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Abstract. Let K/k be a cyclic Galois extension of degree ` and θ a genera-

tor of Gal(K/k). For any v = (v1, . . . , vm) ∈ Km such that v is linearly independent

over k, and any 1 ≤ d < m the Gabidulin-like code C(v, θ, d) ≤ k`×m is a maximum

rank distance code of dimension `d over k. This construction unifies the ones avail-

able in the literature. We characterise the K-linear codes that are Gabidulin-like

codes and determine their rank-metric automorphism group.
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1. Introduction.

In random linear network coding any node of the network may transmit a
random linear combination of the received vectors. So the transmitted in-
formation is the subspace generated by the input vectors, an element of the
Grassmanian

G`,n(k) := {U ≤ kn | dim(U) = `}
the set of all `-dimensional subspaces of the space kn of rows of length n
over the field k. A (constant dimension) network code is a subset of such a
Grassmanian. There is a natural distance function d on G`,n(k) defined by
d(U, V ) := `−dim(U ∩V ). The general linear group GLn(k) acts transitively
on G`,n(k) preserving this distance. However there are a few disadvantages of
this framework:

• G`,n(k) is a homogeneous space but not a vector space.
• So in this generality there is no notion of a linear code (as for the

classical block codes).
• It is also not obvious how to systematically encode information into a

sequence of subspaces.

To come around these problems, Koetter and Kschischang [8] suggested to
consider a subset of G`,n(k): Put m := n − `. For a matrix X ∈ k`×m let
UX := row space of (I`|X). Then UX ∈ G`,n(k) and UX = UY if and only if
X = Y . So the map X 7→ UX is a bijection between the vector space k`×m

and
M`,m(k) := {UX | X ∈ k`×m} ⊂ G`,n(k).

The distance between two spaces UX , UY ∈M`,n(k) is d(UX , UY ) = rk(X −
Y ), the rank metric on this space of matrices, which was already studied in
[3] and [5].
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A linear rank metric code is a subspace C of k`×m. The minimum dis-
tance of C is d(C) = min{rk(C) | 0 6= C ∈ C}. The well known Singleton
bound (see Proposition 2.2) shows that

dim(C) ≤ max(`,m)(min(`,m)− d(C) + 1).

Codes where equality holds are called maximum rank distance (or MRD)
codes.

The most famous construction of MRD codes is due to Gabidulin [5].
In this paper we define Gabidulin-like codes (Definition 2.5) which provide
a unified framework of various generalisations of Gabidulin codes. Their ba-
sic properties are studied in Section 2, where we show that Gabidulin-like
codes are MRD codes and provide a characterisation (as in [15]) which lifted
codes are Gabidulin-like codes (Theorem 2.10). Section 3 then describes an
algorithm to compute the automorphism group of rank metric codes which
can also be used to test equivalence. Using the strategy of this algorithm we
describe the automorphism groups of Gabidulin-like codes in Section 4. In
the special case of classical Gabidulin codes of full length m = ` these groups
have already been determined in [10] and [14].

2. Rank metric codes.

Let k be any field, `,m ∈ N. To simplify notation we will always assume that
` ≥ m > 0.

Definition 2.1. A linear rank metric code is a subspace C of k`×m. The min-
imum distance of C is d(C) = min{rk(C) | 0 6= C ∈ C}.

The following analogue of the classical Singleton bound is well known
for rank metric codes ([3, Theorem 5.4], [4, Lemma 1]).

Proposition 2.2. Let C ≤ k`×m be a rank metric code of dimension d and
minimum distance r. Then d ≤ `(m− r+ 1). Codes that achieve equality are
called MRD codes (maximum rank distance codes).

Proof. Let π denote the projection of k`×m onto k`×(m−r+1) omitting the
last r − 1 columns of any matrix. Then clearly the kernel of this projection
consists of matrices of rank ≤ r − 1. In particular the restriction of π to C is
an injective mapping of C into a space of dimension `(m− r + 1) thus

d = dim(C) = dim(π(C)) ≤ `(m− r + 1).

�

Clearly the dimension of a maximum rank distance code is always a
multiple of ` but apart from this obvious restriction, MRD codes exist for
all possible parameters, if k admits a cyclic field extension K of degree ` =
[K : k] (see [6, Lemma 3.2] or Definition 2.5 below). These examples have
the property that they are linear over the larger field. Until recently, [14], all
known families of MRD codes arose from linear codes over some extension
field K, so called lifted codes:
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Definition 2.3. Let K/k be a field extension of degree ` and C̃ ≤ Km a K-
linear code of length m. Fix some basis B = (B1, . . . , B`) ∈ K` of K over k.
Then

εB : K → k`×1, εB(
∑̀
i=1

aiBi) = (a1, . . . , a`)
tr

maps C̃ to the lifted code

C := εB(C̃) = {(εB(c1), . . . , εB(cm)) | (c1, . . . , cm) ∈ C̃} ≤ k`×m.

The lifted codes (with respect to the chosen k-basis B of K) are ex-
actly the codes C ≤ k`×m that are invariant under left multiplication with
∆B(K) ≤ k`×`, the regular representation of K with respect to B.

Remark 2.4. The rank of εB((v1, . . . , vm)) equals the k-dimension of the sub-
space 〈v1, . . . , vm〉k of K. Therefore we call this dimension also the rank of
the vector v = (v1, . . . , vm) ∈ Km.

The most well known construction of an MRD code as a lifted code is
due to Gabidulin [5] (cf. [7] for a generalisation for finite fields and [1] for
a generalisation to characteristic 0). All these constructions only depend on
the fact that K/k is a cyclic Galois extension:

Definition 2.5. Let K/k be a cyclic field extension of degree ` and θ a gen-
erator of Gal(K/k). For v = (v1, . . . , vm) ∈ Km and any 1 ≤ d ≤ m − 1 we
put

C̃(v, θ, d) := 〈v, θ(v), . . . , θd−1(v)〉K ≤ Km

where θj(v) = (θj(v1), . . . , θj(vm)) and

C(v, θ, d) := εB(C̃(v, θ, d)) ≤ k`×m.

If the rank of v equals m, then v is called a Gabidulin vector and C(v, θ, d)
the Gabidulin-like code with parameters (v, θ, d).

It can easily be seen (see the proof of Theorem 2.10 below) that C(v, θ, d)
is not an MRD code, if v is not a Gabidulin vector.

The next key lemma provides the most important argument for the
proofs below.

Lemma 2.6. (cf. [1, Theorem 1], [6, Lemma 3.2]) Assume that Gal(K/k) = 〈θ〉
and let p =

∑t
i=0 pix

i ∈ K[x] be a non-zero polynomial of degree t. Then the
kernel of

p(θ) :=

t∑
i=0

piθ
i ∈ Endk(K), α 7→

t∑
i=0

piθ
i(α)

is a k-subspace of K of dimension at most t.
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Proof. As θ is a generator of the Galois group ofK/k the powers (1, θ, . . . , θ`−1) ∈
Endk(K)` are linearly independent over K (see for instance the proof of The-
orem (29.12) in [12]) and Endk(K) is a cyclic algebra

k`×` ∼= Endk(K) ∼=
`−1⊕
i=0

Kθi.

Let A := p(θ), then A,Aθ, . . . , Aθ`−t−1 are linearly independent over K. So
the k-dimension of AEndk(K) is at least `(`− t). Therefore the rank of A is
at least `− t so the kernel of A has at most dimension t over k. �

Corollary 2.7. If v ∈ Km has rank r then (v, θ(v), . . . , θr−1(v)) are linearly
independent over K.

Proof. Assume that there are a0, . . . , ar−1 ∈ K such that
∑r−1

i=0 aiθ
i(v) = 0.

Put p :=
∑r−1

i=0 aix
i ∈ K[x]. Then the kernel of p(θ) contains the subspace

〈v1, . . . vm〉k ≤ K of dimension r. As the degree of p is ≤ r − 1 Lemma 2.6
implies that p = 0. �

Corollary 2.8. Let v ∈ Km be a Gabidulin vector and 1 ≤ d ≤ m− 1. Then

〈v〉K = θ1−d(

d−1⋂
i=0

θi(C̃(v, θ, d))).

In particular C(v, θ, d) = C(w, θ, d) if and only if v = αw for some 0 6= α ∈ K.

Proof. The inclusion ⊆ is clear. So let x ∈
⋂d−1

i=0 θ
i(C̃(v, θ, d)). By Corollary

2.7 the vectors (v, θ(v), . . . , θd(v)) and hence also (θi(v), θi+1(v), . . . , θi+d(v))
are linearly independent over K (for all i). In particular there are unique
ai,j ∈ K such that

x =

d−1∑
j=0

ai,jθ
i+j(v) for all 0 ≤ i ≤ d− 1.

So x =a0,0v+a0,1θ(v)+. . .+a0,d−1θ
d−1(v)

= a1,0θ(v)+. . .+a1,d−2θ
d−1(v)+a1,d−1θ

d(v)

which shows that a0,0 = 0, a0,1 = a1,0, . . ., a0,d−1 = a1,d−2, a1,d−1 = 0 be-
cause (v, θ(v), . . . , θd(v)) are linearly independent. Comparing the coefficients
a1,j and a2,j we similarly find that a1,0 = 0, a1,1 = a2,0, . . ., (0 =)a1,d−1 =
a2,d−2, a2,d−1 = 0. So recursively we find that x = a0,d−1θ

d−1(v). �

Theorem 2.9. Let v = (v1, . . . , vm) ∈ Km be a Gabidulin vector. Then
dimk(C(v, θ, d)) = `d and d(C(v, θ, d)) = m− d+ 1. In particular Gabidulin-
like codes are MRD codes.

Proof. It follows from Corollary 2.7 that dimK(C̃(v, θ, d)) = d. As εB is an
isomorphism and dimk(K) = `, we get dimk(C(v, θ, d)) = `d. To obtain the
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MRD property it suffices to show that any non zero C ∈ C(v, θ, d) has rank
rk(C) ≥ m− (d− 1). Let

0 6= C = εB(

d−1∑
i=0

aiθ
i(v)) ∈ C(v, θ, d).

Then the right kernel of C is

{b = (b1, . . . , bm)tr ∈ km×1 | Cb = 0} = {b ∈ km×1 |
d−1∑
i=0

aiθ
i(

m∑
j=1

bjvj) = 0}.

As (v1, . . . , vm) are linearly independent over k this right kernel is isomorphic

to the kernel of the restriction of
∑d−1

i=0 aiθi to 〈v1, . . . , vm〉k. By Lemma

2.6 the kernel of
∑d−1

i=0 aiθi ∈ Endk(K) has dimension at most d − 1, so
also the right kernel of C has dimension at most d − 1 and hence rk(C) ≥
m− (d− 1). �

Theorem 2.10. A lifted MRD code C = εB(C̃) ≤ k`×m with dimK(C̃) = d < m
is a Gabidulin-like code if and only if

dimK(

d−1⋂
i=0

θi(C̃)) = 1.

Proof. For Gabidulin-like codes the dimension of the intersection is 1 by
Corollary 2.8. So it remains to show the converse direction: Assume that⋂d−1

i=0 θ
i(C̃) = 〈x〉K . Then x ∈ θd−1(C̃), so there is a unique v = (v1, . . . , vm) ∈

C̃, such that

x = θd−1(v) = θd−2(θ(v)) = . . . = θ(θd−2(v)).

As x = θd−i−1(θi(v)) ∈ θd−i−1(C̃) for all 0 ≤ i ≤ d − 1 the injectivity of θ

implies that θi(v) ∈ C̃ for all 0 ≤ i ≤ d− 1.
We now show that v has rank m. Assume that dimk〈v1, . . . , vm〉 = r < m.
Then there is some h ∈ GLm(k) such that

(v1, . . . , vm)h = (w1, . . . , wr, 0, . . . , 0).

Clearly d(C) = d(Ch). Let w := (w1, . . . , wr). Then w is a Gabidulin vector
of length r and Ch contains (D|0`×(m−r)), where D is the Gabidulin code
D = C(w, θ, d) ≤ k`×r if d ≤ r − 1 and D = k`×r if d ≥ r. In the first
case d(D) = r − d + 1 < m − d + 1 (because we assumed r < m) and
d(C) = 1 < m − d + 1 (because d < m) in the second case. This contradicts
the assumption that C is an MRD code.
So v is a Gabidulin vector and hence the subcode

C̃(v, θ, d) = 〈v, θ(v), . . . , θd−1(v)〉

of C̃ has dimension d, therefore C̃ = C̃(v, θ, d). �
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3. Computing automorphism groups of rank metric codes.

The k-linear rank distance preserving automorphisms of k`×m are the maps

κg,h : X 7→ g−1Xh for g ∈ GL`(k), h ∈ GLm(k)

(see [16, Theorem 3.4]) and, if ` = m, also

X 7→ g−1Xtrh (g ∈ GL`(k), h ∈ GLm(k)).

Two codes C and D in k`×m are called (properly) equivalent, if C = g−1Dh
for some g ∈ GL`(k), h ∈ GLm(k) and

Aut(C) := {(g, h) ∈ GL`(k)×GLm(k) | g−1Ch = C}

is called the (proper) automorphism group of C. Note that κg,h = κag,ah
for all 0 6= a ∈ k, so that different automorphisms might induce the same
mappings on k`×m.

The following definition is fundamental in our algorithm to compute
rank metric automorphism groups.

Definition 3.1. Let k be a field and C ≤ k`×m. The right and left idealiser of
C are defined as

R(C) = {Y ∈ km×m | CY ⊆ C} and L(C) = {X ∈ k`×` | XC ⊆ C}.

Then clearly R(C) and L(C) are subalgebras of the full matrix algebra.
All lifted codes, in particular the Gabidulin-like codes from Definition

2.5, are invariant under left multiplication with the field K, or more precisely
its image under the regular representation ∆B(K) ≤ k`×`, so ∆B(K) ≤ L(C).
Note that K ∼= ∆B(K) is a maximal subfield of the central-simple k-algebra
k`×`. The following lemma is probably well known but crucial, as it gives us
all possible left idealisers of such K-linear codes C:

Lemma 3.2. Let K be a field extension of degree ` over k and B some k-basis
of K. Let A be a k-algebra with

∆B(K) ≤ A ≤ k`×`.

Then there is a subfield k ≤ F ≤ K such that

A = Ck`×`(∆B(F )) ∼= F s×s

with s = [K : F ].

Proof. Let A be a subalgebra of k`×` containing ∆B(K). Then k`×1 is a
simple A-module, because it has no ∆B(K)-invariant submodules. Also k`×1

is a faithful k`×`-module and hence also its annihilator in A is trivial, {a ∈ A |
ak`×1 = {0}} = {0}. So A has a faithful simple module and hence is a simple
k-algebra. Therefore A has the double-centraliser property A = Ck`×`(C) for
C := Ck`×`(A) (see [12, Theorem 7.11]). Clearly

k ⊆ C ⊆ Ck`×`(∆B(K)) = ∆B(K),

so C = ∆B(F ) for some subfield F of K and hence A = Ck`×`(∆B(F )). �
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Corollary 3.3. Let K/k be an extension of degree `, C = εB(C̃) be a lifted code

for some K-linear code C̃ ≤ Km. Then there is a subfield F with k ≤ F ≤ K
such that

L(C) = Ck`×`(∆B(F )) ∼= F s×s

with s = [K : F ].

Let R(C)× := R(C) ∩GLm(k) and L(C)× := L(C) ∩GL`(k) denote the
unit groups of right and left idealiser. We also let

N(R(C)) := {h ∈ GLm(k) | h−1R(C)h = R(C)} and
N(L(C)) := {g ∈ GL`(k) | g−1L(C)g = L(C)}.

Clearly R(C)× ≤ N(R(C)) and L(C)× ≤ N(L(C)). The algorithm described
below only applies to rank metric codes for which one of the indices is finite.
Note that this is always the case if k is a finite field, but also for all lifted
codes. In this case let

n(C) := gcd{[N(R(C)) : R(C)×], [N(L(C)) : L(C)×]}

denote the greatest common divisor of these two indices. Let

π1 : GL`(k)×GLm(k)→ GL`(k), (g, h) 7→ g
π2 : GL`(k)×GLm(k)→ GLm(k), (g, h) 7→ h

denote the projections onto the first and second component.

Theorem 3.4. For the automorphism group Aut(C) one has

L(C)× ×R(C)× ≤ Aut(C) ≤ N(L(C))×N(R(C))

more precisely

Aut(C) = {(g, h) ∈ N(L(C))×N(R(C)) | g−1Ch = C}.

Moreover π1(Aut(C))/L(C)× ∼= π2(Aut(C))/R(C)×. In particular the order of
the factor group Aut(C)/(L(C)× ×R(C)×) divides n(C).

Proof. The first two statements are clear, we only need to prove the isomor-
phism (which is also a standard argument): By abuse of notation we denote by
πi the restriction of πi to G := Aut(C) and put L := L(C)× and R := R(C)×.
Then

L ∼= {(g, 1) | g ∈ L} = ker(π2) and R ∼= {(1, h) | h ∈ R} = ker(π1).

Define the two group epimorphisms

π1 : G→ π1(G)/L, (g, h) 7→ g · L and π2 : G→ π2(G)/R, (g, h) 7→ h ·R.

Then ker(π1) = ker(π2) = L×R and hence

N(L(C))/L ≥ π1(G)/L ∼= G/(R× L) ∼= π2(G)/R ≤ N(R(C))/R.

In particular G/(R × L) is isomorphic to a subgroup of N(L(C))/L and
N(R(C))/R, therefore its order divides the order of both factor groups. �
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To compute Aut(C) we first compute L(C) and R(C) as the intersection
of two subspaces. More general for C,D ≤ k`×m put

L(C,D) := {X ∈ k`×` | XC ⊆ D} and R(C,D) := {Y ∈ km×m | CY ⊆ D}.

Lemma 3.5. For C,D ≤ k`×m the spaces L(C,D) and R(C,D) can be computed
by linear algebra methods as the intersection of two subspaces.

Proof. We identify

k`×m ∼= k` ⊗ km ∼= k`m.

The linear mappings of this `m-dimensional vector space induced by left
multiplication by elements in k`×` form the subalgebra

A := k`×` ⊗ k ≤ k`×` ⊗ km×m ∼= k`m×`m

and similarly those induced by right multiplication

B := k ⊗ km×m ≤ k`×` ⊗ km×m ∼= k`m×`m.

Identifying C and D with the corresponding subspaces of k`m one easily com-
putes the subspace

LR(C,D) := {X ∈ k`m×`m | CX ⊆ D}.
Then bases of

L(C,D) = A ∩ LR(C,D) and R(C,D) = B ∩ LR(C,D)

can be computed using Zassenhaus’ algorithm for computing intersections of
subspaces. �

In general normalisers of subalgebras are hard to compute. However, at
least for finite fields, there are fast algorithms to compute the normaliser of a
subgroup of the general linear group [13]. Clearly N(L(C)) ≤ NGL`(k)(L(C)×)
with equality if L(C) is generated by its unit group. The same holds for
N(R(C)).

For lifted codes, we always have L(C) ∼= F s×s for some k ≤ F ≤ K and
hence

N(L(C)) = NGL`(k)(L(C)×) ∼= GLs(F ).Gal(F/k).

From now on we assume that we know one of N(L(C)) and N(R(C)). If
both are known, then we choose the one (X = L,R) for which the index
[N(X(C)) : X(C)×] is smaller. To ease notation assume that X = L. Let

N(L(C)) =
.
∪
n

j=1 tjL(C)×.

Put J := {}. For every j = 1, . . . , n we compute R(tjC, C) as described above.
If this space contains an invertible matrix sj then put J := J ∪ {(tj , sj)}.

Now Theorem 3.4 implies that we obtain a generating set of the auto-
morphism group as follows.

Theorem 3.6. Let R respectively L be generating sets of R(C)× respectively
L(C)× and J, sj , tj be as above. Then

Aut(C) = 〈(g, 1), (1, h), (tj , sj) | g ∈ L, h ∈ R, (tj , sj) ∈ J〉.
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A similar strategy can be used to compute equivalences between rank
metric codes.

4. Automorphism groups of Gabidulin-like codes

In the whole section we assume that K/k is a cyclic extension of degree
` and choose a generator θ of the Galois group Gal(K/k). For k-linearly
independent v := (v1, . . . , vm) ∈ Km and 0 ≤ d < m the Gabidulin-like code
C(v, θ, d) := εB(〈v, θ(v), . . . , θd−1(v)〉K) is defined in Definition 2.5.

To compute the right idealiser (cf. Definition 3.1) of a Gabidulin-like
code C(v, θ, d) we define

Vv := 〈v1, . . . , vm〉k ≤ K
to be the k-subspace of K generated by the entries of the Gabidulin vector
v = (v1, . . . , vm). This is an m-dimensional k-linear subspace of K.

Lemma 4.1. ([9, IV.4] for finite fields) Let k ≤M ≤ K be the maximal subfield
of K such that Vv is an M -linear subspace of K. Then R(C(v, θ, d)) ∼= M for
all 0 < d < m.

Proof. Let 0 6= Y ∈ km×m such that C(v, θ, d)Y ⊆ C(v, θ, d). Then by Corol-
lary 2.8

〈vY 〉K = θ1−d(

d−1⋂
i=0

θi(C̃(v, θ, d)Y )) ⊆ 〈v〉K

so there is some α ∈ K such that vY = αv. Moreover vY ∈ Vv because the
entries of Y are in k. So α ∈M . �

To compute the left idealiser we introduce the splitting field of a Gabidulin-
like code.

Definition 4.2. Let C̃ ≤ Km be a Gabidulin-like code. The smallest subfield
k ≤ F ≤ K such that there exists a subspace D̃ ≤ Fm satisfying

C̃ = D̃ ⊗F K

is called the splitting field of C̃.

Lemma 4.3. Let C̃ ≤ Km be a Gabidulin-like code with splitting field F and
let D̃ ≤ Fm with C̃ = D̃ ⊗F K. Then D̃ is also a Gabidulin-like code.

Proof. Let x ∈ D̃. Then the rank of x ∈ Fm equals the rank of x ⊗ 1 ∈
(F⊗FK)m. As C̃ is an MRD code, so is D̃. Now let d = dimK(C̃) = dimF (D̃).
As the intersection of vector spaces commutes with the tensor product and
K is fixed (as a set) by all powers of θ, we get

d−1⋂
i=0

θi(C̃) =

(
d−1⋂
i=0

θi(D̃)

)
⊗F K.

Applying Theorem 2.10 the intersection on the left hand side hasK−dimension

1. Thus the intersection
⋂d−1

i=0 θ
i(D̃) has F−dimension 1 and as D̃ is an MRD

code, Theorem 2.10 implies that D̃ is a Gabidulin-like code. �
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The next lemma allows us to compute the splitting field using only the
Gabidulin vector. Note that the extension F/k is also cyclic and Gal(F/k) is
generated by θ|F .

Proposition 4.4. Let C̃ ≤ Km be a Gabidulin-like code with splitting field F
and Gabidulin vector v normalised so that v1 = 1. Then F = k[v2, . . . , vm].

Proof. Let F ′ := k[v2, . . . , vm], F the splitting field of C̃ and d := dimK(C̃).
Let w ∈ Fm be the normalised Gabidulin vector of D̃ ≤ Fm and set w′ :=
w ⊗F 1 ∈ C̃. Then w′ has rank m and θi(w′) ∈ C̃ for all 0 ≤ i ≤ d − 1. So

w′ is a Gabidulin vector for C̃ and thus by Corollary 2.8 a multiple of v. As
both vectors are normalised we get v = w′, which gives us F ′ ≤ F .
For the other direction define D̃ := C̃(v, θ|F ′ , d) ≤ (F ′)m by interpreting v as

an element of (F ′)m. Then C̃ = D̃ ⊗F ′ K and the minimality of the splitting
field gives us F ≤ F ′. �

If we take a Gabidulin-like code C̃ = D̃ ⊗F K with splitting field F and
a basis B adjusted to the decomposition K = F ⊗F K, we get

C = Ds×1

where s = [K : F ]. This allows us to compute the left idealiser.

Theorem 4.5. Let C(v, θ, d) be a Gabidulin-like code with splitting field F ≤ K.
Then

L(C(v, θ, d)) = Ck`×`(∆B(F )) ∼= F s×s

(with s = [K : F ]).

Proof. We can change B to fit the decomposition K = F ⊗F K as mentioned
above. Then Ds×1 is a F s×s-module. For the other direction of the equality
we use Corollary 3.3. As we always have ∆B(K) ≤ L(C(v, θ, d)), there is some

field F ′ such that L(C(v, θ, d)) ∼= (F ′)s
′×s′ where s′ = [K : F ′]. Then C is

equivalent to (D′)s′×1 for some D′ as these are the only (F ′)s
′×s′ -modules.

The minimality of the splitting field now gives us F = F ′. �

Putting together all the results of this section, we now obtain the fol-
lowing structure of the automorphism group of Gabidulin-like codes:

Theorem 4.6. Let v = (v1, . . . , vm) ∈ Km be a Gabidulin vector normalised
so that v1 = 1. Let k ≤M ≤ K be the maximal subfield of K such that

Vv := 〈v1, . . . , vm〉k ≤ K

is an M -linear subspace of K. Let F = k[v2, . . . , vm] be the minimal subfield
of K that contains Vv and s := [K : F ]. Then there is a subgroup G ≤
Gal(F/k) = 〈θ|F 〉 such that for any 1 ≤ d < m

Aut(C(v, θ, d)) ∼= (GLs(F )×M×).G.
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