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Abstract. We enumerate all positive definite ternary quadratic forms over

number fields with class number at most 2. This is done by constructing

all definite quaternion orders of type number at most 2 over number fields.
Finally, we list all definite quaternion orders of ideal class number 1 or 2.

1. Introduction

The question of finding all positive definite quadratic forms with small class
number dates back to Gauß. The binary case (where at present, a complete uncon-
ditional classification is out of reach) is related to relative ideal class numbers of
CM-fields. Over the rationals, one-class genera cannot exist in dimension ≥ 11 (cf.
[Wat62]). The rational one-class genera have been studied extensively by Watson,
see [Wat84, Wat] and the references therein. He classified all such genera in three
and more than five variables, and produced partial results in four and five variables.
The authors have recently reinvestigated Watson’s classification and filled in the
details for the missing dimensions four and five (see [KL13]). An overview of the
enumeration of genera with small class number is given in [Sch09].

In the case of an arbitrary totally real number field, Pfeuffer [Pfe71] showed that
one-class genera of positive definite quadratic forms cannot exist in more than 32
variables. The maximal integral forms with class number one have been enumerated
recently by the first author in [Kir14]. Though one expects very few examples of
one-class genera of positive definite quadratic forms over totally real number fields
in dimension ≥ 5, no complete classification is known.

Pfeuffer’s results give an upper bound on the local factors occurring in Siegel’s
mass formula, thus effectively bounding the discriminants of possible base fields
for one-class genera. For non-maximal forms in dimension 3, these bounds are not
quite sharp enough to yield the possible base fields using the currently available
tables of totally real number fields.

The present article addresses this shortcoming by employing the correspondence
of Brzezinski-Peters-Eichler-Brandt (see Section 3), which relates these genera to
quaternion orders with type number at most 2 (we refer to Section 2 for definitions).
Thus, we will enumerate all genera of positive definite ternary quadratic forms with
class number at most 2 over any totally real number field. These Gorenstein orders
can be enumerated directly using Magma [BCP97]. This classification extends the
work of Brzezinski [Brz95] who computed the quaternion orders of type number
one over the rationals.
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It turns out that there are 4194 one-class genera of positive definite ternary
quadratic forms over 30 different base fields. The largest base field has degree 5.
Similarly, there are 18538 two-class genera over 75 different base fields, the largest
one of which has degree 6.

This article is organized as follows. In Section 2, we recall properties of quater-
nion algebras and orders. In Section 3, we discuss a correspondence between quater-
nion orders and lattices in definite quadratic spaces. The list of all definite hered-
itary quaternion orders of type number at most 2 will be computed in Section 4.
In Section 5 we extend this list to all definite quaternion orders of type number
at most 2. Finally, in the last section we enumerate all definite quaternion orders
having ideal class number at most 2.

A complete list of these orders and genera can be obtained electronically from
[KL14].

2. Preliminaries

In this section, we recall the definition of quaternion algebras and summarize
some of their properties. Good references for this section are [Vig80], [Brz83], and
[Rei03].

Let K be a number field or a completion thereof. Further, let ZK be the ring of
integers of K.

Quadratic spaces. Let (V,Q) be a (regular) quadratic space of dimension m over
K. There exists a K-basis (v1, . . . , vm) of V and scalars a1, . . . , am ∈ K∗ such that
Q(
∑

i xivi) =
∑

i aix
2
i for all x1, . . . , xm ∈ K. If K is a totally real number field

and each ai is totally positive, then (V,Q) is said to be positive definite.
A ZK-lattice in V is a finitely generated ZK-submodule which contains a K-basis

of V . Two lattices L,L′ in V are said to be isometric, if there exists some K-linear
map ϕ ∈ EndK(V ) such that ϕ(L) = aL′ and Q(ϕ(x)) = Q(x) for all x ∈ V . Given
a place v of K, we denote by Kv the completion of K at v. If p is a prime ideal of
ZK , we write Lp for the completion L⊗ZK

ZKp
of L at p. Finally, if K is a number

field, then L and L′ are said to be in the same genus, if Lp and L′p are isometric at
each prime ideal p of ZK .

Quaternion algebras. A quaternion algebra over K is a central simple K-algebra

of dimension 4. Given a, b ∈ K∗, let Q =
(

a,b
K

)
be the K-algebra with basis

(1, i, j, ij) satisfying the relations i2 = a, j2 = b, ij = −ji. Then Q is a quaternion

algebra and every quaternion algebra is isomorphic to
(

a,b
K

)
for some a, b ∈ K∗.

The K-linear map

¯: Q → Q, r + si+ tj + uij 7→ r − si− tj − uij

is the unique antiautomorphism of Q such that the reduced norm nr(x) := xx̄ and
reduced trace tr(x) := x+ x̄ are contained in K for all x ∈ Q. The reduced norm is
a quadratic form on Q and (x, y) 7→ tr(xȳ) is the corresponding bilinear form. Let
Q0 = {x ∈ Q | tr(x) = 0} be the trace zero subspace of Q. By restriction, (Q0,nr)
is a ternary quadratic space.

The algebra Q is said to be ramified at some place P of K if QP := Q⊗K KP is
a skewfield. The discriminant D(Q) of Q is the product of all the prime ideals of
ZK at which Q ramifies. If K is a number field then Q is said to be definite if Q
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is ramified at all infinite places of K. This is equivalent to saying that (Q,nr) (or
(Q0,nr)) is a totally positive definite quadratic space. Of course, definite quaternion
algebras can only exist over totally real number fields.

Quaternionic lattices. Suppose that I is a ZK-lattice in Q. Then the dual I# :=
{x ∈ Q | tr(xI) ⊆ ZK} of I is also a ZK-lattice. The norm nr(I) of I is the fractional
ZK-ideal generated by {nr(x) | x ∈ I}.

Suppose J is another ZK-lattice in Q. The product of I and J is the ZK-lattice
generated by {xy | x ∈ I, y ∈ J}.

Orders. An order in Q is a subring of Q which is also a ZK-lattice. Given a
ZK-lattice I, the sets Ol(I) = {x ∈ Q | xI ⊆ I} and Or(I) = {x ∈ Q | Ix ⊆ I}
are orders called the left and right orders of I respectively. Moreover, I is called
two-sided if Ol(I) = Or(I).

Ideals. Let O be an order in Q. A ZK-lattice I is called a right O-ideal if for each
prime ideal p of ZK there exists some x ∈ Q∗p such that Ip = xpOp. If this is the
case, then clearly Or(I) = O. If in addition I is two-sided, we call I a two-sided
O-ideal.

Ideal classes and genera. Two right O-ideals I and J are isomorphic as right
O-modules if and only if I = xJ for some unit x ∈ Q∗. By the Jordan-Zassenhaus
theorem (cf. [Rei03, Theorem 26.4]), the set of all right O-ideals is a disjoint union
of finitely many isomorphism classes. The number of isomorphism classes of right
O-modules is called the ideal class number h(O) of O. Two-sided O-ideals are said
to be isomorphic if they are isomorphic as right O-ideals. Let H(O) denote the
number of isomorphism classes of two-sided O-ideals.

By the Skolem-Noether theorem, two orders O and O′ are isomorphic (as ZK-
algebras) if and only if they are conjugate in Q∗. The genus Gen(O) of O is the
set of all orders O′ such that Op and O′p are conjugate for all prime ideals p of ZK .
The number of conjugacy classes in #Gen(O) is called the type number t(O). The
type and ideal class numbers of O are related by the following result.

Lemma 2.1. Let O and O′ be orders in the same genus and let S be a set of
representatives of the isomorphism classes of right O-ideals. Then

1 ≤ H(O) = #{I ∈ S | O′ is conjugate to Ol(I)} ≤ h(O) .

In particular, 1 ≤ t(O) ≤ h(O).

Proof. See for example [Deu68, Section VI.8.2] or [KV10, Proposition 2.10]. �

Types of orders. Let O be an order in Q. The ZK-ideal generated by

{det(tr(xix̄j))i,j | x1, . . . , x4 ∈ O}
is always a square. The square root of this ideal is the (reduced) discriminant
D(O). If O ⊆ Λ are orders then D(O) = D(Λ) · [Λ : O] where [Λ : O] denotes the
index ideal of Λ and O. An order is called maximal if it is not properly contained
in another order. This is equivalent to saying that D(O) = D(Q). In particular,
the ideal N (O) := D(O)D(Q)−1 is always integral.

Further, let p be a prime ideal of ZK and let k := ZK/p be its residue class
field. There exists some lattice pO ⊆ I ⊂ O such that I/pO is the radical of the
k-algebra O/pO. The lattice I is in fact two-sided and Idp(O) := Ol(I) = Or(I) is
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called the radical idealizer of O at p. Suppose now in addition that p divides D(O).
Then the k-algebra O/I is isomorphic to k, k× k, or to a quadratic extension of k,
and the Eichler invariant ep(O) is defined to be 0, 1 or −1 accordingly.

The order O is called hereditary if every ZK-lattice I with O ⊆ Or(I) is a right
O-ideal. This is equivalent to saying that D(O) is square-free as seen from the
classification [Rei03, Theorem 39.14]. An Eichler order is the intersection of two
(not necessarily distinct) maximal orders.

The order O is a Gorenstein order if O# is a right O-ideal. Finally, if every
order containing O is Gorenstein, then O is called a Bass order.

An order is maximal / hereditary / Eichler / Bass or Gorenstein if and only
if each of its completions has the corresponding property. Further, these different
families of orders satisfy the following inclusions:

{maximal} ⊂ {hereditary} ⊂ {Eichler} ⊂ {Bass} ⊂ {Gorenstein} .

If O is any order in Q, then G(O) := 〈1,D(O)O#O#〉 (i.e. the ZK-module
generated by 1 and {λxy | λ ∈ D(O), x, y ∈ O#}) is again an order. In fact, G(O)
is the smallest Gorenstein order which contains O and it is called the Gorenstein
closure of O (see [Brz82, Proposition 3.2]). There exists a unique integral ideal
b(O) ⊆ ZK called the Brandt invariant of O such that O = 〈1, b(O)G(O)〉. Thus
D(O) = b(O)3D(G(O)) and two orders are conjugate if and only if their Gorenstein
closures are conjugate and they have the same Brandt invariant (or discriminant).
In particular, t(O) = t(G(O)).

3. Ternary lattices and Gorenstein orders

In this section, we discuss a correspondence between ternary lattices and Goren-
stein orders. The correspondence we are using is due to Brzezinski [Brz80, Brz82]
and Peters [Pet69]. It is based on work of Eichler [Eic52] and Brandt [Bra43].

Let (V,Q) be a definite ternary quadratic space over some number field K.

Definition 3.1. Two lattices L,L′ in V are said to be equivalent if there exists
some totally positive element c ∈ K∗, some fractional ideal a of K and some K-
linear map ϕ : V → V such that ϕ(L) = a · L and Q(ϕ(x)) = c · Q(x) for all
x ∈ V .

Clearly, two equivalent lattices have the same class number. Thus, if we want
to classify all definite ternary quadratic lattices with class number h, it suffices to
only look at the equivalence classes.

For example by [Kne02, (6.20)], the even part of the Clifford algebra of (V,Q) is
a definite quaternion algebra Q such that (Q0,nr) is isometric to (V, c ·Q) for some
totally positive element c ∈ K∗. Since we are only interested in equivalence classes
of lattices, we may now assume that (V,Q) = (Q0,nr) ⊂ (Q,nr).

Further let L be a ZK-lattice in Q0. By slight abuse of notation, let nr(L) denote
the fractional ZK-ideal generated by {nr(x) | x ∈ L}. Then

O(L) := 1ZK +
∑

x,y∈L
nr(L)−1 · xy

is a Gorenstein order in Q (see [Pet69, Satz 7] and [Brz82, Proposition 2.3]). Con-
versely, if O is an order in Q then

L(O) := D(O) · (O# ∩Q0)
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is a ternary lattice in (Q0,nr).

Theorem 3.2. Let Q be a quaternion algebra over some number field K and let
L,L′ be ZK-lattices in (Q0,nr).

(a) Each Gorenstein order O in Q satisfies O = O(L(O)).
(b) There exists a fractional ZK-ideal a such that aL = L(O(L)).
(c) O(L) and O(L′) are isomorphic if and only if L and L′ are similar, i.e. L′

is isometric to aL for some fractional ZK-ideal a.

Proof. Part (a) follows immediately from [Brz82, Proposition 3.2] and it implies
O(L) = O(L(O(L))). Hence L and L(O(L)) differ by some fractional ideal as
[Eic52, Satz 14.1] shows. Part (c) is proven in [Brz80, Corollary 3.10]. �

As a consequence we get that O and L induce bijections between the equivalence
classes of ternary lattices over K and the isomorphism classes of Gorenstein orders
over K. Moreover, since the two constructions O and L are compatible with taking
completions, we have the following result.

Corollary 3.3. Let G be the genus of a ternary lattice L. Then the class number
of G coincides with the type number of O(L).

By Corollary 3.3, the classification of all definite ternary lattices over ZK with
class number h is equivalent to the classification of all definite Gorenstein quaternion
orders over ZK having type number h.

Remark 3.4. There are several other correspondences between ternary quadratic
lattices and quaternion orders which map lattices of class number h to orders of
type number h. Most notably:

(1) The correspondence of Pall [Pal46] for K = Q, which was extended by Nipp
in [Nip74] to arbitrary number fields K, is not onto in general.

(2) The correspondence of Gross and Lucianovic [GL09] over PIDs, which was
extended by Voight [Voi11] to arbitrary rings.

However, the classification of all quaternion orders with type number h is equiva-
lent to the classification of all Gorenstein quaternion orders with type number h.
Therefore we prefer a correspondence which maps the Gorenstein orders of type
number h to the ternary quadratic lattices with class number h (modulo some
equivalence relation that preserves class numbers), and choose the maps O and L
from Brzezinski-Peters-Eichler-Brandt over the other two constructions.

4. Hereditary orders with type number one

Let Q be a definite quaternion algebra over some totally real number field K of
degree n. If O is an order in Q, we denote by NQ∗(O) = {x ∈ Q∗ | xOx−1 = O}
the normalizer of O in Q∗. Conjugation with an element from NQ∗(O) induces an
isometry on the positive definite Z-lattice (O,NrK/Q ◦nr) where NrK/Q denotes the
usual norm of K. Moreover, two elements induce the same isometry if and only if
their quotient lies in K∗. Thus the index [NQ∗(O) : K∗] is finite. The unit group
O∗ = {x ∈ O | nr(x) ∈ Z∗K} is a subgroup of NQ∗(O) and therefore the index
[O∗ : Z∗K ] is finite since Z∗K = K∗ ∩ O∗.

Definition 4.1. Let O be an order in Q and suppose that I1, . . . , Ih(O) represent
the isomorphism classes of right O-ideals. By Lemma 2.1, we may assume that
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Ol(I1), . . . ,Ol(It(O)) represent the conjugacy classes of all orders in the genus of O.
Then the mass of O is defined as

Mass(O) :=

h(O)∑
i=1

1

[Ol(Ii)∗ : Z∗K ]
=

t(O)∑
i=1

H(Ol(Ii))

[Ol(Ii)∗ : Z∗K ]
.

The mass can be computed from invariants of O and K as follows.

Theorem 4.2 (Eichler’s mass formula). Let O be an order in Q. Then

Mass(O) = 21−n · |ζK(−1)| · hK ·NrK/Q(D(O))
∏

p|D(O)

1−NrK/Q(p)−2

1− ep(O)NrK/Q(p)−1

where ζK and hK denote the Dirichlet zeta function and the class number of K
respectively.

Proof. See for example [Kör87, Theorem 1]. �

If O is hereditary, the above mass formula simplifies to the version given by
Eichler in [Eic55, Section 4]:

Mass(O) = 21−n ·|ζK(−1)|·hK ·
∏

p|D(Q)

(NrK/Q(p)− 1)·
∏

p|N (O)

(NrK/Q(p) + 1). (4.1)

Given an ideal a of ZK , let ω(a) be the number of prime ideal divisors of a. The
number of prime ideals of ZK of norm 2 will be denoted by ω2(K).

Suppose now O is hereditary. For each prime ideal p that divides D(O), there
exists a unique two-sided O-ideal Pp with P 2

p = pO. The two-sided O-ideals form
an abelian group J(O) which is free on {Pp : p | D(O)} ∪ {pO : p - D(O)}. Then
NQ∗(O)/K∗ acts on the quotient J(O)/{aO | a ∈ K∗} by left multiplication. The
orbits are the isomorphism classes of two-sided O-ideals and the stabilizer of any
class is O∗K∗/K∗ ∼= O∗/Z∗K . Thus

H(O) =
2ω(D(O)) · hK

[NQ∗(O) : O∗K∗]
= 2ω(D(O)) · hK ·

[O∗ : Z∗K ]

[NQ∗(O) : K∗]
. (4.2)

See [Eic55, Section 4] for details.

Theorem 4.3. If O is a hereditary order in Q, then

d
1/n
K < ((t(O)/2)1/n · 4π2 · (3/2)ω2(K)/n)2/3 .

Proof. Let {O1, . . . ,Ot(O)} be a set of representatives of the conjugacy classes in
the genus of O. From equations (4.1) and (4.2), we conclude that

t(O) ≥
t(O)∑
i=1

1

[NQ∗(Oi) : K∗]
=

1

2ω(D(O)) · hK
·
t(O)∑
i=1

H(Oi)

[NQ∗(Oi) : K∗]

=
Mass(O)

2ω(D(O)) · hK

= 21−n · |ζK(−1)|
∏

p|D(Q)

NrK/Q(p)− 1

2
·
∏

p|N (O)

NrK/Q(p) + 1

2
(4.3)

≥ 21−n · |ζK(−1)| · 2−ω2(K) .
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The functional equation of the zeta function gives |ζK(−1)| = d
3/2
K · ζK(2)/(2π2)n.

Therefore,

t(O) ≥
2d

3/2
K

(2π)2n
· ζK(2) · 2−ω2(K) >

2d
3/2
K

(2π)2n
· (4/3)ω2(K) · 2−ω2(K)

≥
2d

3/2
K

(2π)2n
· (2/3)−ω2(K)

as claimed. �

We will make the last result effective for orders of type number at most 2.

Lemma 4.4. If O is a hereditary order in Q with t(O) ≤ 2, then

d
1/n
K < (4π2 · (3/2)ω2(K)/n)2/3 . (4.4)

There are 358 totally real number fields K that satisfy equation (4.4). The largest
one has degree 8.

Proof. Let K be a field that satisfies equation (4.4) and let n be its degree. Then

d
1/n
K < (6π2)2/3 < 15.20. With the bounds from [BD08] this implies that n ≤ 10.

If n = 10, then [BD08] shows that d
1/n
K < 15.20 is only possible if ω2(K) ≤ 1. But

d
1/n
K < (4π2 · (3/2)1/10)2/3 < 11.92 is impossible by [Voi08]. The case n = 9 is ruled

out similarly.

Voight’s tables [Voi08] list all totally real number fields K with d
1/n
K ≤ 15.5 and

degree at most 8. The result follows from an explicit search. �

Algorithm 4.5.
Input: Some totally real number field K of degree n and some bound B ≥ 1.
Output: A list L of sets. For each genus of definite hereditary quaternion orders
over K with type number at most B, precisely one set in the list L represents the
conjugacy classes of orders in that genus.

(1) Initialize L = ∅.
(2) Compute the set P of all prime ideals p of ZK such that

NrK/Q(p) ≤ 2n+ω2(K) · |ζK(−1)|−1 ·B + 1 . (4.5)

(3) For each pair (D,N) of disjoint subsets of P such that #D+n is even and

B ≥ 21−n · |ζK(−1)| ·
∏
p∈D

NrK/Q(p)− 1

2
·
∏
p∈N

NrK/Q(p) + 1

2
(4.6)

do
(a) Construct the definite quaternion K-algebra Q with D(Q) =

∏
p∈D

p.

(b) Compute a hereditary order O in Q such that N (O) =
∏

p∈N p.

(c) Compute a set S of representatives of the conjugacy classes of orders
in the genus of O.

(d) If #S ≤ B then include S in L.
(4) Return L.

Proof. Suppose O is a hereditary order in a definite quaternion algebra Q over
K such that t(O) ≤ B. Let D and N denote the set of prime ideal divisors of
D(Q) and N (O) respectively. The isomorphism type of Q is uniquely determined
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by D (see [Vig80, Theorem III.3.1]) and Op is defined by N up to conjugacy in Q∗p
for all prime ideals p (see [Vig80, Lemma II.2.4]). In particular (D,N) uniquely
determines the genus of O. Thus L does not contain two different sets representing
the same genus. Further n+#D is even by [Vig80, Theorem III.3.1] and D∩N = ∅
since D(O) is square-free.
The pair (D,N) satisfies equation (4.6) as we have seen in equation (4.3). In
particular, every prime ideal p ∈ D∪N ⊆ P satisfies equation (4.5). Thus, at some
point, we will construct an order which is in the same genus as O. �

Remark 4.6. We give some hints how step (3) of Algorithm 4.5 can be done in
practice.
The quaternion algebra Q in step (3a) can be computed as follows. Let a ∈ ZK be
totally positive such that it has valuation 1 at all prime ideals in the set D. Then

one tries some totally positive b ∈ ZK such that bZK + D = ZK until
(
−a,−b

K

)
has the correct discriminant. For this last step, one has to compute several Hilbert
symbols which can be done using [Voi13, Sections 5 and 6]. Once one has found a
suitable algebra Q, one can compute a maximal order M in Q using Zassenhaus’
Round 2 (see [Zas72]) or Voight’s specialized algorithm (see [Voi13, Algorithm
7.10]). Let p be a prime ideal in the set N . Then M/pM ∼= (ZK/p)2×2. By
trial and error, one quickly finds some element in the ZK/p-algebra M/pM with
reducible minimal polynomial. From such an element one immediately obtains an
explicit isomorphismM/pM∼= (ZK/p)2×2 (see [Voi13, Algorithms 4.2 and 4.3] for
details).

Let N ′ =
∏

p∈N p. The Chinese Remainder Theorem yields an isomorphism

ϕ : M/N ′M → R2×2 where R = ZK/N
′. Then O := N ′M + ϕ−1

(
R R
0 R

)
is a

(hereditary) order of discriminant
∏

p∈D∪N p. Finally, for step (3c) one can apply

an algorithm by Voight and the first author (see [KV10, Algorithm 7.10]).

5. Quaternion orders with small type number

Let Q be a definite quaternion algebra over some number field K. Further, let
O be a Gorenstein order in Q, and let p denote some prime ideal of ZK .

The classification of all Gorenstein orders in Q having small type numbers is
based on the following results.

Lemma 5.1.

(1) If Op is a Bass order, then Cp(O) := Idp(O) is a Gorenstein order and
〈1, pCp(O)〉 ( O ⊆ Cp(O). Moreover, O = Cp(O) if and only if Op is
hereditary.

(2) If Op is not a Bass order, let Cp(O) be the Gorenstein closure of Idp(O).
Then 〈1, p2Cp(O)〉 ( O ( 〈1, pCp(O)〉.

Proof. Let O be any order. Then 〈1, pIdp(O)〉 ⊆ O ⊆ Idp(O) (see for example
[Neb05, Remark 2.8]). A proof of the fact that Op is hereditary if and only if
O = Idp(O) is given in [Rei03, Chapter 39]. Further, if O is a Bass order then
Cp(O) is Gorenstein by definition. This proves the first claim since 〈1, pIdp(O)〉
is not Gorenstein by [Brz83, Proposition 1.3]. Assume now that Op is not a Bass
order and set Λ := Idp(O). By [Brz83, Proposition 1.12], Λp is the unique minimal



TERNARY QUADRATIC FORMS WITH SMALL CLASS NUMBER 9

overorder of Op. Moreover Λ = 〈1, pCp(O)〉 by [Brz83, Proposition 4.2]. This
proves the second claim. �

Remark 5.2. For any x ∈ Q∗ we have Cp(xOx−1) = xCp(O)x−1. In particular,
NQ∗(O) ⊆ NQ∗(Cp(O)).

Definition 5.3. Given an additional Gorenstein order Λ in Q, we denote by
C(O,Λ, p) the set {O′ ∈ Gen(O) | Cp(O′) = Λ}.

Lemma 5.4. Let (Λ1, . . . ,Λt) represent the conjugacy classes of orders in the
genus of Cp(O). The normalizer NQ∗(Λi) acts on C(O,Λi, p) by conjugation. Let
{Oi,1, . . . ,Oi,ni} represent the orbits of this action. Then

{Oi,j | 1 ≤ j ≤ ni, 1 ≤ i ≤ t}
is a complete set of representatives of the conjugacy classes in the genus of O. In
particular, t(O) ≥ t(Cp(O)) ≥ 1.

Proof. The fact that NQ∗(Λi) acts on C(O,Λi, p) follows immediately from Re-
mark 5.2. Suppose first that Oi,j = xOk,`x

−1 for some x ∈ Q∗. Then

Λi = Cp(Oi,j) = Cp(xOk,`x
−1) = xCp(Ok,`)x

−1 = xΛkx
−1 .

The choice of Λ1, . . . ,Λt implies i = k. Hence x ∈ NQ∗(Λi) and thus j = `.
Let O′ ∈ Gen(O). Then Cp(O′) ∈ Gen(Cp(O)). Thus Cp(O′) = xΛix

−1 for
some 1 ≤ i ≤ t and x ∈ Q∗. After replacing O′ by x−1O′x we may assume that
Cp(O′) = Λi. Then O′ is conjugate to Oi,j for some 1 ≤ j ≤ ni. �

Finally, we need a lower bound on #C(O,Λ, p).

Lemma 5.5. Suppose Op is not hereditary and p does not divide 2D(Cp(O)). Then

#C(O,Λ, p) ≥ NrK/Q(p)(NrK/Q(p)− 1)/2

for all Λ ∈ Gen(Cp(O)).

Proof. Let k = ZK/p and q = #k. Since p does not divide D(Λ), we have Λp/pΛp
∼=

k2×2. Suppose first that Op is a Bass order. Let ϕ : C(O,Λ, p) → k2×2, O′ 7→
O′/pΛ. Since Op is not hereditary, we have [Λ: O] = p2 and thus ep(O) 6= 0. By
[Brz83, Proposition 5.4] it follows that

C(O,Λ, p) = {O′ ⊂ Λ | [Λ : O′] = p2 and O′p is conjugate to Op} .

In particular, the image of ϕ is a full GL2(k)-orbit of some quadratic subalgebra of
k2×2. The stabilizer of any order in the image of ϕ has size 2(q − 1)(q − ep(O)),
the factor 2 coming from the non-trivial automorphism. Thus

#C(O,Λ, p) ≥ #GL2(k)

2(q2 − 1)
= q(q − 1)/2

as claimed.
Suppose now that Op is not a Bass order. From [Brz83, Proposition 5.4] it

follows that 〈1, p2(Op)#〉 is a local Bass order of discriminant p2 and nonzero Eichler
invariant. Hence

C(O,Λ, p)→ C(O + p2O#,Λ, p), O′ 7→ O′ + p2O′#

is a conjugation preserving bijection. Thus C(O,Λ, p) ≥ q(q−1)/2 by the first part
of the proof. �
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The non-hereditary Gorenstein orders having small type numbers can now be
computed using the following algorithm.

Algorithm 5.6.
Input: Some totally real number field K and some bound B ≥ 1.
Output: A list L. For each genus of definite Gorenstein quaternion orders of type
number at most B, precisely one set in the list L represents the conjugacy classes
of orders in that genus.

(1) Initialize L to be the output of Algorithm 4.5 when applied to K and B.
(2) For all S ∈ L and all prime ideals p such that

p | 2D(Λ) for some Λ ∈ S or
∑
Λ∈S

⌈
NrK/Q(p)(NrK/Q(p)−1)

2·[NQ∗ (Λ):K∗]

⌉
≤ B (5.1)

do:
(a) For each Λ ∈ S, compute a set OΛ of orbit representatives of

{O ( Λ | O is an order with Cp(O) = Λ}

under the action of NQ∗(Λ).
(b) For each genus G which is represented by at most B orders in

⋃
Λ∈S OΛ

but not by any order in L, include
⋃

Λ∈S(OΛ ∩G) to L.
(3) Return L.

Proof. We first note that step (2b) ensures that no two sets in L represent the same
genus. Suppose G is a genus of Gorenstein orders with type number at most B and
let O ∈ G. We show that L contains a set of representatives for the conjugacy
classes of G by induction on the number of divisors of D(O). The case that O is
hereditary is clear. So we may assume that Op is not hereditary for some prime
ideal p. Let Λ := Cp(O). By induction, there exists some S ∈ L such that Λ
is conjugate to some order in S. From Lemma 5.4 it follows that t(Λ) ≤ B and
Lemma 5.5 shows that the pair (p, S) satisfies condition (5.1). Again, by Lemma
5.4, the genus G is represented by

⋃
Λ∈S(OΛ ∩ G) where OΛ is as in step (2a) of

the algorithm. �

We close this section by explaining how one can perform the non-trivial steps of
Algorithm 5.6.

Remark 5.7. Let O be an order in Q. Further, let Aut(O,nr) denote the group
of all isometries of the ZK-lattice O in the quadratic space (Q,nr). By [Die69,
Appendix IV, Proposition 3], the map

NQ∗(O)/K∗ → {ϕ ∈ Aut(O,nr) | ϕ(1) = det(ϕ) = 1}, x 7→ (y 7→ xyx−1)

is an isomorphism of groups. Since Aut(O,nr) can be computed using an algo-
rithm of Plesken and Souvignier [PS97], this gives an effective way to compute
NQ∗(O)/K∗.

In step (2b) one has to test whether two orders O,O′ are in the same genus. By
Section 3, this is equivalent to test whether the corresponding ternary lattices L(O)
and L(O′) are in the same genus. The latter problem was solved by O’Meara, see
[O’M73, Theorems 92:2 and 93:28].

If one applies Algorithms 4.5 and 5.6 to the 358 possible base fields from Remark
4.4 with B = 2, one gets the following result.
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Theorem I.

(1) There are 4194 genera of definite Gorenstein quaternion orders of type num-
ber one over 30 different base fields. The largest field has degree 5.

(2) There are 18538 genera of definite Gorenstein quaternion orders of type
number two over 75 different base fields. The largest field has degree 6.

A complete list of representatives is available electronically from [KL14].

Remark 5.8. Let O be a Gorenstein order in a definite quaternion algebra Q over
some number field K. For any ideal a ( ZK , the order 〈1, aO〉 is the unique order
with Gorenstein closure O and Brandt invariant a. Moreover, the orders 〈1, aO〉
and O have the same type numbers.

Thus Theorem I classifies all orders in definite quaternion algebras over number
fields with type number at most 2.

We close this section by mentioning some interesting details of the above classi-
fication.

Remark 5.9. The classification in Theorem I shows that Q(
√

15) is the only base
field with nontrivial class group which admits definite ternary quadratic lattices
with class number one.

Remark 5.10. Let K = Q(
√

3) and Q =
(−1,−1

K

)
. Further let p2 be the prime

ideal of ZK whose norm is 2. Then any maximal order in Q has type number 2,
but any hereditary order in Q with discriminant p2 has type number 1. Thus for
classifying all orders with type number h, one really has to start with all hereditary
orders of type number h, not just the maximal orders.

Remark 5.11. While the ideal class number of an order O is an upper bound
to the type number of O, these numbers can differ significantly as the following
example shows.

Let K = Q[x]/(x5−5x3 +4x−1). Then dK = 38.569 is a prime and K has class
number one. In ZK there exists a unique prime ideal p13 of norm 13 and 2ZK is
prime. Let Q be the definite quaternion algebra over K with discriminant p13. Up
to isomorphism, there exists a unique Gorenstein order O in Q with discriminant
24 ·p2

13 and ep13
(O) = e2ZK

(O) = 0 and t(O) = 1. See [KL14] for explicit generators
of O. From O∗ = R∗ and Eichler’s mass formula (Theorem 4.2) it follows that the
ideal class number of O is given by

2−4 · |ζK(−1)|︸ ︷︷ ︸
8/3

·132 · 324 · (1− 13−2) · (1− 32−2) = 29.331.456 .

Among all definite Gorenstein orders with type number one, this is by far the largest
ideal class number, the second largest being 13.369.344.

6. Definite quaternion orders with small ideal class numbers

The classification of all definite quaternion orders with small type numbers also
yields the classification of all definite quaternion orders with small ideal class num-
bers.

To make this statement explicit, we need some more results.

Lemma 6.1. Let O ⊆ Λ be quaternion orders and let {I1, . . . , Ih} represent the
isomorphism classes of right Λ-ideals.
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(1) The sets I(Ii,O) := {I ⊆ Ii | I is a right O-ideal with IΛ = Ii} are non-
empty.

(2) The group Ol(Ii)
∗ acts on I(Ii,O) by left multiplication. Let {Ii,1, . . . , Ii,hi

}
represent the orbits of this action. Then {Ii,j | 1 ≤ i ≤ h, 1 ≤ j ≤ hi}
represents the isomorphism classes of right O-ideals.

In particular, h(O) ≥ h(Λ).

Proof. For each prime ideal p there exists some xp ∈ Qp such that (Ii)p = xpΛp

and we can choose xp = 1 for all but finitely many places. In particular, there
exists some right O-ideal I such that Ip = xpOp locally everywhere. This proves
the first assertion. We omit the proof of the second part as it is similar to the proof
of Lemma 5.4. �

Note that we will apply the above lemma repeatedly to orders satisfying pΛ ⊆
O ⊆ Λ for some prime ideal p. In this case, pIi ⊆ I ⊆ Ii for all I ∈ I(Ii,O). Thus
I(Ii,O) can be computed easily.

Another method of computing ideal class representatives of quaternion orders is
the following neighbor method which has been used by many authors such as Pizer
[Piz80], Mestre [Mes86], Kohel [Koh01] and also [KV10].

Algorithm 6.2. Input: A definite quaternion order O over ZK .
Output: A set S representing the isomorphism classes of right O-ideals.

(1) Initialize S = {O}.
(2) While Mass(O) 6=

∑
I∈S [Ol(I)∗ : Z∗K ]−1 do:

(a) Pick a random ideal I ∈ S and some small prime ideal p of ZK .
(b) Compute a random right Ol(I)-ideal J ⊂ Ol(I) with nr(J) = p.
(c) If JI is not isomorphic to some ideal in S, include JI to S.

(3) Return S.

Since we will only be interested in computing ideal class representatives for orders
with h(O) ≤ B and B will be very small, Algorithm 6.2 works very well as we can
always stop whenever we have found more than B ideal classes.

Remark 6.3. Let O be an order in a definite quaternion algebra Q over K such
that h(O) ≤ B.

(1) Let M be a maximal order in Q. Then h(M) ≤ B.
(2) The narrow class number of K is at most B.

Proof. The first statement follows from Lemma 6.1 and the fact that all maximal
orders in Q are in the same genus. For the second statement, we may assume that
O is maximal. The result then follows from a theorem of Swan, see for example
[Rei03, Theorem 35.14]. �

6.1. Gorenstein orders. Let B ≥ 1 and let O be a definite Gorenstein quaternion
order with h(O) ≤ B. Then t(O) ≤ B by Lemma 2.1.

Hence we can simply run over all genera of Gorenstein orders having type num-
ber at most B (see Theorem I) and check whether some (and thus every) order in
the genus has class number at most B using Algorithm 6.2 or Lemma 6.1.
Note that the conditions of Remark 6.3 can be used to rule out many genera im-
mediately.

This way, one immediately obtains the following result:
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Theorem II.

(1) There are 144 genera of definite quaternion Gorenstein orders with ideal
class number one.

(2) There are 268 genera of definite quaternion Gorenstein orders with ideal
class number two and type number one.

(3) There are 182 genera of definite quaternion Gorenstein orders with ideal
class number two and type number two.

A complete list is available electronically from [KL14].

We checked that our results agree with the list given in [KV10] when restricted to
Eichler orders with type number one. We also found that the order of discriminant
9 in [Brz95] does not have ideal class number one but two. Otherwise [Brz95] agrees
with our list when restricted to rational quaternion orders of type number one.

6.2. Non-Gorenstein orders. The classification of all non-Gorenstein with small
ideal class number is based on Lemma 6.1.

Algorithm 6.4.
Input: A bound B ≥ 1 and a definite Gorenstein quaternion order Λ with h(Λ) ≤ B.
Output: A list of all orders with Gorenstein closure Λ and ideal class number at
most B.

(1) Initialize L = {Λ}.
(2) For all O ∈ L do

(a) Let P be the set of prime ideals p of ZK such that

p | D(O) or NrK/Q(p)(NrK/Q(p)2 − 1) ≤ B/Mass(O) .

(b) For all p ∈ P do
(i) Compute h(〈1, pO〉) using Lemma 6.1 or Algorithm 6.2.

(ii) If h(〈1, pO〉) ≤ B then include 〈1, pO〉 in L.
(3) Return L.

Proof. Let Õ be a non-Gorenstein order with G(Õ) = Λ and h(Õ) ≤ B. Let p

be a prime ideal divisor of b(Õ) and set O = 〈1, (b(Õ)/p)Λ〉. Then h(O) ≤ B by
Lemma 6.1 and O has Gorenstein closure Λ. Thus O ∈ L by induction. Suppose
now p is coprime to D(O). Then ep(Õ) = 0 by [Brz83, Propositions 2.1 and 3.1]

and D(Õ) = D(O) ·p3. Hence Mass(O) ·NrK/Q(p)(NrK/Q(p)2−1) = Mass(Õ) ≤ B.

Thus, the algorithm will test Õ = 〈1, pO〉 in step (2c) at some point. �

If one applies Algorithm 6.4 to all Gorenstein orders mentioned in Theorem II,
one obtains the following result.

Theorem III.

(1) There are 10 conjugacy classes of non-Gorenstein quaternion orders with
ideal class number one.

(2) There are 20 conjugacy classes of non-Gorenstein quaternion orders O with
ideal class number two such that G(O) has ideal class number one.

(3) There are 5 conjugacy classes of non-Gorenstein quaternion orders O with
ideal class number two such that G(O) has type number one and ideal class
number two.



14 MARKUS KIRSCHMER AND DAVID LORCH

(4) If O is a non-Gorenstein order with ideal class number two such that G(O)

has type number two, then G(O) is a maximal order in
(
−1,−1

Q(
√

3)

)
and the

Brandt invariant of O is the prime ideal of norm 2 in Z[
√

3].

A complete list is available electronically from [KL14].
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