisfies

min L := min{m >0 | L(m) # 0} <1+ |48L],

Lattices achieving this bound are called extremal. Especially interesting are extremal
lattices in the “jump dimensions” 24, 48, 72, etc. There are only finitely many
isometry classes of extremal lattices of each dimension, because there are only finitely
many isometry classes of unimodular lattices (see for instance |[O’M63]). In many
dimensions no extremal lattice is known, not to mention then classification of all
extremal lattices.

Table 1: Number of known extremal even unimodular lattices.

dim. | 8 16 24E| 3qi| 4qi| 7qf| 8qi| 2163264E|
1 .o >4 0

# o1 2 > 107 >1 >4 7

Similar to unimodular lattices are p-modular lattices (i.e. \/f)L# =~ L), where
p + 1 divides 24. Heinz-Georg Quebbemann studied p-modular lattices in [Que95|
and gave similar bounds to the minima as the bound above. Modular lattices achiev-
ing the bound in question are called extremal. Important examples are the 2-modular

! [NieT3]

2[Kin03]

3[ConSIo99] p. 195], [Nebh98al, and [Neb14]

4[Nebi2)

®[BacNeh98), [SteWat10] and [Wati2]

5The theta series of an extremal lattice (i.e. an extremal modular form) would have some
negative coefficients, which is impossible, cf. |[JenRoull]
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Barnes-Wall lattice in dimension 16 and the 3-modular Coxeter-Todd lattice in di-
mension 12. They each define the densest known sphere packing in dimension 16
or 12.

Lattices over Real Quadratic Number Fields and Hilbert Modular Forms
In this thesis we look at lattices over real quadratic number fields F'. The theory
of lattices over totally real number fields is similar to the theory over the rationals.
But one cannot give an estimate for the minimum of a lattice, because the notion of
a minimum depends on the ordering of F'. A general number field does not have a
canonical total ordering, so we will define a total ordering <4 which is suitable and
sensible for our applications:

p<g v (tr(ap), tr(azp)) < (tr(aiv), tr(agr)),

where A = (g, 0) € F? is a Q-basis of F, a; and ay are totally positive and < is
the lexicographic ordering. The ambition of this thesis is to find and classify lattices
whose minimum with respect to <4 is extremal, by which we mean that they meet
the bound obtained from the theory of Hilbert modular forms (see below).

In a similar manner to the classical case, one can define the theta series of a
lattice. If A is a lattice, then

Oala, @)= > anmdid € Cllar, g2l

n,meZsq
is called the theta series of A, where
anm = {A € A | tr(a1(A, A)) = 2n and tr(az(A, X)) = 2m}.
Since Zp is a free Z-module, A is also a Z-lattice with both the forms

( ) )1 = tr(al( ) )) and ( ’ )2 = tr(OC?( ) ))7

where A = (aq, a2) is as before. These two lattices, denoted by A; and A, are called
first and second trace lattices of A, and A is uniquely described by them. The theta
series of first and second trace lattice are O (q1,1) and O(1,q2), respectively. So
the theta series of A is the “merged” theta series of the trace lattices.

In some cases (if A is even and unimodular or trace even and trace unimodulalm),
the theta series is a modular form of two variables. First, David Hilbert thought
about a generalization of modular forms from one to two variables by using real
quadratic number fields. His ideas were further developed by Otto Blumentha]ﬂ
and published in his Habilitationsschrift in 1901 [Blu03, Blu04]. One can define,
in general, modular forms over totally real number fields in the same way. These
modular forms are referred to as Hilbert (Blumenthal) modular forms.

"Definition
8Professor at RWTH Aachen University 1905-1933.
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This thesis develops a method to describe a Hilbert modular form as a “merger”
of two elliptic modular forms of different levels. We can write a Hilbert modular
form f in a q—expansionﬂ

flane) = ) anm(f)aids € Clla, 2]

n,meZx>o

Then f(q1,1) and f(1,g2) are Fourier expansions of modular forms of one variable
and different levels.

Additionally, I developed an algorithm which computes the g-expansion of Hecke
eigenforms for fields with narrow class number one.

Most importantly, the lexicographic ordering on Z2>0 defines an ordering of the
coefficients a,, (f). So we can define extremal Hilbert modular forms, i.e. forms
such that the order of 1 at oo is as large as possible. Then lattices whose theta series
are extremal are called extremal lattices. These lattices have an extremal minimum
among all lattices of the same dimension, where the minimum is taken with respect
to S A-

We construct some extremal lattices. Their trace lattices often have interesting
structures. For instance, the trace lattices of an extremal lattice of dimension 8 over
Q[v2] are Eg L Eg and the Barnes-Wall lattice BWg.

For computations, we often restrict to fields with class number one, and especially

to the fields
Q[V5], Q[V2], and Q[v3][]

Table 2: Some extremal lattices.

Field | Q[v5] | Q[v2] | Q[V3|"
Dim. 2| - - ] -
41 1 1 2] 1
6| - -1 -
8| 2 1 |3 |>1
0| - - 21 -
12| 1 5 > 1
6| >2 | >1 [0] 0
20 >1 (0] 0
24 >1 | >1 0] 0

9 Definition [3.21]
100rdered by their discriminant.
"There are two different Types of extremal lattices, see Chapter 2.
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Spherical Theta Series, Spherical Designs, and Classifications
Additionally, one can define spherical theta series. If L is an even unimodular lattice
over the rationals and P is a harmonic homogeneous polynomial, then

OLp(q) = P()g"0/?
leL

is an elliptic modular form. Analogously, if A is an even unimodular or trace even
unimodular lattice over a real quadratic number field, then

Orpr(q1,q2) = Z Norm(P()\)) qu,x)l/zqu,x)g/z
AeA

is a Hilbert modular form.

In some cases, one can even classify all isometry classes of unimodular lattices in
a given dimension. So Venkov classified in [ConSlo99, Chapter 18] all 24 even uni-
modular lattices in dimension 24 (The Niemeier lattices) — by using spherical theta
series. Venkov’s proof is more sophisticated than Niemeier’s original computing-
intensive proof (by Kneser’s neighbor method).

Furthermore, Bachoc and Venkov developed the method to classify extremal
unimodular or p-modular lattices or to show non-existence, see [BacVen01]. Their
method uses spherical theta series and modular forms, but no heavy computer cal-
culations.

In this thesis I extend the Bachoc-Venkov method to real quadratic number
fields. To an extremal lattice A and a vector A € A of given length I give a method
to compute the so-called configuration numbers

n(B6A) = e A (p,p) =B, () = 3.

We use knowledge about Hilbert modular forms, but no knowledge about the con-
crete lattice. Often we can classify all lattices which have given configuration num-
bers.

For instance, we will see that the mentioned extremal lattice over Q[v/2] of
dimension 8 is up to isometry the only extremal lattice over Q[v/2] of dimension 8.
This was already shown by John Hsia and David Hung in [HsiHun89] by extensive
case analysis (Kneser’s neighbor method and Siegel’s mass formula).

Another application of the Bachoc-Venkov method is that one finds many in-
teresting spherical t-designs as layers of extremal lattices. We observe the same for
layers of extremal lattices over number fields. For example, the minimal vectors of
the even unimodular lattice over Q[v/5] of dimension 4, which first and second trace
lattices are Eg and Hy, form a spherical 11-design in R*. This design is the best
11-design in R*, belonging to the so-called 600-cell, see [BoyDan01].

The minimal vectors of the extremal lattice of dimension 8 over Q[v/2] form a
spherical 7-design.
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Computations
Another way to tackle constructions or even classifications of lattices is to use com-
puter calculations. First and foremost, there is the famous Kneser neighbor algo-
rithm, see [Kne57], [Kne02], [Sch9g|, or [Kirld] (the last two cover Kneser’s method
over algebraic number fields). The algorithm lists all isometry classes in one genus.
Therefore one can enumerate all unimodular lattices in principle, but this often takes
a lot of computer time and is not feasible in higher dimensions.

Alternatively, one may want to find all (unimodular) lattices over a real quadratic
number field which have a common fixed trace lattice. I explore two ways to do that.

First, a real quadratic number field F' is a subfield of the dgth cyclotomic number
field, where dp is the field discriminant. So each automorphism of the trace lattice
which has the dpth cyclotomic polynomial as minimal polynomial defines a lattice
over F.

Secondly, I give an algorithm which lists all lattices over Q[v/D] to a fixed
D-modular trace lattice, where D > 1 is square-free.

These computational approaches are useful to partly answer the classification
question, and they often answer the question completely in small dimensions and
for small field discriminants. For higher dimensions or higher field discriminants,
they fail in practice.

The method using modular forms has the potential to classify (extremal uni-
modular) lattices in higher dimensions, because it does not require intensive com-
putations. Instead one uses the knowledge of the ring of Hilbert modular forms and
the Fourier coefficients of modular forms. A problem is that one has to generate
many equations from modular forms. If there are many forms, then this is difficult
— if not impossible. Unfortunately, this seems often to be the case for real quadratic
number fields.

Outline

In Chapter 1 lattices over totally real number fields are introduced. We give basic
definitions, define the minimum of lattices, and two types of dualities, e.g. uni-
modular and trace unimodular lattices. Last, we introduce trace lattices, which are
lattices over the rationals associated to a lattice over the number field by using the
field trace.

In Chapter 2 and thereafter we consider just real quadratic number fields. We
define Galois and fundamentally invariant lattices and prove a result about the
modularity of trace lattices. Further we define three types of lattices which will be
investigated further. We prove estimates of lattices over the fields Q[v/5], Q[v/2],
and Q[v/3]. As short excursus, we summarize the theories of roots and genera of
lattices over real quadratic fields with class number one.

The theory of Hilbert modular forms is summarized in Chapter 3. To minimize
notations, we just consider the case of real quadratic number fields. Further we recall
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the structures of the rings of Hilbert modular forms over Q[v/5], Q[v/2], and Q[v/3].
The theory of Hecke operators (in the case that the narrow class number is one)
is summarized to give a method to compute Fourier coefficients of Hilbert modular
forms. Some algorithms using Hecke eigenvalues are given in Appendix [A] Last, we
define

g-expansions of Hilbert modular forms in a general way. These g-expansions order
the Fourier coefficients of Hilbert modular forms, so this is a way to do computa-
tions with Hilbert modular forms. Properties of g-expansions, especially the notion
of extremal Hilbert modular forms, and the g-expansions of the forms over Q[v/5],
Q[v2], and Q[v/3] are given.

Chapter 4 ties together the two concepts by defining the theta series of a lattice
over a real quadratic number field and proving that the theta series is a Hilbert
modular form. Actually, three types of theta series are defined, according to the
three types of lattices defined in Chapter 2. Moreover g-expansions of theta series
are explored, and we define the central notion of this thesis, extremal lattices over
real quadratic number fields.

In Chapter 5 we extend the theory of theta series to spherical theta series. These
are theta series whose coefficients come from norms of values of harmonic polyno-
mials. For that we define harmonic polynomials, and for applications we define
Gegenbauer polynomials and spherical designs. We discuss spherical theta series in
great detail. Finally we use them to extend the Bachoc-Venkov method to compute
configuration numbers of extremal lattices.

The Chapters 6 to 9 deal with concrete fields. We construct and classify

Chapter 6: extremal Type (i) lattices over Q[v/5],
Chapter 7: extremal Type (i) lattices over Q[v/2],
Chapter 8: extremal Type (ii) lattices over Q[v/3],
Chapter 9: extremal fundamentally invarian Type (iii) lattices over Q[v/3].
Finally, in Chapter 10 we give short descriptions of the two computational meth-
ods to find lattices over real quadratic number field to a fixed trace lattice.
The Algorithm to compute g-expansions of Hecke eigenforms, some extremal

Hilbert modular forms, and extremal lattices are listed in the Appendix. They are
also available on my website

http://www.math.rwth-aachen.de/~David.Dursthoft /.
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Notation

Real number fields Throughout this thesis F' is a totally real number field, i.e. a
finite field extension of the rational field such that all embeddings into the complex
field are real-valued. The degree of F' over Q will be denoted by r. The r real
embeddings o1, ...,0, : ' — R are ordered in some fixed way. If o € F, we write
al) = oj(a) for j = 1,...,r. Usually, we fix an ordering of the embeddings and
identify o with o).

The norm and trace of F' are

N:F—Qa— Ha(j) and tr:F—)Q,aHZa(j).
j=1 j=1

An element o € F is called totally positive (notation: a > 0) if al¥) > 0 for all
j=1,...,r. We Writeaz()ifa(j) >0forj=1,...,7r—1and a(”) < 0.
The ring of integer elements of F' is

Zr ={a € F | p(a) = 0 for a monic polynomial p € Z[t]}.

The unit group of Zg is isomorphic to {41} x Z"~!. The generators besides —1 are

called fundamental units. We fix a fundamental unit gy, with 5(()1), cee 66T_1) > 1
(by Dirichlet’s unit theorem there is such a unit).

An ideal of Zp which is generated by S C Zp is denoted by (5), or if S = {a},
by aZp. The norm of an ideal a C Zp is N(a) = [Zp : a]. A fractional ideal is a
finitely generated Zp-submodule of F'. The fractional ideal generated by S C F' is
denoted by (5). The fractional ideals form the ideal group of F.

The class group C'Lg of F' is the quotient group of all fractional ideals modulo
the principal ideals. Its order hp := |CLp| is always finite and called the class
number of F. The narrow class group C’L; is the quotient group of all fractional
ideals modulo the principal ideals which are generated by a totally positive field
element. Its order is the narrow class number hf = |CLL|.

The inverse different is the fractional ideal

fo ={ae F|tr(ap) € Zfor all p € Zp}.

The different ideal is (Zﬁ)_l C Zp. Its norm is the discriminant dp of F. If the
different ideal is generated by one element, the generator will always be denoted by
6. If possible, we will assume that ¢ is totally positive.

13



14 Extremal Lattices and Hilbert Modular Forms

Often we will give concrete computations and formulas only for real quadratic
number fields with class number one. So F' = Q[v/D] is the number field, where D is

a square-free integer greater than one. The number D is related to the discriminant,

_JD ifD=1 (mod4)
74D itD=23 (mod4).

Also, we write e := \/dﬁF € {1,2}. If hp = h}. = 1, then we may choose g and § in
such a way that §/e = v/Dey.

Complex numbers and functions The upper half plane of the complex plane
is

H={z € C | Im(z) > 0}.

For 2€C", z; #0forall j=1,...,r,and k € Z" let 2k = ;zlzfj.
The multiplicative and additive groups of F' act on C" via the r embeddings. If
a€FandzeC let az:=(aWz,....,aMz)and z4+a = (z1+aW, ..., 2. +a)).

An o € F* preserves H" by multiplication if and only if o > 0. We define the
C—linear analogue of the field trace:

,
Tr: C" — C, zHsz.
j=1

With these notations, for example, it makes perfect sense to write o instead of
| a9k for o € F\{0} and k € Z". If there is no danger of confusion, we may
also write o instead of N'(a)* for a € F and k € Z.

Cr is the Dedekind zeta function of F'. the value of s € C with real part Re(s) > 1

Cr(s)= > Nm™

nCZp ideal

is

So (r can be extended to a meromorphic function of the whole complex plane.

Lattices over the integers A Z-lattice (L,q) is a free Z—module L C Q" of
rank N together with a positive definite quadratic form q : QV — Q. So all our
lattices have full rank. The quadratic form q has an associated bilinear form or
scalar product b or (), i.e. b(A\ p) := (A p) := q(A+ p) —q(A) — q(p). Often
we write L instead of (L, q). The Gram matrix of L is G(L), assuming that a single
lattice basis is chosen. The determinant of L is det L := |det G(L)|. We also call
min L := min{q(A\) | A € L\{0}} the minimum of the lattice L.

An isomorphism f : QY — QV is called a similarity of norm ¢ € N if for all
z,y € QN :

6(f(2), £(9)) = Lo(z,y).
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A lattice L is called /-modular if there is a similarity f of norm ¢ with f(L*) = L.
The theta series of L is
®L(Z) = Z qq()\)a

AEL

where ¢ := exp(2miz) and z € H. It is the generating function of the “layers”
L(m) =[{A € L [ q(A) = m}|

of L.

Special lattices like the Eg-lattice, the Coxeter-Todd lattice, the Barnes-Wall
lattice, and the Leech lattice are referred to by Eg, K12, BWig, and Asgy4, respectively.
Other symbols are used for different lattices. If not otherwise stated, they refer to
the names in the Lattice Data Base [NebSlo].
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Chapter 1

Lattices over Totally Real
Number Fields

1.1 Basic Definitions

First, we develop the basic notions for lattices over number fields. A reference is
[O’M63].
Let F be a totally real number field of degree r.

(i) Let V be a vector space over F' of dimension n € N. We will often identify V'
with F", i.e. choose a fixed basis.

(ii) A quadratic form is a map @ : V — F such that Q(a\) = o?Q()\) for all
a € Fand A € V, and @ defines a symmetric bilinear form

This form is called the polar form of Q.
(i) We call Q totally positive definite if Q(\) > 0 for all A € V\{0}.

(iv) Let E = (e1,...,e,) be a basis of V. The Gram matrix of () with respect to
FE is (B(ei,ej))m € Fnxm,

(v) A lattice over F or a Zp-lattice is a pair (A, Q) of a finitely generated Zp-
module A C F™ which contains an F-basis of V' and a totally positive definite
quadratic form @ : V — F. Often we omit the quadratic form and write A
instead of (A, Q).

(vi) If A is a free Zp-module (which is always the case if hp = 1), then we call a
basis of V' which generates A as a Zp-module a lattice basis of A.

(vii) The rank of A is defined as the dimension of V.

17



18 CHAPTER 1. LATTICES OVER TOTALLY REAL NUMBER FIELDS

(viii) If A is free, then the determinant of A (notation det A) is the determinant of
any Gram matrix. The determinant is unique up to multiplication by squares
of units.

(ix) An isometry between two lattices (A,Q) and (A',Q’) is an isomorphism
f:A— A with Q(f(\) = Q(N) for all A € A. If there is an isometry, the
lattices are called isometric (notation: (A,Q) = (A',Q’)). An automorphism
of (A, Q) is an isometry (A, Q) — (A, Q). The group of all automorphisms of

(A, Q) is Aut(A, Q).

(x) For A € V the value Q(\) is called the norm of A and B(A,\) is called the
square length of A. The trivial case V = F' is generally not considered, so this
notation should not cause any confusion.

(xi) Let @ € F and A be a lattice. We call
Ala):={ e A| Q) =a}.

the layer of A at a.

1.2 The Minimum

The minimum of a Z-lattice is the minimal norm of lattice vectors besides zero.
Over a number field, one does not have an obvious ordering. We use the following
total ordering on a number field F'.

Definition 1.1 (A Total Ordering on F)
Let < be the lexicographic ordering on Q", A = (aq,...,a,) € F" be a Q-basis of F,

and let
tr

w4 F—=Q" v (tr(aqy),..., tr(av))
We define the ordering <4 on F':

p<av <= oa(p) < pa(v).

Proposition 1.2 ¢4 is bijective. Especially, <4 is a total ordering.

Proof. Let v € F. There are vq,...v, € Q such that v =3, v;a;. Then

pa(v) = (tr(aiay)), ; (v, - .. v

The trace bilinear form of F over Q is non-degenerated, so the Gram matrix
(tr(cvcrj))i; is non-singular. Hence ¢ is bijective.
Since the lexicographic ordering on Q" is total, <4 is a total ordering. O
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Of course, instead of the lexicographic ordering one may use any other total
ordering of Q". We use the minimum with respect to <4 to define the minimum of
a lattice. We will specify A in sensible way in the next chapter.

Definition 1.3 (The Minimum of a Lattice)
Let (A, Q) be lattice of rank n and A = (aq,...,a,) € F" be a Q-basis of F' such
that a, ..., a > 0.

The A-minimum of A (notation minyg(A) or min(A)) is the <j-minimum of

{Q(\) | A e A\{0}}. We call
Min(A) := Mina(A) := {A € A | Q(A) = min A}

the A-minimal vectors of A.

1.3 Duality of Lattices

The dual of a Z-lattice is the lattice generated by the dual basis of any lattice basis.
Over number fields one can think of two different dualities, see also [O’M63] and
[Ebe02].

Definition 1.4 Let (A, Q) be a lattice in the vector space V.

(i) We call (A, Q) integral if B(A, u) € Zp for all \,u € A and even if Q(\) € Zp
for all X € A.

(ii) The dual lattice of (A, Q) is
(A, Q)" == A" :={z eV | B(z,)\) € Zp for all X € A}.
We call (A, Q) unimodular if (A, Q)* = (A, Q).

(iii) We call (A, Q) trace integral if tr(B(\, 1)) € Z for all \, p € A and trace even
if tr(uQ(N)) CZ for all A€ A and p € Zr.

(iv) The trace dual lattice of (A, Q) is
(A, Q) =N :={x eV | tr(B(z,\) € Z for all A € A}.

We call trace unimodular if (A, Q)* = (A, Q). If additionally (A, Q) is trace

even, we call (A, Q) trace even unimodular.

The first definition is a direct transfer of the rational concept. On the other
hand, the second one uses the structure of the number field over the rationals.
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Lemma 1.5 Let (A, Q) be a lattice.
(i) (A, Q) is integral if and only if (A, Q) C (A, Q)7 .
(ii) (A, Q) is trace integral if and only if (A, Q) C (A, Q)*.

(iii) (A, Q)" and (A, Q)* are lattices.

Proof. (i) and (ii) are clear by definition.

(iii). Without loss of generality, A is integral. Clearly A% is a torsion-free Zp-
module. Let £ C A be a basis, and let E# be its dual basis. Then A C A% C (E#).
So A# has the same rank as A and (F) and hence is a lattice. One shows analogously
that A* is a lattice. O

For some fields, duality and trace duality are similar.

Proposition 1.6 Let (A, Q) be a lattice. Then A* = Z?A#.

Assume that Zf,f = 6 Zp for some § > 0. Let 6-'Q be the quadratic form
defined via (6 *Q)(A) = 671 -Q()\). Then (A, Q) is unimodular if and only if
(A, 671Q) s trace unimodular.

If the inverse different has no total positive generator, then the rescaling is not
possible. Thus unimodularity and trace unimodularity are really not similar.

Proof. Let x € A#. Then B(xz,A) C Zp. Since tr(Z?ﬁ B(z,A)) C Z, we have
Zpx C A*.
For the other direction let x € A*. Hence tr(B(z,A)) C Z and thus

tr(ZrpB(x,A)) C Z.

So B(z,A) C Z¥ and hence B(ax,A) C Zp for all a € (Z1)™L.
If Zf,f = 6 'Zp, then (A, Q)" = 071 (A, Q)%. So (A,07'Q)* =071 (A, 671Q)* =
(A, Q)7. Hence (A, Q) is unimodular if and only if (A, Q) is trace unimodular.
O

1.4 Trace lattices

Let (A, Q) be a Zp-lattice of rank n. Then, since Zf is a free Z-module of rank
r=[F:Q], also A is a free Z-module of rank rn (cf. [Ebe02, Prop. 6.5]).

We will define quadratic forms on A over Q, parameterized by o € Fsg. So we
will get lattices L, over Z, called trace lattices.
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Definition 1.7 Let (A, Q) be a Zp-lattice of rank n. Let o € F be totally positive.
Then A is a Z-module of dimension rn and

Jo : QR A — Z, A~ tr(aQ(N)).

is a rational quadratic form. Then Lo := Lo(A, Q) := (A, qa) is a Z-lattice, called
the trace lattice of (A, Q) with respect to ov. We call q,, the trace quadratic form of
Q with respect to . Its polar form is by = (A, p) — tr(aB(A, ).

Lemma 1.8 Let (A, Q) be a lattice and o € F be totally positive.

(i) The dual lattice of Ly, is LT = (oz_IZﬁA#,qa) = ('A%, qa).

(ii) If A is even and o € Zﬁ or A is trace even and o € Z, then L, is even.
(i4i) If A is integral, then det(Ly) = (N (a)dg)*|A# /A|. If A is trace integral, then

det(Lqy) = N(a)"|A*/A].
Proof. (i). Since by (A, ) = tr(aB(A, ),
L¥ = {\e F" | tr(aB(\A)) C Z} = o ' ZHE AT,

Since A* = ZﬁA# (see Lemma (iii)), (a’lz}%]\#, Ga) = (a71A* qq).

(ii). If A is an even lattice, then Q(\) € Zp forall A € A. If a € Zf,f, then by the
definition of Zﬁ, we have qqo(A) = tr(aQ(N)) € Z for all A € A. If A is trace even,
then tr(vQ(X)) € Z for all v € Zp and A € A. So this is especially true for v = «,
and hence L, is even.

(iii). First assume that A is integral, i.e. A C A#. Without loss of generality,
a € Z}.. Hence L, is even by (ii). So

L¥ /Lo = (a7 ZEAT) /A
as Abelian groups. Hence
det Ly = |L¥ /Lo| = |o 2% )25 || AT /A

The proof for A trace even is analogue. U

Lemma 1.9 Let (A, Q) be a lattice of rank n.

(i) Let (A, Q) be unimodular. If (Zﬁ)_l = 0Zp for some 6 > 0, then the trace
lattice Ls—1 is even unimodular. In particular, rn is a multiple of 8.

(ii) If (A, Q) is trace even unimodular, then the trace lattice Ly is even unimodular.
Thus rn is a multiple of 8.
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Proof. Ls-1 or Ly, respectively, are even by (ii) and unimodular by (iii) of the
previous lemma. So the dim(Ls-1) = dim(L;) = rn is a multiple of 8. O

It is easy to see that the quadratic form @) is determined by r trace quadratic
forms.

Lemma 1.10 Let V' be an F-vector space, hence V is also a Q-vector space. Let
(a1,...,00) € F§ be a Q-basis of F. Let qq,...,q9, : V — Q be positive definite
quadratic forms over Q.

Then there is a unique quadratic form @ : V. — F over F such that for all
Jj=1,...,7 the trace quadratic form with respect to o is q;, i.e.

q;(A) = tr(a;Q(N)).

Proof. This follows from the same argument as in the proof of Proposition
(i.e. because the trace bilinear form is non-degenerated). O

Endomorphisms of Trace Lattices Let v € Zp and let A be a lattice. Then
vA C A, and so A — v\ is an endomorphism of each trace lattice L,. We also
write v for this endomorphism. The endomorphism is self-adjoint with respect to
the bilinear form b,,.

The existence of such endomorphisms is necessary for a Z-lattice to be a trace
lattice and sufficient if Zp = Z[v], which we will assume in the following.

Definition 1.11 Let F be a totally real number field and v € F such that Zp = Z[V].
Let o € F be totally positive. Let (L,q) be a Z-lattice and let v € End(L) be a self-
adjoint endomorphism with the same minimal polynomial as v. Then V := Q® L
is an F-vector space, where multiplication is given by

v-A:=v(\) for \e V.

Since v(L) C L, L is a Zp-module. We denote this module by A.

If there is a totally positive definite quadratic form Q : V. — F such that q is
the trace quadratic form of Q with respect to «, then (A,Q) is a Zp-lattice and
L, = (L,q). We call (A, Q) an F-structure of (L,q) to « and v.

An F-structure is given by a field element o and an endomorphism v. Endo-
morphisms in the same conjugacy class over Aut(L) define isometric Zp-lattices.

Proposition 1.12 Let v, € F be as before. Let (L,q) and (L',q") be Z-lattices,
and let v € End(L, q) and v' € End(L',q") be self-adjoint and have the same minimal
polynomial as . Let (A, Q) be an F-structure of (L,q) to a and v, and let (A, Q")
be am F-structure of (A,q) to a and V'.
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Then f: (A, Q) — (N, Q') is an isometry if and only if f : (L,q) — (L', q) is

an isometry with fvf=—' =1/,

Proof. If f: (A,Q) — (A, Q') is an isometry, then Q'(f(\)) = Q(A) for all X € A.
Especially
q'(f(N) = tr (@Q(f(V)) = tr (aQ(N)) = q(N).
So f:(L,q) = (L,q) is an isometry. And for all A € L:
fr(X) = f@X) =Tf(N) = f(N).

Hence frf=t =1
For the other direction, we assume without loss of generality that (L, q) = (L', q').
So f € Aut(L,q). For A € A we have

F@X) = fwA) =V f(X) =7f(N).

Hence f: A — A’ is F-linear.

We choose some basis (a1, as,...,q,) of F such that @« = ay and aj > 0. Let
2 < j <r. Let L; be the trace lattice of (A, Q) with respect to «;, and let L; be
the trace lattice of (A’, Q") with respect to «; . Let z—i =i 0t ¢ €Q. Set
r—1 ) r—1 )
n; = Z ¢V and 77;- = Z eV
i=0 i=0

Then 77 f = fn;. Let b; and b} be the bilinear forms of L; and L/, respectively.
Then

bj (A, 1) = b(n;(N), 1) and b3 (A, 1) = b(n;(N), ).
So

0 (FON, £(1)) = b (1 (FON), F()) = 6 (£ (V). £(12)) = By (A, ) = by (A, ).

Therefore f is an isometry between L; and L} for all j = 2,...,r, and so
Q' (f(N) = Q(A) for all A € A, by Lemma [.10] Hence f : A — A’ is an isom-
etry. ]
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Chapter 2

Lattices over Real Quadratic
Number Fields

In this thesis we are mainly interested in real quadratic number fields. Therefore we
restrict to real quadratic number fields for further details. Especially, we consider

the fields Q[v/5], Q[v/2], and Q[v/3).
In general, let F' = Q[v/D] with D > 2 square-free. We use the notations of the

following table. Let also g9 be the fundamental unit with the property 5(()1) > 1.

Table 2.1: Notations
D mod 4 1 2,3

dp (discriminant) | D | 4D
w | YD | /D
2

2

e = ) 1

For concrete fields,

° ifF:Q[\/g],thendF:E),w:ao:H—ﬁ,ande:l,

o if ' =Q[v2], then dr =8, w = 2,60 =142, and e = 2,
o if F = Q[v3], then dr =12, w = /3, g0 =2+ /3, and e = 2.

2.1 Galois and Fundamental Invariance

Definition 2.1 Let (A, Q) be a Zp-lattice in a vector space V.

(i) Let oo — @ be the non-trivial Galois automorphism of F. It defines a multipli-

cation
x: FExV =V, (a,\)—»axd:=a-\

25
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Hence V' is a vector space, where the action of F' is given by x. We denote this
vector space by V. Then A CV is a Zp-module, denoted by A. And

Q:V = F = Q).

is a quadratic form. The lattice (A, Q) is called the Galois-conjugate lattice
of (A, Q).
(A, Q) is called Galois-invariant if (A, Q) = (A, Q).

(i) Assume that the fundamental unit €9 has norm 1. The fundamental-conjugate
lattice of (A, Q) is A0 := (A, £0Q), where

0@ : " — F - EoQ()\).
We call a lattice (A, Q) fundamentally invariant if A = A%,

Remark 2.2 A lattice (A, Q) is Galois invariant if and only if there is a semi-
endomorphism o : A — A (i.e. o(aA+ p) =aoc(N) +o(u) fora € F, \,u € A) with
the property

Q(o(N) = Q(X) for all X € A.
A lattice (A, Q) is fundamentally invariant if and only if that there is an endo-
morphism 7 : A — A with Q(7(\)) = e0Q(A) for all X € A.

Proposition 2.3 (Modularity of Trace Lattices)
(i) Let (A, Q) be an even unimodular lattice, and let e, dp, etc. be as in Table[2.1]

(a) The trace lattice L,-1 is even D-modular.
(b) Assume that (A, Q) is Galois-invariant. Let o € Z}% be totally positive.
Then the trace lattice L, is even N (a)dp-modular.

(ii) Let (A, Q) be a Galois-invariant trace even unimodular lattice. Let o € Zﬁf be
totally positive. Then the trace lattice Ly is even N («)-modular.

Proof. (i)(a). By Lemma (i), Lf_l = BZﬁLefl and eZ? = %ZF by definition.
So as an endomorphism of Q® L1, v/D maps Lf_l onto L.—1. For A\, p € Q® L1
we have

b+ (VD(N), VD(1) = tr(e ' B(VDA,VDp)) = Db,1(A, o),

and hence VD is a similarity of norm D. So L,-1 is D-modular.
(i)(b). Let o be a semi-endomorphism of (A, Q) such that Q(c(\)) = Q(A) for all
A € A. Write also ¢ for the induced endomorphism on L,. Again by Lemma i)
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we have LY = (ay/dp)~! Ly. Put f := ca/dr € End(Q® L,). Then f(L%) = Lg.
For \,p € Q ® L.-1 we have

ba(F(N), S (1)) = tr(a

(o(avdr).o(avirm))
tr (oz (a\/@)\, a@u))
= tr (@ B (a\/%)\,a\/ﬂu)) = N(a)dp bo (A, ).

B
B

Hence f is a similarity of norm N(«a)dp.
One proves (ii) analogously to (i)(b). O

2.2 Three Types of Lattices

We define three types of lattices and describe their trace lattices. We distinguish
three types because the situation is different whether the fundamental unit has norm

—1 (Type (i)) or 1 (Type (ii) and (iii)).

Definition 2.4

Type (i):

Type (ii):

Type (iii):

Suppose that the fundamental unit g has norm —1. Then the different
is generated by § = \/dpeg > 0. We define aq := 6~ and ag := e L.

An even unimodular lattice (A, Q) is called a lattice of Type (i).

Suppose that the fundamental unit €9 has norm 1. We define ay := e~ !

and oy = %1.

A Galois-invariant even unimodular lattice (A, Q) is called a lattice of
Type (ii).

Suppose that the fundamental unit €9 has norm 1. We define oy := 1
and as := D + VD.

A Galois-invariant trace even unimodular lattice (A, Q) is called a lattice
of Type (iii).

For each type, we denote the trace lattice Lo, by (A1,Q1) and call it the first
trace lattice. We denote the trace lattice L, by (A2, Q2) and call it the second trace
lattice. And By and Bs denote the bilinear forms of A1 and A, respectively.

For concrete fields, we have the following elements oy and «s.

Type (1):

(a) If F = Q[v/5], then oy = 5_10*/5 and ag =1,
(b) If F = Q[v/2], then a; = 2=¥2 and ay = &.
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Type (ii): If F = Q[v/3], then oy = 5, ap = %.
Type (iii): If F = Q[v/3], then oy = 1 and ag = 3 + /3.
Theorem 2.5 Let (A, Q) be a lattice.
Type (i): (A1, Q1) is even unimodular and (Ag, Q2) is even D-modular.
Type (ii): (A1, Q1) is even D-modular and (A2, Q2) is even (D — 1)-modular.

Type (iii): (A1, Q1) is even unimodular and (A2, Q2) is even D(D — 1)-modular.

Proof. By Lemma (ii), the trace lattices are even. Their determinants are given
by Lemma (iii). And by Proposition they are modular. O

A natural question is whether the reverse of the theorem is true. So one starts
with a lattice over Z and studies the F-structures of this lattice.

Structures of Rational Lattices Let F = Q[v/D] be a real quadratic number
field and Zp = Z[w], where w is defined as in Table Let (L,q) be an even
Z-lattice of even dimension N. Assume that there is a self-adjoint v € End(L, q)
having the same minimal polynomial as w.

Therefore L is an Zr module, where w - A := v(A) for A\ € L. We denote this
module by A. We want to find the F-structures of L which are lattices of Type (i),
(ii), or (iii) and whose first trace lattice is L. So suppose that L is either unimodular
(for Types (i) and (iii)) or D-modular (for Type (ii)).

Let n = a + bv, where a,b € Q such that aflag = a + bw. If L is the first
trace lattice of an lattice A of Type (i), (ii), or (iii), then Ba(A, ) = Bi(n(\), p)
for all A\,x € A, where B; and Bs are the bilinear forms of the first and second,
respectively, trace lattices.

So we define a lattice L' = (L, q’) via the bilinear form

b': L x L — Q, (A,,LL) = [’(770\)7/07

where b is the polar form of (L, q).
And let 7 € End(L) such that @- A =7(\) for all A € L.

Theorem 2.6 Type (i): Suppose that N'(g9) = —1 and that L is unimodular.

(a) If D =1 (mod 4), then there is a unique lattice (A, Q) of Type (i)
such that L and L' are the first and second trace lattices.
(b) If D = 2 (mod 4) and L' is even, then there is a unique lattice

(A, Q) of Type (i) such that L and L' are the first and second trace
lattices.
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If there is additionally an f € Aut(L) with fv = Uf, then (A, Q) is
Galois invariant.

Type (ii): Suppose that N'(g9) = 1 and that L is D-modular. If L is even and there
is an f € Aut(L) with fv =Uf, then there is a unique lattice (A, Q) of
Type (ii) such that L and L' are the first and second trace lattices.

Type (iii): Suppose that N'(g9) = 1 and that L is unimodular.

(a) If D =1 (mod 4) and there is an f € Aut(L) with fv =7Tf, then
there is a unique lattice (A, Q) of Type (iii) such that L and L' are
the first and second trace lattices.

(b) If D = 2,3 (mod 4), L' is even and there is an f € Aut(L) with
fv =T0f, then there is a unique lattice (A, Q) of Type (iii) such that
L and L' are the first and second trace lattices.

Proof. (i). By Lemma [1.10} there is a unique lattice (A, Q) such that Lo, = L and
Lo, = L'. By Lemma [1.§(iii), (A, Q) is unimodular. We have to show that (A, Q) is
even.

Since L is even, we have

tr(an@Q(N)) € Z for all A € A.

Let A € A. So tr(a;Q(BN)) = tr(a1B2Q(N) € Z for all B € Zp, and Q(N\) €
(01 (Z3)z)".

If D=1 (mod 4), then Zr = Z[%]. Hence (Z%)7 = Zp. Since (a1 Zp)* =
Zr, Q(\) € Zp for all A € A, and (A, Q) is thus even.

If D =2 (mod 4), then (Z2)7 = Z[2v/D] has index 2 in Zp. Therefore Zp =
(a1 Zp)# has index 2 in (ayZ[2v/D])#, and hence

2@()\) € Zp.

So Q(\) =a+bVD, a,be %Zandsgzaz—l—y\/ﬁ, z,y € Z. Then alz% and

ag =1/2. Since L and L’ are even,

tr(anQ(N)) = ya — xb € Z and tr(%) =acZ.

Soa € Z and b € Z. Since —1 = N(gg) = 22 — Dy?, x is odd. Hence b € Z.
Therefore Q(\) € Zp and (A, Q) is even.

If there is an f € Aut(L,q) with fv = Uf, then by Proposition (A, Q) =
(A, Q) is true. Hence A is Galois-invariant.

(ii). Again, there is a unique unimodular lattice (A, @) such that L,, = L and

Loy =L Let A€ A and Q(\) = a+ bvVD. So

tr(a1Q(N)) = 2a € Z and tr(c2Q(N)) = 2(a — b) € Z,
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because L and L are even. It follows that Q(\) € Zp and therefore A is even. And
since there is an f € Aut(L,q) with fv =7f, (A, Q) = (A, Q) by Proposition m
The lattice (A, Q) is even, unimodular, and Galois-invariant, hence of Type (ii).
(iii). Again, there is a unique trace unimodular lattice (A, Q) with L,, = L and
Lo, = L' (a). Let A € A. Analogously to (i)(a), Q(X) € Z7.. Hence A is trace even.

(b). Let Q(A) = 2P with a,b € Q. So

tr(Q(\)) = b € Z and tr((D 4+ VD)Q(\)) = a+ Db € Z.

Therefore a,b € Z, hence Q(\) € Zi’f, and A is trace even. Again, A is Galois invari-
ant because there is an f € Aut(L,q) with vf = fo. O

Minima estimates for trace lattices We conclude this section by remarking
minima estimates of trace lattices for concrete number fields.

Proposition 2.7

(i) [Nebi3, 2,4] Suppose F = Q[v/5]. Let A be an even unimodular lattice over F.
For the minima of the first and second trace lattices A1 and Ao, respectively,
we have estimates

2min A1 < minAy < gminAl.

(ii) SupposeF = Q[v/2]. Let A be an even unimodular lattice over F. For the

minima of the first and second trace lattices A1 and Ao, respectively, we have

estimates
minA; < minAs; < 2minA;.

(iii) Suppose F = Q[v/3]. Let A be an even unimodular lattice over F. For the
minima of the first and second trace lattices A1 and Ao, respectively, we have
estimates

%minAl < minA; < %minAl.

(iv) Suppose F = Q[v/3]. Let A be a trace even unimodular lattice over F. For the

minima of the first and second trace lattices A1 and As, respectively, we have

estimates

3
§minA1 < minAs < 4minA;.

Proof. See also [Neb99] and, for (i), [Neb13l 2.4]. Let ng := minA; and mg :=
min Agp. Let A\, u € A such that Q1(\) = no and Q2(p) = mo.
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(i) A1 is the trace lattice with respect to (v/5gg) ™! = @ and Aj is the trace

1+v5
2

lattice with respect to 1, where g = is a fundamental unit. Hence

no = Qi) = tr (1 *;02@(») -

(@) + Qa(E5N) > 2,

| =

mo = Qa(n) = tr ((V520) (1 +€0)Qw)) = (Qu(n) + Qu(eon) > 2no.

ii) Ay is the trace lattice with respect to o) T = 1+8® 4nd Ao is the trace
Ay is the trace latt th t to (2v/2g9) 7! = 40
lattice with respect to %, where g9 = 1 + /2 is a fundamental unit. Therefore

mo= @) =t (1 +8602Q(A)> -

(Q2(A) + Q2(50N)) > %mo’

>~ =

mo = Q2(p) = tr ((2\/550)11—;8%(»?(,“)) = % (Q1(p) + Q1(cop)) > no.

(iii) Ay is the trace lattice with respect to 1/2, Ay is the trace lattice with respect
to 3_6‘/3, and g9 = 2 + /3 is a fundamental unit. Therefore

3—35+¢}
6 8

no = Q1(A) = tr ( Q(M) = é (5Q2(A) + Q2(g0))) = %mm

1

z=2
AL Q(u)) = 5 (5Qu(1) + Qu(Eom) = 3no

2 12

mo = Qa2(p) = tr (

(iv) Ay is the trace lattice with respect to 1, Ay is the trace lattice with respect to
3+ /3, and eg = 2+ /3 is a fundamental unit. Therefore

no = Qi) = bt (34 V31 + 152500 = §Qe )+ Q1= V)N = =L,
mo = Qa(p) = tr (3 + VEIQ(W) = Qi) + 51+ VB > Smo
]

Remark 2.8 The trace lattices are modular lattices. With the theory of modular
forms, one finds upper bounds for minima of such lattices. If a lattice is p-modular,

where p € N such that p+ 1 divides 24, then
dim L
inL <1 — .

min k=t {48/(p+ 1)J

For p =1 this is due to Siegel, compare [Sie69], for p > 1 this was first observed by
Quebbemann in [Que9s|. Lattices achieving this bound are called extremal.
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For F = Q[v/5], the second trace lattice is 5-modular. The bound for p = 5 is
strictly bigger than the upper bound from the proposition for n > 40. Hence the
second trace lattice cannot be extremal for dim A > 20, c¢f. [Nebl3, Corollary 2.9).
Actually, Nebe showed that both first and second trace lattices could be extremal only
for dimensions 4 and 12.

For the fields F = Q[v/2] and F = Q[v/3], there is no such discrepancy, the upper
bounds of the proposition are always bigger than the bound of modular lattices. Also,
the lower bound does not yield a contradiction.

2.3 Root lattices

Root lattices are important examples of lattices. A reference of the following is
[Sch94].

We assume that F' has class number one and only consider even unimodular
lattices. Let €9 be the fundamental unit of F', as before.

Definition 2.9 Let (A, Q) be an even unimodular lattice in a vector space V. A
vector A € V defines an isometry, called reflection along A:

B(A, 1)
Q(A)
A root of A is a vector A € A such that sy is an automorphism of A.

Write R(A) for the set of all roots of A.
A is called a root lattice if R(A) generates A and rootless if R(A) = 0.

sx: V=V, p—p— A

If A€ Vand a € F*, then s\ = sa). So, if al € A and A € A is a root, then aA
is also a root. We call A € A primitive if AN F\ = ZpA.

Lemma 2.10 Ifu € A is a root, then there are a« € Zp and X\ € A such that u = a,
A is primitive, and Q(X) € {1,e0}.

Proof. Since hrp = 1, there are a primitive \' € A and an o’ € Zp such that
= a')N. Since the reflection sy, is an automorphism of A, we have

BOLA)
GIPOR

Since X is primitive,
B(XN, A
()\7’1) CZpr.
Q)
So ﬁ)\’ € A¥. Since A* = A and X is primitive, we have Q(\) € Z%. Hence
there is an ¢ € Z3 such that Q(e)\) = 2Q(N) € {1,g0}. Set A := e). Then
Q(N\) € {1,e0} and pu = /e. O
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If ep has norm —1, then of course Q(\) = ¢q is not possible. We define the set
of reduced roots

R(A) == A(1) U A(eo).

Example 2.11 (i) For F = Q[\/5] there is the even unimodular root lattice Fy,
cf. |CosHsi8]. It is determined by its Gram matriz

2 o €0 €o

e 2 1 1
g 1 2 1
e 1 1 2

It is up to isometry the only even unimodular lattice of dimension 4, cf.
[Maa40).

(ii) For F = Q[v/2] there is the root lattice A, which is sometimes also called Fy,
cf. |[HsiHun89]. It has the Gram matriz

' is up to isometry the only even unimodular lattice in dimension 4. In fact,
"= D4+ \ﬁDf, where Dy is the lattice generated by the root system Dy,
see [Sch9j).

(iii) If F = Q[v/3], then reduced roots are lattice vectors of norm 1 or 24++/3. There
are the even unimodular root lattices Go and Fy, see [Sch94] and [Hun91).
They have the Gram matrices

2 1 1+v3 1++3
2 V3 1 2 1+v3 1+3
<\/§ 2) md | L8 14VE 4423 2443 |

1+v3 14V3 24V2 4+2V2

respectively.

2.4 Genera and the Mass Formula

In this section we assume that the class number of the real quadratic number field
F = Q[V/D] is one. So all Zg-lattices are free Zp-modules.
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Let A be a full lattice in (V,Q), where V is an F-vector space of dimension n
and Q : ' — V is a totally positive definite quadratic form. The genus of A is

Gen(A) = {M C V lattice | Ay, = M, for all prime ideals p C Zp}.

Here A, is the lattice over the local ring Zp,, i.e. Ap = Ly Qzp A. A genus con-
tains only finitely many isometry classes of lattices, see for example [O’M63), Theo-
rem 103:4]. There is an algorithm to list all of them, Kneser’s famous neighboring
method, see [Kne57],[Kne02], [Sch9g|, or [Kirld] (the last two cover Kneser’s method
over general algebraic number fields).

In the even unimodular case there is exactly one genus.

Theorem 2.12

(i) Assume that the narrow class number is one. If 4 divides n, then there is
precisely one genus of even unimodular lattices.

(i) Assume that the narrow class number is two. If n is even, then there is at
least one genus of even unimodular lattices. Over Q[v/3], there is precisely one
genus.

Proof. O’Meara shows in [O’M63, 102:3] that all even unimodular lattices of a

quadratic space lie in the same genus. For the existence of even unimodular lattices,

see [Sch94, Proposition 3.1] for the cases n € 4N. For (ii) in the case n € 2N, it is

sufficient to construct an even unimodular lattice of dimension 2 and determinant

one. If D =3 (mod 4), then D = —1 + 4/ for some ¢ € N. The lattice with Gram

matrix

(Vour)
VD 2
is even unimodular.
The fact that for Q[v/3] there are no other genera follows from [O’M63), §93D].

O

Some genera contain only one isometry class. Over the rationals they were
partly classified by Watson ([Wat84]) and recently completed by Kirschmer and
Lorch (|LorKirl3]). One-class genera appear up to dimension 10. For totally real
number fields the one-class genera have been classified by Kirschmer in [Kirl4], see
also [Kirl6]. In the case of real quadratic fields and even unimodular lattices, every

one-class genus is of rank 4 and over the field Q[v/2], Q[v/3], Q[v5], Q[v13], or
Q[v17].

One way to estimate how many isometry classes are contained in a genus is to
use the mass formula. If the isometry classes of a genus G are represented by the
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lattices Aq,..., Ay, then the mass of the genus or of A; is

h
Mass(G) := Mass(A Z ])’

The mass of a genus can be calculated directly by using Siegel’s mass formula. For
even unimodular lattices the formula is the following.

Theorem 2.13 (Siegel’s mass formula for even unimodular lattices)
Let A be an even unimodular lattice. Then

n_ n_,
2 5 |
MaSS(A) = 41—TL . LF(TL/2, XTL H CF 2£ dn(n 1)/4 1_n(n+1)/2 ' H ﬂﬁ#ﬁ)

(=1

Here (p(s) = [],(1 - N(p)=*)~L, where the product is over all prime ideals p, is
the Dedekind zeta function, and Lp(s, xn) = [1,(1—Xxn(p)N (p)~*) " is the L-series
attached to F' with character

Xn(p) = (%) (Legendre symbol).
Proof. See [Sied7], [Hsi89], [Hun91], or [Kirl6]. 0

Using Kneser’s neighboring method to list all isometry classes of a genus is only
practicable if the mass of the genus is small. So their mass may be relatively small
although there are many isometry classes. M. Kirschmer classified all genera of
unimodular lattices with mass at most 1/2 over totally real number fields other
than Q. In the greatest possible rank, 12, there is only one genus. It is the genus
of even unimodular lattices of dimension 12 over Q[v/5]. It has 15 isometry classes

and the mass is
668874965279

579400335360000000
The isometry classes were classified by P. Costello and J. Hsia in [CosHsi87].
The following table shows approximations of the masses of even unimodular
lattices over the fields Q[v/5], Q[v/2], and Q[/3] in small dimensions.
With Kneser’s neighboring method one can find all even unimodular lattices.
The highest cases I could compute in reasonable time are the following.

~1.2-1075.

Theorem 2.14 (i) The mass of the even unimodular lattices (Type (i)) of di-
mension 12 over F = Q[v/2] is

9214790966898371
1078738078924800

Note that J.S. Hsia in [Hsi89] estimates the mass to be about 7.1, this is an
error.

~ 8.5.
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dim.| Qv5 QW2 | dim.| Q3]
4 16.9-107° 4.3-107¢ 2 [4.2-1072
8 138-10° 39-10%| 4 |1.7-1073

12 |1.2-10°6 8.5 6 |1.1-1074
16 | 1.8-10% 4.5-10'8 8 [1.3-1073
20 [2.0-10%0 6.9-10% || 10 3.0

With Kneser’s neighboring method for the prime \/2Zp one can compute rep-
resentatives of all 577 isometry classes. Among these 577 lattices, 99 lattices
have no wvectors with norm in Z%., hence they have no roots. Among these
lattices, 5 lattices also have no elements of norm in \@Z}

These 5 lattices have an extremal < s-minimum among all lattices of Type (1),

where A = (2_4\/5, %) Their Gram matrices are listed in the Appendix.

The mass of the even unimodular lattices of dimension 10 over F = Q[v/3] is

9957385009 _
3344302080

Using Kneser’s neighboring method for the prime \/3Zp, we find representa-
tives of all 430 isometry classes. Among these 430 lattices, 99 lattices have
no vectors of norm in (Z%)? and 21 lattices have no vectors of norm in Z%,
i.e. have no roots. These 21 lattices without roots also do not have vectors of
norm 2(Z%)3.

3-v3

So they have an extremal <4-minimum, where A = (%, T)' Their Gram
matrices are given in the Appendiz.

Even in the last cases, it is really difficult to list all lattices in the genus. We see
from the table that it is not possible to list the whole genus for dimensions greater

than

12. For fields of higher discriminant, even lower dimensions are hopeless.

For example, the mass of even unimodular lattices over Q[\/E] in dimensions 8 is
approximately 202.

So one has to use another way to find all even unimodular lattices, or to find all
“interesting” even unimodular lattices (in some sense). We are interested in lattices
of Type (i), (ii), or (iii) which have an extremal <4-minimum, where A = (aq, ag)
is given by the type.



Chapter 3

Hilbert Modular Forms

The theory of Hilbert modular forms was introduced by Otto Blumenthal in his
Habilitationsschrift in 1901 following unpublished notes by Hilbert, see [Blu03| and
[Blu04]. Good introductions to Hilbert modular forms are the books by Garrett
[Gar90], Freitag [Ere90] and van der Geer [vdG88]. These books are the main refer-
ences for the sections about classical Hilbert modular forms, Eisenstein series, and
Hecke operators.

We restrict to real quadratic number fields, although one may define Hilbert
modular forms for any totally real number field. Then for real quadratic number
fields, Hilbert modular forms are holomorphic functions on the Cartesian product of
two copies of the complex upper half plane or one copy of the upper half plane and
one of the lower half plan. The later was for example done for Q[/5] in [Maa40].
The reason why one needs to consider the lower half plane is that the modular forms
of fields F' with hJPC = hp on H x H and H x H are not the same. Gundlach observed
this when he constructed the modular forms of Q[v/3], see [Gun65].

3.1 Classical Hilbert Modular Forms

Let F = Q[V/D] be a real quadratic number field, where D > 1 is square-free.
The two embeddings of F' into R are o — al, j =1,2. The algebraic group
GLy(F) is a discrete subgroup of GLa(R)?,

9 [a B o) g a® pA
(}LQ(F)<—>GL2(R),<7 5>H<<7(1) sW 4@ 5@ ) |

Hence we identify GLy(F) as a subgroup of GLo(R)2. If g = (3 ?) € GLo(F), we

. 0 gU
write g\@) for <:(j) g(ﬂ)’ j=12.

Definition 3.1
GL3 (R) := {g € GL2(R) | detg > 0}

37
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s the connected component of 1, and
GLj (F) := {g € GLa(F) | detg > 0}

can be embedded into GL3 (R)2.
Also we define

GLj (Zp) = {geGL3(F)|g,g " €ZE?},
Z(F) = Z(GLE(F) ={(* ) | a € F}, and
Z(Zp) = Z(GL}(Zr))={(“a) | a € Z}}.

The group GLa(R) acts on C via Moebius transformations,

a b _az+b
c d) T ard
Hence GL2(R)? acts diagonally on C? via coordinatewise Moebius transformations.
The group GLj (R) preserves the upper half plane H = {z € C | Im(z) > 0} and
the lower half plane H := {z € C | Im(z) < 0}. Therefore GLJ (R)? preserves H x H
and H x H. If g = (g1,92) € GL2(R)? with det(g;) > 0 and det(gs) < 0, then g
interchanges H x H and H x H.

The theory of modular forms works for certain subgroups of GLJ (F), the so-
called congruence subgroups.

Definition 3.2 Letn C Zp be an integral ideal. The principal congruence subgroup
of level n is

()= {g€GL{ (Zr) [ g=(}9) (modn)}.

A subgroup T' < GLJ (F) is called a congruence subgroup if there is an idealn C Zp
such that T'(n) < T'Z(ZF) and the index is finite.

Lemma 3.3 Let I', I be congruence subgroups.

(i) SLo(ZF) is a congruence subgroup.

(ii) T NI is a congruence subgroup with finite index in both T and T".

(iii) gTg~' is a congruence subgroup for all g € GLy(F).
Proof. Suppose that I'(n) and I'(n’) have finite index in Z(Zp)I' and Z(Zp)I",
respectively. (i) In fact [[(Zp) : Z(ZF)SL2(Zr)] = |(Z})s0/(Z%)?]. (ii) The prin-
cipal congruence subgroup I'(n N 1) has finite index in T'(n) and T'(n’), hence in

Z(Zr)(T NT’). (iii) Let £ € N such that £g and £g~! have entries in Zg. Thus
['(¢*n) has finite index in gI'(n)g~! and hence in gI'g~!. O
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Definition 3.4 The group GL3 (F) acts on the holomorphic functions of H x H and
H x H in the following way.
Let ze HxH or 2 € Hx H and g = (f: g) € GL (F). We define the factors
of automorphy ji(g,2) := (YW z + W), j =1,2, and
3(g,2) == (YW zy + 60, 43 25 4 63)),

Let k € 72, called the weight vector. For a holomorphic functions f : H x H — C
or f:HxH — C and g € GL (F) we define a holomorphic function f|rg via

Flrg(z) = det(9)"?5(g,2) ™" f(g2).

We use our standard notation o* = (aM)¥1 (a2 and o¥ = a¥af? for o € F and
a < (CQ, ai,as # 0.
GL3 (F) acts on the holomorphic functions of H x H or of H x H via
(9, ) = flrg-

If the weight vector is (k,k) for k € Z (parallel weight), we also write k € 7Z
instead of (k, k).

Definition 3.5 (Hilbert Modular Forms)
Let T be a congruence subgroup and k € Z2 be a weight vector or k = (k, k) a parallel
weight.

(i) A holomorphic function f : H x H — C or f : H x H — C is called a Hilbert
modular form of level I' and weight k if

fleg=f forall g €T.

IfT'=T(n), we also call n the level of f. And if n € Zp generates n we call n
the level of f.

(ii) The spaces of Hilbert modular forms of level I' and weight k are
Mp(T) :={f : H x H — C holomorphic | flrg = f for all g € '},
Mp(T) ;== {f : H x H — C holomorphic | flxg = f for all g € T'}.
(iii) For Hilbert modular forms of parallel weight, there are the graded algebras

M(T) = P My(I'), M(T) = P M(I),

keZ keZ

and

M(T)ey = @@ Mi(T), M(T)ew = @ My(D).
ke27 ke2Z
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(iv) The Galois automorphism of F yields a transformation
Hx H — H x H, (2’1,2’2) — (ZQ,Zl).

A Hilbert modular form f € M(I") is called (Galois) symmetric if f(z2,21) =
f(z1,22) for all z € H x H and anti-symmetric if f(z2,21) = —f(z1, 22) for all
z € H x H. Also

MYT):={fe M) | fissym.}, M~ (T):={f € M(T) | f is anti-sym.},

M) =Y MH(T) and M, (T) := > M(D).
keZ ke2Z

(v) Analogously, there is the transformation
HxH— Hx H, (21, 22) = (—22,—21).

f € M(T) is called (Galois) symmetric if f(—z2,—21) = f(z1,22) for all
z € H x H and anti-symmetric if f(—z9, —21) = —f(21, 22) for all z € H x H.
Also

MYT) = {f e M) | fis sym.}, M () :={f € M(T) | f is anti-sym.},

MYT) =Y M (L) and M,(T) := Y M (T).
keZ ke2Z

If T is a principal congruence subgroup, i.e. I' = I'(m), we often write My (m) instead
of My(T"), M(m) instead of M (I"), etc. And, if m = nZp is principal, we write My (n)
instead of My(I'(nZr)), M(n) instead of M (I'(nZr)), etc.

We are especially interested in the following groups and their Hilbert modular
forms.

Definition 3.6 (i) The special linear group I'r := SLa(ZF) is called the Hilbert
modular group.

(ii) Let go := (\/E 1) € GLo(F), where \JdrpZp is the different ideal of F. We

call
o  BVdp a,fB,7,0 € Zp
v/Vdr b ‘ detg =1

the conjugated Hilbert modular group.

Tri=golrgy ! =

(iii) Let o be a fundamental unit and assume that N'(eg) =1 (i.e. hf: = 2hp). We
define the extension groups T5® := (T, (%)) and Ty := (Tp,()). The
matriz (°° |) acts as z = eoz. A Hilbert modular form of level TS or TR
is also called a fundamentally symmetric Hilbert modular form of level I'r or

I'r.
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The group I'r is a congruence subgroup. It acts on H x H as I'r acts on H x H.
More precisely, there is a direct connection between modular forms of H x H and
H x H.

Proposition 3.7 Let I' be a congruence subgroup. Let gg := (\/‘E 1).
(i) f:H x H — C is a Hilbert modular form of level T if and only if
fogp' :HxH = C, z+ f(gy'2)

1s a Hilbert modular form of level goFgo_l. Additionally, f is symmetric if and
only if f o gy is symmetric. Therefore

My(T) = My(goTgy "), My (T) = M (goTgy ")

(ii) If e € Z% with N'() = —1, then (¢ 1) defines the map HxH — HxH, 2+ ez.
Assume that (¢ 1) normalizes T and that (° 1) € . Then M(T) = My(T)
by the isomorphism f i+ fo (° ).

(iii) Make the same assumptions as in (i) and additionally that the weight k is
parallel. If k is odd, then

~ T — T ~ Tt
M;f (D) = M (L), M, (T) = M (D),
and if k is even, then

M (D) = M (1), M, (D)= M, (T).

Part (i) is especially interesting for I' = I'r and gol'rgq ! — Tr. In other words,
Hilbert modular forms on H x H for the Hilbert modular group are the same as
Hilbert modular forms on H x H for the conjugated Hilbert modular group.

Proof. (i). Let f: H x H — C be a Hilbert modular form of level I' and weight k,

and let g = (:’g) € I'. For z € H x H we compute

fogy (90990 2) = flgg5"'2) =3(g.95 "2)" flgg"2).
—

cHxH

Since j(g, g5 '2) = (Y H= + 81,4 2= 1+ 6®)) = jj(goggy ', ), f is a Hilbert

modular form for goFgal. If f is symmetric, then f(—z2,—21) = f(21, 22) for all
H x H. Hence for all z € H x H:

22

fogy(z2,21) = N =00) = I =) = fogy'(z1,22).

One proves the other direction analogously.
(ii). One shows analogously to (i) that f € My(T') if and only if fo(¢ ) € My(T).



42 CHAPTER 3. HILBERT MODULAR FORMS

(iii). Let f € My(I') be symmetric, i.e. f(z2,21) = f(z1,22) for all z € H x H.
Then for z € H x H:

fo(®1)(—22,—21) = f(—€22,—E2) = f(—Ez, —€21)
=f((s" ) (ez1,820)) = N fo(f])(z1,2).

Since N(¢) = (—1)*, this proves (iii). O

The projective plane P! (F) can be identified with F' and the exceptional point oo,
and analogously P!(R) C P}(C) with R C C, respectively, and the exceptional point
100. With the two real embeddings we get an injection

PY(F) — PY(R)? — PL(C)2.

The point co € P!(F) is mapped to (ico, ico). The group GLa(C) acts on P*(C) with
fractional transformations, so GLg2(C)? acts on P#(C) componentwise. The action
of GLJ (F) < GL2(C) on P;(C) is transitively on P!(F).

Definition 3.8 (Cusps)

Let T C GLI (F) be a congruence subgroup. The orbits in T\P}(F) are called the
cusps of I'. In abuse of notation, the representatives of the orbits are called cusps
as well.

For level one, the number of cusps is equal to the class number of F'. This was
first proved by Maaf} in [Maa40], in which he corrected a famous error of Blumenthal
concerning the cusps of the fundamental domain.

Theorem 3.9 (Number of Cusps, Maaf})
Let T be a congruence subgroup with SLa(Zr) < T < GL3 (Zr). Then we have a
bijection between the cusps and the class group of F,

I\P!Y(F) — CL(F), T'(a: b) — [(a,b)].

Proof. [Maa40], [Fre90, Lemma 3.5], or [Gar90, 1.3].
This follows from the fact that a (fractional) ideal in a Dedekind domain can be
generated by two elements. So if (z,y) is a fractional ideal, then its ideal class is

{(:c',y’)] (gf)zy<‘;‘§)( )forsomeu( )EZ( )T }

But I acts on the same way on P!(F), i.e. the orbit of (z :y) € PL(F) is

);
{(m’:y’)] ( ) ( ) forsomey(:g)EZ(F)F}.
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Corollary 3.10 If I is any congruence subgroup, then I' has only a finite number
of cusps. Denote this number by sr.

Let k1, ..., ks be representatives of the cusps and g1,...,gs € SLo(F) such that
gj(00) = kj. Let B = GL3 (F)s be the stabilizer of oo, i.e. the upper triangular
matrices. Then we have a disjoint union

GL3 (F U I'g;B

Proposition 3.11 (Fourier expansion)
Let T be a congruence subgmup and f € My(T) or f € My(T). Especially f(z+v) =
f(2) for allv € F with (§%) € T[]

Hencem :={v e F | ( Y) €T} is a Z-module and f has a Fourier expansion
at ico over the dual module m# ={veF |tr(vm) CZ}:

HOEDY %(f)e%”“”z)

vem#

(absolutely convergent on H x H or H x H, respectively; uniformly absolutely con-
vergent in any compact subset). The coefficient a,(f) € C is called the Fourier
coefficient of f at v.

Proof. [Gar90, 1.2] O

Theorem 3.12 (Koecher’s principle)
Let f be a Hilbert modular form. Then f is holomorphic at ioco, i.e. for the Fourier
coefficients we have

a,(f)#0 = v =0 or {V>>O Z:ff:HX@—)(C’
vz0 iff:HxH-—>C.
Proof. For H x H see [Gar90), 1.4]. This was actually first proved by Gotzky in
[G6t28]. Koecher proved a similar result for Siegel modular forms.
For H x H the proof works the same way. Or one uses the connection between
I' and gol'gy ! see Theorem Let f : H x H — C be a Hilbert modular form
for ', then f has the Fourier expansion f(z) = Zuesz a,(f)exp(2m Tr(zv)). Also

fogy 1. H x H — C is a Hilbert modular form for gol'gy 1 Hence it has a Fourier
expansion over m = /drZp,

foga'(Z) =ao(fogy") + Z a,(f o gy exp(2mi Te(v'2')).

vem®

Lytvv= (=1 + y(1)7 zo + l/(2>).
2Tr(1/z) =Wy 4+ @ g,
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Here m# = \/d Fleﬁf. Hence f also has the Fourier expansion
F2)=flg'g02) = > aw(fogo)exp(2m Te(2/dpr')),
I/’E\/@_IZ?é

where a,/(fogo) # 0 only if v/ = 0 or v/ > 0. By comparing the Fourier expansions,
we get v/ = /dpv and a,(fogy ') = a,(f). Hence a,(f) # 0 only if v = 0 or v = 0.
O

Definition 3.13 A Hilbert modular form f of level I' and weight k is called a cusp
form if ao(f|x(g)) = 0 for all g € GL3 (F). The space of cusp forms of level ' and
weight k is denoted by Sk(T') or Si(T).

Proposition 3.14
(i) If Mg(T') # 0 or My(T) # 0, then k = (0,0) or k1, ks > 0.
(ii) Mo(T) = Mo(T) = C and So(T') = So(T") = 0.

(iii) If Sp(T) # My(T) or Si(T') # My(T), then k is parallel.

Proof. [vdG88, Lemma (6.3)] and [Gar90, 1.4 and 1.7]. O

Theorem 3.15 The spaces My (T") and My(T') have finite dimension over C. Also
(dim My(T") — dim Sk(f‘)> < sr and (dika(F) — dimSk(F)> < sr,
where sp is the number of cusps of I'.

Proof. [Fre90, Theorem 6.1] or [Gar90, 1.7, 1.8]. O

Hence one needs only finitely many Fourier coefficients to describe a Hilbert
modular form uniquely. This is very useful for computations with Hilbert modular
forms.

Example 3.16 (Eisenstein series)
Very important (non-cusp) modular forms are Eisenstein series. The classical Eisen-
stein series over Q,
Z (mz +n)~k
(m,n)eZ\{0}

is absolutely convergent for k > 3 and an elliptic modular form of weight k (for even
k>4).
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Over totally real number fields other than Q, the generalization of these Eisen-
stein series are also absolutely convergent and modular forms. But one may also
define Fisenstein series for k =1 and k = 2. These are also holomorphic functions
and modular forms.

For simplicity reasons, we assume that hp =1 and T' = SLa(ZF).

Fisenstein series for Hilbert modular forms were introduced by Hecke in [Hec2/)
and generalized by Kloosterman in [Klo28]. The following also uses [Gar90, Section
1.5 and 1.8], [Fre90, Chapter I §5 and III §4], and [Gun63].

Let B be the stabilizer of oo under I', i.e. the group of all triangular matrices
in T'. Let R be a set of representatives of B\T.

Let k € N. If N(g9) = —1, then assume that k is even.

First, let k > 2. We call

E(z) =) jlg.2)"

geER

the Eisenstein series of weight k, where z € H x H or z € H x H.
E} is absolutely convergent and independent form the choice of R, because

J ((5(_)1 ‘;) ,z)_k =N(e)F=1

for allk € N (if N(eg) = 1) or all k € 2N (if N(g9) = —1) and all € € Z}, and
wEZLFR.

Since Ey(gz) = j(g,2)*Ex(2) for all g € T, Ey, is a Hilbert modular form of
weight k and level T'.

Secondly, let k = 2 or, if N(e9) = 1 and z € H x H, let k = 1,2. We can also
define Eisenstein series, which are Hilbert modular forms, but we have to use Hecke
summation, see [Hec24). Let

Er(si2) ==Y j(g,2) "li(g, 2)I".

geER

This function is holomorphic for = € Hx H or z € H x H and s € C with
Re(s) > 2 — k. Its continuation to all s € C is meromorphic and regular in 0.
Ex(s; z) is independent of the choice of R and

Ex(s;92) = j(9,2)"1i (g, 2)| "*Ei(s; 2) for all g € T (and fized s).

So we call
Ek(z) = Ek<0; Z)

the Eisenstein series of weight k, and Ex(T) is a Hilbert modular form of weight k
and level T'.

Another important examples of modular forms are theta series (of lattices). We
will define these in later chapter, and compute some theta series.
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3.2 Hilbert Modular Forms for Q[v/5], Q[v2], and Q[v/3]

Hilbert modular forms for Q[v/5]. The ring of Hilbert Modular forms of level
one and parallel weight for the field Q[v/5] was partly described by Maa$ in [Maa41]
and completely constructed by Gundlach in |[Gun63]. Resnikoff [Res74], Hirzebruch
[Hir73, Hir76, Ebe02], Miiller [Mil85], and Mayer [May07] contributed other proofs
using different structures such as algebraic geometric methods, embeddings into
spaces of Siegel modular forms, or Borcherds products.

The ring of Hilbert modular forms is generated by the Eisenstein series Ay of
weight 2 and by the cusp forms s5, Bg, and s15 (We use the notation of Ebeling’s
book [Ebe02]). The forms As, Bg, and s15 are symmetric, and s5 can be chosen anti-
symmetric. The index denotes in each case the weight of the form. The generators
admit one relation, the square of sj5 can be expressed by the other generators,
i.e. there is a polynomial p is 3 variables such that s?s = p(As, s5, Bg). Hence

M (SL(Z[H32])) = ClAs, 55, B, s15] / (s35 — p(As, 55, B)).
The ring of symmetric forms of even weight is the polynomial ring
+
M (SLa(2[%52))) | = ClAo, By, C,

where Cjg = s2.

Hilbert modular forms for Q[v/2]. Again, Gundlach constructed the ring of
Hilbert modular forms of level one for the field Q[v/2], see [Gun65]. Miiller gave in
[Miil84] an elementary description of the modular forms. The ring of Hilbert modular
forms is generated by the Eisenstein series go and by the cusp forms s4, s5, s¢ and
s9. The weight is given by the index. The forms go, s4, 56, and sg are symmetric,
and s5 is anti-symmetric. The generators admit two relations, s2 = sys6 and there
is a polynomial p is 3 variables such that s3 = p(gz, s4, 56). Hence

M (SLz(Z[\@]D = Clga, 54, 85, S6, Sg]/(é‘g — 5456, 55 — P(g2, 54, 56))-
The ring of symmetric forms of even weight is

M, (SL2(Z[\/§])) = Clgo, 54, 56)-

Hilbert modular forms for Q[v/3]. Again, Gundlach constructed the rings of
Hilbert modular forms of level one for the field Q[v/3], see [Gun65]. One has to
distinguish between modular forms on H x H and H x H.

Gundlach only considered modular forms which are Galois and fundamentally

symmetric, i.e. modular forms for the group

D= (SLa(Z[V3), (279)).
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The ring of Galois and fundamentally symmetric Hilbert modular forms of H x H
is a polynomial ring in the Eisenstein series g2, g3, and g4 of weight 2, 3, and 4,
respectively,

M= " (SLy(Z[V3])) = Clg2, g3, g4].

The ring of Galois and fundamentally symmetric Hilbert modular forms of H x H
is is a polynomial ring in the Eisenstein series g1, g4, and gg of weight 1, 4, and 6,
respectively,

M (SLo(Z[V3D) = Clga, 91, 6]

We will construct M+(SL2[\/§]) in Theorem There is a symmetric cusp form
s3 of weight 3, such that

M (SLy[V/3)]) = Clgu, s3, 4.

3.3 Hecke Operators for Class Number One

Assume that the narrow class number is one, h; = 1. In this case, and only in
this case, we can define Hecke operators on classical Hilbert modular forms. These
are similar to the Hecke operators of elliptic modular forms. If h}“ > 1, the same
definitions would provide operators which would not map Hilbert modular forms to
Hilbert modular forms. A solution is to consider adelic automorphic forms instead of
modular forms. For these the theory of Hecke operators works nicely, but the Fourier
coefficients are harder to compute. Since we are mainly interested in the Fourier
coefficients, we introduce Hecke operators on classical Hilbert modular forms. In
consequence we have hJIS =1, and hence we only consider modular forms on H x H.

We also only consider level one. So let I' := SLa(Zp).

Let k € Z" be a weight vector with each k; > 2. This section is a recap of [Gar90),
1.15].

Let n C Zp be an ideal and n € Zp be a totally positive generator of n. We
define

A(n) := {g = (CCL Z) € GLy (F)NZ%? | (detg) = n} ,

and let R(n) be a transversal of pz(z,)\A(n).
Recall that Z(Zp) is the center of GL3 (Zr). The n-th Hecke operator is

Ty : My(T) = My(D), f(2) = > flrg(2).
gER(n)
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Proposition 3.17 Let f =3 _, »a,(f)q” € Mg(L). Then T, f is a Hilbert modu-
F
lar form and has the Fourier coefficients

an(Tnf) = 723" 6 ta,, 52 (f),
)

where the sum is over z: \{6 >0 | d|n, v/é € fo} FEspecially, T, maps cusp forms
to cusp forms.

Lemma 3.18 Let m,n C Zp be coprime ideals and p C Zg a prime ideal. Then for
the restriction of their Hecke operators we have

(i) Ty is self-adjoint with respect to the Petersson inner product <,>.
(ii) TwTy = TyTh.

(iii) TyTye = Tyt + N (p) et

With these results by using elementary linear algebra, the following theorem
follows immediately.

Theorem 3.19 There is an orthogonal basis of Sk(I') consisting of simultaneous
eigenvectors for all the Hecke operators. These eigenvectors are called Hecke eigen-
forms.

If f =3, cor a(f)g” € S(T') is such a Hecke eigenform, then the eigenvalue
F
for an integral ideal n = nZp with n > 0 is

Tf = AW with Aw) = A2 2220,

where @ > 0 generates Z?.

Corollary 3.20 Let Zﬁ =6 'Zp with § > 0. Let f € Sp(') be a Hecke eigenform
with a5 ' (f) =1 (we call f normalized).

Let a, B € Zg be totally positive and coprime, and let m € Zg be a totally positive
prime. Then the following identities are true for all v € Z} with v > 0:

(i) aaps(f) = anss(flags(f) and

(it) ar/5(f)anm)s(f) = agmer)s(f) + 7 Lagm15(f).
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Computational Implementation L. Dembélé and J. Voight provided a Magmaﬁ
package to compute the spaces Si(T'), see [DemVoil2|]. For arbitrary class number,
Dembélé and Voight’s program computes the Hecke operators for given level and
even weight. They use the adelic modular forms which are defined over the adelic
ring of F'.

For narrow class number one, I have written a MAGMA program which computes
the so called g-expansion of Hecke eigenforms. The g-expansion is defined in the next
section. The program is available on my website

http://www.math.rwth-aachen.de/~David.Dursthoff/.

3.4 qg-Expansion and Extremal Modular Forms

If f is a Hilbert modular form, then f has a Fourier expansion, i.e.

f=alf)+ > alf)d,

o<vez?

. . e  1(2)
where ¢ := (exp 2mizy, exp 2mize) and ¢” = >V ALV Tz,

So we have an expression of modular forms in two variables ¢; and g2, and we
may order the coefficients in a nice way. This is an useful way to compute modular
forms and describe them by their first coefficients. Since the space of modular forms
of given weight is finite, finitely many coefficients describe a modular form uniquely.

On the other hand, restrictions of the variables yield modular forms over smaller
fields. So, for example, a restriction of a Hilbert modular form H x H — C of
weight & to the diagonal line {(z1, 21) | z1 € H} is an elliptic modular form of degree
2k for the classical modular group SLy(Z).

To combine these approaches we want to write a Hilbert modular form as

Fla ) =Y au(fa ™ ay™,
v

where (1,82 € ZT;, such that f(q1,1) is an elliptic modular form of level 1. The
restriction to another line in H x H or H x H, given by g¢2, should yield elliptic
modular forms of higher level. To do that, we define arbitrary g-expansions.

Definition 3.21 (¢-Expansion)
Let B = (B1,B:) € Z% be a Q-basis of F. Set T = (89)),; € GLy(C),
w = (wy,ws) == 2T~ q1 := exp(2miw1), qo := exp(2miws), and q = (q1, q2).
Let T be a congruence subgroup and f € My(T) or f € My(T). Forv € Zﬁf the
Fourier coefficient of f at v is a,(f). For n,m € Z we define

ay(f) if thereis a v € fo such that n = tr(f1v) and m = tr(Sav),

0 else.

an,m(f) = {

3The Magma Algebra System. See [BosCanPla97] or http://magma.maths.usyd.edu.au/magma,/
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We call
f@) = fla, @)= D awm(f) ey

(n,m)€Z?

the g-expansion of f with respect to B.

Note that the Fourier coefficients are non-zero only for v = 0 and v > 0 (in the
case f: H x H — C) or v =2 0 (in the case f : H x H — C).

Theorem 3.22

(i) Suppose that 1,82 > 0. Let f € Mp(I'). Then f is equal to its q-expansion,
i.e. f(z) = f(q1,q2) for all z € H x H, and

f(q1,22) € Clai][lga]) N Claa][la1]] € Cllar, ga]].

(ii) Suppose that 31,82 = 0. Let f € My(T'). Then f is equal to its q-expansion,
i.e. f(2) = f(q1,q2) for all z € H x H, and

f(q1,32) € Clai][lga]) N Claa][la1]] € Cllar, gal].

Proof. (i). Let z € H x H. Since Tr(vz) = witr(S1v) + watr(f2r), we have

f@= 3 a)em D = S a0 (f)d e = flan,g0).

VE(ZE) >0 VE(ZE)s0

Since B1, B2 € (Zr)s0, we have tr(B1v), tr(B2v) € Zsq for all v € (Zﬁ)>>0. So

flar, a2) € Cllqr, @2]].
To see that f € Clga][[q1]] we have to show that for given n € N the set

S(n):={ve Zﬁ | v> 0, tr(f1v) = n}

is finite. We identify F with F(1) and set z := tr(8;) and y := tr(v/ D).
Let v = a + bV/D € Z¥ with a,b € Z (if D = 2,3 (mod 4)) or a,b € 17,
(a—b) €Z (if D=1 (mod 4)). Then v > 0 if and only if [b|v/D < a. So
n—>by

veShn) < tr(fiv)=ax+by=n < a= —

Since |b|v/D < a we have

—n <b(zvVD —y) and b(zvVD +y) <n

— —
=261vV/D>0 =281vVD>0
n n : :
and hence VD5 <b< VTR Therefore there are only finitely many choices for b

and S(n) is finite. One shows f € C[q1][[¢2]] analogously.
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(ii). Analogously f(z) = f(q1,qz) for all z € H x H, note that we sum over v = 0
and all v € Zﬁf with v 2 0 (see Theorem . Here we have (31, 82 € (ZF)z0, hence
tr(Biv), tr(ferv) € Zso for all v € (Zﬁf)zg. The Fourier coefficients are non-trivial

only for v =0 and v € Zﬁ with v 2 0, so again f(q1,q2) € C[[q1, g2]]. As for (i), one
shows f(g1,q2) € Cla]{[g2]] N Clgo][[¢1]]- 0

So we consider Hilbert modular forms as formal power series with some con-
ditions on the coefficients. This is useful for computer calculations. Only finitely
many coefficients must be calculated, because the space of modular forms is finite
dimensional. And the proof of the previous theorem gives a way to compute bounds
for the powers of ¢1 and gs. We compute such bounds for concrete choices of B in
the next section.

Some choices of 51 and (2 are especially interesting, because the restrictions
f(q1,1) and f(1,q2) define elliptic modular forms of interesting levels. The levels
are the full modular group SLy(Z) and congruence subgroups

To(N) := {(CCL 2) € SLy(Z) | N divides c} .

Proposition 3.23 Let f € My(SLo(Zp)) and (1,82 > 0 or f € My(SLa(ZF)) and
B1,82 2 0. Then

H—-C, 77— f(q,1) = Z Z anm(f)q", whereq= e?miT

n>0m>0

is an elliptic modular form of weight 2k and level To(N(B1)).

Proof. First we consider the H x H case. We define the map
w:H—-HxH, 7~ (69)7, B?)T).

Let 7 € H x H. Put z := w(7), then in the notation of the g-expansion we have
w=2T~! = (7,0). Hence f(z2) = f(q,1).

¢ 2 € T'o(N(B1)). Since ¢ is a multiple of N(81) = 3151, we have

B—Cl € Zr. We have

(3 8o (6 3] o ") eomen
Therefore

f<w<g7>>=f<<%1 ‘f)g(l/fl ‘f)( o, §2>T>)=<;15n+d>’ff<w<7>>.

Let g =
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Since (57617 + d)¥ = (¢r 4 d)?*, the restriction f o w is an elliptic modular form of
weight 2k and level I'g(N(81)) (and trivial character).
In the H x H case one has ﬂf) < 0, hence one gets a map w : H — H x H. The

proof works in the same way as for the H x H case. O

Next we will define an ordering on the coefficients.

Definition 3.24

Let B = (1,52) € Zr form a Q-basis of F'. Assume that p1, 52 > 0 in the H x H
case or (1,2 = 0 in the H x H case. The lexicographic ordering < on Z x Z yields
a total ordering <p of the monomials {q{'q5" | n,m € Z}:

ey <pai' @" & (n,m) < (,m).
And <p defines a valuation on My(SLa(ZF)) and My(SLa(Zr)):

vp (f) :=min{(n,m) | anm(f) # 0}.

The total ordering <p of F, see Definition [I.1] gives the same valuation. More
precisely, vp(f) = (n,m) if and only if there is some v € Zﬁ such that n = tr(5v),
m = tr(fav), and v is the <p-minimum of {v/ € Z}J‘f | a,(f) # 0}. So it is justified
to use <pg both for an ordering of the number field and the monomials.

With the valuation we can define extremal Hilbert modular forms. In this way,
this was first done in [Nebl13].

Definition 3.25 (Extremal Hilbert Modular Forms)
Let k € N and X < Mk(SLQ(ZF)) or X < Mk(SLQ(ZF))
A Hilbert modular form f € X is called extremal in X (with respect to B) if

ve(f—1)>vp(f —1) forall f' € X.

In conclusion, the ordering <p and the valuation vg are useful when computing
with modular forms. For example, by projecting to sufficient many coefficients and
Gauss eliminations, one may compute a basis (fi,..., fs) of Mg(T') or M(T) with

I/(fl) < l/(fg) <0 K I/(fs) and a,,(fi)(fj) = (5,‘7]‘.

Especially, if hp = 1, the forms f,..., fs are cusp forms, and if f; is not a cusp
form, then it is extremal.

For our purposes we want to fix 51 and (3. If not mentioned otherwise, we
will always use the following three g-expansions, distinguished by the field and the
modular forms.
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Definition 3.26 (Standard ¢-Expansion)

()

(i)

(iii)

Suppose that the fundamental unit g has norm —1. Set e := \/dﬁF € {1,2},
then & = eN/Dey is a totally positive generator of the different. We set

B1:=1 and B2 := V' Dey.

Hence, if f € My(SLa(ZF)), then the q-expansion to B = (51, B2) is

_ +Zau Bzv = ao(f) + Z aps(f u/5) gr(u/e)'
zerfﬁ>>O PELF s

We prefer the second sum, so we sum over totally positive elements of integer
ring instead of the inverse different. The restriction f(qi,1) is an elliptic
modular form of weight 2k for the full modular group SLa(Z), and f(1,q2) is
an elliptic modular form of weight 2k for the congruence subgroup I'o(D).

Hilbert modular forms f € My (SLa(ZF)) are not considered because of Propo-

sition [3.7(i).
Suppose that N'(eg) = 1. We set e := %F,
B1:=+VD and By := (VD —1).
If f € M(SLa(ZF)), then the q-expansion to B = (B, B2) is
F o o)+ Y oyl
HELF 30

So the restriction f(q1,1) is an elliptic modular form of weight 2k for T'g(D),
and f(1,q2) is an elliptic modular form of weight 2k for To(D — 1).

Suppose N(g9) = 1. We set e := %F,

Bi:=1 and B2 := D +V/D.
If f € Mi(SLa(ZF)), then the g-expansion to B = (B1, B2) is
_ +Zav tr(u) i W(D+vD))

#
VEZF>>O

So the restriction f(q1,1) is an elliptic modular form of weight 2k for SLa(Z),
and f(1,q2) is an elliptic modular form of weight 2k for T'o(D(D — 1)).
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3.5 q-Expansions over Q[v/5], Q[v/2], and Q[v/3]

We use the following standard g-expansions given by B = (1, 32).
o If F = Q[/5] (Case (i)), then 31 = 1 and 32 = %

o If F =Q[v2] (Case (i)), then ; = 1 and B2 = 2 + V2.

e If F = Q[v/3] and modular forms H x H — C (Case (ii)), then f; = v/3 and
B2 =—1++/3.

e If F = Q[v/3] and modular forms H x H — C (Case (iii)), then 3; = 1 and
Bo =3+ \/g

Theorem 3.27 (¢-expansions of the generators of M (SLQ(Z[l—B\/g])))

The generators of M (SLQ(Z[HT‘/B])) introduced in Section have the following
q-eTpansions.

Ay = 1+120q1¢3 + 120q1¢3 + 120¢°¢3 + 600¢3q3 + 720¢3¢5 + 600¢°¢S

+120q7q5 + 1440¢7q5 + 1440¢}¢5 + 1200¢7¢5 + 720¢7¢5° + O(q1q5)
ss = @3 — q1gs — qigs — 10q7q3 + 10475 + 47 g3

+120¢7¢5 — 108¢7q5 + 108¢7q5 — 1204345 + O(qiq5)

Bs = qa30105 + 413 — 910¢765 + ¢ g5 — 910¢7 g5 + 2565047 ¢5 + 240927 q5
+24092¢} 45 + 25650505 — 910¢;43° + O(qiq3)

Cio = ¢ids — 2016 + 1S — 24365 — 184765 + 20475
—18¢7g5 — 2¢}43° + O(q145)

s15 = G145 — qias — 275¢3q5 — 275¢305 — 413" + O(qias)

Proof. There are several ways to compute the coefficients. One may apply the
methods described in [Mil85] an [May07]. For Aj, Bs, and Cio one can use the
Hilbert modular forms Magma package by Dembélé and Voight and my algorithms,
see Appendix [A] The forms As, s5, Bs, and Cjg can be constructed with lattices,
see Chapter [6] For s5 see [Miil&F]. O

Theorem 3.28 (g-expansions of the generators of M SLQ(Z[\/i])))
have the following q-

The generators of M (SLQ(Z[\@])) introduced in Section
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exTpansions.

g2 = 1+48qi1g2 + 144165 + 48105 + 33647 q5 + 720¢7q> + 384475 + 336475
+144¢3 g5 + 48043 g3 + 1152q3 g5 + 864¢3q5 + 144043 ¢S + 864433
+1152¢7 5 + 4807 g5 + 144¢7q5” + O(qiq3)

s1 = Q@2 — 216 + Qg5 — 44ia5 — 8qid5 + 24qiqs — 8qigs — 4qiqd — 24745
+26q} g5 + 16¢3qy — 14q3 45 — 524765 — 14¢} 43 + 164745 + 264743
—-2¢733° + O(qig3)

s5 = Qg2 — 15 + 1647 g3 — 56¢7q5 + 5647 g5 — 164745
—42¢3q3 + 378¢}q5 — 378¢}q5 + 42473 + O(qiq3)

s6 = q¢5 — 2qi¢5 — 1647¢5 + 12¢iq5 — 164705 — 24705 + ¢1g5 + 32¢7¢5 + 40¢}q5
—32¢7q5 + 170q3¢5 — 32¢7q5 + 40435 + 32475 + ¢iaz” + O(4id3)

so = qugs — 96473 — 336475 — 964745 + O(¢}q3)

Proof. Again, one can use the Magma package by Dembélé and Voight and my
algorithms of Appendix [A] The forms g2, s4, s5, and sg can be constructed with
lattices, see Chapter 7} The coefficients of sg are given in [Miil84]. O

Theorem 3.29 (¢-expansions of the generators for Q[v/3])

(i) The generators of Meo+ (SLQ(Z[\/g])) introduced in Section have the fol-
lowing q-expansions:

g2 = 147215 + 960145 + T2q195 + 9663 g5 + 360¢7q5 + 2884745
+672q345 + 288¢7q5 + 36043 q5 + 964745 + O(qiqs)
g5 = 1—108q13 — 288q1g5 — 108q1q5 — 288¢7q5 — 1836¢7q5 — 432047 q5

—3744q7 5 — 4320¢7q5 — 1836475 — 2884¢iq3 + O(qiqs)

g1 = 23+ 2160q1q5 + 6720q145 + 2160q145 + 6720¢3¢5 + 14040047 ¢5
+3196804¢% g5 + 4905604765 + 319680q7qs + 14040043 ¢5
+672047 45 + O(q7q3)

(ii) The generators of M" (SLQ(Z[\/g])) introduced in Section|3.2 have the follow-
g q-expansions:

g1 = 1+12q1g2 + 12¢7q2 + 126763 + 124763 + 124763 + O(qiq3)

ss = Qg2 — Gig2 — A% — 41 + 94745 + O(q1g3)

g1 = 23+240q1q + 240¢3qe + 17520q% ¢3 + 240¢3 g5 + 604804 ¢5
+181680¢3¢5 + 60480q1qs + O(qiq?)

g6 = 1681+ 504q1qo + 504q3qs + 532728¢3q5 + 50445 ¢5 + 405820843 ¢3
+29883672¢3 g5 4+ 405820843 q5 + O(¢t¢3)
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Proof. The coefficients of all forms except s5 can be found in [CohDeu88]. The
coeflicients of s5 and all other forms can be constructed with lattices, see Chapters
and [0 O

Finally, we focus on estimates for the coefficients and the powers. They are useful
both for computations and theoretical calculations. Also, we see how the extensions
of the Galois automorphisms

Hx H— H x H, (2’1,2’2) —> (ZQ,Zl), H x ﬁ — H x E, (Zl,ZQ) — (—22, —2’1)
translate to the g-expansion.

Lemma 3.30 (F = Q[/5]) Let

F= 3 aus(Na™ Vg5 e My(SLa(Zr)).

KEZF s

Let p € Zr be totally positive and set n := tr(ud) and m := tr(p), i.e. a,/5(f) =
anm(f)-

(7’) If an,m(f) 7& 0 then
5-5 5+56
m n

5 n < < 5 ,
5—/5 54+5
10 m < n < 10 m

(i) az/5(f) = am—nm(f).
(iti) a75(f) = ansn-m(f)-

(iv) The Galois-conjugated Hilbert modular form f(z2,21) has the g-expansion

> anm(farad ™.
n,m

Proof. (i). Form the definitions of n and m follows that p = 2 + (% —n)v/5. Since
1> 0 there is the inequality

and (i) follows immediately. (ii). Following the definition of the coefficients a, /()
we find

' (f) = agys(f) & n' = tr(@/6) = m —n and m’ = tr(m) = m.
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Because of (i), m — n is always positive. (iii). Analogously
an o (f) = u/5(f) & n' =tr(p/d) =n and m’' = tr(du/d) = 5n —
For (iv) use

f(zo,21) = Z ay(f)exp(2miTr(v(z2,21))) = Z ay(f)exp(2miTr(v(z1, 22))

#* #
VGZF>>0 VGZF>>O

and apply (iii). O

Lemma 3.31 (F = Q[v/2]) Let

F= 3 aus(Na™ ey e My(SLa(Zr)).

HEZF 0

Let ju € Zp be totally positive and set n == tr(By ') and m = tr(p), i.e. ag-1,(f) =
1
anm(f)-

(7’) If an,m(f) 7& 0 then

2-V2n< m < (2+V2)n,
2-v2 _24ve
2 2

m< n

(“) aﬁ/?&(f) - a?m—n,n(f)'
(Z”) G’M/T(;(f) = an,4n—m(f)‘

(iv) The Galois-conjugated Hilbert modular form f has the q-expansion

n 4n+2m
f(z2,21) Z an,m ()41 ¢

Proof. (i). If a,/5(f) # 0 then y must be totally positive. Since y = m+(m—n)v2

it follows that
V2 f V2

|m—n\<— Sm—nSTm

and (i) follows immediately. (ii). Followmg the definition of the coefficients a, .,/ ( f)
we find

aut e () = ays(f) & n' = tr(73/8) = 2m —n and m’ = tr(71/2) =
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Because of (i), 2m — n is always positive. (iii). Analogously
/ S / 6ﬁ
an/,m/(f):au—/&(f)@n = tr(u/d) =n and m' = tr =5 =4n —m.

For (iv) use

f(z2,21) = Z a,(f)exp(2miTr(v (22, 21))) = Z az(f) exp(2miTr(v(z1, 22))

#* #
I/EZF>>0 VEZF>>0

and apply (iii). O

Lemma 3.32 (F = Q[v/3])

(i) Let
F= 3 aus(HarPey ) e My (SLa(Zr)).

HEZF >0

Let v € Zp be totally positive and set n = tr(p/d) and m = tr(u),
i.e. a,/5(f) = anm(f).

(a’) If an,m(f) ?é 0 then
—1+v3 1+v3

< m <
g 'S MmsTy

(-1+V3m< n <(1+V3)m.

(b) aﬁ/é(f) = an2n—m(f)-

(C) G'M(f) = an,5n—m(f)'

(d) The Galois-conjugated Hilbert modular form f(—ze, —z1) has the q-expan-
ston

n,

w

> tnm(fata™ ™.
n,m

(ii) Let
F= 3 au)d" M) e My(SLa(Zr)).

#
,uGZF>>O

Let j1 € Zp be totally positive and set n := tr(n) and m = tr(uB2), i.e. a,(f) =
an,m(f)-

(a) If anm(f) # 0 then

B-V3n< m < ((B+V3)n,
3—-3 3+\/§m

6m<n<6
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(b) aﬁ(f) = an,6nfm(f)-
(¢) The Galois-conjugated Hilbert modular form f(z2,21) has the q-expansion

Z an,m(f)Q?qgn_m-
n,m

Proof. (i). Form the definitions of n and m follows that yu = n + (n —m)+/3. Since
> 0 there is the inequality
V3

—_ <7
|m — n| 3 "

and (a) follows immediately. (b). Following the definition of the coefficients a, ./ (f)
we find

33
6

an v (f) = agys(f) & n' = tr(@/2) = n and m’ = tr(@ ) =2n—m.

Because of (a), 2n — m is always positive. For (c) use

fl=z,=21) = Y a,5(f) exp@riTe(u/2v3(~z22, —21)))

HEZF >0

= Y aﬁ/g\/g(f)exp(27riTr(u/2\/§(z1,Z2))

HEZF 50

and apply (b).
(ii). Since p = 5 + m—GSn\/g > 0 there is the inequality

-3 3
m n<\[

—nNn

=5 1<%

and (a) follows immediately. (b) and (c) are clear. O
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Chapter 4

Lattices and Modular Forms

Let F' = Q[v/D] be a real quadratic number field. Let g¢ be the fundamental unit
with {”) > 1.

4.1 The Theta Series of a Lattice

Kloosterman introduced theta series over number fields in 1930, see [Klo30]. This
section follows also [Maa40], [Ebe02, 5.7] and [Neb13|]. The definition of the theta
series differ slightly in the references.

The generating function of the cardinality of the layers

{A(a) | a>> 0}

is called the theta series of A. It has an interesting structure because it is a Hilbert
modular form. In fact, we define three types of theta series. The theta series of Type
(i), (ii), or (iii) of a lattice of Type (i), (ii), or (iii), respectively, is a Hilbert modular
form. Type (i) and (ii) theta series were used by Maaf} in [Maa40], and Type (iii)
theta series were used by Kloosterman in [Klo30] and by Skorrupa in [Ebe02] 5.7].

Definition 4.1 (Theta Series)
Let (A, Q) be an even lattice. In the following we define theta series @82 Q) G)EX)Q)’

and @EK%) of (A, Q). Often we omit (i), (it), or (iii), and we write Oy instead of

O1,Q)-

Type (i): Assume that N'(e9) = —1. Then § := eo\/dp generates the different ideal.
The theta series of Type (i) of (A, Q) is

(.
@(AQ) HxH—C,
@EQ,Q)(Z) _ Z e27riTr(zQ()\)/5) =1+ Z |A(N)|e2m'Tr(zu/6)
AEA KELF 50

61
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Type (ii): The theta series of Type (ii) of (A, Q) is

68@@) :HxH — C,
@8’3@)(2) — Z 2 Tr(zQN)/Vdr) — 1 4 Z ‘A(M)‘e%iﬂ(zu/\/@).

AEA KELF 0

Type (iii): The theta series of Type (iii) of (A, Q) is
0l . H x H - C,

(A,Q)
@EXZQ)(Z) _ Z 627riTr(z QM) _ 1+ Z ‘A(H)‘GQWiTr(zu).
AEA HELF 50
If N(e9) = —1, then all three types are equivalent. By applying (500 (1)) or

(50@” to 68762) (z), one gets theta series of Type (ii) or (iii), respectively.

If M(gg) =1, ie. h; = 2hp, then there is no totally positive generator of the
different. Type-(i) theta series cannot be defined. The Types-(ii) and -(iii) theta
series live in different, non-equivalent spaces of modular forms.

In Section 3.1 we discussed the action of the Hilbert modular group SLa(Zr) on
the holomorphic functions. Theta series have nice properties under this action. For
example and most importantly, there is the formula

©x ((f’l é) ) = (=2)""2e(4,Q) Ops (2), m

where ¢(A, Q) € C is a constant depending on (A, Q).

If we are looking at theta series of Type (iii), then ¢(A, Q) = det(Lq). This was
for example proved by Skorrupa in [Ebe02, Proposition 5.7]. We follow Skoruppa’s
proof of the Formula ([I]).

Lemma 4.2 Let Z = X + 1Y € C™*™ be a symmetric complex matriz and assume
that Y is positive definite, where X,Y € R"*",
Then
- e_ﬂi$Z—1$tr6—2wi Zi:l xiyidx — det(%) eﬂ'i yZyi?"’
where the square root should be positive.

Proof. [Ebe02, Lemma 5.6]. O

With this lemma we can prove versions of Formula . It follows directly that
the theta series of an unimodular lattice is a Hilbert modular form.
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Theorem 4.3

Type (i): Let (A, Q) be a lattice of Type (i) (i.e. even and unimodular) and rank n.
Then its theta series of Type (i) is holomorphic on H x H and a Hilbert
modular form of level one and parallel weight k =n/2, i.e.

O o)(#) € My(SLa(Zr)).

If (A, Q) is Galois-invariant, then @8\) @) s symmetric.

Type (ii): Let (A, Q) be an even unimodular lattice of rank n. Then its theta series
of Type (ii) is holomorphic on H x H and a Hilbert modular form of level
one and parallel weight k =n/2, i.e.

NG

(e (2) € Mi(SLa(Zr)).

If (A, Q) is a Type (ii) lattice (i.e. Galois-invariant), then 983 Q) is sym-
metric.

Type (iii): If (A, Q) is an even trace unimodular lattice of rank n, then the theta
series of Type (iii) is holomorphic on H x H and a Hilbert modular form
of level one and weight k =n/2, i.e.
O\ by € Mr(SLa(Zp)).
If (A,Q) is a Type (iii) lattice (i.e. Galois-invariant), then @8\ Q) s
symmetric.

For Types (ii) and (iii), if A is fundamentally invariant, then ©, ) is fundamen-
tally symmetric.

Proof. (i). As mentioned, ©((% V) 2) is a theta series of Type (ii). Hence (i)
follows from (ii).
(ii) The group SLa2(ZF) is generated by the matrices

1w\ [(e0 O 0 1
0 1) 0 g') \-1 0/

where p € Zp. It is straightforward to check that the theta series is invariant under
transformations of matrices of the first and second kind. We show the invariance
under transformation with (% {) by verifying a variation of the Formula ().

For j = 1,2 the field R is an F—module via the action (a,7) — o) - . Denote
it by FU) and define V) := F* @ FU) (=2 R"). We extend

F" x F" = F9 (X, p) = B\, )V
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R-bilinearly to a scalar product ( ,); of VW. So (VW (,);) is an Euclidean
space and there is an isometry ¢; of V) and the standard Euclidean space on R™.
Especially then B(\, 1)) = ¢;(A\)"p; (). By combining all real places, V) x V()
is isometric to R?" with the usual scalar product z - y := 2%y. We get an isometric
embedding

p: F" — R2na A ((/71()\)7802()\))

Then L := ¢(A) C R?" is an even Z-lattice. Since ¢()\) - ¢(u) = tr (B(A, u)) for
all A\, u € F™, especially for all lattice points, L is isometric to the trace lattice L.
Hence det L = det L1 = N (Zﬁ)_” = d%, see Lemma And there is a similarity
f € GLo,(R) of norm dp such that f(L#) L, see Proposition

Let z € H? and set Z := diag(-2-1,,, —221,) € C?"*2", The theta series of A is

\/77’],7 \/7

mi Yy Z

@( 21,22 Ze Y v,
yeL

One sees easily that ©, ) is holomorphic, because |e™ yzytr| is bounded and expo-
nentially decreasing for Im(z1),Im(z3) — oo
For y € R?" let y(!) denote the first n entries of y and y® the last. So

Ong (L) 2) =X e (ri (fe™) - F&M) k= + F6P) - f6P)=2=)) -

yeL#

Since f(z) - f(x) =dp-x -z for all z € R?", this is equal to the sum
> exp (m’ (y(l) m\{f +y®@. (2)\%7)) -y Ty 2y
yeL# yeL#

Using Poisson’s summation formula (see for instance [Ebe02, Theorem 2.3]) this may
be written as

det L# -1/2 Z / —wixZ’lxtTe—Qﬂizytrdx'
yeL

The factor is det(L#)~1/2 = det(L)Y/? = d%/z. The matrix Z is symmetric and the
imaginary part is positive definite. Hence we may apply Lemma [4.2}

o D) = a2 det v >t
(AvQ) 71 z :

yeL

=0(a,q)(2)
We have /2
mn Z n n ) n n
aiden (2) = N 2y = (=

This proves the first part of (ii).
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Secondly, if A is Galois-invariant, there is a semi-linear endomorphism
o : A — A such that Q(o(\)) = Q(\) for all A € A. Hence

Op(—22,—21) = Z exp (27riT‘r <?/%)z)>

AEA
= Z exp (27m' Tr (%z)) = @A(Zla 22)
AEA

and therefore O, is symmetric.
Thirdly, if A is fundamentally invariant, then there is a 7 : A — A such that
Q(T(N)) = eoQ(N) for all A € A. Hence

. A . T(A
OA((")2) = Z exp (2m Tr%(ez)) = Z exp (271'@ Tr%z) = Ox(2)
AEA AEA
s and ©, is fundamentally symmetric.
(iii) Analogously. See also Skoruppa’s notes in [Ebe02), 5.7]. O

The proof of the symmetry shows that, in general, the series O ¢)(22, 21) is the
theta series of the Galois-conjugate lattice (A, Q).

4.2 qg-Expansions of Theta Series and Extremal Lattices

The number of vectors of a given length in a lattice is given by the coefficients
of the theta series. The norm of a vector may be calculated by using the trace
norms. So the theta series of the trace lattices play an important role. In general,
let L1 = (A,q1) and Le = (A, q2) be Z-lattices. We call

CRNAEDY N 2N e Cllgr, g2
AEA

the merged theta series of L1 and Ls. The merged theta series is the generating
function of the cardinalities of the sets Li(a1) N La(az), where a € Z2. The restric-
tions of the merged theta series to g = 1 or g1 = 1 give the single theta series of Ly
or Lo, respectively. But the other way is not true; the knowledge of the single theta
series is not sufficient to determine the merged theta series.

The following theorem shows that the merged theta series of the trace lattices
A; and Aj of a lattice A of Type (i), (ii), or (iii) (see Definition is the standard
g-expansion (see Definition of the theta series of A.

Theorem 4.4
Let (A, Q) be a lattice of Type (i), (ii), or (iii). So (A1,Q1), (A2, Q2) are trace
lattices of (A, Q) with respect to oy or g, respectively (see Definition[2.4]). Define

Vdreo  for Type (i),
B:={Vdr  for Type (ii),
1 for Type (iii),
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and B := (Bay, fas).
Then the q-expansion of the theta series of Type (i), (i), or (iii), respectively,
of A with respect to B is

O (an ) = 3 a2V ¢ = 37 |Ai(n) N A (m)] of ¢b'
AEA n,m>0

Proof. The g-expansion of ©, with respect to B is

Oa(q1,q2) = Z |A(#)|q;’r(all’)qgr(a2y)'

HE(ZF)>0

Let n,m > 0. Then A € Ai(n) N Az2(m) C A if and only if Q1(A) = tr(caQ(N\)) =n
and ¢2(A) = tr(ae@Q(A)) = m. Hence ¢, m = |A(Q(N))], and the claimed identity is
true. 0

The g-expansion of the theta series of A is a power series in (g1, ¢2),

O, € C[[q1, 2]

The theta series of A1 and Ag are obviously given by O, (g1, 1) and ©4 (1, g2), but the
theta series of other trace lattices can also be easily computed with the g-expansion
of © A-

Corollary 4.5 Let A be a a lattice of Type (i), (ii), or (iii). Let v € Zﬁf (for Types
(i) or (ii)) or v € Zp (for Type (iii)) be totally positive. Then v = craq + caay for
some c1,c2 € Q. The theta series of the trace lattice L is

Or,(q) = O (¢, ¢?).

Proof. Let A € A. Then q,(\) = tr(yQ(A)) = citr(a1Q(N)) + cotr(a2Q(N)) =
c1Q1(A) + c2@Q2(A). So

O, ()= > M) NAs(m)|q" =0, (4", q7).
£>0 n,m>0,
cln—i-CQm:Z

In Definition we defined an ordering <p of the monomials of C[[q1, ¢2]] and
an valuation vp of Hilbert modular forms. Especially, we defined extremal Hilbert
modular forms. We use that to define extremal lattices.
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Definition 4.6 (Extremal lattices)
Let A be a lattice of Type (i), (ii), or (iii). Let n be the rank of A and k = 3.

A is called extremal if its theta series of Type (i), (i), or (iii) in the standard
q-expansion is an extremal Hilbert modular form of weight k in

My, (SLa(Zp))  for Type (i),
M} (SLa(Zp))  for Type (i), or
M (SLa(Zp))  for Type (iii).

Remark 4.7 If there is an extremal lattice over Z, it is not only the lattice with an
extremal theta series but also with the maximal minimum among all even unimodular
lattices. For extremal lattices over number fields, this is somehow also true, if we
take the total ordering <4, where A = (a1, a9) depends on the type.

More explicit, if A is extremal of Type (i), (ii), or (iii), then for all Zp-lattices
M of Type (i), (ii), or (iii) of the same rank as A we have

ming M <4 ming A.

Remark 4.8 Using the g-expansion of the theta series, we get estimates for the
minima of the trace lattices.

(i) For F = Q[v/5] (Type (i)) we get by Lemma

> _2\/5 minA; < minAy, < > +2\/5 min Aq,
5_\/gminA2< minA; < 5—f—\/gminAg.
10 10
More general, if A € A then
5-5 545
5 Qi) < Q20N < 5 Q1(N),
5—+/5 5++5
0 Q2(\) < @Q1(N) < 0 Q2(N).

In Proposition we already formulated estimates for the minima of the trace
lattices. For the \/5-case, recall that

2min A1 < min Ay < %minAl.
These estimates are better, because # ~ 1.38 <2 and % < 52—*/5 =~ 3.69.
(ii) For F = Q[v/2] (Type (i)) we get by Lemmam
(2—v2)minA; < minAy < (24 v/2) min Ay,
2-+2 2++2
2

5 minAs < minA; < min As.
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The same estimates are true if one replaces min A1 and min As by Q1(\) and
Q2(N), respectively, where X € A. The estimates given in Proposition are

min A; <minAs < 2min A;.

These estimates are better, because 2 —v/2 ~ 0.59 < 1 and 2 < 2+ /2 ~ 3.41.

(iii) For F = Q[v/3] and A is even unimodular (Type (ii)) we get by Lemma (z)

-1+V3 1+V3
2

5 minA; < minAy <

(=1 +V3)minAs < minA; < (1+ v/3)minAs.

min Aq,

The same estimates are true if one replaces min A1 and min As by Q1(\) and
Q2(N), respectively, where X € A. By Proposition

%minAl < min Ay < %minAl.

These estimates are better, because 71%‘/5 ~ 0.37 < % and % < # ~ 1.37.
(iv) For F = Q[v3] and A is trace even unimodular (Type (iii)) we get by
Lemma[3.33(ii):1

(3—V3)minA; < minAy < (3++V3)minAy,
3-V3 3+V3
6

6 minAs < minA; <

min As.

The same estimates are true if one replaces min Ay and min As by Q1(\) and
Q2(N), respectively, where X € A. The estimates in in Proposition are

3
iminAl < minAs < 4minA;.

These estimates are better, because (3—+/3) =~ 1.26 < % and 4 < 3++/3 ~ 4.73.



Chapter 5

Spherical Theta Series

Let (L,q) be a Z-lattice. To L we may define not only the usual theta series
Or = > ea e2™ 9N but we may also plug in some coefficients. We get so-called
spherical theta series O, p = 3", cp P(A\)e?™ 4N where P is a harmonic polynomial.
These theta series are modular forms for some level and character.

Firstly, this gives a connection between lattices and spherical ¢-designs, which
were introduced by Delsarte, Goethals, and Seidel in [DelGoeSeiTT7].

Secondly, theta series with spherical coefficients provide very useful techniques
to classify (extremal) unimodular or p-modular lattices. Venkov used them to find
all 24 Niemeier lattices (unimodular lattices in dimension 24). His proof is much
simpler than Niemeier’s original proof, see [ConSlo99, Chapter 16]. Bachoc and
Venkov developed a method to (partly) classify lattices by using spherical theta
series, see [BacVen01].

In this chapter I extend the Bachoc-Venkov method to lattices over number fields.
In the next chapters this method is used to classify lattices over number fields.

5.1 Harmonic Polynomials

This section follows [Hel00], [Ogg69], and [VenO1].

Let n € N. We fix a Euclidean space (V,( ,)), i.e. a real vector space V of
dimension n and a positive definite inner product ( , ). Also let E = (eq,...,ey) be
a fixed basis and let G = ((e;, e5));; be its Gram matrix. We identify V' with R”
with respect to this basis.

The orthogonal group of the Euclidean space is

OWV,(,)) = {geGLV)| (gv,9v) = (v,v) for all v € V'}
>~ {ge€GL.(R) | ¢"Gg = G}.

Let V* be the dual space of V, and let E* = (e], ..., e};) be the dual basis of E,

69
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i.e. ef(ej) = 0; ;. The symmetric algebra of V* is the graduated algebra

S(V*) = Z S™(VE).

m>0
We identify the polynomial ring P := R[zy,...,z,] with S(V*) via
T e

We write = := (11,...,2,)" for short.
The orthogonal group O(V,( ,)) actson P via g-p:=pog L.
Let P4 be the space of the homogeneous polynomials of degree d € Zx>(. Let
i € Z%, be a multi-index. We set |i| := i; +- - - +1ip,. We use the multi-index notation

2

o' = 2% ...zl A basis of the the space P,, are the monomials z* with |i| = m.

Since G is real symmetric, there exists A € GL,(R) such that A"A = G. We
set y := Ax. Let - be the usual dot product on R", i.e. u - w = u*w. We have an
isometry

e:(V,(,)) = ([R", -),v— Av

and an algebra isomorphism ¢* : R[y] — Rlz|,p — po A. So for p € R[y] we have

©*(p)(v) = p(p(v)) for all v € V, ie. o*(p)(x) = p(y)-
The usual orthogonal group is

On(R) = {g € GLy(R) | g%g = 1} = AO(V, (, ))A™".
It acts on R™ and R[y], and for g € O(V, (, )) we have

p(gv) = AgA™p(v) and ©*(AgA™'p(y)) = g¢*(p(¥))-

We introduce the formal vector V = (8%17 ey %)“, called nabla. For i € Z%,
let Vi:= 0L ... 0" Soif i,j € Z%, with |i| = |j], then
8y11 Yn' =
Vil = 0 it # 7,
SUREREE in! ifi=j.

Lemma 5.1 [, ] is a scalar product.
Forv € V let py(x) := (x,v) € Py be the linear form tov. Then for allp(x) € Py:

[p, P = p(v).
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Proof. [, ] is clearly bilinear. Let p(y),q(y) € R[y] homogeneous of degree d. We
write p(y) = Xjij—aPi¥’s 4(y) = Xjij=a @:y', where p;, g; € R. Then

de* (), " (@] =p(V)ay) = > pig;V'y =D pigiia!--in!
li|=lj|=d |i|=d
= d'[¢" (@), " ()],
Ae*(p), *(P)] = Xjij=aPi i1 - in! > 0, and [¢*(p), ¥*(p)] = 0 if and only if p = 0.
So [, ] is a scalar product. ‘
Clearly p,(z)? = o*((y-¢(v))?%). Fori € Z%o and w € R™ write w’ := w' - --win.

We calculate
(Y- )= ———
Let p(x) € Py and q(y) = Y jj—q ¢iy’ € R[y] such that ¢*(¢(y)) = p(z). Then

.08 = Ha(V)(y-o@)? =3 a o) = q(pv)) =p(v).
lij=d

The Euclidean inner product defines a quadratic polynomial w(y) = y -y, so
w*(z) = ¢*(w(y)) = (x,z). Since w(y) is O (R)-invariant, w*(x) is OV, ( ,))-

invariant.

Definition 5.2 (Laplace Operator) The Laplace operator is

Lemma 5.3 Let p(z) € P.

& x) Oxj Oxy, " 9%(x)
zk: axk Oy; Oy; jgz:l ik dx;0xy,’

where G is the fived Gram matriz of (V,( ,)) and G~! = (GJ ,1) e . So
g,

A=VYG 'V, where V, = (% .. L)tr.

10" 0xn

Proof. By the chain rule,

Z 830] oxy

et Gasjaxk oy; Oy
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Since x = A~ 1y, we have = A; 1. So

Oxj Oy, 1 —t 14—t —t -1
AjA; "= (ATATY) =G =G,
Z 8% y; Z:ZI )ik gk GJJC

Lemma 5.4 A is O(V,( ,))-invariant and maps Py surjectively onto Py_s.

Proof. Let g € O(V,(, )) and p € Py. Then by the chain rule,
Vepog (z) =g " Vup(g~ ).

So
Algp)(x) = Vi G Va(pog ') (a) = Vi g7 G g™ Va(p) (9™ ).

Since g € O,, we have g~'G~1g~" = G~! and hence A(gp) = gA(p).
The proof of the SurJeCtIVIty can also be found in [Ven(OI, Prop. 1.3].

©*(p) € Py—2 be orthogonal to A(P;) with respect to [, ]. Since w*¢*(p) € Py we

have for all ¢*(q) € Py:

dlw* ™ (p), ¢ (9)] = (wp)(V) q(y) = ( Ja(y) = p(V)Aq(y)
= [¢*(p), A(¢™(9)] =

Hence w*p*(p) = 0 and so ¢*(p) = 0.

Remark 5.5 ([Ven01, p. 15]) Let A€V, m>1, and d > 2.

A((z,N) = 0and A((x, ) =d(d—1)(A\N)(z, \)42
Aw*(@)™) = 2m(n+2m — 2)w*(z)™ L.
AW (@)™(2, )% = 2m(n+ 2m + 2d — 2)(z, \)%w* (z)™*
+d(d = 1)(XA) (@, ) 2w ()™

Definition 5.6 (Harmonic Polynomials)
A polynomial p € Py is called harmonic or spherical if A(p) =0, i.e. if

Xn: Gfl 82])([1})
=1 J’kawﬁxk

The space of the homogeneous harmonic polynomials is Hgq := ker(A) < Py.



5.1. HARMONIC POLYNOMIALS 73

Theorem 5.7 (i) Hgq is an irreducible RO(V, ( , ))-module.
(ii) A harmonic polynomial divisible by w*(x) is zero.

(iii) There is an orthogonal decomposition

Ld/2]
Pd = @ W*(x)de72m-

m=0

Proof. This is well known for Ry], see for example [Ven01, Théoreme 2.1] or [Hel00),
pp. 345]. By applying ¢*, this is also true for R|x]. O

Extension to the complex numbers We extend the Euclidean space to the
complex space V(C) := C® V and the C-linear extension of ( , ). So we have
the polynomial ring P(C) := Clzy,...,z,] = S(V(C)*). We write P4(C) for the
homogeneous polynomials and H4(C) for the homogeneous harmonic polynomials
of degree d.

Also we extend ¢ : V(C) — C™ and ¢* : Cly] — P(C).

For p = Yiean piyt € Cly] we write p := Yiezn, piy'. We extend [ ,] to a

sesquilinear form on P4(C):

(" (p), ¢™ ()] =D(V)a(y).

Analogously to Lemma [5.1], we have

[a, (2, )] = g(\)
for all ¢ € P4(C) and A € V(C).
The harmonic polynomials can be written in the following way.

Lemma 5.8 Let d > 2. H4(C) is generated by
{@N [ xev(©), (\A) =0},

Proof. The proof can also be found is [Hel00, pp.345], [Ogg69, Chapter VI|, or
[Ebe02, Theorem 3.1].
Let p(x) := (2, \)? with (\,\) = 0. By Remark
A*(p(x)) = d(d —1) (\A) (2,)72 =0,
——
=0
so p € Hq(C).

To see the other direction, let p € Hq(C) be orthogonal to all (z,v)? with
(v,v) = 0. Hence 0 = [p,(z,v)%] = P(v) for all zeros of w*(x). Therefore, by
Hilbert’s Nullstellensatz, w*(z) divides p and also p € H4(C). But this is only pos-
sible for p = 0, see Theorem [5.7](ii). O
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5.2 Gegenbauer Polynomials

We want to define some interesting harmonic polynomials. We introduce Gegenbauer
polynomials, which were used in this context in [Vil68] and [DelGoeSei77]. And we
define zonal polynomials, see also [Ven0l], [BacVen01], and [Jurl5].

Definition 5.9 (Gegenbauer Polynomials, cf. [Vil68])
Fiz a parameter p € R>o. On R[t] we define the scalar product

()= [ g - eyia

The Gegenbauer polynomials G5, G, GY, etc. are the orthonormal polynomials with
respect to the scalar product, i.e. G is homogeneous of degree d and (G4, GY) = é4,.

The first Gegenbauer polynomials are

Golt) = 1,

Gh(t) = 2pt,

Gh(t) = 2p(p+1)t* —p,

Gh(t) = 3pp+1)(p+2)t° —2p(p+ 1)t.

d
Let Gh(t) = ZTL,?:JO Pm t472™ then

mD(p+d—m)2d-2m
C(p)m!(d —2m)!

Pm = (_1)

The Gegenbauer polynomials also fulfill the recurrence relations

Gh(t) = 2 Gh (0) + 16l (1)

and
Gh(t) = 2=y go (1) — H2268 (),

Vilenkin gives a basis of P, with Gegenbauer polynomials in [Vil68, Chapter IX].
It is complicated to describe the basis, and for us not necessary. So we just define
very useful zonal polynomials.

Definition 5.10 (The Polynomials Fy)
Let n > 2 be even and d € Z>o. Set p := (n—2)/2. We homogenize the Gegenbauer
polynomial Gh(t):
Ld/2]
Gh(t,s) = Z P 1472 2T € R[¢, s].

m=0
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We define
ld/2]
ch\(x) = Z Pm (, )\)dfzm (z,z)™ (A, N)™ € Py.

m=0

If X\ is fized, we often write Py instead of Pj‘.
The polynomial P} defines a map V — R, u+~ P} (u), and

ld/2]
PMu) = G (w), (A,A><u,u>) = 3 P )2 A ()™
m=0

So we will sometimes write Gh((z, \), /(x,z)(), \)) instead of P} (x). The square
root is just a convenient notation because it does not appear in the polynomial.

Definition 5.11 (Zonal Polynomials)
Let A\ € V. A polynomial p € Py is called zonal to \ if gp = p for all g € O(V,( ,))
with gA = .

A polynomial p € P is zonal to X if and only if for all pu, ' € V:
(o p) = (W, ') and (N, p) = (N, 1) == P(p) = P(1).

Theorem 5.12 Let A€V and d € Z>g.

The polynomial Pé‘ is harmonic and homogeneous of degree d and zonal with
respect to \.

The space of zonal harmonic polynomials is 1-dimensional, i.e.

{p € Ha | p is zonal to \} = (P}).

Proof. See [Vil68, Chapter IX], [Ven0l], or [Jirl5, Kapitel 2]. O

5.3 Spherical Designs

Spherical designs are interesting geometric objects. Many interesting designs can
be constructed with lattices, and layers of extremal lattices are often good designs.
This section follows [VenOl1] and [DelGoeSei77].

Definition 5.13 (Spherical ¢-Designs)
Let X C V' be non-empty and finite, and all elements of X should have the same
square length. Let t € N. Then X is called a spherical t-design if for all P € Hq

with 1 < d < t:
Z P(z) = 0.
zeX
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Usually one considers V = R". Let S"~! := {z € R" | (z,2) = 1} be the unit
sphere. A finite set X C S"! is a t-design if and only if for all polynomials p(z) of

degree less or equal t:
1
plr)de = — > p(x).
/Sn—l |X| ‘r;(

The measure dz is normalized such that S"~! has measure 1. So t-designs can be
used for polynomial approximations. For us, other equivalent characterizations are
more useful.

Proposition 5.14 (Venkov)
Let X be as before, and additionally assume that X is symmetric, i.e. — X = X. Let
a > 0 be the square length of any element of X, and let t € N be even.

Then the following are equivalent:

(i) X is a spherical t-design.
(ii) X is a spherical (t+ 1)-design.

(iii) For allp € Pg and g € O(V,( ,)):

> o) = (gp)(@).

zeX zeX
(itv) There is a constant ¢, € R such that for ally € V:

S (a,y)t = d? (y,y)'* |X].
rzeX

Proof. Since —X = X, the condition ) cyxp(x) = 0, p € H,, is trivial for ¢ odd.
So (i) is equivalent to (iz). For the proofs of the other equivalences see [Ven0Il
Théoreme 3.2]. O
The constant in (iv) is always
Sogr—1
=] ——%—-
g nt20—2

One gets the following additional equivalences.

Proposition 5.15 Let X, a, and t be as before. X is a t-design if and only if

Y (@y)' = ed X

r,yeX
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Proof. [Ven0l, Théoréeme 8.1] O

Theorem 5.16 (Delsarte-Goethals-Seidel)
Let X C V be non-empty, finite, and symmetric. Assume that all elements of X
have the same square length. Let t € N.

X is a spherical t-design if and only if for all A\ € X and alld=1,...,¢t:

> Pz) =0.

zeX

Proof. [DelGoeSei77, Theorem 5.5] O

Example 5.17 The minimal vectors of the Z-lattice Eg form a 7-design, the mini-
mal vectors of Bg L Eg form a 3-design, and the minimal vectors of the Leech lattice
form an 11-design. In general, one can show that the layers L(m) of an extremal
even unimodular lattice L are spherical 7, 3, or 11-designs, if dim L is modulo 24
equal to 8, 16, or 0, respectively. This was observed by Venkov in [Ven8J)].

Bachoc and Venkov also considered modular lattices, see [BacVen01]. They ob-
served the following.

If L is extremal even 5-modular, then for all m € N with L(m) # 0 :

o [fm =0 (mod 8), then L(m) is a spherical 3-designs.

e Ifm =4 (mod 8), then L(m)U~/5L%(m) is a spherical 3-design.
If L is extremal even 2-modular, then for all m € N with L(m) # 0 :
e Ifm =0 (mod 16), then L(m) is a spherical T-designs.

e Ifm =4 (mod 16), then L(m) is a spherical 5-designs, and L(m)U+/2L% (m)
is a spherical 7-design.

o [fm =8 (mod 16), then L(m) is a spherical 3-designs.
e Ifm =12 (mod 16), then L(m)U~/2L¥(m) is a spherical 3-design.
If L is extremal even 3-modular, then for all m € N with L(m) # 0 :

e Ifm=0,2 (mod 12), then L(m) is a spherical 5-designs,
and L(m) U~/3L¥#(m) is a spherical T-design.

o Ifm=4,6 (mod 12), then L(m) is a spherical 3-designs.

e Ifm=28,10 (mod 12), then L(m)U/3L#*(m) is a spherical 3-design.
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5.4 Spherical Theta Series

The following theorem gives a connection of harmonic polynomials to lattices and
modular forms. For classical spherical theta series we refer to [KoeKri07], [Ogg69],
and [Ebe02].

Theorem 5.18 (Classical Spherical Theta Series)
Let n be even, and again let (V,( ,)) be a Euclidean space of dimension n. Let
L CV be a Z—lattice and let P € Hg be a homogeneous harmonic polynomial of
degree d. Define the spherical or harmonic theta series

Or.p(z) = Z P(X\) ¢MN/2 ) where q = exp(2mi 2) and z € H.
el

We have the identity
Orp(—1) = (—2)"/2Hd /2 det(L) =12 Or# p-

If L is even unimodular, then ©r p is a modular form of weight n/2 + d and is a
cusp form if d > 0.

Proof. [Ebe02, Proposition 3.1 and Theorem 3.3] O

One finds many spherical t-designs when calculating spherical theta series. For
example, if Oy p = 0 for all harmonic spherical polynomials P of degree 1 to ¢, then
all layers of L are spherical t-designs. This was discussed in [BacVen0l]. Especially,
one may prove the claims of Example

Harmonic Polynomials over Real Quadratic Number Fields
We want to extend the theory of harmonic polynomials to a real quadratic number
field F', so that the polynomials have coefficients in F' rather than in R (or in C).

For our purposes it is sufficient to use an embedding of F' into R. So let V be a
F-vector space of dimension n and let () : V' — F' be a totally positive definite form
with bilinear form B. Let E = (eq,...,ey,) be a basis of V and G = (B(e;, ¢5));,; be
the Gram matrix of F.

Let j = 1,2. The field R becomes an F-algebra via (a,r) — o9 - r. We write

FU) for the copy of R. Also, V1) := FU) @ F* (2 R") and let (, ); be the extension
of gjoB(, ) to V1. So (V1) (,);)is a Euclidean space, EV) = (1®ey,...,1®e,) €
V" s a basis, and GV is its Gram matrix.
We identify PU) = R[asgj), . ,:U%j)] = S(VW") and define harmonic polynomi-
als, Gegenbauer polynomials, etc. like in Section The map P +— o, o P embeds
Flxy,..., 2] in PU).

By extension to the complex numbers, we get polynomial rings

PO(C) =2, 2] and PA(C) = C[z{?, ..., 2.

n
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Definition 5.19 (Harmonic Polynomials)
A polynomial P € Fxy,...,xy,] is called harmonic or spherical if o10P is harmonic.

Remark 5.20 o o P is harmonic if and only if o9 o P is harmonic.
We may also define the Laplace operator A over F similar to Section [5.1), i.e.
A=300 G109 Here the derivations % are

i.j dz; Ox;
d d
-1
o (D Pri") o= 3 mPpal!
m=0 m=1
for arbitrary 221:0 Py € Flxy,...,zp] with Py, € Flx1, ..., Ti—1,Tit1, -, Tm)-

A polynomial P € F[x1,...,xy,] is harmonic if and only if AP = 0.

For instance, we may also find spherical ¢-designs as subsets of F'. Layers of
lattices over F' are sometimes as good t-designs as the layers of their trace lattices.
Sometimes they are better and sometimes they are worse.

The relation to spherical theta series and Hilbert modular forms is not so easy as
for the classical case. A theta series with values of harmonic polynomials as Fourier
coefficients is in general not a Hilbert modular form. Instead one has to consider
norms of harmonic polynomials.

Definition 5.21 (Spherical Theta Series)
Let (A, Q) be a Zp-lattice of rank n. Assume that (A, Q) is of Type (i), (ii), or (iii).
Let P € Flx1,...,xy,] be harmonic and homogeneous of degree d.

We define spherical theta series to (A, Q) and P depending on the type of (A, Q).
Forpe€ Fand z€ HxH or z € H x H let

exp(2mi Tr(zu/eo/dr))  for Type (i) theta series, i.e.
N(gp) =1 and z € H x H,

exp(2mi Tr(zu/Vdrp)) for Type (ii) theta series, i.e.
z€H x H,

exp(2mi Tr(zp)) for Type (iii) theta series, i.e.
z € H x H.

Then

Ongnr = Y N(P(N) g™
AeA

is called the spherical theta series or harmonic theta series of (A, Q) and P.

Theorem 5.22 (Eichler)
Or,) NP is a Hilbert theta series of weight k = § + d and level one, i.e.

My (SL2(ZF))  for Types (i) and (iit),

C) €4 __
MNP {Mk(SLg(ZF)) for Type (ii).
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This was first proved by Eichler [Eic77]. Extensions were proved by Richter [Ric02),
Theorem 2] and Walling [Wal93] (the last two proved different results with coincide
in our special case).

As shown by Richter or Walling, the transformation formula of the previous
proposition is also true if the lattice is not totally positive or if one considers trans-
lations of a lattice, respectively.

Proof. We follow the same lines as the proof of Theorem Again, we do this

only for Type (ii) theta series. One proves this for Types (i) and (iii) analogously.
And we use the fact that a homogeneous polynomial of degree d is harmonic if

and only if it is the linear combination of polynomials (x,w)? with (w, w) = 0, see

Lemma [5.8) We have N'(P())) = POAD) PR (X)), where PY) = 5 0 PU) € PU)

is harmonic. Hence it is a product of polynomials (/) w(J))) with (w ( ) w)); =
So let w?) € C® VU with (w¥),w)) =0 and

h(x(l),x(z)) — (x(l),w(l))il(a;(Z),w(Q))g.
It is sufficient to show that

O,0)n(2 Z h(A exp(2m Tr(zQ(N)/VdF))

AEA

is a modular form.

The invariance for the matrices ( (1) ’f) and (6 0

05*1>> where 1 € Zp and € € Z},,
is straight forward to show. We show the invariance under the transformation with
(9 h).

There is an isometry ¢; of the Euclidean spaces V0 with ( , ); and R™ with
the standard Euclidean space on R™, where 57 = 1,2. By combining the two real
embeddings, there is an isometric embedding ¢ : V. — R2* X\ — (p1()\), p2(N)),
where R?" has the dot scalar product (z,y) + z -y := z"y. We know that L :=
©(A) C R?" is an even Z-lattice and that det L = det L; = N(Zﬁ)_” = dj. Actually
L7 = p(A*) = @(ﬁA), and hence

tr
R R (g, g )T s (Vdey D, —Vdpy®)

is a similarity of norm dp which maps L# onto L. For y € R2n we let y() are the
first n entries of y and y?) are the last.
We may write h(AM, X)) = (o1 (A)-@M)4- (0o (X)-5P))? for some (M), w2t e
C?>" with @) - @) = 0. For short we set &' (y) := (y™) - @MW) . (y@) . 52,
So
z) _ Z h/(y)em (y<1>.y(1)51,y(2).y(2)zg)/\/@7
yeL

and hence the theta series is holomorphic on H x H. Let z € H x H.
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Since ¥(L#) = L, the transformation of the theta series may be written as

Omn ((H16)2) =
> W) exp (mi (w6 o) + 06 06 7))

yeL#

Since (z) - p(x) = dp x - for all z € R*" and (y)) = \/dF(j)y(j), this is equal to
NWap) > AW ),

yeL#

) ; ) ) ) (5)
where f;(y9) = (39 . 7@ exp (m Y G) ) VIED Y
Using Poisson’s summation formula (see for instance [Ebe02, Theorem 2.3]), this
is equal to

Ny det(L#) 2 Y [ paes2miea? pyal@)e2mis® gy,
R2n

yeL
where z = (z(1), 2(2))" € R?". The prefactor is

N(Vdp)? det(L#)"V? = (=dp)? det (L) = (—1)%d5 ">

. o\ d
FrzWye2mi=®v® g (1) = («/Z1 ) - (y(l) 'w1> e vy a Vi
R dFi )

and

n _\d
Fo(z®)e2mia® v ) ( ) ) 2 <y<2)w2> iy @y (=) /VTr
R \/dpi )

The exponential factors multiply to exp(2mi Tr(2Q(\)/v/dF)), where A € A with

p(N) =y =y, y?).
The polynomial factors multiply to A’(y), which is equal to A(A(M, A®). In
conclusion, the transformation of the theta series is equal to

dinjz 2\ \/H .
(—1)fd ™" < — ) < > 720 3 B(AD), A2)) 2 T VAR)
dpi Vipi AEA

= (—2)"*1Q o) n(2).

Therefore © (5 y(2) and hence © o) arp(z) are Hilbert modular forms of weight
k=n/2+d.
O
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Galois Symmetry
The extension of the Galois automorphism a — @ defines transformations

Hx H— H x H, (21,22) — (22,21)

and
H x H — H x E, (Zl,ZQ) — (—22, —2’1).

Hilbert modular forms invariant under one of these transformation are called (Galois)
symmetric.
On the lattice side, an F-vector space V is also an F-vector space with the
multiplication
FxV =V, (g, \)—axi:=a- A\

We denote this vector space with V, compare also Definition If we want to
emphasis that we regard a A € V in V, we write Ay instead of .

Let n = dimV and F = (eq,...,e,) be a basis (of V and V). The polynomial
ring F[z1, ...,y is on one hand identified with P := S(V*) and on the other hand
with P := S(V") via

T; — e;k».

Let A € V, then A =327 Aj-¢; and Ayr = Yo A * e; for some A, ..., A, €
If P(x) € P, then P(A) = P(A1,..., \p), and if P € P, then P(Ayr) = P(A1, ..., An).
For P(z) = ZieZ’;o pixt € Flay,...,x,] let

P(z) := Z Pt

i€z,

Then for A € V we have

and especially

N(PQ) =N (P(\y)).

With the last formula, we can state relations between the spherical theta series

of (A, Q) and its Galois-conjugate (A, Q).

Theorem 5.23 Let (A, Q) be a lattice of rank n. Let P € Flxy,...,xy,] be homoge-
neous of degree d and harmonic.
Then the following identities are true.

Type (i):
O @ur(z221) = (-1)0 5 5 \p(21, 22)-

Type (ii):
O uwr(=22,—21) = O g ypla1, 22)-
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Type (iii):
O(r.@ NP(22:21) = O3 ) Ap(215 22)-

Proof. We identify F with F() C R. ().

. z A ¥4 7)\

AEA
_ N(POA o [Z1QEA)  2Q(E0N)
/\ze;\ (P ))exp( m < eoVdp goVdr
B ([ 2Q(N) QM)
= g\/\/’ (o)) exp <2m <€0\/@ €0\/@>>.
Since P is homogeneous of degree d, we have

N (P(eo)) = N(e0) N (P(A)) = (=1)"N(P ())

We will sum over A and use Q instead of Q. Then N'(P()\)) (P(Ay7)). We get
2Q0g)  2Q0\5)
S) 29,21) = N(P )exp | 2mi
w@ar(m) = (1) NP p( ( T ))

= (—1)d@(A Q) ./\/'P(Zl 22
(i)

. —Z A —Zz 7)\
OnQnp(—22,—21) = %N(P()\))exp <2m ( \2/%5 ) \1/% )>>
= ex e ZIW 20
= T Mr)es (2 ( )= )
= Yexp | 2mi 200y)  2Q0)
= g_/\[ p (2 ( N N ))

= G(K@),Nﬁ(zl,@).
(iii).
Onqup(z2,21) = ZN(P(A))exp(Qm’ (200 + QM)

A€A

= Z N (P ) exp <2m' (Zlé()\x) + ZQ@()\K)))
AeA

= @(X@),j\/’ﬁ(zh 29).
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Corollary 5.24 Type (i):

O np(22,21) = (=1)"O(x gy ap(21, 22)

if and only if for all B € F':

ZN )= > N(P(x

AEA(B XEA(B)

If this is the case, then the spherical theta series Oy gy xp s symmetric
if d is even and anti-symmetric if d is odd.

Type (ii): The spherical theta series © s o) arp 5 symmetric, i.e.

O, Np(—22,—21) = Ox Q) nP(21, 22),

if and only if for all B € F':

Y. N@POW) = Y NPW)

AeA(B) AEA(B)
Type (iii): The spherical theta series O gy arp s symmetric, i.e.

O nr(22:21) = O gnp(zl, 22),

if and only if for all B € F':

dSTONPN) = > N(P(

AeA(B) AeA(B)

Proof. We use the previous theorem. The identities of the theta series are true if

and only if the coefficients of © 3 7, vp(2) and of ©x g) ap(2) at B coincide, for all
B eF. So o

S ONFPO) = Y NPW) = Z N(P

ArEA(B) AeA(B) AEA(B

Corollary 5.25 Let (A, Q) be a lattice of rank n and Type (i), (ii), or (iii). Let

P e Flxy,...,z,] be homogeneous of degree d and harmonic.
Assume tha t (A, Q) is Galois invariant, i.e. there is a semi-endo- morphzsm o
A — A with Q(o(A )) Q(\) for all X € A. Assume that NP(a()\)) = N'P(\) for

all x € A. Let k := § +d. Then we have the following.
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Type (i):
o c MF(SLa(ZF)) if d is even,
QNP A M- (SLa(Zp))  if d is odd.
Type (ii):
On.qnp € My (SLa(Zr)).
Type (iii):

@(A,Q),NP S MJ(SLQ(ZF))

Proof. The condition of the last corollary is fulfilled in each case:

Y NP = Y NPe(\)= > NPQ

AEA(B) AEA(B) AEA(B)

5.5 Configuration Numbers

85

The theta series of an extremal lattice is the unique extremal Hilbert modular form.
Hence the number of vectors of given length is determined independently from the
lattice. The theory of spherical theta series gives further constraints for the config-
uration of lattice vectors in the same length. We develop a method to find these

constrains in this section.

Suppose that A is an extremal lattice of Type (i), (ii), or (iii). Let aw € F such
that A(a/2) # 0, e.g. @ = 2min(A). Choose A € A(a/2), i.e. A € A with square
length B(A, A\) = . The number of vectors of the same layer of A which have the

same inner product with A are often determined by modular forms.

Definition 5.26 (Configuration numbers)
Let \e€ A. For >0 and 1 € F define

N(B,i:) = {u € A(B/2) | BOwp) = 1} and n(B,5:)) = |N

The configuration numbers of A and B are the numbers

(n(B,;A) | e F).

Lemma 5.27 Let A € A. For 8 > 0 there are only finitely many ¢+ € F with

n(B,t;\) # 0.
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Proof. Let € A(3/2) and B\, i) = ¢ = 19 + 11/ D with 19,11 € Q. Actually, we
have more restrictions on ¢y and ¢1, depending on the Type of the lattice. So we
have ¢y, 1 € %Z.

Also, p is a lattice point of the embedded Z-lattices A and A®). We identify F
with F() € R, hence BM (X, ) = 10 + 11v/D € R and BA(\, u) = 19 — 11v/D € R.
The Cauchy-Schwartz inequality yields

IBOwWY| = [+ uvD| < y/abpO),
1B, w)@| = |u—uVD| <\/a®pO),

Only finitely many ¢ fulfill these conditions.
O

The proof gives a direct way to compute all possible ¢’s by solving the inequalities.
One may also use the fact that Q(\ £+ pu) = # =+ ¢ must be 0 or totally positive.

So we have finitely many configuration numbers n(f3,¢;A). We want to find
equations of these without using information about the concrete extremal lattice.
So, if the lattice is not known, we treat the configuration numbers as unknowns, and
may find solutions for them.

Often there are easy relations between these numbers. We call these equations
between the numbers trivial equations.

Lemma 5.28 (Trivial Equations)
Let o, B € Zp be totally positive and X\ € A(a/2). Let v € F.

(i) n(a,a;A) = 2.
(i) n(e2B,et,\) = n(B,1;\) for e € L.

(iii) If A is Galois invariant with semi-endomorphism o, then

n(B,1;0(X) = n(B, 1 \).
(iv) If A(v/2) =0, then n(B, (a+ 8 —7)/2; \) = 0.

Proof. (i). For u € A(a/2) we have B(A,u) = a if and only if QA —pu) = 0
if and only if g = X. (ii). The maps p +— e and p/ — 71y are inverse, hence
bijections of the sets N(...). (iii). The map p — o(u) gives the desired bijection.
(iv). Let p € A(B/2) such that B(A,u) =¢ = (a+ 8 —)/2. Then X\ — y has norm
a/2+ /2 — 1 =~. This is not possible because of the assumption A(y/2) =0. O

After using the previous lemma, we have a small number of unknowns left. First
we have the equation

> n(B.uA) = |A(B/2)].

LELR
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Another way to see this is that the sum over all n(j3,¢; \) is the coefficient of qP/?
of the theta series, i.e.

Zn(ﬁ,L; A) = an,m(©On), where (n,m) = (tr(a18/2),tr(cef/2)).

[2

(For notations see Section and Chapter [4] )

We may also plug other coefficients into the theta series. These coefficients
are norms of values of harmonic polynomials. In Section [5.5] we introduced zonal
harmonic polynomials P; = Pj‘, which are basically Gegenbauer polynomials. We
defined the homogenized Gegenbauer polynomials G, with parameter p :=n/2 — 1.
For pn € A(B/2) with « = B(\, 1) we have

Pd(“) = GZ(/,, \/(76)

Lemma 5.29 The coefficient of ¢°/2 in Oanp, 18

D NG, VaB) n(B, ;).

Proof. Since the coefficient of ¢%/2 is > ueh(B/2) N P;(n) and Py is zonal, this follows
directly from the definition of the configuration numbers. O

In the sense of modular forms, O arp, is a modular form of weight k = 5 + d,
and it is a cusp form if d > 0, cf. Theorem [5.22, If Sn , = {0}, then we get an
2

additional equation for the unknowns n(s, 3; \). More precisely, then we have

ZNGZ(L, VaB) n(B,u;\) = 0.

Also we may consider other norms 3’ # . If §/ = - ¢ for some € € Z},, then
the configuration numbers for 4 are the same as for 3 (see Lemma [5.28)), and 3’
does not yield anything new. If not, we get more variables n(8’,:/; \), but we get
also more equations. This is especially interesting if dim Sy, /o is small, then the
previous lemma yields equations for the configuration numbers.

So, with these equations we can maybe restrict the sets of possible configuration
numbers n(f3,t; A) to very few.

In some cases, we can determine the lattices with given configuration numbers.

Furthermore, if the configuration numbers are given, we are able to check other
properties, e.g. whether the layer A(a/2) is a t-design.

Proposition 5.30 (t-designs)
Let A be an extremal lattice, > 0, and X € A(o/2). Let p = "52. If

> n(e, i A) Gh(,a) =0

L
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foralld=1,...,t and for all possibilities of configuration numbers
(nlo,u;A) [LeF ),

then A(«/2) is a spherical t-design.

Proof. For all X' € A(«/2) and 1 < d <t we have
Z P (p) = Zn(a,b; N)GE(v, ) = 0.

peh(a/2) .
Hence by Theorem A(a/2) is a spherical t-design. O

Example 5.31 In the following chapters we construct some extremal lattices of
Types (i), (ii), and (iii). Sometimes their layers are good spherical designs:

o The minimal vectors of the unique extremal lattices of dimensions 4 and 12
over Q[v/5] both form a spherical 11-designs.

e The minimal vectors of extremal lattices of dimensions 4, 8 and 12 over Q[v/2]
each form a spherical T-designs.

e The minimal vectors of one extremal Type (ii) lattice of dimension 4 over

Q[V3] form a spherical 5-designs.



Chapter 6

Extremal Lattices over Q[v/5]

In, this chapter, we look at the field F' = Q[v/5]. The fundamental unit is g9 = 1+2\/5,

and the different ideal is generated by ¢ := 5’27\/5 > 0.

Further we look at lattices of Type (i), i.e. even unimodular lattices (because
N(gg) = —1). If (A, Q) is a lattice of Type (i), then the first trace lattice (A1, Q1)
is the trace lattice with respect to oy = 6! = 5]5/5 and the second trace lattice
(A2, Q2) is the trace lattice with respect to ag = 1.

Let A = (a1, ). With respect to <4, the totally positive elements of Zp are
ordered in the following way:

3 5 3—45 5 5 7+ 3v5
A +2\f<A 2\/><A2<A +2\[<A3+\f5<,4+2\[<,4.--

1<

6.1 Extremal Lattices

For a detailed study of extremal lattices over Q[v/5] see [Neb13].

All even unimodular lattices of dimensions 4, 8, and 12 are classified in the
literature, cf. [Maadl] and [CosHsi87]. In fact, in dimension 4 there is a unique even
unimodular lattice, the root lattice Fy, see We will prove this with the methods
of Section [5.5] In dimension 8, both lattices are trivially extremal. In dimension 12,
there are 15 different isometry classes of lattices. Precisely one is extremal.

Extremal lattices are also known in dimensions 16, 24, 28 and 36, cf. [Neb13].

Table lists the known extremal lattices, see [Neb13| for more details. The
first column gives the rank n of the lattice (over Q[v/5]), and the second column
gives the rank N of the trace lattices (over Q). The third lists details of the trace
lattices, we use the notation of the Lattice Data Base [NebSlo|. The last column
gives the number or a lower bound of the number of extremal lattices.

Extremal Modular Forms The graduated algebra of Hilbert modular forms is

M = M(SLy(Z[V/5]) = C[As, s5, Bg, s15].

89
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Table 6.1: Extremal lattices over Q[v/5]

n N = 2n | trace lattices | # extr. lat.
4 8 (Eg, Hy) 1
8 16 A = Eg L FEg 2
12 24 A=Ay 1
16 32 > 2
20 40 ? ?
24 48 A1 = Pygy, >1
28 56 >1
32 64 ? ?
36 72 A =Tr >1
40 80 ? ?

The generators are the (symmetric) Eisenstein series Ao, the symmetric cusp forms
Bg and s15, and the anti-symmetric cusp form ss. Often one also writes Cjp = s2.
As usual the weights are given by the index. There is the relation s?5 € C[As, s5, Bg).
The generators have the following g-expansions (see Theorem .

Ay = 14120165 + 120145 + 120¢7¢3 + 600¢7 g5 + 72047 g5 + 6007 g5

+120¢3 g5 + 144043 q5 + 144043 ¢5 + 12006345 + 72043430 + O(q145)
s5 = Q@ — @ — qigs — 107 + 10q7¢5 + ¢iq5

+120¢} ¢5 — 108¢3q5 + 1084745 — 1204363 + O(q14s)

Bs = qd5q1q5 + ¢1g5 — 910qiq5 + ¢35 — 910q3q5 + 2565047 5 + 2409247 q5
+24092¢7¢5 + 2565047 g5 — 910¢3¢5° + O(qiq3)

Cio = ¢ids — 2016 + 4ia5 — 24305 — 184745 + 20475
—18¢7q5 — 2¢743° + O(q143)

s15 = 4igs — g5 — 2754305 — 2754305 — ¢}y’ + O(qiq3)

The ring of even symmetric Hilbert modular forms is a polynomial ring,
M, = C[Ay, Bs, Cho).

We construct the Hilbert modular forms Ao, s5, and Bg with lattices. The theta
series of the 4-dimensional root lattice Fy is As. Let P3 be a zonal function of
degree 3 of a minimal vector of Fy, which we introduced in the Chapter The
spherical theta series O, prp is s5 up to multiplication with a unit. We explain the
constructions in more details in later sections of this chapter.

Let Agy4 be the extremal lattice of dimension 24. So the coefficients O,,, at qlqg
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and q1¢3 are zero, and hence ©,,, # A3. Hence Bg is a linear combination of its
theta series and the theta series of Fy L Fy L Fy.
The extremal Hilbert modular forms are listed in [NebI13].

6.2 Dimension 4

A /5-structure of the Eg lattice. We look at 8-dimensional Z-lattices with a
V/B-structure. Compare also [CosHsi87], [Hsi89], and [Nebl3]. Let A; := Eg be the
first trace lattice of a 4-dimensional totally positive even unimodular lattice (A, Q)
over F := Q[v/5]. There is one v/5-structure. The lattice A; has the endomorphism
1+ ¢5+¢5 Y, where (5 € Aut(A;) is a 5th root of unity (i.e. has minimal polynomial
vt + 23 + 22 + 2+ 1). Hence A; is a Z[y/5]-lattice. There is only one conjugacy
class of 5th roots of unity, hence Eg has exactly one v/5-structure coming from a
(s-structure. Thus Eg is a trace lattice of a lattice over the 5th cyclotomic field.
Compare also Section [10.1]

The second trace lattice Az is isomorphic to Hy (also called Qg(1), see [ConSlo88]).
The trace lattice Ag is extremal 5-modular.

In fact, this is the only even unimodular v/5-structure of the Eg lattice, because
there is only one even unimodular lattices of dimension 4 over Q[v/5]. It is the root
lattice Fy. See also [Sch94], [Hsi89], and Section

The theta series of A = Fy is the (extremal) Hilbert modular form As, i.e.

© 2 =1+120q1¢5+120q1 g5 +12047 g3 +600g7 g3+ 72047 g5 +60047 ¢5+120g7 45+ O(g3 ¢3).

The 240 minimal points of A; = Eg split into two sets which have length 2 and
3, respectively, in the other trace lattice As. All minimal vectors of As belong to
the first set. Over Q[v/5] these are the sets of points with length 1 and 3‘*'27‘/5,

respectively. We denote them as A(1) and A(3+T‘£) The real embeddings o1 and o9
of Q[v/5] into R yield Euclidean spaces on R*, where the inner product is the R-linear
extension of the bilinear form associated to o; o Q. A quick computer calculation

(in Q[v/5]) shows that A(1) and A(3+T‘/3) fulfill the condition of Proposition

for t < 11 and hence o1(A(1)), 0a(A(1)), o1 (A(255)) and a9(A(3522)) are all 11-
designs. Actually, each set is isometric to the unique 120-point spherical 11—design
in 4 dimensions, which is described in [BoyDan01]. It has minimal possible points.
Though it is not tight (a tight design would have 118 elements; for the definition of
tight designs see [Ban79]).

Uniqueness of the v/5-Structure. We want to show that the lattice is unique
with our methods of the last chapter. Suppose that A is an even unimodular lattice
of dimension 4 over Q[v/5]. Since dim M»(SLa(Zr)) = 1 it is extremal and the
trace lattice A1 must be isomorphic to Eg. The theta series is Ay. Let o := 2 and
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choose A € A(a/2). We will see that the configuration numbers are determined by
properties of the modular forms.

Proposition 6.1 The non-trivial configuration numbers for 8 = 2 are given in the
following table.

Table 6.2: Configuration numbers

. 0 1 56 1556 o

2

n(2,0) |30 40 24 24 2

Proof. First we want to find the possible ¢’s such that the number n(j3,¢; ) may
be positive. Lattice points u € A(1) with B(\, i) = ¢ = 19 + t11/5 are also lattice
points of the trace lattices A1 and As. These lattices are positive definite, and the
Cauchy-Schwartz inequality yields

5-V5
10 L) =19—t1 < \/bl(/\,)\)bl(,u,,u) =2,

ba(A ) = tr(t) = 200 < \/ba(A, A)ba(pa, 1) = V2.

This condition gives only finitely many possible ¢’s. Using also the fact that
QAL pu) = C“TJFB + ¢ must be 0 or totally positive, we find that

bi(A ) = tx(

L e {0,+1, 155 +1=v5 4oy

Since n(B,t; A) = n(B, —t; A), we set S := {0, 1, 1+2‘/5, 1_2‘/5,2}.
The 5 unknowns in S must be fund. Hence we need (at least) 5 equations.
Some of the unknowns are trivial or fulfill trivial relations, which we summarized in

Lemma In this case we have only the trivial one
n(2,2;\) = 2.
Hence 4 unknowns must be found. Of cause we have the equation
>_n(B.uA) =|A(B/2)| = 120.
LeS

We get more equations from spherical theta series with spherical polynomials which
come from Gegenbauer polynomials, cf. Section In this case, for degree 1 and
2, we have P(u) = B(\, 1) = ¢ and Po(u) = B(A, 1)2 — 1 = 12 — 1. The spherical
theta series © arp, and ©x arp, are cusp forms of weight 3 and 4, respectively. Since
S3 = {0} and S4 = {0}, we have the two equations

Zn(ﬂ, t; NN (¢) =0 and Zn(ﬁ, LN =1)=0.

LeS LES
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Hence we get 3 equations, one for each d = 0,1,2. The matrix

Pd(b))d_om
eS\{2}
has full rank. Thus the linear system
11 1 1 n(2,0;) 118
L1 1 n(2,1;\)
(1) 0 :1 :1 n(2, 5580 | —_188
n(2,155; )

has the solutions (30, 40,48 —a, a)"" with 0 < a < 48. We also know the configuration
numbers for ' = 3 + /5 = 3, because

n(B,e;\) = n(egB, o A) (cf. Lemma [5.28]ii)),

where g9 = % The first trace lattice has to be Eg and the configuration numbers

for Eg are known. So if we look at A € Ay = Eg, there are exactly 112 vectors p in
Eg with norm 1 and scalar product £1 to A. From the theta series of A we know
that

peAi(l) & peAd)or pe AB+V5).

So combining these, we conclude that

pe A(l) and B, p) € {£1, +155} or

n e Al(l) and Bl()\aﬂ) =41 <—
pe AB++/5) and B\, p) € {155 41},

Therefore

S
S

112 =n(2,1;A) + n(2, 252 0) +2n(2, 155;0) =88 +a = a=24.

Corollary 6.2 (The Hilbert Modular Form s5)
Let P be the homogenized Gegenbauer polynomial G} to a vector A € A(1), i.e.

Ps(p) = G3(1, /o) = 8% — 818,

where v = B(A\, p) and 5 = 2Q(u). Then the anti-symmetric Hilbert modular form sg
18

1
=—0 -
S5 7680 ANPs
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Proof. The sum over all elements p € A(1) is

ZNPg(L, VaB) n(2,u;\) = 7680.

Hence ©p arp, is not equal to zero. This is of cause possible, because the cusp forms
space is
S5(SLa(ZF)) = (ss),

where s5 is the anti-symmetric generator of M (SLa(Zr)). Especially, we can com-
pute s5 as the (normalized) spherical theta series O arp,. u

It remains the question how many even unimodular lattices of degree 4, up to
isometry, exist. Of cause, we know the answer. But we can proof it using only the
configuration numbers.

Theorem 6.3 There is up to isometry only one even unimodular lattice of degree
4 over Q[\/g] Its trace lattices are Eg and Hy. The fundamental unit eg = H—Q‘/g of
Q[v/5] acts on Eg and Hy as 1+ (5 + (51, where ¢ € Aut(Eg) is the unique (up to
conjugation) 5th root of unity.

Proof. Let A C Q[v/5]* be an even unimodular lattice. Let A € A(1). Above we
have seen that there are 12 lattice points in the layer A(1) which have scalar product

71?/5 with A. Let pq, ..., p1o denote these points. Then

B(HEN — i, B0 — ) = (H52)2 - 2(158)° 42 =2

and hence
! +2\/5)\ — i € A(1).
Also
B +2\/5A_M’A) 1 +2\/52_ 1+2J5 _ 1+2\/5
and hence

1++5
2

A — p; = pj for some j.

We renumber the pu;’s such that pgy; = 1+2‘/5)\ — u; for 7 < i < 12. Let ¢ # j, then
Blui, pj) € {0, 1, £1%/5 +1=¥5} ang

L+vh, 345

- B(M’Ln“’j) € {07 +1,+
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Livs ) Wi) = L5 o vice

That is only possible for B(ju;, j1;) = 1 and hence B(u;, =5 5

versa. Without loss of generality we may assume that

2 if j =1,

1 if j=2,...,6
Blu, pj) =
(1, 125) SLVE g7,

LB ifj=8,...,12.

ey

We will show that B = (\, uu1, i, p3) is a basis of F*. Then it has Gram matrix

9 1+2\/5 1+2\@ 1+2¢5 2 1+2ﬁ 1+2¢5 1+2\/5
EAVER 1 1 V5 9 1 1

G = 1+z\/5 ) 0 ) or Gg 1= 1+z\/5 ) ) %
45 1 2 s 1 WS

Since det G1, det Go € Z%,, B is actually a lattice basis in both cases. Since T’ GoTY™ =
G, where

1 0 0 0
0 1 0 0
3+V5 1 =6 1-v5

the lattices are isometric. Hence all lattices are isometric, as desired. O
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Chapter 7

Extremal Lattices over Q[v/2]

The fundamental unit g = 1 + v/2 of F = Q[v/2] has norm —1. So we consider
lattices of Type (i). We will construct and classify (extremal) Type (i) lattices
over F.

Let (A, Q) be a Type (i) lattice. Then the first trace lattice (A1, Q1) is the trace
lattice with respect to a1 = %. It is even unimodular. Hence the dimension of
(A, Q) is a multiple of 4. The second trace lattice (Ag, Q2) is the trace lattice with
respect to ag = % It is even 2-modular.

The roots of (A, Q) are vectors A € A with Q(\) = &3¥, where k € Z. The
reduced roots are the vectors of norm 1. The trace norms of reduced roots are 1 in
both A and As.

Let A = (a1, a2). The totally positive elements ordered by <, are

1<A24+V2<434+2V2<42<44+42V2<45+3V2<464+4V2<y4 ...

7.1 Extremal Lattices

The following extremal lattices over Q[v/2] are known.

In dimension 4, only one isometry class exists, c.f. [Tak85]. The lattice in this
class is trivially extremal. It is the root lattice A/}, see Section

All unimodular even lattices in dimension 8 were classified in [Tak85], [Hsi89],
and [HsiHun89]. There are 6 isometry classes, and among them one is extremal.

I constructed additionally extremal lattices of dimension 12, 16, 20, and 24. See
the sections of this chapter for more details.

The following table lists the known extremal lattices. The first column gives the
rank n of the lattice (over Q[v/2]), the second gives the rank N of the trace lattices
(over Q), the third gives information about the trace lattices, and the forth gives
the number or a lower bound of the number of extremal lattices.

97
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Table 7.1: Extremal lattices over Q[v/2]

n N =2n | trace lattices  # extr. lat.
4 8 (Eg, F4 L Fy) 1

8 16 (Es L Eg, BWig) 1

12 24 A=Ay 5

16 32 A2 = Qgg >1

20 40 >1

24 48 A1 = Pygy, >1

Extremal Modular Forms The graduated algebra of Hilbert modular forms is
M = M(SLQ(Z[\&])) = C[gz, S84, S5, S6, 89].

The generators are the (symmetric) Eisenstein series g2, the symmetric cusp forms
s2, S¢, and sg and the anti-symmetric cusp form s5. There are relations 3% = 8456
and s% € Clgo, 54, 56]. As usual the weights are given by the index. The generators
have the following g-expansions (see Theorem [3.28]):

g2 = 1+48qiqo + 144q1q5 + 48q145 + 33643 ¢ + 72043 g5 + 384¢3q5 + 336¢3¢5
+144q1q2 + 480q1q2 + 1152q1q2 + 864q1q2 + 1440q1q2 + 864qu2
+1152¢3 45 + 480(11(12 + 144q}q5° + 0((11(12)

s1 = qq2 — 2q1q2 + QIQQ 44iq5 — 847 q2 + 24q1q2 8aiq5 — 44idS — 24745
+26q7q3 + 1647qy — 14qiq5 — 52qiq5 — 14qiq5 + 1647 g5 + 2643 ¢
—2¢7¢5" + 0(4143)

s5 = Qg2 — q1gh + 1661?61% — 564743 + 5647 g5 — 164745
—42¢} g5 + 3784} ¢5 — 378¢3 a5 + 424345 + O(qiq3)
se = Q@5 —2qiq5 — 16¢7q5 + 127 g3 — 16475 — 2qiq5 +qi”qg +32¢7¢5 + 4043 g3
32(11@2 +17OQ1€72 32(11(12 +40q765 + 326343 + 4i " + O(qiq3)
so = qg3 — 96qiq5 — 336qiq3 — 964795 + O(¢iq3)

The ring of even symmetric Hilbert modular forms is a polynomial ring,
M, = Clga, 4, 56].

The theta series of the 4-dimensional root lattice A/ is go. Let Ag be the extremal
lattice in dimension 8. So the coefficient O, at qiql is zero, and hence ©, # g3.
Hence s4 is a linear combination of ©,, and the theta series of A} L Aj. Analogously
we construct sg with the theta series of an extremal lattice of dimension 12. Let P;
be a zonal function of degree 3 of a minimal vector of A}, which we introduced in the
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Chapter |5, The spherical theta series ©5 arp, is s5. We explain the constructions in
more details in later sections of this chapter. We get the following theorem.

Theorem 7.1 (Generators)
The Hilbert modular forms g, s4, S5, and sg can be constructed with spherical theta
series.

The g-expansions of the first extremal Hilbert modular forms are listed in Ap-
pendix [C| Table gives details of the extremal Hilbert modular forms of weight
2 to 20. The first column lists the rank n of the (possible) extremal lattice A, and
the second column gives the weight k of the extremal Hilbert modular form. The
valuation of the extremal Hilbert modular form of weight k is given in the third col-
umn. The last columns give the minima and kissing numbers of the trace lattices Ay
and Ag of an extremal lattice A (if there is such a lattice). Its theta series would be
the extremal modular form. More precisely, let f; be the extremal Hilbert modular
form of weight k. Then f(q1,1) =14 0g} + --- + 0¢7° " 4 @, ¢ for some ng € N.
The hypothetical first trace lattice has minimum ng and kissing number a,,,. Then
the kissing number #MinA; is any = >,50 @n.m (fk)-

Table 7.2: Extremal Hilbert modular forms and lattices

n k| valuation | minA;  #Min A7y | minAs  #Min Ao
4 2| [1,1] 1 240 1 48

8 4 1, 2] 1 480 2 4320

12 6| [2,2] 2 196560 2 3024

16 8 2, 3] 2 146880 3 261120
20 10 (2, 4] 2 39600 3 84480
24 12 3, 4] 3 52416000 4 9828000
28 14 3, 5] 3 15590400 4 2232720
32 16 3, 6] 3 2611200 5 310210560
36 18 4, 6] 4 6218175600 5 57915648
40 20 [4,7] 4 1250172000 6 9092160000

Corollary 7.2 Let A be an extremal lattice of dimension n < 40. From Table
follows directly that the first trace lattice A1 is extremal unimodular and the second
trace lattice Aoy is extremal 2-modular.

Proof. We see that min Ay = 1+ |22 ] and min Ay = 1+ [22] is true for all n < 20.
Lattices achieving this bounds are called extremal (cf. |Que95]). Hence Ay and As
are extremal unimodular or 2-modular, respectively. n
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7.2 Dimension 4

Takada showed in [Tak85] that there is exactly one isometry class of even unimodular
lattices of dimension 4 over Q[v/2]. See also [HsiHun89], [Sch94], or [Kirl6]. We will
give a different proof with our methods.

Assume that we have an extremal lattice (A, Q) of degree 4 over F = Q[v/2].
Then its theta series is the Eisenstein series go of weight 2,

Oy =92 =1+4+48q1q2 + 144(119% + 48q1q§’ + O(q%q%).

The first trace lattice A; is the Eg lattice, because A; is even unimodular of dimen-
sion 8.

Construction We construct a Zp-lattice with a root of unity automorphism of
the Z-lattice Eg, compare also Section The automorphism group of Eg has one
conjugacy class of 8th roots of unity, i.e. elements with minimal polynomial z* + 1.
If (s € Aut(Eg) is such a root of unity, then (g + (g !'is an endomorphism of Eg
which has the minimal polynomial z? — 2. So the endomorphism (g + (g 1 defines
a Z[v/2]-structure A on Eg. This means that A is an even unimodular lattice of
dimension 4 over Q[\/i], the first trace lattice is Eg, and multiplication with /2 is
given by (g + (g ! on Eg. Actually, A is the root lattice A/}, see Example

Uniqueness We want to find all even unimodular lattices of rank 4 over Q[v/2].
Assume that (A, Q) is such a lattice. We follow the ideas of Section We fix a
lattice point of A, say A € A(1), and seek to find the numbers

n(B,6:A) = {u e AB/2) | B(A, p) = H1}|
for fixed S and all possible ¢’s.

Proposition 7.3 (Configuration Numbers)
The non-zero configuration numbers for B = 2 are given in the following table.

Table 7.3: Configuration numbers

L 0 1 V2 2
n(2,,A) [ 18 16 12 2

Proof. If u € A(1) then the scalar product ¢ = B(\, ) is one of the following,

ve{0,4+1,+v?2,+2}.
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Since ¢ = £2 if and only if up = £\, we have to compute the configuration numbers
n(2,; ) for . € S :={0,1,v/2}. We know the theta series of A, so

Z n(2,;2) =48 = |A(1)|.

LESU{2}

A harmonic polynomial of degree one is P; () = B(\, ) = ¢. Since S3(SLa(Zr)) =
{0}, we have ©p arp, = 0. Hence we have the equation

Zn(2, ;N () = 0.

L

The minimal vectors of the second trace lattice are A9(1) = A(1), which one can
see from ©,. The second trace lattice is 2-modular of minimum 1 and dimension
N = 8, hence it is extremal. According to Example the minimal vectors of an
extremal 2-modular lattice of dimension N =8 (mod 16) form a spherical 3-design.
The homogenized Gegenbauer polynomial of degree 2 and parameter % —1=3is
G3(t,s) = 241> — 35%. We have t = tr(1/2) and s = v/4. We normalize and get the
equation

Zn(2, t;A)(2 tr(§)2 —1)=0.

L

The linear equation system is

0 0 1] 2
11 1 148
01 -2 4| 0
-1 1 -1 7| 0
The unique solution is (18,16,12,2)"". O

Corollary 7.4 (The Hilbert Modular Form s5)
Let X\ € A(1) be any vector. Let Pg\ the harmonic polynomial of degree 3 zonal to \,
defined in Definition[5.10. So for u € A, we have

Py(p) = G3(1,V/28) = 85 — 8.8,

where 1 = B(\, ), B = 2Q(n), and Gi(t,s) = 8t3 — 4ts? is the homogenized Gegen-
bauer polynomial of parameter 1 and degree 3.
The anti-symmetric Hilbert modular form ss is

1
— O\ p
% = 3p72 AN
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Proof. The sum over all elements p € A(1), i.e. =2, is

S N8P —160) n(2,4 M) = 3072.

Hence O arp, is not equal to zero. Since S5(SL2(Zr)) = (s5), this is possible and
s5 is equal to the (normalization of the) spherical theta series O arp;. O

Corollary 7.5 (Spherical Designs)
The set A(1) is a spherical T-design in R,

Proof. We identify A(1) with A(1)® = o1(A(1)) € R* or A® C R* The inner
product is the R-linear extension of 01 o B or 03 o B, where B is the bilinear form
of A.

Using Gegenbauer polynomials we may check if A(1) is a spherical ¢-designs, see
Proposition [5.30f We check if

> o n(B, ;M) Gyt 2) =0,

L

where Gcll is the homogenized Gegenbauer polynomial of degree d and parameter
4/2 —1 = 1. This equation is true for homogenized Gegenbauer polynomials up to
degree 7 (the odd degrees are trivial) and is not true for degree 8. Hence A(1) is a
spherical 7-design.

O

Theorem 7.6 (Uniqueness of the v/2-structure of Eg) There is up to isome-
try only one even unimodular lattice of degree 4 over Q[v/2]. Its trace lattices are
Es and Fy LFy. The fundamental unit eg = 1+ /2 of Q[v/2] acts on Eg and Fy as
(s + Cg_l, where (g € Aut(Eg) is the unique automorphism (up to conjugation) with
minimal polynomial z* + 1.

Proof. Let A C Q[v2]* be an even unimodular lattice. Let A € A(1). Above
we have seen that there are 8 lattice vectors in the layer A(1) which have scalar
product 1 with A. If u is such a vector, one checks that also A — p is. If 4/ is another
of these vectors, the scalar products must fulfill

B(u, /'), B, A — i) € {0, £1, £v/2, £2}.

Hence there are only the cases B(u, /) = 0 if and only if B(u, A — ') = 1, and vice
versa, and the trivial cases B(u,p') = 2 if and only if u = ¢/, and B(u,p’) = —1 if
and only if u = X\ — p/. We order the 8 vectors p, ..., us such that psr; = X — pu;
fori=1,2,3,4 and B(u1,pi) =0 for i = 2,3,4.
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The Gram matrix of (A, 1, po, p3) is

Gy = or Gg :=

_ = =N
O O N
o N O =
N OO
el )
S O N
=N O =
N = O =

Both matrices are non-singular and could thus be Gram matrices of sublattices
of A. Denote by M a lattice with Gram matrix G;. The determinant is 4, so M
may have an even unimodular overlattice A. A computer calculation shows that
there is exactly one even unimodular overlattice, up to isometry. The determinant
of G5 is 5. Since 5Zp is a prime ideal, a lattice with Gram matrix G5 cannot have
unimodular overlattices.

In conclusion, all even unimodular lattices of dimension 4 are isomorphic to the
overlattice of G7, which is the root lattice Al. O

7.3 Dimension 8

There are 6 isometry classes in dimension 8; they were constructed in [Tak85],
[Hsi89], and [HsiHun89]. One of them is extremal. Hsia and Hung used Kneser’s
neighboring method and Siegel’s mass formula in [HsiHun89] to classify the lattices.
We will proof the existence and uniqueness of the extremal lattice with our methods.

Construction The automorphism group of Eg1Eg has two conjugacy classes of
8th roots of unity (i.e. elements with minimal polynomial x* + 1). The elements
of one of them act diagonal on the two copies of Eg. Denote a representative of
the other one with (3. The endomorphism (g + (g ! has minimal polynomial 2% — 2.
Hence it defines an even unimodular v/2-structure on Eg | Eg. That means that there
is an even unimodular lattice A over Q[v/2] of dimension 8 such that Eg L Eg is the
first trace lattice. Multiplication by v/2 on A is applying of (s + (g Lon Eg LEg. We
find that A has no roots, i.e. lattice points of norm 2. Since the space of Hilbert
modular forms of weight 4 is 2-dimensional, A is extremal.
The Gram matrix of A is given in Appendix

Uniqueness Assume that we have an extremal lattice (A, Q) of degree 8. Then
its theta series is the extremal Hilbert modular form of weight 4,

Op = 1 +480¢1¢5 + 3360¢2¢5 + 153607 q5 + 24480¢7q5 + 1536047 ¢5 + 33604345
+ 480475 + O(q}g3).

The first trace lattice Ay is extremal unimodular. Hence it is one of the two even
extremal lattices of dimension 18, i.e. A1 = Eg 1 Fgor A; = D;FG. All minimal vectors



104 CHAPTER 7. EXTREMAL LATTICES OVER Q[v/2]

of the first trace lattice are minimal over the number field. They form a 3-design
with respect to the first trace form.

The second trace lattice is 2-modular with minimum 2. It is the Barnes Wall
lattice, because there is only one isometry class of extremal 2-modular lattices,
cf. [SchVen94].

Again, we fix a minimal lattice point A € A. Then A\ has square length
a=2(2++/2). For 8 = a we will determine the numbers

n(B,650) = [{u € AB/2) | BOp) = +1}].

Proposition 7.7 (Configuration Numbers of Extremal Lattices)
The non-zero configuration numbers for f = 2(2 4+ v/2) are given in the following
table.

Table 7.4: Configuration numbers

L 0 14+vV2 24vV2 242V2 4+2V2
n(B,1;\) | 210 128 112 28 2

Proof. If yu € A(2++/2), then the scalar product ¢ = B(\, 1) is one of the following,
v e {0,£1, (1 + V2), £(2 + V2), £(2 + 2v/2), £(3 + 2v2), (4 + 2v/2)}.

Of cause, ¢« = £« is only possible if 4 = £A. Suppose that ¢ = 1. Then A\ —
would have norm 2+ v/2 — 142+ v/2 = 3+ 2y/2. That is not possible because the
coefficient of ©, at q1¢3 is zero (tr(z_T‘/5 <(3+2v2)) =1 and tr(3 - (3+2v/2)) = 3).
By the same argument, ¢ = +(3 + 21/2) is not possible.

Therefore we have to compute the configuration numbers n(/,¢; A) for

e S :={0,14+v2,2+2,2+2V2}

We know the theta series of A, so we have the equation

> n(B,uA) =480 = [A(B)]. (1)

eSU{a}

A harmonic polynomial of degree 1is Py(u) = B(\, p) = ¢. The space of Hilbert
modular forms of degree 5 is S5 = (s5). Since s5 = qiq2 — q1g5 + O(q¢?¢3) and
the coefficient of ©4 p, at qigo is zero, the spherical theta series ©5 p, cannot be a
multiple of s5. Hence we have ©p orp, = 0 and the equation

Z n(B,;; AN (1) = 0. (2)

eSu{a}
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Let P2 be harmonic polynomial of degree 3 zonal to \, see Definition It is
the Gegenbauer polynomial G3 homogenized with 4 + 21/2, i.e.

P3(p) = G3(1,4 4+ 2v/2) = 800% — 240 - (4 + 2V/2).

Since S7 = (gass) and gas5 = q1q2 — 1G5 + O(q3q3), the spherical theta series
O, p has to be zero. So

> (B, AN (G314 +2v2)) = 0. (3)

eSu{a}

That does not work for spherical polynomials of degree 2, because Sg = (g254, S¢)
and sg starts with qlq%. Hence ©) p, = csg, where ¢ € C is a constant, which is
(likely) nonzero.

From the theta series we see that A((3) is the set of minimal vectors of the first
trace lattice. Since the first trace lattice is unimodular, A(S) forms a spherical
3-design over Z with respect to the first trace form. If G3(¢,s) is the homogenized
Gegenbauer polynomial of degree 2 and parameter 7, then

3 n(B, NG (tr(2520),2) = 0. (4)
eSu{a}

The linear equation system containing the equations (1) to (4) determines the
4 unknowns uniquely. O

Corollary 7.8 (Spherical Designs) The set A(2 + /2) is a spherical T-design.

Proof. So we check if
Zn(ﬁ, L )\)Gz(b, 2) =0,
L
where Gg is the homogenized Gegenbauer polynomial of degree d and parameter 3.
This equation is true for homogenized Gegenbauer polynomials up to degree 7 and
is not true for degree 8. Hence A(2 + 1/2) C R® is a spherical 7-design.
O

Theorem 7.9 (Uniqueness of the Extremal 8-dim. Lattice over Q[/2])
There is up to isometry only one extremal even unimodular lattice of degree 8 over
Q[V2]. Its trace lattices are Eg LEg and the Barnes-Wall lattice BWg.

Proof. Let A be an extremal lattice of dimension 8. Let A € A(2 + v/2). Above
we have seen that there are 14 lattice vectors in the layer A(2 + v/2) which have
scalar product 2 + 2v/2 with A. If y is such a vector, one checks that also v/2\ —
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is such a vector. For p another of these vectors, the scalar products B(u, p') and
B(p, V2 — p/) must be in

{0, £(14+V2), (2 4+ V2), £(2 + 2v2), £(3 + 2v/2), (4 + 2v2)}.

That is possible only for B(u, p') = 24+ /2, B(u, ') = 2 (if and only if u = u’), and
B(u, ') = =1 (if and only if = X — ).

Therefore we can order the 14 vectors as p1, ..., t14 such that p71; = A — p; and
B(pi, 1t4) =24 /2, where 1 <i,j < 7and i # j.

Therefore the Gram matrix of (X, y1, . . ., si7) has 44-21/2 on the diagonal, 2+2+/2
on the first row and column (except the first entry), and 2 4+ /2 everywhere else,

4422 2422 2422 .. 2+ 2V/2
242V2 44+2v2 2442 242

G:=1242V2 24V2 4422 :
: : 24+4/2
2+2V2 2442 242 4422

It has determinant 18464 + 13056+y/2 = \/510 (1 ++/2)8. Let M be the lattice with
Gram matrix G. A computer calculation shows that M has two even unimodular
overlattices, up to isometry. One of them is extremal, i.e. has no lattice vectors
of norm 1. Therefore every extremal even unimodular lattice is isometric to that
lattice. 0

7.4 Dimension 12

The mass of the genus of even unimodular lattices of dimension 12 is around 8.5.
Kneser’s neighboring method at the prime v/2Zp provides all 577 isometry classes.
Among them 99 classes contain lattices without roots, i.e. the norm of any element
is not in Z%. And 5 of them are extremal, i.e. the norm of any vector is neither
in Z% nor in (2 + v/2)Z%. We give their Gram matrices in Appendix

For every extremal lattice, the first trace lattice is the Leech lattice. That con-
dition is necessary, but it is not sufficient for v/2. The second trace lattices are
extremal 2-modular. They are pairwise non-isometric.

The minimal vectors of every extremal lattice form a spherical 7-design (when
they are embedded into R'?).

We cannot determine the configuration numbers with our methods.
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7.5 Higher Dimensions

The classification of extremal lattices in dimensions higher than 12 is not complete.
We list further extremal lattices in dimensions 16, 20, and 24. The existence or
non-existence of extremal lattices in any other dimension is not known.

Dimension 16 The extremal Hilbert modular form of weight 8 is

fs = 1+ 34560q{g; + T7760q1q; + 34560q743 + 192000q7q5 + 414720047 ¢
+15966720¢7¢5 + 2414592047 S + 1596672047 ¢ + 414720047 ¢5
+192000¢3¢3 + O(q )

Let Lo be the 32-dimension 2-modular extremal lattice (Q32, which was found by
Quebbemann in [Que87a]. We use the root of unity automorphism method, see
Section to construct an extremal lattice of dimension 16. There are several
conjugacy classes of 8th roots of unity, i.e. elements with minimal polynomial 2% + 1.
Let G4 be the Gram matrix of Lo. Exactly one of the 8th roots of unity (g yield an
even unimodular lattice L; given by the Gram matrix

-1
Gr = Gy

(Here % corresponds to #)

Since L, and L are even, the v/2-structure given by v/2 = (g + (g Lis an even
unimodular lattice over Q[v/2]. Call it A. The first and second trace lattices of A
are A1 = L1 and A2 = L2.

The lattice Ly has minimum 2, hence it is extremal. Therefore A is an extremal
lattice of dimension 16. So ©, = fs. The theta series is also given by the merged
theta series of L1 and Lo, i.e.

n_m
Op = Z an,mq142
n,m>0

where the coefficients are an ., = |[{\ € Q3 | ATG1A = 2n and ATGao\ = 2m} |.

-1
The Gram matrices Go and %Gg are given in Appendix

Dimension 20 The extremal Hilbert modular form of weight 10 is

fio = 14 39600¢7qs + 84480q3¢5 + 392832047 ¢ + 2154240043 ¢5
43674880043 ¢S + 2154240043 ¢35 + 392832043 ¢5 + 84480435 + O(qiqs).

Let Ly be the extremal 2-modular lattice of dimension 40 constructed by Bachoc
in [Bac97]. It is a 10-dimensional unimodular lattices over the Hurwitz order. Let
G5 be its Gram matrix.
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There is a v/2-structure v € End(Lz) which defines an even unimodular lattice
Ly given by the Gram matrix G; = GQQ_?” such that the merged theta series is fio.

The endomorphism v is also a similarity between Lf and Lo of norm 2. It
is up to conjugation over Aut(Ly) the only similarity which defines an extremal
V/2-structure. See Section for more details and a proof. The Gram matrices Gy
and G are given in Appendix [C]

Dimension 24 The extremal Hilbert modular form of weight 12 is

fiz= 1+ 1572480¢3¢3 + 12579840473 + 24111360345 + 12579840} q}
+1572480¢345 + O(qid3)

Let Ly = Py4g, be the 48-dimension unimodular extremal lattice which was found by
Nebe in [Neb98b]. Let Gy be its Gram matrix. There are 6 conjugacy classes of 8th
roots of unity in the automorphism group. Let (g be a 8th root of unity such that
its conjugacy class has length 60 (the smallest one). It yields an 2-modular lattice
Lo given by the Gram matrix

Go=(2+ (s + ¢ G-

The lattice has minimum 8, hence it is extremal 2-modular. And therefore (g + (g !
is a /2-structure which is an extremal even unimodular lattice of dimension 24 over
Q[v2]. Its theta series is fi2. The Gram matrices G1 and (2 + (g + Cgl)Gl are given
in Appendix [C]

The other roots of unity yield 2-modular lattices with minimum 6, so the
ﬁ-structures are not extremal.



Chapter 8

Extremal Type (ii) Lattices over

Q[v3]

8.1 Extremal Lattices

In this chapter we discuss Type (ii) lattices over F = Q[v/3], because the funda-
mental unit g9 = 2 + /3 has norm 1. Let (A, Q) be a Type (ii) lattice, i.e. (A, Q)
is Galois-invariant, even, and unimodular. The first trace lattice (A1, Q1) is formed

with respect to a1 = % It is 3-modular. The second trace lattice (Ag,@2) is the

trace lattices with respect to as = 376‘/3. It is 2-modular. The roots of (A, Q) are
the vectors with norm 5’5, where k € Z. One can reduce that to the norms 1 and &.

Over the trace lattices, we have for A\ € A:

QN =1 & (N =10 1
QN =2+V3 & Qi(\) =2 Q) =1

Let A = (a1, a2). Ordered with respect to <y, the first totally positive integer
elements are

1 <4 24+V3 <42 <4 2-V3 <43 <4 ...

Extremal Lattices The following extremal lattices over Q[v/3] are known.

In dimension 2, there is just the root lattice G2 exists. In dimension 4, there are
the root lattices Go LG and Fy. See also Section All unimodular even lattices
in dimension 6 and 8 were classified in [Hun91]. There is one extremal lattice in
dimension 6, and there are 3 extremal lattices in dimension 8.

I constructed additionally all 21 extremal lattices of dimension 10.

The following table lists the extremal lattices. The first column gives the rank n
of the lattice (over Q[v/3]), and the second column gives the rank N of the trace
lattices (over Q).

109



110 CHAPTER 8. EXTREMAL TYPE (II) LATTICES OVER Q|[v/3]

Table 8.1: Extremal lattices over Q[v/3]

n N = 2n | trace lattices # extr. lat.
2 4 (A2 L Ag, Fy) 1
4 8 2
6 12 A = Ko 1
8 16 Ao = BWig 3
10 20 21
12 24 ?
14 28 ?

Extremal Modular Forms The theta series of an Type (ii) lattice of dimension n
is a (Galois) symmetric Hilbert modular form H x H — C of weight k& = %. If the
lattices is fundamentally invariant, then the theta series is fundamentally symmetric.
The graduated algebra of Galois and fundamentally symmetric Hilbert modular
forms on H x H is a polynomial ring in 3 generators, i.e.

M (SLo(Z[V3]) = Clar, g1, 96)-

The generators are the Fisenstein series g1, g4, and gg of weight 1, 4, and 6. This
was proved by |[Gun65|, see also Section We will show the following.

Theorem 8.1 One can construct symmetric Hilbert modular forms g1, s3, and g4
of weight 1, 3, and 4, respectively, with spherical theta series.

The algebra of symmetric Hilbert modular forms of level SLo(Z[v/3]) on H x H
s a polynomial Ting in g1, s3, and g4, i.e.

M (SLa(Z[V3)) = Clgr, 53, 94]
The generators have the following g-expansions:

g o= 1+ 12q1q2 +12¢%¢2 + 12q1q2 + 124765 + 12¢3¢5 + O(41¢3)

s3 = Qg2 — qiqa — 44105 — 4igh + 9415 +O(Q1Q2)

g1 = 23+ 240q1q2 + 24043 q2 + 17520q1 43 + 240q3 g5 + 6048043 ¢3
+181680¢7¢3 + 604807 ¢3 + O(g'¢?)

gs = 1681+ 504q1qs + 504¢7qs + 532728433 + 504¢3q3 + 40582084 ¢3
+29883672¢7 3 + 4058208¢3 ¢4 + O(¢lq2)

A Type (ii) lattice (A, Q) is called extremal if O, () is extremal in MZF(SLQ (ZF)),
see Definition That means that O, ) is the extremal form among all (Galois)

symmetric Hilbert modular forms of weight k& = %.
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The following Table gives details of the extremal symmetric Hilbert modular
forms of weight 1 to 20. The first column gives the dimension n of the (possible)
extremal lattice A, and the second column gives the weight & of the extremal Hilbert
modular form. The third column gives the valuation of the extremal Hilbert modular
form of weight k. The last columns give the minima and kissing numbers of the trace
lattices A1 and Ag of an extremal lattice A (if such lattices exist). Its theta series
would be the extremal symmetric modular form.

Table 8.2: Extremal symmetric Hilbert modular forms and lattices

n k| valuation | min Ay #Min A | min Ay #Min Ay
2 1 [1,1] 1 12 1 24

4 2 [1,1] 1 24 2 48

6 3 2, 1] 2 756 1 72

8 4 (2,2] 2 720 2 4320
10 5 2,2] 2 540 2 3960
12 6 3, 2] 3 26208 2 3024
14 7 3, 2] 3 17472 2 1512

Corollary 8.2 Let (A, Q) be an extremal Type (ii) lattice of dimension n < 14.
Then the trace lattice (A1, Q1) is extremal 3-modular, and the trace lattice (A2, Q2)
is extremal 2-modular.

Proof. Form the table we observe that minA; = 1+ [22] and min Ay = 1+ [ 32|
for n < 14, n even. Modular lattices achieving this bound are extremal, see [Que95]|.

Hence A and Ay are extremal 3- or 2-modular, respectively.
O

Theorem 8.3 We list the extremal symmetric Hilbert modular forms of weight
k < 12 in Appendiz [Dl The extremal modular forms of weight 8 to 12 each have
some negative Fourier coefficients. Hence they cannot be theta series, and extremal
Galois invariant lattices of dimension 16 to 24 thus do not exist.

8.2 Dimension 2

The Gram matrix
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defines an even unimodular lattice G5 of dimension 2. It is a root lattice. Its theta
series is the Eisenstein series g1,

Og,(2) = g1(2) = 1+ 12q1¢2 + 12632 + 126363 + 12q145 + O(¢3¢3).

The first trace lattice is the 3-modular lattice As L Ao, and the second trace lattice
is the 2-modular lattice Fj.

The lattice G2 represent the only isometry class of unimodular lattices of dimen-
sion 2, see for example [Hun91]. We will show this result with our methods.

Assume that we have an extremal lattice (A, Q) of rank 2 over F' = Q[v/3]. Then
its theta series is the Eisenstein series g1 of weight 1.

Like in the cases before, for a fixed lattice point A € A(1) we want to determine
the configuration numbers

n(B,uA) = e AB/2) | B\, p) = £}

for fixed 8 (e.g. 5 =2) and all possible ¢’s.

Proposition 8.4 (Configuration numbers)
The non-trivial configuration numbers for 8 = 2 are given in the following table.

Table 8.3: Configuration numbers

L 01 V3 2
n(2,uN) 2 4 4 2

Proof. If p € A(1) then the scalar product ¢ = B(A, i) is one of the following,
v € {0,+1,£V3, +2}.
Clearly n(2,2;\) = 2. We have

L

where the sum is over ¢ € {0,1,+/3,2}.
The Hilbert modular forms space of weight 2 is just (g7). Hence there are not
any cusp forms and ©j xrp, = 0. Hence

> n(2,5 AN (1) = 0.

L
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The first trace lattice is 3-modular of dimension 4, therefore each layer forms a
spherical 3-design. Especially A;(2) = A(2), as one sees from the theta series, is a

3-design. Hence
> n(2,4A) ((tréb)f — 1) =0.

L

These equations determine the numbers uniquely. O

Theorem 8.5 (Uniqueness) There is up to isometry only one even unimodular
lattice of degree 2 over Q[v/3].

Proof. Let A C Q[v3]? be an even unimodular lattice. Let A € A(1). Above we
have seen that there are 4 lattice vectors in the layer A(1) which have scalar product
V3 with A. Let u be such a vector. Then (), i) is a full sublattice of A. But the

sublattice has Gram matrix
2 V3
V3 3

and hence is the root lattice G3. But Gz is even unimodular, and so A = (A, u) = Ga.
a

8.3 Dimension 4

The space of symmetric modular forms of weight 2 is M, = (g?). Hence G5 1 Gy is
an (extremal) Type (ii) lattice. Also, there is the root lattice Fy, see Section
We show hat these two represent all isometry classes, compare also [Hun91].

Assume that we have an extremal lattice (A, Q) of rank 4 over F' = Q[v/3]. Then
its theta series is

Op = g2 = 14 24q1q0 + 242 2 + 16823 + 24q145 + O(G3¢3).

For a fixed lattice point A € A(1) we will determine the configuration numbers
n(l, e N).

Proposition 8.6 (Configuration numbers)
There are two possibilities for the non-trivial numbers for § = 2. They are given in
the following table.

Proof. We consider lattice points u € A(1). Like for dimension 2, we have the
following scalar products

=B\ p) €S :={0,4+1,+V3,+2}.
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Table 8.4: Configuration numbers

L 0 1 V3 2
n(2,u;A) ] 6 16 0 2
n(2,uMN) 14 4 4 2

And we have the equations n(2,2;\) = 2 and

Z n(2,u;\) = 24.

€S
The first trace lattice is 3-modular of dimension 8. So according to Example
A () U3 - AT (b/3)

is a spherical 3-design for all b € N. We have AfE = 2(2v/3)7'Ay, and hence
A#(b/3) = %Al(b). In our case we have b = 1. Let a := 1 be the norm of
A in Ay. The Gegenbauer polynomial of parameter 8/2 — 1 = 3 and degree 2 is

24t> — 3. Homogenized with v/2a - 2b = 2, we get the equation

ZL:H(Q,L;/\) (2 tr(;>2 —1+4+6 tr(2f/§)2 - 1> =0.

These equations leave three possibilities of configuration numbers:

L 0 1 V3 2
n(2,u;A) ] 6 16 0 2
n(2,u:)) 10 10 2 2
n(2,uMN) 14 4 4 2

The second configuration is not possible, because if © € A(1) with B(A\, p) = 1,
then also A — € A(1) and B(A\, A — ) = 1. The same is of cause true for —p and
—(A — ). Son(2,1;\) is a multiple of 4. O

Theorem 8.7 (Uniqueness)
There are up to isometry precisely two Type (ii) lattice of degree 4 over Q[v/3], the
root lattices Go 1G9 and Fy.
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Proof. Let A C Q[v3]? be an even unimodular lattice. We have seen that for
A € A(1) there are two different possibilities for the numbers n(2,; \), where
1 =0,1,V/3.

First assume that there is a vector A € A which has the configuration numbers
of the second column in Table 8.4

Let 1 € A(1) such that B(\,p) = v/3. Then (A, u) is a sublattice of A and
isometric to Go. Therefore A = Go 1 Gs.

So assume that all vectors of A(1) have the configuration numbers of the first
column of Table Let A € A(1). Then there are exactly 8 vectors p € A(1) with
B(A, 1) = 1. We can order them as

M1y .oy U4, )‘_,ulw'w)\_lu’ll-

Since n(2,/3; A) = 0, the scalar products B(u;, itj) and B(u;, A — u15) might be 0, 1,
or —1 (assuming ¢ # j and i—j # 0 (mod 4)). More precisely, we have B(p;, pj) = 0
and B(pi, A—pj) = 1 or vice versa. Without loss of generality assume B(pu1, ptj) =0
for j = 2,3,4. So the Gram matrix of (X, 1, p2, pu3) is

G := or Gy :=

_ = =N
S O N
SN O =
N O O =
— = =N
S O N =
=N O =
N = O =

Both matrices are non-singular and could thus be Gram matrices of full sublattices
of A. Denote by M a lattice with Gram matrix G;. The determinant is 4, so M
may have an even unimodular overlattice A. A computer calculation shows that
all even unimodular overlattices are isometric to F4. The determinant of Gy is 5
and 5Z[v/3] is a prime ideal, hence a lattice with Gram matrix G2 cannot have
unimodular overlattices. O

So we have two unimodular lattices, Go LG9 and Fy. All lattice points of norm 1
in every lattice have the same same configuration numbers. By calculations we find
that (G2LG2)(1) is a spherical 3-design, and F4(1) is a spherical 5-design.

We find that ©p, arp, is non-trivial. Hence ©p, arp, is not fundamentally sym-
metric, because the space of fundamental and Galois symmetric forms of weight 3
is just (g3). We get the following corollary.

Corollary 8.8 (The Hilbert modular form s3)
The Hilbert modular form ss is given by

1
Y

It is not fundamentally symmetric but Galois symmetric. Its q-expansion is

53 OF, NP -

s3=q1q2 — G192 — 44793 — 4i1qs + 9435 + O(q1q3).



116 CHAPTER 8. EXTREMAL TYPE (II) LATTICES OVER Q|[v/3]

8.4 Dimension 6

The space of symmetric modular forms of weight 3 is M3~ = (g3, s3). So the extremal
modular form is

fo =1+ T72¢7q2 + 612745 + T2¢7q5 + 86443 g5 + 2304q7q5 + 864q7q5 + O(q1q3).

It is not fundamentally symmetric, so an extremal Type (ii) lattice would not be
fundamentally invariant.

There are 6 isometry classes of even unimodular lattices, cf. [Hun91]. Two
are fundamentally symmetric, precisely GolGolGo and Go L Fy. One lattice is
extremal, i.e. has no vectors of norm 1. It still has roots, in difference to the v/5 and
V/2 cases, because it has vectors of norm 2 + /3 € L.

We will prove that there is exactly one extremal lattice. Let A be extremal of
rank 6. Since O, = fg, the first trace lattice A; has minimum 2. Since it is 3-
modular, it is extremal. The only extremal even 3-modular lattice in dimension 12
is the Coxeter-Todd lattice K19, hence A1 = Kjo.

With the computational method of Section [10.2| one can show that Kis has
exactly one Type (ii) v/3-structure. See there for details. Hence we get the following
theorem.

Theorem 8.9 There is precisely one extremal Type (ii) lattice over Q[v/3] of di-
mension 6. Its first trace lattice is the Cozeter-Todd lattice. Its Gram matriz is
given in Appendiz[D

8.5 Dimension 8

The even unimodular lattices of dimension 12 were classified by Hung in [Hun91].

There are 31 isometry classes of even unimodular lattices. Among them 3 classes

contain extremal lattices. These lattices are characterized by the lack of roots,

i.e. elements of norm 1 or 2 + /3. We give their Gram matrices in Appendix @
We cannot determine the configuration numbers with our methods.

Proof (of Theorem [8.1). Let

M =M" (SLa(2[V3])), M., = My,
k>0

MO = A0 (SLg(Z[\/?j])) , and M= ZH;;O.

ev
k>0

Gundlach showed in [Gun65] that

M™% =Clg1, 94, g6,
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where ¢; is an Eisenstein series and s4 and sg are cusp forms. The generator g; is
the theta series of the 2-dimensional lattice Go, and g4 can be constructed from the
theta series of an extremal lattice of dimension 8.

Forms in M are invariant under the group G := SLo(Z[v/3]), forms in M
are invariant under the group H := <SL2(Z[\/§]), (9 (1])> The scalar matrices
Z(Zp) = {aly | a € Z}} act trivial on modular forms. Since

+,€0

(HZ(ZF) : GZ(Zr)] = 2,

we have [M+’€O : Hﬂ =2.
We constructed a Galois symmetric Hilbert modular form s3 which is not fun-
damentally symmetric in Corollary [8-8}

53 = 530m NP (2).

Therefore M is generated by g1, g4, g¢ and a form s of weight 1, 2, or 3.
The Hilbert series of M, is given in [vdGS&8| Proposition VIII.1.1]:

(1—t%)(1—1t2)
(1 —2)(1 — t4)2(1 — 0)(1 — ¢19)

= 1412+ 3t" + 45 + 615 + 9610 + 12¢12 + O(¢1).

Z dim Mgktgk
k>0

Since dim M; = 1, the form s cannot have weight 1 or 2.
ge can be expressed in the other generators,

g6 = 5291 + 239194 + 15552053,

Other algebraic dependencies are not possible. So M isa polynomial ring in g1,
s3, and gy4. O

8.6 Dimension 10

The mass of the genus of even unimodular lattices of dimension 10 is

11~13-23-412-1801N30
917 .36.5.7 T

Kneser’s neighboring method at the prime v/3Zp provides all 430 isometry classes.
Among them 21 are extremal lattices. We give their Gram matrices in Appendix [D}
We cannot determine the configuration numbers with our methods.

There are no known extremal Type (ii) lattices in dimensions 12 or 14. There
are no extremal Type (ii) lattices in dimensions 16, 18, and 20, see Theorem
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Chapter 9

Extremal Type (iii) Lattices
over Q[v/3]

Let (A, Q) be an extremal Type (iii) lattice over F' = Q[v/3], i.e. (A,Q) is Galois
invariant, trace even, and trace unimodular. The first trace lattice (A1, Q1) is the
trace lattices with respect to a; = 1. It is even unimodular. The second trace lattice
(A2, Q) is the trace lattices with respect to as = 3 ++/3. It is even 6-modular, see
Proposition

The norms of elements of trace even unimodular lattices are totally positive
in Zﬁ. Let A = (a1, a2). Ordered by, <4, the minimal totally positive elements of
Zﬁ are
; 6\/§§A % §A3+6\/§§A2 2\/§§A3 3\/§§A

We also assume that (A, Q) is fundamentally invariant, see Definition[1.4] We call
a Type (iii) lattice extremal fundamentally invariant, if it is fundamentally invariant
and its theta series is extremal in M, *°(SL(Z[v/3])).

Quebbemann defined strongly modular lattices in [Que97]. A Z-—lattice L is
called strongly 6-modular if

L=v2(L*¥ N3L) and L = V3(L# N 1L).

Proposition 9.1 If (A, Q) is a fundamentally invariant Type (iii) lattice, then A
is strongly 6-modular.

Proof. To avoid confusion let a := \/§,b = v/3 € R be scalars. An elements
v € F[V3] acts as an endomorphism of R ® Ay, we write v for the endomorphism.
Since A is Galois and fundamentally invariant, we have o,7 € End(A) with

Q(c(N) = Q(A) and Q(T(N\)) = eoQ(N) for all A € A. Also 0,7 € End(A3). And
:= (34 V/3) is a similarity of norm 6 with f(A¥) = Ay (cf. Proposition i

119
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We define ¢ := b(1 — v/3)7f~! and claim that ¢ is an isometry from As to
b(AF N LA,).
Let A € Ay. Then f~1(A\) € A¥ and hence p()) € bA#. And

31— vV3)7f 71 (A\) = 3(1 — v3)2Bro 1 (A) = (2 - V3)V3ra 1(A) € A.

So p(A) € b(A;‘7£ N 2A) for all A € A. The lattices have the same determinant (cf.
[Que97, Proposition 1]). Is remains to show that ¢ is an isometry. For all A € A we
have

Q) = 3u(B+vE)Q(1-vE)Ee())
= S ((B+VE)(1 - V323 - V3)2Q(re~ (V)

277 (503 - V3)2Q)
= u(B+vIRW) = Q).

So ¢ : Ay — b(AT N 1A) is an isometry.
Let ¢ := av/3f 1. Let A € Ag. Then f~1(\) € A¥ and hence 1(\) € aA#. And

2V3f71(N) = 2v3380 71 (\) = (—1 4+ VB)o 1 () € A

So (\) € a(A%éé N1Ay) for all A € A. Again, we have to show that ¢ is an isometry.
For all A € A we have

QM) = 2t (3+V3)QWVESE ()
(B+v3)(3- )Q(a‘l(/\)))

3-V3)QM)

3+ V3)Q(N) = Qo).

— 1
—6tr

:tr(
- o

So Ay — CL(A;éﬁ N 3A) is an isometry.
Therefore Ag is strongly 6-modular. ([l

—_ ~

9.1 Extremal Fundamentally Invariant Lattices

In dimension 4, there is precisely one Type (iii) lattice. We prove the uniqueness.
In dimension 8, there is at least one extremal fundamentally invariant lattice. The
Leech lattice has one conjugacy class of 12th roots of unity automorphism. This
defines a structure which is an extremal fundamentally invariant Type (iii) lattice
over Q[v/3] of dimension 12, compare Section The Gram matrices of these
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three extremal lattices are given in Appendix [D] Extremal fundamentally invariant
lattices in higher dimensions are not known.

The theta series of a Type (iii) lattice is a Galois symmetric Hilbert modular
form H x H — C. If the lattice is fundamentally invariant, then the theta series is
fundamentally symmetric.

The graduated algebra of Galois and fundamentally symmetric Hilbert modular
forms on H x H is

M=o (SL2 (Z[\/g}) - C[927 93 94]

The generators are the Eisenstein series ga, g3, and g4, see [Gun65| or Section
The generators have the following ¢-expansions:

g2 = 14720163 + 96q143 + T2q145 + 964365 + 36047 g3 + 288¢2q5
+672¢345 + 2884145 + 36047 g5 + 964145 + O(giq3),
g5 = 1—108q1q3 — 288q1g5 — 108q1g5 — 288q7q5 — 183641q5 — 4320¢7¢5

—3744q7 5 — 4320¢7q5 — 1836475 — 288473 + O(qigs),

g1 = 23+ 2160q1¢5 + 6720q1q5 + 2160¢1¢5 + 672042 ¢5 + 14040042 ¢>
+319680¢%q5 + 49056042 ¢S + 31968047 ¢4 + 14040042 ¢5
+6720q75 + O(q7g3)-

The following table gives details of the extremal Galois and fundamentally sym-
metric Hilbert modular forms of weight 2 to 20. The first column gives the rank n
of the (possible) extremal fundamentally invariant Type (iii) lattice A, and the sec-
ond column gives the weight k of the extremal Galois and fundamentally symmetric
Hilbert modular form. The third column gives the valuation of the extremal Hilbert
modular form of weight k. The last columns give the minima and kissing numbers of
the trace lattices A; and As. Its theta series would be the extremal modular form.

Table 9.1: Extremal Hilbert modular forms and lattices

k | valuation | min A1 #Min Aq | min Ay #Min Ao
2 | 1,2 1 240 2 72
8 4 [1,3] 1 480 2 960
12 6 (2, 4] 2 10584 4 10584
16 8 (2, 5] 2 146880 5 103680
20 10 (2, 6] 2 39600 6 997920

Corollary 9.2 Let A be an extremal fundamentally invariant Type (iii) lattice of
dimension n < 20. Then the trace lattice (A1, Q1) is extremal unimodular, and the
trace lattice (A2, Q2) is extremal strongly 6-modular.
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Proof. We see that min Ay = 1+ [22| and min Ay = 1+ [22] for all n < 20. So A4
is extremal unimodular. And A, is extremal strongly 6-modular, compare [Que97].
O

Theorem 9.3 We list the extremal Galois and fundamentally symmetric Hilbert
modular forms of even weight k < 20 in Appendiz[Dl The extremal modular forms
of weight 12 to 20 each have some non-integral Fourier coefficients. Hence they
cannot be theta series, and extremal fundamentally invariant Type (iii) lattices of
dimension 24 to 40 do not exist.

9.2 Dimension 4

The space of modular forms of weight 2 is My = (go).

An automorphism (1o € Aut(Eg) (i.e. with minimal polynomial 2% 2241, unique
up to conjugation) yields a y/3-structure with endomorphism v/3 = (15 + (1_21. It is
trace even unimodular, Galois and fundamental invariant. Its theta series has to be
go. So it is trivially extremal.

We will proof that it is unique.

For that, assume that (A, Q) is a fundamentally invariant Type (iii) lattice of
rank 4. Then its theta series is

go = 14 72q1¢3 +96q1G5 + T2q1q5 + 96435 + 360q3q5 + 288¢3¢5
+672¢7¢5 + 2884745 + 360q1q5 + 9641q5 + O(qiq3).

Let o :=2min A = 1 — 1/3, i.e. (tr(ara/2), tr(ape/2)) = (1,2) and [A(e/2)| = 72.
Let A € A(a/2) be fixed. We determine the configuration numbers n(a,¢; A).

Proposition 9.4 (Configuration numbers)
The non-trivial numbers for B = a are given in the following table, where a,b € 27
with 0 < a <18 and 0 < b < 32.

Table 9.2: Configuration numbers

o33 1A L1 1A 11
n(a, ;) | a 20 b 18—a 32-0 2

Proof. If y € A(«/2), then the possible scalar products ¢ = B(\, ) are (without
loss of generality tr(:) > 0)

L€ §i={0,]~ 3vB.5 - 1VE 1~ 1B 3VE 1 - 1)
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Clearly, n(a, a;; \) = 2 and

> n(2,40) =24
Les
The second trace lattice (Ag, Q2) is 6-modular and has minimum 2 and kissing
number 72 because of ©4(1,q2) = 1+ 72¢3 + 19243 + 50445 + O(q3).
Quebbemann described the strongly 6-modular lattices in dimension 8 in [Que97].
There are precisely 2 extremal strongly modular lattices, but only A2® Dy has kissing
number 72. So Ay = As ® D4. The scalar products in S are in As the following.

. (0313 1A 1A 1B 11
tr((34++v3)1) | 0 2 1 0 1 4
So n(a, £—1v/3; A) = 20, because there are 20 vectors in A(2) with scalar product 2
with A € As.

Also n(a, 0;A)+n(a, 3 —3v/3;A) = 18 and n(a, 3 — 2v3; A) +n(a, £v/3;A) = 32,
so the configuration numbers have the claimed form. ([l

Theorem 9.5 (Uniqueness)
There is up to isometry only one fundamentally invariant Type (iii) lattice of rank

4 over Q[vV3].

Proof. Let A be such a lattice. We have seen that for A € A(a/2) there are 10
lattice points p1, ..., pnio € Ala/2) with v := B(X\, ;) = % — %\/3

Actually, we can order the vectors such that psi; = A —p; for j=1,...,5.

For j = 2,...,5, there are only a few possibilities for the scalar products
B(p, pj) and B(p1, X — p5). Since B(pi, A — pj) = v — B(p, pj), we find that

We get Gram matrices for (A, u1, 2, 13):

o o~

Ga,b,c =

~ ~ ~ 0
>R Q =
o Q8 «

«

where a,b,c € T. If a,b,c # 0, then det G, has negative norm. This is not
possible, so without loss of generality a = 0. If b = ¢ = % — % 3dorb=c= %\/g,
then det Gop . = 0. But the lattice generated by (A, p1, 12) does not contain 10
vectors with scalar product ¢ with A. This is a contradiction.

By computer calculations, the other possibilities for b,¢ € T yield exactly one
trace even overlattice up to isometry.

So there is exactly one isometry class of trace even unimodular lattices. 0
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Chapter 10

Algorithmic Approaches

In this chapter we describe two computational methods to find (trace) unimodular
lattices to a given lattices over the rationals.

10.1 Roots of Unity Automorphisms

We already described the first method for Q[v/5], Q[v/2], and Q[v/3]. In general,
let F' = Q[\/ﬁ] be a real quadratic number field, where D > 1 is square-free. The
discriminant of F' is dp. We use the following lemma.

Lemma 10.1 Let (4, be a primitive dpth oot of unity over Q.
Then F is a subfield of the dpth cyclotomic field, and more precisely there is a
p € Z[z] such that F = Q[p(Ca, + Cd_Fl)}

Proof. Let K; be the fth cyclotomic field, where £ € N. Let D = 2¢-py...ps be the
prime factorization, where ¢ € {0, 1} and p; is a odd prime. So Q[y/(—1)®i=1)/2p,] C
K,, € Kg4,. Hence

Q/(—=1)*D27¢] C Kg,.,. where a := [{i | p; =23 (mod 4)}|.

If D =1 (mod 4), then ¢ = 0, a is even, and hence Q[vD] C Kg,. If D = 3
(mod 4), then ¢ = 0 and a is odd, but K, additionally contains the 4th root of unity.
So Q[v—1v/~D] = Q[vVD] C Kg4,.. If D = 2 (mod 4), then dr = 4D is divisible
by 8. Hence K, contains 8th roots of unity and hence Q[v/—1], Q[v/—D] C Kyq.
Therefore Q[v'D] C Kyp.

Since Q[v/D] is totally real,

QIVD] C Kap NR = QU + ¢,
So there is a p € Q[z] such that p((q, + Cd_Fl) = w, where
LD it D=1 (mod 4),
w =
VD if D=23 (mod4).

125
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Actually p € Z[z], because the ring of integers of K, is Z[(4,] and w is clearly
integral. ([l

Proposition 10.2 Let (L,q) be a Z-lattice of dimension N = 2n. If there is a
drth root of unity automorphism (g, € Aut(L,q) whose minimal polynomial is the
dpth cyclotomic polynomial, then L has an F-structure.

Proof. Define v := p((4, + (d;l), where p = Y a;2' € Z[x] is defined like in
the previous lemma. Then v € End(L,q) and its minimal polynomial is the same
minimal polynomial as the generator of Zp. v is self-adjoint because

(P(Car) N ) = 3 i (KA ) + (A )
=Y ai (L) + () = Ap(On).

So v defines an F-structure on L. The quadratic form is given by Theorem
O

10.2 Structures from D-Modular Lattices

In this section let (L, q) be a D-modular lattice, where F' = Q[v/D] is a real quadratic
number field. Let N = 2n be the dimension of L. We fix a lattice basis F of L. We
identify all endomorphisms with matrices given by E. Let G be the Gram matrix
of F.

We want to give an algorithm to find all unimodular F-structures of L. Con-
cretely:

Type (i) Find all even unimodular lattices (A, Q) such that (L, q) = (A2, Q2) is the
second trace lattice.

Type (i) Find all even unimodular lattices (A, @) such that (L, q) = (A1, Q1) is the
first trace lattice.

Let a:=e™ ! = \/g € {1,2}, i.e. @« = ap for Type (i) and a = a3 for Type (ii).

Let v € End(L, q) be self-adjoint with minimal polynomial z2—D. If D = 1 (mod 4),
we assume additionally that HT” € End(L, q). Let A be the set of all such endomor-
phisms.

So v (or %) gives an F-structure (A, Q) of L such that L is the trace lattice
with respect to «, cf. Theorem

Let I’ := vV/DL# € R® L the rescaled dual lattice. Since L is D-modular, L’
and L are isometric.
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Lemma 10.3 Letv € A.
(i) v is a similarity of norm D with v(L#) = L.
(ii) If o : L' — L is an isometry with 0" Go = DG, then

+voG € Aut(L, q).

(iii) Let V' € A. The F-structures defined by v and V' are isometric if and only if
there is a g € Aut(L,q) with g"vg =1'.

Proof. (i). The dual lattice is
L# = eZfL=VD 'ZpL.

Since multiplication with v/D is evaluation of v in L, v maps L# onto L.

(ii). Let g := %Vag. Since v"Gr = DG and ¢""Go = DG, we have ¢""Gg = G.
So g € Aut(L, q).

(iii). See Proposition [1.12] O

The following theorem states a way to compute all F-structures.

Theorem 10.4 Let o : L' — L be an isometry with c"*Go = DG L. Let
B = {Dgg*laf1 | g € Aut(L,q)}.

Then A C B, and the isometry classes of unimodular F-structures of (L,q) are in
bijection with the conjugacy classes of A over Aut(L,q).

Proof. Let v € A. By (ii) of the previous lemma, g := %Vag € Aut(L,q). So
v = DgG lo~! € B. The second statement follows from (iii) of the previous lemma.
O

Example 10.5 (Extremal Lattices of Dimension 20 over Q[v/2])
Bachoc constructed an extremal 2-modular lattice of dimension 40 with a 10-dimen-
sional unimodular lattice over the Hurwitz order in [Bac97]. Let Lo be the lattice,
and let Gy be its Gram matriz (see Appendiz @)

There is precisely one extremal even unimodular lattice of dimension 20 over
Q[V2] such that the trace lattice with respect to 3 is Lo.

We prove this with the previous theorem. We find five conjugacy classes of sim-
ilarities between L# and Lo. Let vq,...,v5 be representatives. Then l/l-2 = 2 and
each v; defines a V2-structure A@ oper Lo, i.e. a unimodular lattice of dimension

20 over Q[v/2].
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Each structure A% is determined by the trace lattices Agi) and Agi) = Lo. The
first trace lattice is given by the Gram matrix 25”” Go. Two of the five structures are
even lattices. Both their first trace lattices are extremal even unimodular, but only
one of them is an extremal Type (i) Z[\/2]-lattice. The Gram matrices of its trace

lattices are given in Appendiz[C.

Example 10.6 (Extremal Lattices of Dimension 6 over Q[v/3])
In the same way we can show that the Coxeter-Todd lattice K12 is the trace lattice
of precisely one Type (ii) lattice over Q[v/3].

Let G1be the Gram matriz of K12. By applying the last theorem we find that K12
has three conjugacy classes of v/3-endomorphisms. If v is such an endomorphism,
then Gl% is the Gram matriz of a 2-modular lattice. The lattice to one conjugacy
class is even, call it Ly. By Theorem [2.6], there is an even unimodular lattice A of
dimension 6 over Q[v/3] such that Ay = K13 and Ay = Lo.

We compute that A is Galois-invariant and hence an extremal Type (ii) lattice.
Its Gram matriz is given in Appendiz[D

Since the other two \/3-endomorphisms of Ko yield non-even lattices, A is

UNIQUE.



Appendix A

Algorithms

//1. Hilbert Series of even Hilbert modular forms
//2. Eisenstein series of weight 2 in g-Expansion
//3. g-Expansion of Hecke eigenform

117771777777 7717777777777777777777/77
//1. Hilbert series, see Gerhard van der Geer, Hilbert Modular Surfaces, Sringer
//1988, p. 188
function HilbertSeries( D, precision ) //D>1 square-free. F=Q[sqrt(D)] real
//quadratic number field. Returns Hilbert series 1 + \sum_{k=1}"\infty dim M_2k(
//SL_2(Z_K) )
F:=QuadraticField(D);
_<t>:=PolynomialRing(Rationals());
N:=ideal<Integers(F)|1>;
D:=Discriminant (Integers(F));
h:=ClassNumber (F) ;
if D eq 5 then
HSeries := (1+t710)/(1-t)/(1-t~3)/(1-t"5);
return PowerSeriesRing(Rationals(),precision)!HSeries, HSeries;
end if;
if D eq 12 then
HSeries:= (1-t"6)*(1-t"8)/(1-t)/(1-t"2)/(1-t"3)/(1-t"4);
return PowerSeriesRing(Rationals(),precision) !HSeries, HSeries;
end if;
if D eq 8 then
a3plus := 1;
else
if D mod 3 eq O then
a3plus:=1/2*h*(-3*D) ;
else
if (D mod 9 eq 3 ) then
a3plus:=4xh*(-D/3);
else
a3plus:=3xh* (-3%D) ;
end if;
end if;
end if;
dl:=h+Dimension(HilbertCuspForms(F,N, [2,2]));
d2:=h+Dimension(HilbertCuspForms (F,N, [4,4]));
d3:=h+Dimension(HilbertCuspForms (F,N, [6,6]));
chiYGamma := di1-ClassNumber(F)+1; //because dim M_2 = b_1 + 2, b_1 =
chi (YGamma) +h-3

129



zetaFml := 1/4%(d3-2*d2+chiYGamma+h-2/3%a3plus) ;

chi := d3-3*d2+3*chiYGamma+2*h-a3plus;

b:=[ 1 , chiYGamma+h-3 , 4*zetaFml-chi-1/3*a3plus-h+3, 4*zetaFm1+2/3*a3plus-2,
4xzetaFml-chi-1/3%a3plus-h+3, chiYGamma+h-3 ,1 1;

HSeries:= &+[ b[i+1]*t~"i : i in [0..6] 1 / (1-t)"2 / (1-t"3);

return PowerSeriesRing(Rationals(),precision) !HSeries, HSeries;

end function;

LI11777777777777177777777777777777777
//2. The Eisenstein series of weight 2, see Rolf Mueller, Hilbertsche
//Modulformen und Modulfunktionen zu Q[sqrt(8)], Mathematische Annalen 266
//(1984)
function HilbertEisensteinSeries( D , powerbound )//D>1 square-free. Computes
Hilbert Eisenstein Series up to gl powerbound.

F:=QuadraticField(D);

zeta:=SiegelZeta(F);

d:=Discriminant (Integers(F));

PR<ql,q2>:=PolynomialRing(F,2);

if (Floor(d-Sqrt(d)))/2 in Integers() then //(n *c - m)/2 is power of ql, (n c
- m)/2 should be positive. c is a constant

c:=d - Floor(d-Sqrt(d)) +2;

else

c:=d - Floor(d-Sqrt(d))+1;

end if;

kappa:=Integers() !4*zeta™-1;

g2:=PR!1;
for n in [1..powerbound] do//computing coefficients
if n*D/2 in Integers() then
g2+:= kappa * HilbertSigma(F,[0,n]) * gql°n * 2" (Integers()!(c*n/2));
end if;
for m in [m : m in [1..Floor(n*Sqrt(d))] | (m-n*d)/2 in Integers()] do
g2+:= kappa * HilbertSigma(F, [m,n]) * gql°n * 2" (Integers()!(c*n/2-m/2) ) +
kappa * HilbertSigma(F, [m,n]) * ql°n * 92~ (Integers()!(c*n/2+m/2));
end for;
end for;
return g2;
end function;

SiegelZeta:=function(F) //F tot. real number field. Returns Zeta function over
F evaluated at -1, accorduing to Siegel, see van de Geer, p.20.

d:=Discriminant (Integers(F)) ;

bound:=Floor( Sqrt(d-4));

zetaF:=0;

for n in [-bound..bound] do

x:=((d-n"2)/4);

if x in Integers() then

130



Factors:=Factorisation(Integers() !x) ;
sigmal:=1;
for I in Factors do
InnerSum:=1 + &+[I[1]71i : i in [1..I[2]11]1;
sigmal*:=InnerSum;
end for;
zetaF+:=sigmal;
end if;
end for;
return zetaF/60;
end function;

HilbertSigma:=function(F,mn); // mn=[m,n]. Return sigma_(k-1) (ZF,nu), see
Mueller, p.87.

ZF:=Integers(F); N:=ideal< ZF | 1>;

if Discriminant(Integers(F))/4 in Integers() then

Nu:=ideal<ZF | mn[1]/2 + mn[2]*F.1>;

else

Nu:=ideal<ZF | mn[1]/2 + mn[2]/2%F.1 >;
end if;

Factors:=Factorisation(Nu) ;

sigma:=1;

for I in Factors do
InnerSum:=1+ &+[Abs (Norm(I[1]°i)) : i in [1..I[2]11];
sigma*:=InnerSum;

end for;

return sigma;

end function;

LI11777177777777777777777777717777777
//3. q-Expansion of Hecke eigenform, see MAGMA’S Hilbert modular forms package
//by Dembele and Voight
function MyqExpansion(D,k, eigenform, powerbound) //returns qlq2 expansion of
//eigenform up to gl powerbound
F:=QuadraticField(D);
d:=Discriminant (Integers(F));
if (Floor(d-Sqrt(d))) mod 2 eq O then
c:=d - Floor(d-Sqrt(d))+2;
else
c:=d - Floor(d-Sqrt(d))+1;
end if; //(n *c - m)/2 is power of ql, (n ¢ - m)/2 should be positive.
if d mod 4 eq O then

eps:=1;
else
eps:=2;

end if; //Discriminant determs formula for elements of inverse different
PR1<ql,q2>:=PolynomialRing(F,2);
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s:=PR1!0;
for n in [1..powerbound] do
if n*d mod 2 eq O then
ideal:=ideal<Integers(F) | n/eps*F.1>;
a:=MyHeckeEigenvalue(F,k,eigenform,ideal);
if a notin Integers() and not Parent(a) subset BaseRing(PR1) then
PR1<ql,q2>:=PolynomialRing(Parent(a), 2);
end if;
s:=PR1!s + PRl!a*x PR1.1°n * PR1.2" (Integers()!(c*n/2));
end if;
for m in [m : m in [1..Floor(n*Sqrt(d))] | (m-n*d)/2 in Integers()] do
ideal:=ideal<Integers(F) | m/2+n/eps*F.1>;
a:=MyHeckeEigenvalue(F,k,eigenform,ideal);
if a notin Integers() and not Parent(a) subset BaseRing(PR1) then
PR1<ql,q2>:=PolynomialRing(Parent(a), 2);
end if;
s:=PR1!s + PR1!ax PR1.1°n * PR1.2" (Integers()!(c*n/2+m/2) );

ideal:=ideal<Integers(F) | -m/2+n/epsx*F.1>;
a:=MyHeckeEigenvalue(F,k,eigenform,ideal); //equal to a above iff s is
symmetric
if a notin Integers() and not Parent(a) subset BaseRing(PR1) then
PR1<ql,q2>:=PolynomialRing(Parent(a), 2);
end if;
s:=PR1!s + PRl!a*x PR1.1°n * PR1.2" (Integers()!(c*n/2-m/2));
end for;
end for;
return Monic(s);
end function;

function MyHeckeEigenvalue(F,k, eigenform , ideal ) // eigenform f, ideal<>1
//Z_F. Returns Hecke eigenvalue of f, see 11.2..
//Acording to [Dembele, Shimura78 (prop. 2.1)] right??
if ideal eq ideal<Integers(F)|1> then
return 1; // Because MAGMA gives the norminated HEF - but HeckeEigenvalue
doesnot work for ideals notequal prim ideals
end if;
factors:=Factorization(ideal);
if #factors eq 1 then
P:=factors[1];
if P[2] eq 1 then
return HeckeEigenvalue( eigenform , P[1] );
else
return HeckeEigenvalue(eigenform,P[1]) *
MyHeckeEigenvalue (F,k,eigenform,P[1] " (P[2]-1)) - Norm(P[1])~(k-1) =*
MyHeckeEigenvalue (F,k,eigenform, P[1]"(P[2]-2));
end if;
end if;
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return &*[ MyHeckeEigenvalue(F,k, eigenform, a[1]"(a[2]) ) : a in factors ];

end function;

Monic:=function(f) //returns monic form of f
if f eq O then return f; end if;
ab:=qlgq2Valuation(f);
return f/qlq2Coefficient(f,ab);

end function;

glg2Valuation:=function(f); //f in P. Return Order of f
if f eq Parent(f)!0 then
return [-1,-1];
end if;
m:=Monomials(f) [#Monomials(£)];

return
[Degree (Evaluate(m, [Parent(f).1,1])) ,Degree(Evaluate(m, [1,Parent(£f).2]))];

end function;

qlg2Coefficient:=function( £, ab ) // f in C[[ql,q2]], return coefficient of
ql”a g92°b

if ab eq [-1,-1] then

return O;

else

return Coefficient( Coefficient(f , Parent(f).1, ab[1]) , Parent(f).2, abl[2]);

end if;
end function;

133



134



Appendix B

Data for Q[v/5]

Extremal Hilbert modular forms

Extremal Hilbert modulal form

10

12

14

16

18

20

1+ 120q] g3 + 120q1 g3 + 120g7¢3 + 600g7q5 + 720¢7q3 + 600¢7qS + 120¢7 ¢4+
720433 + 1200g3 ¢S + 1440¢3¢3 + 144043 ¢5 + 1200433 + 720¢3¢3° + 600475+
1440q1q3 + 2520q1q5 + 2400415 + 3600q7q3° + 240047 g3t + 2520q1q3>+
1440¢1¢5” + 60041 ¢3* + O(q})

1+ 240q] g2 + 24041 ¢3 + 240423 + 15600¢3q5 + 30240¢%¢5 + 15600¢3¢S + 240¢3q5
+30240¢3¢5 + 1752004365 + 31968043 ¢35 + 319680¢3¢5 + 17520043 ¢ + 3024043 ¢4°
+15600q¢1 ¢S + 319680¢iq3 + 998640¢1q5 + 164640047 ¢) + 196560041 ¢s°
+1646400¢fg3" + 99864047 g3 + 319680¢1 4¢3 + 15600¢1¢i* + O(q?)

1+ 37800¢2q5 + 120960¢2¢5 + 378004345 + 12096043 ¢3 + 221760043 ¢S
+604800043 5 + 604800043 ¢5 + 2217600¢3¢5 + 12096043 ¢3° + 3780047 ¢S
+6048000¢1 g3 + 395010004} ¢5 + 931392004143 + 12058200047 ¢2° 4+ 9313920047 ¢
+39501000¢1g4? + 6048000¢1 ¢4 + 37800¢7q3* + O(q?)

1+ 21600¢7q3 + 103680¢7q3 + 216004¢37¢S + 1036803 ¢5 + 635520043 ¢S
42592000043 ¢5 + 2592000043 ¢5 + 635520043 ¢35 + 103680¢3¢° + 2160045
+25920000¢7¢3 + 3569400004} ¢5 + 118851840047 ¢5 + 17020368004} ¢3°
+1188518400¢1 g3 + 35694000047 ¢3% + 2592000047 ¢33 + 2160047 g3t + O(q?)

1+ 39600¢2¢5 + 396004345 + 6270000345 + 3762000043 ¢35 + 3762000043 ¢5
+6270000¢3¢5 + 39600¢3¢° + 3762000047 ¢35 + 109741500047 ¢5 + 51618600004 ¢5
+8186112000¢;¢4° + 5161860000¢;¢4' + 109741500047 a2 + 37620000¢;¢3> + O(q7)
1 + 2620800¢3 S 4 2358720043 q5 + 2358720043 ¢5 + 262080043 ¢5 + 2358720041 q5
+144766440047 ¢5 + 959999040047 ¢5 + 1686484800047 ¢i° + 95999904004} q3*
+1447664400q7 g3 + 23587200q1 ¢33 + O(q?)

1+ 537600¢3¢5 + 725760043 ¢4 4 725760043 ¢5 + 53760043 ¢5 + 725760047 q5
+950632200q1 ¢5 + 8876044800¢7 ¢ + 1728941760047 ¢3° + 88760448004 ¢3!
+950632200¢1q3? + 7257600¢1 ¢33 + O(q})

1 + 130560043 ¢35 + 13056004365 + 130560041 q5 + 34410720047 ¢5 + 453696000047 ¢3
+9760012800¢1 ¢3° + 4536960000¢7 ga* + 344107200¢1¢s? + 1305600¢1qs + O(q?)
1 + 75411000q7¢5 + 137894400041 ¢3 + 330946560047 q3° + 137894400047 ¢4*
+75411000¢7¢32 4+ O(q7)

1 + 304920000413 + 640332000¢1¢3° + 304920000¢7¢i! + O(q?)
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Appendix C

Data for Q[v/2]

Extremal Hilbert modular forms

k | Extremal Hilbert modulal form

2 | 1+48¢iqy + 144q1q5 + 48qiq3 + 336435 + 384qiqs + 720q7q3 + 38447 g3
+336¢7¢5 + 144¢3q3 + 480¢3 3 + 1152¢3¢5 + 86443 ¢5 + 144043 ¢S5
+864¢7q3 + 1152¢7¢5 + 480q7¢3 + 144¢75° + O(qiq3)

4 | 1+480qiq3 + 3360¢2¢2 + 15360¢3q5 + 24480¢3q5 + 15360¢%¢5 + 33604345
+480¢3 ¢35 + 30720¢3 3 + 134400¢3 ¢4 + 21504043 ¢35 + 28896043 ¢S
421504043 ¢35 + 13440043 ¢5 + 3072043 ¢5 + 48043 ¢3° + O(qiq3)

6 | 14 3024q7¢3 + 48384¢1q3 + 9374447 ¢4 + 4838443 q5 + 3024¢3¢5 + 161280¢3 ¢35
+1548288¢3q5 + 3967488¢3q5 + 5419008¢3 ¢S + 396748843 ¢4 + 1548288¢3 45
+161280¢7¢5 + O(q143)

8 | 14 34560¢3q5 + 777602 q5 + 345604%2¢5 + 192000¢3 ¢35 + 414720043 ¢5
+15966720¢3 ¢35 + 241459204365 + 1596672043 q5 + 414720043 ¢5
+192000¢7¢5 + O(qig3)

10 | 1+ 39600q%q5 + 84480¢3q3 + 392832043 q5 + 2154240043 ¢5
+36748800¢3 ¢S + 21542400¢3 g3 + 3928320¢3¢5 + 8448043 ¢9 + O(qiqs)

12 | 1+ 1572480q3¢5 + 1257984043 ¢3 + 2411136043 ¢S + 1257984043 ¢
+1572480¢7¢5 + O(4ig5)

14 | 1+ 483840043 ¢35 + 591360043 ¢S + 483840043 % + O(qiq3)

16 | 1+ 26112004365 + O(qiq3)

18 | 1 + 3274992004145 + O(qtq3)

20 | 1 + 48787200047 ¢35 + O(qiqs)

Dimension 4
Name: A}, Fy.
Gram matrix:

EISE
SRS
LT
c -G
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4+ 2V2
2+ 2v/2
—10—-7V2
2+ 12
1+ 12
—24 12
—T+ 42
37 — 2612

—1769 + 1252v/2 1936 — 13682 3942 — 27861/2

Dimension 8
Name: Ag
Gram matrix:

2+ 2v/2
4+ 2V2
—14 — 102
14+ 12
2+ 12
_2\/§

4— 42
—27 4 18v/2

Dimension 1

There are five extremal lattices. We give there Gram

—10 — 72
—14 — 102
116 + 822
—10 — 72
—14 —10V2
6 + 4v/2
3+ 12
—1+6v2

2

2+ 12
1+ 12

1+ 12
2+ 12

—10—=7V2 —14 —10V2
4 2

2

—2+4+22
—17 4+ 122
84 — 60/2

Leech lattice (root of unity automorphism).

4 2
2 4

1+1v2 2412
2422 1422

2 —1-2V2

“14+1v2 “14+1v2
-1-1V2 —3v2
—174+12V2 —184+12V2
—13+10v2 4-22
24 — 1612 —17+13v2
—244 +173v2 604 — 4261/2

1+1V2 2422
2412 1+2v2
8442 4432
4432 8422
—4— 42 —2V/2
252 —6+3v2

—4 -2+1v2

T-1V2 14 — 10v2

0 —18+413v2
—24+22V2  —47+34V2
741 — 524+/2  —323 + 228V/2

2 —1+1v2

—1-2V2 “14+1v2
—4—4V2 252
—2V2 —6+3v2

48 +22V/2 18 — 2v/2
18 — 2v/2 88 — 56v/2

16 + 12v2 —16 4+ 13v2
1-2V2 41 —33v2
—32+ 35V2 —18 4+ 15v2
64 1v2 264 — 189+/2
303 — 284v/2 2660 — 18831/2

4
—1—-1v2
—6+ 42

22 — 1612

—1-1v2
,3\/5

—4
—24+1v2
16 +12v2
—16+ 13v/2
36 — 4v/2
—62+41v2
31— 182
64 — 39v/2
—900 + 636+/2

matricies.

—2+1v2
_2\/§

6+ 4v/2
—2+2V2
—1-1V2
12 — 42
39 — 302

—7+4V2
4— 42
3+1v2

—17+12V/2
—6+4v2
39 — 302

252 — 172v/2

—210 4+ 1502 —1279 + 903/2

37 — 2612

—27 +18v/2
—1+6v2

84 — 602

22 — 16v/2
—210 + 150v/2
—1279 + 9032
6720 — 47501/2

The first is constructed by using the (5-structure of the

—174+12V2 —13+10v2
—18+12v2 4-2V2
7T—-1V2 0

14 — 102 —18 +13v2
1-2V2 —32+ 35V2

41— 332 —18 + 15v2
—62 4412 31— 18v2
358 — 246+/2 —42 4+ 30v2
—42+30v2 376 — 262V/2
—380 + 270/2 —61 + 46v/2

1631 — 1155v/2 4682 — 3311/2

24 — 162 —244 +173V2 —1769 + 1252v/2
—17+13V2 604 — 42612 1936 — 1368v/2
—24 4 22V/2 741 — 524/2 3942 — 27861/2
—47 4 34V/2 —323 +228V/2 815 — 5744/2

6412 393 — 2842 3622 — 2560+/2

264 — 189v/2 2660 — 1883v/2 10686 — 7554v/2

64 — 39v2 —900 + 636v/2 —8711 + 6159v/2

—380 + 270v/2 1631 — 1155v/2 31590 — 22339+/2
—61 +461/2 4682 — 33112 4007 — 2833v/2

4034 — 2818v/2 —28547 + 20180v/2 —205335 + 1451961/2
—28547 4 201802 716940 — 506884y/2 3530381 — 24963851/2

815 — 574y/2 3622 — 25602 10686 — 7554y/2 —8711 +6159v/2 31590 — 22339v/2 4007 — 2833v/2 —205335 + 1451961/2 3530381 — 2496385v/2 20342032 — 14383974+/2




4

2

0

—3+2V2

32 - 222
8—6v2

180 — 128v/2
—12+10v2

0

—24+ 162
—4851 — 3432V/2
—118840 — 840322 —117970 — 83417v/2

4

0

-3+2V2
32222
8 —6v2
—12+10V2
2v2
—1-2y2
458 — 32412
-9-9v2
—44 4 312

2 0 -3+2V2 32 - 222 8—6v2 180 — 128v/2

4 1 —2+2V2 32 - 222 7—-6v2 103 — 74v/2

1 4 -2+ 1V2 32 - 222 11 -9v2 -2+1v2

—24+2V2 —2+1V2 8 —42 —76 + 54v/2 —20+14v2  —214+151V2

32 - 222 32 - 22/2 76+ 54v/2 1446 — 1022v/2 469 — 332v/2 4105 — 2903v/2
T—6V2 11-9v2 —20 + 142 469 — 3322 170 — 116v/2 1339 — 94612

103 — 742 -2+1V2 —214 4 1512 4105 — 2903v/2 1339 — 9462 24252 — 171482

2 12— 10v2 —3+3V2 0 —10+9v2  —2016 + 142412

—-1-2V2 —-2-42 —3-3V2 —22 4132 2V2 36 — 23v2

69 — 502 185 — 1312 —206 + 146v/2 3679 — 2602v/2 1160 — 8222 —4373 + 30932
—4787 — 3385V/2 —4934 — 3490v2  —2007 — 1415v/2  —2751 — 2156v/2 4776 4+ 3350v/2 3101 + 14552
—119016 — 84156v/2  —48933 — 34600v/2 —70601 — 49792v/2 116019 + 82097v/2 62737 + 44917v/2

0 —3+2V2 32 -22V2 8—6v2 —12+10v2 2v2

4 —241v2 32— 22V/2 13- 9v2 12 - 10v/2 —3v2

—2+1V2 8—4v2 —76 + 54v/2 —21+16v2 —3+3V2 —6v/2
32222 —76 + 54v/2 1446 — 10222 501 — 354v/2 0 —66 + 45v/2
13- 9v2 —21+ 16v2 501 — 354v/2 190 — 128v/2 T-1V2 —19+5v2
12 - 10v2 —3+3V2 0 T-1V2 348 — 230v/2 —33+9v2
-3v2 —6v2 —66 + 45v/2 —~19+5V2 33+ 9v2 64+4v2

V2 12 52 - 36v2 20— 17v2 ~35+1v2 —4+9v2

488 — 346v/2 —1144 + 809v2 21664 — 153192 7516 — 5314/2 336 — 240v/2 —976 + 696+/2
36+ 37v2 —4-5V2 —92 + 69v/2 —197 - 63v2 —185 - 24v2 43+ 452
34— 252 107 — 76v/2 95 + 66v/2 —255 + 183v/2 422 — 2972 243 — 183v/2
551238 — 389784v/2 600341 — 42450512 —1393990 + 985700v/2 26344878 — 186286422 9130158 — 64559952 587763 — 415610v/2  —1205328 + 8523051/2

4
1+1v2
2422

0
1-1v2

0

1-1v2
—16+11v2
—17+12V2
—10+ 72
—196 + 1392

—1367 + 9662 —280 +199v2 —346 + 244/2 258 + 183+/2

4

2

1422

3+4v2

21 - 15v2
—30+20v2

12 - 10v2

—128 — 912
51273 — 362562
15+ 10v2
—10908 + 7714v/2

1023941 — 724037v/2 956295 — 676203v/2  —2769367 + 19582382 446527 — 3157492

1+1v2
8442
442v2
V2
—3+1V2
—6— 62
—2422
432

1

—53 +42v/2
—72+52V/2

2

4
2+2v2
3+4v2

18 -12V2
—30+20v/2

12 - 10v2
—172 — 1212
47870 — 33848v/2
67 +48v2
—10164 + 1862

2+2v2 0 1-1v2
4+2v2 V2 —3+1V2
8+4v2 -3-1v2 2v2
-3-1v2 6 3—4v2
2V/2 3-4v2 50 — 30v/2
—6—6v2 2+3v2 —18+6v2
-2+2V2 —1+3V2 —15+9v2
5—3v2 3-1V2 —75 4552

2 -18+12V2 16 — 12v/2
—72+49V2 44— 33v2 —132+ 952
—T8+456v2  —41+29v2  —331+4232V2
—3729 + 2635v/2

142v2 3442 21 — 152

2422 34+4v2 18— 12v2

18+ 16v2 1+2v2 —51+44v2

1+2v2 26+ 8v2 -1v2
—51+44v2 -1v2 194 - 3422

—4v2 —-8v2 —375 + 26572

169 — 1482 —T73+ 682 —508 + 402y/2

259 + 185v/2 —592 — 4192 170 + 56v/2
—138824 + 98175v/2 22393 — 158382 1194847 — 84488512
311+ 232v2 15+ 11V2 —46 — 2492

20506 — 20026v2 4732+ 3352V2  —254415 + 179903v2

0
—6—6v/2
—6—6v/2

2432

—18 + 62
44 +20V/2
—8—-8v2

11 -19v2
—22 +20V/2
—49 + 34V/2
—208 + 136v/2

1-1v2
—2422
—2422
~1+3v2
—15+9v2
—8—-8v2
40 — 8v2
—T+15V2
14 — 12V/2
262 — 195v/2
428 — 299+/2

—12+10v2

2
12— 10v2
-3+3v2

0
—10+9v2
—2016 + 1424v/2
348 — 230V2
—29+6v2

2391 — 1696v/2
77+ 167V2
4936 + 3458/2

—1-2V2
W2
1v2

52 - 3612
20 - 17V2
35+ 1v2

—449v2

64+ 14v2

750 — 529v/2
—-3+23V2
—1892 + 13622

0 —24+ 162
—-1-2V2 69 — 502
-2-4V2 185 — 1312
—3-3V2  —206+ 146v2

—224+13v2 3679 — 2602v/2
2V2 1160 — 822v/2

36— 23v2  —4373 + 3093v2
—29+6v2 2391 — 169612
56+16v2  —164 + 118y2

—164 -+ 118V/2 26878 — 190002
20651 + 14593v/2 129 — 183v2
495662 + 350479v/2

—4851 — 3432V/2
4787 — 33852
—4934 — 3490v/2
—2007 — 1415v/2
2751 — 2156v/2
4776 + 3350V/2
3101 + 1455v/2
77+ 167V2
20651 + 145932
129 — 1832

33058936 + 233733782
—1505 — 964v/2 803558094 + 568201151y/2 19536428860 + 13814341276/2

458 — 32412 —9-9v2 —44+31V2
488 — 3462 36 4 37v2 34— 252
—1144 + 8092 —4-5V2 107 — 76v/2
21664 — 15319v/2 —92 + 69v/2 —95 + 66v/2
7516 — 5314v/2 —197 — 63v2 —255 + 1832
336 — 240v2 —185 — 24v/2 422 — 2972
—976 + 696v/2 43+ 452 243 — 1832
750 — 529v/2 —3+23v2 —1892 + 13622
325012 — 229816v/2 —1587 + 1086v/2 —115 + 50v/2
—1587 + 10862 8820 + 4132v/2 —12828 + 8903v/2
—115 +50v2 —12828 4 8903V2 391434 — 272806V/2

—118840 — 84032v/2
—117970 — 834172
—119016 — 84156v/2
—48933 — 34600v/2
—70601 — 49792v/2
116019 + 82097v/2
62737 + 44917V2
4936 + 3458V/2
495662 + 350479v/2
—1505 — 964v/2
803558094 + 568201151/2

551238 — 389784v/2
600341 — 424505v/2
—1393990 + 985700v/2
26344878 — 186286422
9130158 — 6455995+/2
587763 — 415610v/2
—1205328 + 8523052
865293 — 6118632
395421149 — 2796049752
—2149987 + 1520317v/2
7147120 — 5053528v/2

865293 — 611863v/2 395421149 — 2796049752 —2149987 + 15203172 7147120 — 5053528v/2 481310861398 — 340338173794v/2

—16 4+ 112
4-32
5—3v2
3-1v2

—75+ 552

11-19v2
—74+15V2
304 — 208v/2
14 — 12v/2
319 — 2322

1749 — 1235v/2

—598 +420v/2 2309 — 1631v/2 15591 — 11024v/2

—30 4 20V2

—30 4 20v/2

-4v2

—8v2

—375 + 26572

656 — 460v/2

—234 + 1562

124 4 80v/2
—1053079 + 7446412
35— 9v2

223608 — 158118v/2

12 - 10v2

12 - 10v2

169 — 148V2
~73+68v2

—508 + 402v/2
—234 + 1562
4748 — 28402

506 +89v/2

— 1844086 + 1303895v/2
~380 - 11342
391960 — 277309v/2

—128 — 91V/2
—172 - 1212
259 + 18572
~502 — 4192
170 + 56v/2

124 +80v2

506 + 892
26520 + 186682
10478 — 7408v2
~368 — 4562
—2845 + 1514v2

—17+12v2 —10+ 72
1 —53 +42v/2

2 —72 + 492
—18+12v2 44 — 332
16 — 122 —132 4+ 95v/2
—22 4 20V/2 —49 + 34V/2
14— 122 262 — 195+/2
14— 122 319 — 232¢/2
402 — 282V/2 132 — 95v/2
132 - 95v/2 7340 — 5106v/2

3104 — 2197v/2 13064 — 9269v/2
17307 — 122382 79305 — 56091+/2

15+ 10v2

67 +48v2

& 311+ 2322

22393 — 15838v/2 15+ 11v2
1194847 — 844885+/2 —46 — 2492
—1053079 + 7446412 35— 9v2
— 1844086 + 130389512 —380 — 1134v/2
10478 — 7408y/2 —368 — 456v/2

3195613724 — 2259640104y
69378 — 50037V2
—679717634 + 4806330702

69378 — 50037v/2
153888 + 104644v/2
—27930 + 24972

—196 + 139v/2
—72+52V2

—78 + 5612

—41 +29v/2
—331 + 232v/2
—208 + 136+/2
428 — 299+/2
1749 — 1235v/2
3104 — 21972
13064 — 9269v/2
48668 — 343821/2
302179 — 2136641/2

—10908 + 7714v/2

—10164 + T186y/2

29596 — 2092612

—4732 + 3352v2

~254415 + 179903/2
223608 — 158118v/2
391960 — 2773092
—2845 + 1514v/2
—679717634 + 4806330702
—27930 + 24972
144581338 — 1022328722

23849386 — 168640612 —21035751 + 14874523y/2  —36778358 + 26006193y/2 207557 — 1466752 63790841336 — 45106936496v/2 1379727 — 9814352  —13568498626 + 9594377914y/2

—1367 + 96612
—280 + 199v/2
—346 + 244/2
—258 4 183v/2

—3729 + 2635\/2
—598 + 420v/2

2309 — 1631v/2

15591 — 11024+/2
17307 — 122382
79305 — 56091v/2
302179 — 2136642
1978680 — 1399134+/2

1023941 — 7240372

956295 — 676203/2

—2769367 + 1958238v/2

446527 — 315749v/2

23849386 — 168640612
—21035751 + 14874523v/2
—36778358 + 26006193v/2
207557 — 146675v/2
63790841336 — 4510603649612
1379727 — 9814352
—13568498626 + 95943779142
1273393541158 — 900425207620v/2




Dimension 16 The extremal lattice is given by the following two Gram matricies G1% and G3° of degree 32 over Q. The
first yields an extremal even unimodular lattice, the second yields an extremal even 2-modular lattice. The /2 structure
is given by the formula (G{%)~1G16 =2 — /2.

Dimension 20 The followng matrix G¥ and G%° are the Gram matrix of an extremal unimodular and an extremal
2-modular lattice in dimension 40. The 2-modular lattice is constructed in [Bac97|. The unimodular lattice is constructed
via a similarity of the 2-modular lattice. The similarity is the v/2-structure and is given by (GZ°)™1G3" = 2 — /2.
Dimension 24 The extremal lattice is given by the following two Gram matricies G3* and G3* of degree 48 over Q. The
first yields an extremal even unimodular lattice, the second yields an extremal even 2-modular lattice. The /2 structure
is given by the formula (G?*)~1G3* =2 — /2.
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Appendix D

Data for Q[v/3]

Extremal Hilbert modular forms

k | Extremal Hilbert modular form in M;:(SLQ (Z[V3)))

1| 1+12¢1q5 + 12675 + 126745 + 126745 + 126745 + 124145 + 244145 + 12¢1q5
+24q1q5 + 12¢1q5 + 24¢7 g3 + 24475 + 244743

2 | 1+ 24qiq3 + 24q7 g3 + 168¢7¢3 + 244743 + 288¢3q3 + 3123 ¢3+

288¢7 g5 + 168¢1q3 + 336443 + T44q{qs + 33641¢5 + 16841 g5+

3364743 + 864q7q3 + 624¢7q3 + 864475 + 3364743

3 | 14 72¢}qd +612¢7¢3 + 723 ¢3 + 864¢7¢3 + 23044363 + 864¢3q5 + 3244} 4¢3
+6480q1 3 + 680447 qs + 6480q1q3 + 324q1qS + 5760¢7¢3 + 1296047 ¢5
42304047 g3 + 129604745 + 5760¢7q3

4 | 14 720¢2¢2 + 2880¢3q3 + 7680¢3q3 + 288043 q5 + 72047 q3 + 23040¢1q3
+49680q7¢5 + 23040415 + 720¢1qS + 2304047 ¢35 + 12384047 ¢5

+16128043q5 + 12384047 ¢S + 23040475

5 | 14 540¢%¢3 + 2880¢3q3 + 15360¢3 ¢35 + 28804345 + 540qiq3 + 6912047 ¢3
+147420q1q5 + 69120¢7¢5 + 540q7¢S + 69120¢7q3 + 52704045 g3 + 940032¢5 ¢35
+527040¢7 ¢S + 6912047 ¢]

6 | 14 3024¢3q3 + 20160q7¢3 + 3024¢3¢5 + 10886447 ¢3 + 31298447 q5 + 1088644+ ¢5
+108864¢7q3 + 1605744¢7q5 + 293932847 ¢35 + 1605744¢3 S + 108864¢7q5

7 | 1+ 17472¢3¢3 + 1512¢1q3 + 1572481 q5 + 42411647 q5 + 1572484145 + 1512¢¢45
+108864¢7 g3 + 304819247 q5 + 707616047 q5 + 3048192¢7¢S + 108864¢7q5

8 | 1+ 9600g3¢3 + 114624¢%q2 — 337536¢%¢3 + 1184544q4¢4 — 33753643 ¢3
+114624¢1¢5 — 2630016¢7q3 + 15704064¢7q5 — 515289643 ¢5

+15704064¢7¢S — 2630016435

9 | 1+ 555228/5¢3q3 — 420552/5q7q3 + 470124 /541 q3 — 6861348/5q1q5 + 470124/5¢1¢5
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10

11

12

—420552/5q1qS + 7036308 /5¢7q3 + 19058976 /5q7q5 + 146870172/5¢7 ¢5
+19058976/5¢7 ¢S5 + 7036308 /5¢7 ¢4

1+ 239880q3 ¢35 + 298800¢7¢3 + 95940047 g3 — 359532041 q5 + 9594004143
+298800q7¢5 — 490212047 ¢3 — 40538880¢7 ¢35 + 104569704¢7¢5 — 4053888047 ¢S
—4902120¢7¢5

1 4 300168415 — 2013792¢{¢3 + 3601092¢{q5 — 2013792¢143 + 3001684743
—9172416¢7¢3 + 5016000047 g3 — 62815104¢3¢5 + 5016000047 ¢S — 9172416435
14 1312116/7¢7 g3 — 330912q{q5 — 375152415 — 764352 0/7qiq3 — 3751524q}q3
—330912q7qS — 18745596¢7q2 3 + 847814400/7¢3 q5 + 823280004 /7¢7q3
+847814400/7¢7 ¢S — 1874559647 ¢5

Extremal Hilbert modular form in M];’_72+\/§(SL2(Z[\/§]))

10

12

1+ 72¢1q5 + 964145 + T2q1q5 + 964745 + 360q7 g5 + 2884745 + 6724745 + 288¢7¢5
+360¢745 + 964795 + 7247 g5 + 288¢7q3 + 936475 + 5T6¢7¢5 + 10084745 + 960¢7 g5
+1008¢793° + 576¢7g5" + 9364745 + 288¢7 3 + 7247 a3
1+ 480qi g3 + 480¢2¢3 + 648047 g5 + 12960¢7q3 + 2208047 ¢S + 12960¢7q5
+6480¢%¢5 + 48043 ¢S5 + 12960435 + 6912043 ¢S + 12960043 q5 + 20736045 ¢5
+212160¢3q3 + 207360¢3¢° + 129600434 + 691204342 + 1296043 ¢33
1+ 10584¢7q3 + 48384¢7q3 + 7862447 ¢S + 48384¢7qs + 10584¢7¢5 + 4838443 ¢5
+580608¢3qS 4+ 193536043 ¢4 + 367718443 ¢5 + 429004843 ¢5 + 367718443 ¢3°
+1935360q;q3" + 580608¢3q3? + 48384q3 ¢33
1+ 51840¢2q3 + 43200¢%¢S + 5184042 ¢4 + 51840433 + 115200043 ¢S + 622080043 ¢3
+15344640¢3¢5 + 1921920043 ¢35 + 1534464043 ¢2° + 6220800¢3¢3* + 115200043 ¢4
+51840¢3 ¢33
1+ 39600¢7qS + 91872043 ¢S + 6842880¢3 % + 2138400043 ¢5 + 2956800043 ¢5
42138400043 ¢3° + 6842880¢3¢a" 4 91872043 ¢4
1 + 150565824/989¢3 ¢S + 3762153216,/989¢3 q5 + 11589583680,/989¢3¢5
+20834818560,/989¢3¢5 + 11589583680,/989¢3 ¢3°
+3762153216/989¢3 ¢3! + 150565824 /989¢3 ¢4
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14

16

18

20

1+ 659307687696/1486873¢%¢S — 2419438147576128/786555817¢7 ¢
+299534511209472/786555817¢3 ¢4 + 26285312780806464 /78655581743 ¢5
+30896464744384512/786555817¢3 5 + 26285312780806464 /78655581743 q3°
+299534511209472/786555817¢3 g3 — 2419438147576128 /78655581747 52
1 + 1238518656/3233¢7 ¢S + 281151066014208 /39335911¢3 ¢S
+591393083489280/39335911¢3 ¢35 + 1124801909153280/39335911¢3¢5
+2617854216112128/39335911¢3 3 + 1124801909153280,/393359114¢3q3%+
591393083489280/39335911¢3¢a! + 281151066014208/3933591145 ¢3>

1 + 46692143876859408/83485655063¢% ¢5
—3668049720864392924592/44163911528327¢3 45
—32141671150802164919712/44163911528327¢3 ¢%
—102799541628092263410000,/44163911528327¢3 5
—151261598180179061002944 /44163911528327¢3 ¢5
—102799541628092263410000,/44163911528327¢3 ¢3°
—32141671150802164919712/44163911528327¢; ¢3*
—3668049720864392924592/44163911528327¢3 q4>

1 + 713565380213944770301920/1027964243037801013¢%¢5
+370389295502022356517523680,/3377596 7985527747574 ¢S
+21510355017040316810697597120/23643177589869423299¢3 ¢4
+69711458121540665510648824800,/23643177589869423299¢7 ¢5
+103367522071646874454398280320,/23643177589869423299¢3 ¢
+69711458121540665510648824800,/23643177589869423299¢7 ¢3°
+21510355017040316810697597120/23643177589869423299¢3 g3
+370389295502022356517523680,/3377596798552774757¢3 q4>
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Extremal Type (ii) Lattices

Dimension 2:
The only Type (ii) lattice is Ga.
Gram matrix:

2 V3
V3 2
Dimension 4:
There are Go 1G9 and Fjy.
Gram matrix of Fjy:
2 1 1+v3 143
1 2 1+v3 143
1+v3 1+V3 4423 2+3

1+v3 1+v3 2+V3 4+2V3

Dimension 6:
There is one extremla lattice. Its first trace lattice is Kyo.
Gram matrix:

4 —2v/3 0 2 —-1V3 2 -1V3

0 4-2V3 —2+1V3 0

2-1v3 —2+1/3 4 2

2 -1V3 0 2 4
—2v3 —241/3 -12-9v3 —14-9V3

—464 +268v/3 2 —1v/3 —2504 144v/3 —248 + 144/3

150

—2v/3 —464 + 2681/3
—2+1v3 2—-13
—12-9/3 —250 + 144+/3
—14—-9v/3 —248 + 144/3
252 4+ 128/3 1381 — 8123

1381 — 812v/3 252938 — 146032+/3




Dimension 8:

There are three extremal lattices.

4
V3
2+2V3
—24+1v3
-3-2V3
—201 + 116v/3
—86 — 49/3
_1\/§
4
2v3
—2+1v3
2413
1
—283 — 1641/3

—4003 — 23113
—42914 — 24777/3

Gram matrices:

1v3 2+2V3 —2+41v3 —3-2V3 —201 4 116v/3 —86 — 49/3 —1v3

4 2+1v3 2 3+3V3 195 — 1133 —118 — 69+/3 0

2+1v3 6+2V3 0 —4-2v3 —242v3 =204 — 1183 —-2-3V3

2 0 6 —2v3 6 + 43 412 — 238V/3 —32 - 203 —242V3

3+3V3 —4-23 6 +4v3 52 +20v/3 —182 + 1013 63 + 393 3+5V3

195 — 113v/3 —242v3 412 —238V/3 —182+101v/3 44094 — 25454+/3 18 — 1573 —237+ 1303
—118 = 69v/3 —204 — 118y/3 —32—20V3 63 + 39v/3 18 — 157v/3 15318 +8842/3 323+ 1853
0 —2-3V3 —24+2V3 3+5vV3 —237 + 130V3 323 + 185v/3 24 4 64/3

2V/3 —241V3 24+ 1V3 1 —283 — 164V/3 —4003 — 2311v/3 —42914 — 247773

4 2-1V3 24+ 1V3 1+1V3 —346 — 2013 —4867 — 2809v/3 —52184 — 30129v/3

213 6—2v3 1v3 —248V3 —42 — 27V/3 —952 — 5504/3 —9984 — 5765v/3

2+ 13 13 6+ 2vV3 23 —631 — 365v/3 —9281 — 5358v/3 —99232 — 572913
1413 —24+8V3 2V3 106 — 6v/3 760 + 427/3 8449 + 4900+/3 91940 + 53072v/3

—346 — 2013 —42 — 27\/5 —631 — 365\/5 760 + 427\/5 129144 + 74494\/5 1806103 + 1042763\/5 19358544 + 111766413
—4867 — 2809\/3 —952 — 550/3 —9281 — 5358V/3 8449 + 4900v/3 1806103 + 1042763v/3 25416772 + 14674348/3 272338701 + 157234828\/§

—52184 — 30129v/3

4 —2-1V3

—2-1V3 642v3
—24+1v3 V3
—6+4/3 10— 7V/3
—178 + 104v/3 —9+4V3
—51 +55v3 —11 4103
—344 — 2044/3 280 + 166+/3

—9984 — 5765/3

—2+1V3
1V3

6— 23
2413
359 — 2073
—343V3
—78 — 48/3

—99232 — 572913 91940 + 53072v/3 19358544 + 11176641y/3 272338701 + 1572348281/3

—644v3
10— 73
2413

146 — 56/3
636 — 381V/3
18 — 373
—226 — 148/3

932 — 537v/3  —53003 + 30602v/3 —96475 + 55698+/3

—178 + 104V/3
—944v3

359 — 207v/3

636 — 381V/3
34120 — 19662v/3
—277 + 366/3
562 — 945+/3

—51 4553
—11+10v3
—34+3V3

18 — 373

—277 + 366V/3
10226 — 3090+/3
—8303 — 3307V/3

—344 — 2044/3
280 + 166+/3
—78 — 48V/3
—226 — 148y/3
562 — 945+/3
—8303 — 3307+/3
78712 4 443283

2018145212 + 1684791916+/3

14575+/3
932 — 5373

—53003 + 30602v/3
—96475 + 55698v/3
—5062979 + 2923098+/3
179298 — 103403+/3
—179478 + 103642/3

25245 —

—5062979 + 2923098V/3 179298 — 103403v/3 —179478 + 103642/3 753916638 — 435273932+/3




Dimension 10:
There are 21 extremal lattices. Gram matrices:

4 2 2 1V3 0

2 4 2 -1v3 1v3

2 2 4 0 -1/3

1v3 -1v3 0 4 -2

0 1v3 —1v3 -2 4

2+1v3 2+1v3 2+2V3 0 -2
—3+1V3 —1+1V3 -1 ~1V3 2
—2383 — 1377+/3 —2385 — 1378y/3 —2389 — 1380v/3 2+ 1v3 4+ 23
64 — 373 64 — 373 64 — 38v/3 0 2
—205—122v/3  —201 —120v/3  —197—118y3 —4—-23 —4-2\3
4 2V3 2 1v3

2V/3 4 1v3 2

2 1v3 4 2v/3

1v3 2 2v/3 4

2 1v3 2 1v3

1v/3 2 1v3 2

—1v3 -2 —-1v3 -2

54+2V3  T4+5V3 3423 T+4V3

—7-3V3 —9-5V3 —-5—-2V3 —7—4V3

-2 1 -2 1

2413 -3+1/3 —2383 — 13773
2+1v3 -1+1/3 —2385 — 1378v/3
2423 -1 —2389 — 1380V/3
0 ~1v3 2+1v3
-2 2 4423
6+2V3 2-1/3 —4658 — 26901/3
2-1/3 90 — 40v/3 —2741 — 1587/3
—4658 — 2690v/3 —2741 — 1587y/3 5829242 + 3365428\/3
—295 + 170y/3  —4062 + 2348/3
—404 — 2413 —495—305v/3 580738 + 335583v/3
2 V3 -1v3 5+2v3
1V3 2 -2 7+5V3
2 V3 -1v3 3+2V3
1v3 2 -2 7T+4V3
4 23 -1V3 3+2V3
2v/3 4 -2 7T+4V3
~1v3 -2 10—4v3 —12-6v3
34+2V3  T+4V/3 —12—6V3 140+ 72V3
—5-2v3 —7—-4V3  6+4V3
-2 1 8+3v3 —35-23V3

64 — 373

64 — 37V/3

64 — 38/3

0

2

—295 + 170v/3

—4062 + 2348+/3

—205 — 122v/3
—201 — 120V/3
—197 — 1183

—4—-2/3

—4—2V3
—404 — 2413
—495 — 305v/3

—1507 — 49/3 580738 + 3355833
—1507 — 49+/3 257938 — 148916+v/3

—1830 + 927V/3
~7-33
—9 53
—5—-2V3
—7—4V3
—5—2V3
—7—4V3

6+4v3
29 +18/3

—17-11/3

—1830 + 927/3
66128 + 369323

8+ 33
—35—-23V3

20+ 18v/3 384 +218v/3 —17—11V3

78 + 42/3




4
2v3

2

V3

2-1V3

—3-2V3
~1+1v3

—2373 + 13693
1502 + 868v/3
—120664 + 69665v/3

4
2v/3

2

V3

2-1/3

-3 -2V3
“1+1v3

—2373 + 1369v/3
1502 + 868+/3
—120664 + 69665v/3

2v3

4

V3

2

2413
—4-23

V3

2242 — 12951/3
2510 + 1449v/3
114078 — 65864v/3

2V3

4

V3

2

2413
—4—2/3

V3

2242 — 1295v/3
2510 4 1449/3
114078 — 65864+/3

2
1V3

4

2v3

2-1V3

—3-2V3
~1+1v3

—2377 + 13723
1498 + 866v/3
—120664 + 69665v/3

V3

4

2v3

2-1V3

-3-2V3
“14+1v3

—2377 + 1372V/3
1498 + 866v/3
—120664 + 69665v/3

V3

2

2v/3

4

-2+1V3
—4-2V3

1V3

2248 — 1297V/3
2506 + 1447+/3

V3

2

2v3

4

—2+1V3
—4-2V3

V3

2248 — 1297V/3
2506 + 1447v/3

2-1/3
—2+1V3
2-1/3
—2+1V3
6—2v3
-1-1v3
—7+5V3
—4632 + 2674V/3

-3-2V3
—4-2V3
-3-2V3
—4-2/3
~-1-1V3
32+18v3
—5—10V/3
114 — 63V/3

—1314 — 761y/3  —10508 — 6067+/3
114078 — 65864y/3  —234795 + 135559v/3

2-1V3
—24+1v3
2-1/3
—2+1V3
6—2V3
~-1-1V3
—7+5V3
—4632 + 2674/3

5720 — 3298/3

-3-2V3
—4-2V3
—3-2V3
—4-2/3
—1-1V3
32+ 183
—5-10V3
114 — 63V/3

—1314 — 761y/3  —10508 — 6067+/3
114078 — 658641/3  —234795 + 135559v/3

5720 — 3298/3

“14+1v3

1V3

“14+1v3

1V3

~7+5V3
—5—10v/3

174 — 72/3

16167 — 9324+/3
7658 + 4433+/3
819954 — 473405v/3

“14+1v3

V3

“14+1v3

V3

—T+5V3
~5—10v/3

174 — 723

16167 — 9324/3
7658 + 4433y/3
819954 — 473405v/3

—2373 + 1369v/3

2242 — 1295\/3

—2377 + 1372V/3

2248 — 1297V/3

—4632 + 2674\/3

114 — 63v/3

16167 — 9324v/3

5793018 — 3344556+/3

121 +1714/3

294052774 — 169771433/3

—2373 + 1369+/3

2242 — 12951/3

—2377 + 13723

2248 — 1297V/3

—4632 + 2674V/3

114 — 63v/3

16167 — 93241/3

5793018 — 33445561/3

121 4 17144/3

294052774 — 169771433/3

1502 + 868v/3

2510 + 1449v/3

1498 + 8661/3

2506 4 1447/3
—~1314 — 761V/3
—10508 — 6067+/3
7658 + 4433V/3

121 4 17144/3
8141830 + 4700672+/3
—74984 + 39566+/3

1502 + 868+/3

2510 + 1449v/3

1498 + 866+/3

2506 + 1447/3
—1314 — 761/3
—~10508 — 6067v/3
7658 + 4433/3

121 + 17143
8141830 + 4700672/3
— 74984 + 39566+/3

—120664 -+ 69665v/3

114078 — 65864+/3

—120664 -+ 69665v/3

114078 — 65864+/3

—234795 + 135559v/3

5720 — 3298/3

819954 — 473405v/3
204052774 — 169771433v/3

— 74984 + 39566+/3
14926342420 — 8617727804/3

—120664 + 69665v/3

114078 — 65864v/3

—120664 + 69665v/3

114078 — 65864v/3

—234795 + 135559+/3

5720 — 3298/3

819954 — 473405V/3
294052774 — 169771433+/3
—74984 + 39566+/3
14926342420 — 8617727804v/3




—994 — 574+/3

,1\/3
—2-1V3

2

0

6

—7-5V3
6+ 23
2v/3

—105 — 60+/3

—55 —35v3 —504 — 290v/3

2-2V3
—2+1V3
-1

8§—2V3

—1353 + 780v/3
255454 — 147487\/3

869 + 501v/3

—15—8V3
-10-7v3
6+4v3
343V3

288 + 160v/3
—24 - 7/3

24 — 36V/3
—760 — 440+/3

—7-5V3
156 + 88+/3
29 + 16v/3
—76 — 453
39 +23/3
228 + 132v/3

7453

6+5V3

V3

19+ 14v3

4

170 + 763

—1630 + 9133
298586 — 172351v/3

—20398 — 117713

—27+16V3

38 —23/3
2-2V3

—65 + 38V/3
—24 —7/3

1420 — 810v/3
—8657 + 4996v/3
—50 — 10v/3

—4-23
—12-8v3
10 + 6v/3

2+2V3

6+ 2v3

29 +16v/3

144 + 78/3

3

—1238 — 718V/3
—5790 — 3342V/3

—681 + 393v/3

672 — 388V/3

582 — 335\/3
8—6v3

—1353 + 780v/3
—1630 + 913v/3
499236 — 288198+/3

—93399788 + 539243911/3
2026878836 — 1170219039/3

1823 + 780v/3

163 — 95v/3
—227 4 132V/3
—40 +23V/3

381 — 221V/3

24 — 36V/3
—8657 + 4996+/3
53534 — 30896+/3
—197 — 254+/3

3529 — 20533  —815860 + 471039v/3 5040702 — 2910245\/3
—10903 — 5929v/3 4085534 + 2358790V/3

—12778 — 73801/3  —12284 — 7091+/3

4 -2 0 4-2V3
-2 6+2v3 —2-1v3 —2+41/3
0 —2-1V3 6 —2v3 2-1v3
4-2v/3 —24+1V3 2-1V3 12 - 6v/3
—1v3 —2-1/3 2 0
1 84+ 53 —4 -2
—4-23 -12-8V/3 10 + 63 2423
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6+43V3 —6—2V3 —49 — 28V/3

238 — 138v/3  —218 +126V/3 205 — 119/3
—7962 +4597v/3 7950 — 4590/3  —7060 + 4075+/3
1075 + 623v/3  —1081 — 6233  —13780 — 7956v/3
45— 32V/3 ~11+7V3 —23 4+ 143
—2-1/3 —2-33 —3+11V3

6+2v3 —6—5v3 3-9V3

—6—5v3 636 + 264+/3 7+ 93V3

3-9V3 77+ 933 354 — 36v/3

—1887 — 10893 7238 + 41433 7818 + 4565v/3
550 4+ 317v/3  —11610 — 6698V/3 —2890 — 1595v/3

—610 + 354\/3 10486 — 5950v/3 —7415 + 4304V/3
—898 + 5213 3015 — 1714/3 9811 — 5650v/3

45336 — 26173/3
405812 + 234296y/3  —713703 — 4120563 507083 + 292732v/3 2831923 + 1635028v/3

19270 — 10904v/3

—767713 + 443157V/3

1-1v3

~1+2V3
3-1V3

3+1V3

10 +2V/3

-3

—58 — 35v/3
—2751 — 1590v/3
—14+38V3
—98415 — 56821+/3

—2+1/3
313
—3+4+2V3
2-3V3

8—-2V3

134+ 7V3

363 — 2113
—12497 + 7216/3
3751 4+ 2168v/3
—41 + 293

956 + 553v/3

—1887 — 10893
7238 + 41433

7818 + 4565v/3
960676 + 5546061/3
—301328 — 174004v/3
4988 — 2617V/3
—1075 + 295v/3
144080 — 87039v/3

3+3V3

2
—3-1V3
3+1v3
-3
12443
106 + 63v/3

4437 + 2562v/3

6—15v3

49 +29v/3
6+3v3
—6—-2V3
—49 — 28V/3
13+7V3

3376 4 19361/3

390 — 227/3

504 + 705v/3

—48 — 28V/3

550 + 317V/3

—11610 — 6698v/3
—2890 — 1595v/3
—301328 — 174004v/3
281458 + 162420v/3
—2565 — 325v/3
—10564 + 5776\/3
632078 — 369164v/3

357741066 + 206541903v/3  —69105035 — 39897827+/3

108 + 63v/3
8+6V3
—6—6v/3

52 +29v/3
—58 — 35V/3
106 + 63v/3
3392 + 1942V/3

133721 + 772113

—879 — 755V/3

—205 + 119v/3
238 — 138+/3
—218 + 126+/3
205 — 119v/3

363 — 211+/3

390 — 227+/3
40310 — 23250v/3

—12910 + 8140v/3  —1367944 + 789788+/3
995795 + 574927+/3

—784 — 319V/3
13991 + 8163v/3

—482 4 279V/3

—610 + 354v/3

10486 — 5950v/3

7415 + 4304v/3

4988 — 26173

—2565 — 325V/3

1980018 — 1143132v/3
1729737 — 998669/3
—70045140 + 40440580v/3
—265239 — 157628V/3

4018 + 2320v/3
64+ 39v/3

—513 — 294/3
1727 + 998V/3
—2751 — 1590v/3
4437 + 2562V/3
133721 + 77211V/3

5391190 + 3112350v/3
—63522 — 36380v/3

6762 — 3904v/3
—7962 + 4597V/3
7950 — 4590v/3
—7060 + 4075v/3
—12497 + 7216/3
—12910 + 8140v/3

—1367944 4 789788+/3
46571154 — 268875401/3

189948 4 1047961/3
493663 — 284360+/3

—1868 + 1079v/3
—898 +521/3

3015 — 17143

9811 — 5650v/3
—1075 + 295V/3
—10564 + 5776/3
1729737 — 998669+/3
4219218 — 2435896y/3

—281369 — 165627/3

—15 +45v/3
—41+105v/3

6v/3

—5+16V3
—14+38V3

6— 153

—879 — 755v/3
—63522 — 36380v/3
20894 — 2726v/3

13531 + 78113

1075 + 623/3

—1081 — 623/3

—~13780 — 7956v/3

3751 + 2168v/3

995795 + 574927/3

—784 — 319v/3

189948 + 1047961/3
295915128 + 1708465721/3
278631 + 160680v/3

108207 — 62473v/3

45336 — 261733

19270 — 10904v/3

—T67713 + 443157v/3
144080 — 87039v/3

632078 — 369164v/3
—70045140 + 40440580v/3
—233161795 + 134616038+/3

—233161795 + 134616038y/3 13399151238 — 7736001014v/3

148420 + 85691v/3
3626 + 2096v/3
—18723 — 10808V/3
64954 + 37502v/3
—98415 — 56821V/3
163389 + 94334+/3

4899229 + 2828578+/3
197189562 + 1138473361/3
—2249960 — 1298907+/3
163389 + 94334v/3 4899229 + 2828578v/3 197189562 + 113847336v/3  —2249960 — 1298907+/3 7214401582 + 4165236632v/3

46 — 33v/3

45 — 32V/3
—11+7V3
—23+14V3
—41+29V3

504 4 705+/3
—13991 + 8163v/3
493663 — 284360v/3
278631 + 160680v/3
17214 — 82361/3

405812 + 234296v/3
—713703 — 412056v/3
507083 + 292732/3
2831923 + 1635028V/3
357741066 + 206541903/3
69105035 — 39897827V/3
—265239 — 157628V/3
—281369 — 165627v/3
—2596580 — 13858761/3

—2596580 — 13858761/3 143391211330 + 82786951006v/3




4
3+1V3
1+1V3

,1\/5

-3+1V3
—3+6v3

8716 + 5033v/3
400754 + 231375\/3
—1237 - 7273

3+1V3
10+4v3
3+1V3

V3

—4

—2+16V3
33622 + 194113

1544589 + 891768v/3

—4983 — 2930/3

525105 — 303170v/3  —428213 + 247233/3

1+1V3

3+1V3

8

-2-1V3

1

-34+10V3

12583 + 7265v/3
577591 + 333471v/3
—2309 — 1360v/3

— 1792405 + 1034844y/3

,1\/§

V3

-2-1V3

6

2-1V3

4-8V3

2423

467 +271V/3
633 + 373V/3
1298290 — 749567+/3

-3+1V3 —3+6V3 8716 + 5033v/3

—4 —2+16V3 33622 + 19411v/3

1 —3+10v3 12583 + 7265v/3

2-1V3 1-8V3 2+2v3

14 - 6v3 41-11V3 —9008 — 5201v/3
4-11V3 360 — 403 113174 + 65346v/3
—9008 — 5201/3 113174 + 65346v/3 166382306 + 96060836v/3

1573 + 9253
1552158 — 896138v/3 9647029 — 5569703v/3

—24570 — 143373

Extremal Fundamentally Invariant Type (iii) Lattices

Dimension 4:

—28989021 — 16736158v/3
2565202 — 1456576/3

400754 + 231375\/3

1544589 + 891768v/3

577591 + 333471V/3

467 + 2713

—413872 — 2389503
5195430 + 2999602+/3
7641168156 + 4411630497v/3
—413872 — 238950v/3 5195430 + 2999602v/3 7641168156 + 4411630497/3 350923779488 + 202605938542/3  —1331027671 — 768468781v/3
—1331027671 — 768468781v/3
—400392 + 1355593v/3

The only fundamentally invariant Type (iii) lattice has the following Gram matrix:

1
1/2
1/2
1/2

V3/3
V3/6
V3/6
V3/6

1/2—+3/6 1/2—-+/3/6
1/2-+/3/6 V3/6
V3/6 1—-+/3/3
V3/6 V3/6

1/2—+/3/6
V3/6

V3/6
1—-+3/3

—1237 — 7273

—4983 — 2930/3

—2309 — 1360v/3

633 + 373V/3

1573 + 9253

—24570 — 14337/3
—28989021 — 16736158v/3

525105 — 303170v/3
—428213 + 247233/3
—1792405 + 1034844+/3
1298290 — 749567/3
1552158 — 896138v/3
9647029 — 5569703v/3
2565202 — 1456576/3
—400392 + 1355593/3
5564472 + 3153770v/3 —30913 + 38104v/3
—30913 + 38104v/3 2232834728564 — 1289127707414+/3




Dimension 8:
One extremal lattice has the Gram matrix

3184102630/3/3

470+ 778/3V3 94+ 146/3V3 10+ 79/6V3 8195 + 14234/3V3 17859 — 21173/2V/3 4158481 /2 — 7204649/6\/3 698806251 — 806912483/2v/3 —3676684105/"

94 +146/3v3 311/2 - /3 1569 + 5561/6/3 —6353/2 — 11801/6v/3 V3 —2480¢

91/2 — 171

58/3V3 94372119247/2 — 16345730

2 + 429659019073 /613

10+ 79/6v3 12256 — 4907V3. 10527/2 — 28300/3V/3 91951/2 /6v3 2714909499920 — B17438116723/2v/3 2502925868033 /63
8195+ 14234/3v3 10527/2 — 28300/37/3 331189 + 572293/3V3 73023+ V3 101500212621/2 + 8798742 V3 2 - 462
148621/67/3 73023 + 250235/6/3 17063699 + 28798726/3v/3 225280950665,2 — 19767727 V3 ~600494079171/2 +
4158481/2 — 7204649/6+/3 1977 5/3V/3 —22340907/2 + 12928557/2v/3 349751676 — 1223105785/61/3 597 3v3 2724757444066401 — 1573139452811769v/3 —T162376081586061 + 12405
698806251 — 806912483/2V3  94372119247/2 — 16345730 274909499920 — 317438146723/2V3  —101599212621/2 + /3V3 /2 — 197677279798 /3\/3 2724757444066401 — 139452811769v/3 12771977959476260581 — 7373904912982065107v3  —67140144724100405177/2 + 116290141889671688243/6v/3
3676084105/2 + 3184102630/3v/3 2480637503512 + 6 i /6V3 207 2 5025/6V3  ~600494079171/2 + 520037345221 /3v/3 T #1 11908/3v/3 ~67140144724100405177/2 + 1162901 41859671685243/6v/3 88236119089052111986 — 50943147108311449129V/3

Dimension 24

The extremal lattice is given by the following two Gram matricies of degree 24 over Q. The first belongs to the Leech
lattice, the second to the extremal strongly 6-modular lattice given in
http://www.math.rwth-aachen.de/~Gabriele.Nebe /LATTICES /P24.7.html|

The /3 structure is given by the formula (G1)™'Gs = 3 + /3. Matrices G and Ga:

8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 422 2000 -3 24 11 12 11 12 12 13 7 13 12 13 7 125 6 9 11 6 6 7 -1 -3 0 -9
4 4 2 2 2 2 22 2 2 22 2211 2 1 2 00 -1 1m 12 5 5 5 7 6 7 6 6 7 7 56 2 3 63 4 6 3 -1 0 -3
4 2 4 2 2 2 22 2 2 22 2121 2211100 -1 12 5 12 6 6 6 8 7 5 76 62 6 3 65 3 4 2 -2 0 -3
4 2 2 4 2 2 22 2 2 22 2112 2121100 -1 1 5 6 12 5 5 7 5 5 6 6 62 3 8 63 7 3 4 -3 0 -3
4 2 2 2 4 2 22 2 2 21 2222 2222100 -1 2 5 6 7 10 6 6 6 6 6 7 4 64 5 7 44 5 4 1 -3 -1 —4
4 2 2 2 2 4 22 2 2 21 2211 2121000 -1 2 7 6 5 6 12 8 8 5 6 6 3 65 3 4 52 5 4 -1 -3 -1 -3
4 2 2 2 2 2 42 2 2 21 2121 2112000 -1 B3 6 8 5 6 8 12 7 6 7 7 4 73 6 4 64 3 6 -1 -2 0 -3
2 2 2 2 2 2 2 4 1 1 1 2 12 2 2 1222200 1 7T 7 7 7 6 8 7 14 1 3 4 6 45 5 5 34 6 5 5 -4 -2 1
4 2 2 2 2 2 2 1 4 2 2 2 2 2 2 2 2222111 -1 B3 6 5 5 6 5 6 1 12 7 7 5 64 4 6 65 4 5 0 0 2 -6
4 2 2 2 2 2 21 2 4 22 2211 2211010 -1 2 6 6 5 6 6 7 3 7 12 7 7 55 4 3 55 3 4 -1 0 1 -3
4 2 2 2 2 2 2 1 2 2 4 2 21 21 2121001 -1 B 7 7 6 7 6 7 4 7 7 14 8 74 7 5 53 6 4 1 -1 3 -3
2 2 2 2 1 1 12 2 2 24 1222 1222211 1 7 7 6 6 4 3 4 6 5 7 812 25 5 4 45 6 6 5 0 2 1
4 2 2 2 2 2 21 2 2 21 4222 2111111 -1 2 5 6 6 6 6 7 4 6 5 7 2 124 6 7 53 3 2 2 1 3 -3
2 2 1 1 2 2 12 2 2 12 2422 1222221 1 5 6 2 2 4 5 3 5 4 5 4 5 48 4 3 13 4 3 3 2 2 1
2 1 2 1 2 1 22 2 1 22 2242 1222212 1 6 2 6 3 5 3 6 5 4 4 7 5 6410 4 14 4 3 3 0 4 1
2 11 2 2 1 12 2 1 12 2224 1222211 1 9 3 3 8§ 7 4 4 5 6 3 5 4 T3 4 12 44 6 4 3 -1 1 -1
4 2 2 2 2 2 21 2 2 21 2111 4222111 -1 1 6 6 6 4 5 6 3 6 5 5 4 51 1 4 125 5 7 3 1 2 -3
2 1 2 1 2 1 12 2 2 12 1222 2422221 1 6 3 5 3 4 2 4 4 5 5 3 5 33 4 4 58 3 5 3 2 1 0
2 1 1 2 2 2 12 2 1 22 1222 2242212 1 6 4 3 7 5 5 3 6 4 3 6 6 34 4 6 53 10 4 5 -1 4 1
2 2 1 1 2 1 22 2 1 12 1222 222 4211 1 7 6 4 3 4 4 6 5 5 4 4 6 23 3 4 75 410 3 0 0 0
o 1 1 1 1 0 02 1 0 02 1222 1222422 2 -1 3 2 4 1 -1 -1 5 0-1 1 5 23 3 3 33 5 3 10 3 4 4
o 606 o0 o o0 o0 o0 1 1T O1$ 1211 1211242 2 -3 -1 -2 -3 -3 -3 -2-+4 0 0-10 12 0-1 12-1 0 3 10 5 5
o 0 0 o0 o0 O 0O 1 o0 11 1121 1121224 2 o 0 0 0-1-1 0-2 2 1 3 2 32 4 1 21 4 0 4 5 10 4
-3 -1-1-1-1 -1 -11-1-1-11-1111-1111222 4 -9 -3 3 3 4 -3 -3 1-6-3 -3 1-311-1-30 1 0 4 5 4 10


http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/P24.7.html
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Notation Index

We use the following notations. Compare also Chapter “Notation”.

<A
o)
A
av(f)

b, ()
B

CLr

Eg

€0

Fy

total ordering of F', 18

the image of o € F' under o;, where 1 < j <r, 13
the root lattice As, 109

Fourier coefficient of f at ¢¥, 43

bilinear form or scalar product of the Z-lattice L, 14
polar form of @, 17

the Barnes-Wall lattice, 97

the class group of F', 13

Laplace operator, 71

a (totally positive) generator of the different of F', 13
root lattice over Q[v/2], 33

determinant of A, 18

square-free integer such that F = Q[v/D], 14
discriminant of F', 13

the lattice Eg, 97

fundamental unit, 13

= /%, 14

a real number field, 13

root lattice over Q[v/5], 33
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Gg(L)
I, T'(n)

GL3 (ZF)

GL3 (F)

hr
hi

(g, 2)

Ki2

(A,Q), A

(A, Q)F, A
(A, Q)% A#
Afa)

Ao

non

Min(A)
min(A)

M(T), Mey(T)
M*(T), Mfo(T)
M (L), Mp(n)

the 2-modular lattice Fy, 97
Gram matrix of L, 14
(principal) congruence subgroup, 38

Extremal even unimodular lattice in dimension 72, found by Nebe
in [Neb12], 89

invertible matrices over the integer ring with totally positive de-
terminant, 38

invertible matrices with totally positive determinant, 38
the Hilbert modular group SLe(Zf)., 40

the upper half plane of C, 14

the class number of F', 13

the narrow class number of F', 13
= (D2 + 60);_y 5 for g = (;‘ §) € GL} (F) and z € H', 39

weight k € Z, weight vector k € Z2, or parallel weight vector
k= (k,k)€Z? 39

the extremal 3-modular Coxeter-Todd lattice, 109

lattice over number field, 17

Trace dual lattice, 19

dual lattice of A, 19

layer of A at «, 18

lattice A with quadratic form €¢@Q, 26

the Leech lattice, 97

minimal vectors of A, 19

minimum of A, 19

(even) Hilbert modular forms of level I and parallel weight, 39
space of (even) symmetric Hilbert modular forms of level I', 40

Hilbert modular forms H x H — C of weight k& and level ' or n,
39
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01y...,0p
Sk(T), Sk(T')
a>0

az0

space of symmetric Hilbert modular forms of weight k£ and level
I, 40

_ (0 o

= (@, ey @), nabla, 70

the norm of F' over Q, 13

extremal unimodular lattice of dimension 48, cf. [Neb98a], 97
the quadratic form of the Z-lattice L, 14

quadratic form, 17

Extremal 2-modular lattice of dimension 32, found by Quebbe-
mann in [Que87h], 97

the degree [F': Q], 13
embeddings 01,...,0, : F — R, 13

space of cusp forms of weight k& and level I', 44

a € F is totally positive, i.e. o) >0 and o® > 0, 13
a € F with o) > 0 and o® <0, 13

the theta series of the lattice L, 15

theta series, 62

the trace of F over Q, 13

Centers of GLj (F) and GLj (Zp), respectively., 38
ring of integers of F', 13

the Dedekind zeta function of F', 14

=TI, 2Fi for € C" and k € Z", 14
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