Gitter und sphärische Designs

Elisabeth Nossek

RWTH Aachen

13.12.2011

Homogene und harmonische Polynome

Def.:

- $\mathcal{F}_{n,m} \subset \mathbb{R}[x_1,...,x_n]$ bezeichnet die Menge der homogenen Polynome vom Grad m.
- $\operatorname{\mathsf{Harm}}_{n,m} := \{ f \in \mathcal{F}_{n,m} | \Delta(f) = 0 \}.$

Homogene und harmonische Polynome

Def.:

- $\mathcal{F}_{n,m} \subset \mathbb{R}[x_1,...,x_n]$ bezeichnet die Menge der homogenen Polynome vom Grad m.
- $\mathsf{Harm}_{n,m} := \{ f \in \mathcal{F}_{n,m} | \Delta(f) = 0 \}.$

Bem.:

- Harm_{n,m} ist ein irreduzibler $O_n(\mathbb{R})$ -Modul.
- $\mathcal{F}_{n,m} = \mathsf{Harm}_{n,m} \oplus (x,x) \mathsf{Harm}_{n,m-2} \oplus (x,x)^2 \mathsf{Harm}_{n,m-4} \dots$

sphärische Designs

Def.(Delsarte, Goethals, Seidel(1977)): Eine endliche Menge $X \subset \mathcal{S}_r^{n-1} := \{x \in \mathbb{R}^n | (x,x) = r\}$ heißt sphärisches t-Design falls

$$\int_{\mathcal{S}_r^{n-1}} f(x) dx = \frac{1}{|X|} \sum_{x \in X} f(x) \forall f \in \mathcal{F}_{n,m}$$

mit $m \le t$ und der Normierung $\int_{\mathcal{S}_r^{n-1}} dx = 1$.

sphärische Designs

Def.(Delsarte, Goethals, Seidel(1977)): Eine endliche Menge $X \subset \mathcal{S}_r^{n-1} := \{x \in \mathbb{R}^n | (x,x) = r\}$ heißt sphärisches t-Design falls

$$\int_{\mathcal{S}_r^{n-1}} f(x) dx = \frac{1}{|X|} \sum_{x \in X} f(x) \forall f \in \mathcal{F}_{n,m}$$

mit $m \le t$ und der Normierung $\int_{\mathcal{S}_r^{n-1}} dx = 1$.

Satz (Delsarte, Goethals, Seidel): Eine endliche Menge $X \subset \mathcal{S}_r^{n-1}$ ist genau dann ein sphärisches t-Design wenn

$$\sum_{x \in X} f(x) = 0 \qquad \forall f \in \mathsf{Harm}_{n,m} \forall 1 \leq m \leq t.$$

Beispiele

Die zweidimensionalen n-1-Designs sind genau die regelmäßige n-Ecke.

Beispiele

Die zweidimensionalen n-1-Designs sind genau die regelmäßige n-Ecke.

Beweis: Wir identifizieren \mathbb{R}^2 mit \mathbb{C} .

 $\mathsf{Harm}_{1,m}(\mathbb{C}) = \langle \Im(z^m), \Re(z^m) \rangle$. Sei eine endliche Menge $X := \{x_1, \dots, x_n\} \subset \mathbb{C}$ mit $x_i \bar{x_i} = 1$. Betrachte nun

$$g(z) := \prod_{i=1}^{n} (z - x_i) = z^n + \sum_{i=1}^{n-1} a_i z^{n-i} + c \in \mathbb{C}[z].$$

Damit gilt:

$$\sum_{i=1}^{n} x_i^m = 0 \ \forall 1 \leq m \leq n-1 \Leftrightarrow a_i = 0 \ \forall 1 \leq i \leq n-1.$$

Also gilt $g(z) = z^n + c$ mit $c\bar{c} = 1$.

Beispiele

- Beispiele für dreidimensionale Designs:
 - das regelmäßige Octaeder und der Würfel bilden 3-Designs.
 - regelmäßige Dodekaeder und Ikosaeder bilden 5-Designs.
- Die Ecken eines regelmäßigen Simplex im \mathbb{R}^n bilden ein 2-Design.

Charakterisierungen

Satz (Venkov): Sei $X\subset \mathcal{S}_r^{n-1}$ eine endlich nicht leere Menge dann ist X ein sphärisches t-Design wenn für $\{g,u\}=\{t,t-1\}$ mit g gerade und u ungerade für alle $\alpha\in\mathbb{R}$ gilt:

$$\sum_{x \in X} (x, \alpha)^g = c_g |X| r^{g/2} (\alpha, \alpha)^{g/2} \text{ und } \sum_{x \in X} (x, \alpha)^u = 0$$

$$\text{mit } c_g := \frac{1 \cdot 3 \cdots g - 1}{n(n+2) \cdots (n+g-2)}.$$

Charakterisierungen

Satz (Venkov): Sei $X \subset \mathcal{S}_r^{n-1}$ eine endlich nicht leere Menge dann ist X ein sphärisches t-Design wenn für $\{g,u\}=\{t,t-1\}$ mit g gerade und u ungerade für alle $\alpha \in \mathbb{R}$ gilt:

$$\sum_{x \in X} (x, \alpha)^g = c_g |X| r^{g/2} (\alpha, \alpha)^{g/2} \text{ und } \sum_{x \in X} (x, \alpha)^u = 0$$

mit $c_g := \frac{1 \cdot 3 \cdots g - 1}{n(n+2) \cdots (n+g-2)}$.

Satz: Sei $X = -X \subset \mathcal{S}_r^{n-1}$ eine endlich Menge dann gilt

$$\sum_{x,y \in X} (x,y)^{2l} \ge c_{2l} r^{2l} |X|^2$$

mit c_{2l} wie oben, für alle $l \in \mathbb{N}_0$.

X ist genau dann ein sphärisches 2I + 1-Design wenn Gleichheit gilt.

Anwendung: Kubaturformeln

Def.: Die Kubaturformel vom Grad t auf \mathcal{S}_r^{n-1} ist ein Paar (X,W) von einer endlichen Menge $X\subset \mathcal{S}_r^{n-1}$ und einer Funktion $W:X\to\mathbb{R}_{>0}$ so dass für alle Polynomfunktionen $f:\mathbb{R}^n\to\mathbb{R}$ mit $\operatorname{grad}(f)\leq t$ gilt:

$$\sum_{x \in X} W(x)f(x) = \int_{\mathcal{S}_r^{n-1}} f(x)d\sigma(x).$$

mit dem rotationsinvarianten Maß σ auf \mathcal{S}_r^{n-1} und der Normierung $\sigma(\mathcal{S}_r^{n-1})=1.$

Anwendung: Kubaturformeln

Bem.:

- $(X, x \mapsto \frac{1}{|X|})$ sind genau die sphärischen t-Designs.
- Zur numerische Berechnung von Integralen sind besonders Kubaturformeln mit kleiner Kardinalität |X| und hohem Grad interessant.
- Beispiele für Kubaturformeln die mit Hilfe von Gitter konstruiert wurden (de la Harpe, Pache, Venkov (2006)):
 - $(\mathbb{D}_4 \cup \sqrt{2}\mathbb{D}_4^*)_2$ ist ein 7-Design mit 48 Punkten.
 - $\frac{1}{\sqrt{2}}(\mathbb{D}_4 \cup \sqrt{2}\mathbb{D}_4^*)_2 \cup \frac{1}{\sqrt{6}}(\mathbb{D}_4 \cup \sqrt{2}\mathbb{D}_4^*)_6$ ist eine Kubaturformel vom Grad 11 mit 240 Punkten.

Anwendung: Designs in der Quantentheorie

 SIC-POVMs (symmetric, informationally complete, positive operator valued measure) sind 2-Designs.

Anwendung: Designs in der Quantentheorie

- 1 SIC-POVMs (symmetric, informationally complete, positive operator valued measure) sind 2-Designs.
- 2 Ein Quantum t-Design ist ein Wahrscheinlichkeitsverteilung über Quantenzustände die nicht von der Gleichverteilung über alle Quantenzustände unterschieden werden kann, wenn t Kopien der Zustände in dieser Verteilung vorliegen.

$$\sum_{\psi} p_i (|\psi\rangle\langle\psi|)^{\otimes t} = \int_{\psi} (|\psi\rangle\langle\psi|)^{\otimes t} d\psi$$

Gitter

Def.: Sei E := (V, (,)) ein euklidischer Vektorraum und $\mathcal{B} := (b_1, \dots, b_n)$ eine linear unabhängige Folge. Dann

- definiert $L := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_n$ ein Gitter.
- $G(\mathcal{B}) := ((b_i, b_j))_{1 \le i, j \le n}$ heißt Grammatrix von L.
- det(L) := det(G(B)) ist unabhängig von der Wahl von B.
- $\min(L) := \min\{(\lambda, \lambda) | 0 \neq \lambda \in L\}.$
- $S(L) := \{\lambda \in L | (\lambda, \lambda) = \min(L) \}.$
- |S(L)| heißt Kusszahl.

Duales Gitter

Def.: Sei *L* ein Gitter:

- $L^* := \{ v \in V | (v, \lambda) \in \mathbb{Z} \forall \lambda \in L \}$ bezeichnet das duale Gitter zu L.
- L heißt unimodular falls L = L*.
- L heißt ganz falls für alle $x, y \in L(x, y) \in \mathbb{Z}$.
- L nennt man gerade falls $(x, x) \in 2\mathbb{Z}$ für alle $x \in X$.

starkperfekte Gitter

Def.(Venkov): Ein Gitter L heißt starkperfekt wenn S(L) ein sphärisches 4-Design bildet.

L heißt dual starkperfekt falls L und L^* starkperfekt sind.

starkperfekte Gitter

Def.(Venkov): Ein Gitter L heißt starkperfekt wenn S(L) ein sphärisches 4-Design bildet.

L heißt dual starkperfekt falls L und L^* starkperfekt sind.

Bem.: Da S(L) = -S(L) gilt ist S(L) auch ein sphärisches 5-Design.

starkperfekte Gitter

Def.(Venkov): Ein Gitter L heißt starkperfekt wenn S(L) ein sphärisches 4-Design bildet.

L heißt dual starkperfekt falls L und L^* starkperfekt sind.

Bem.: Da S(L) = -S(L) gilt ist S(L) auch ein sphärisches 5-Design.

Satz (Venkov): Starkperfekte Gitter sind extrem.

*

Beweis

Charakterisierung von Voronoi: Ein Gitter ist extrem genau dann wenn es eutaktisch und perfekt ist.

Sei nun L ein starkperfektes Gitter, o.B.d.A. min(L) = 1. Die Eutaxie von L folgt aus der 2-Designeigenschaft.

Noch z.z. L ist perfekt, d.h. $\langle x^{tr}x|x\in S(L)\rangle=\operatorname{Sym}_n(\mathbb{R})$.

Angenommen es gebe ein $A \in \operatorname{Sym}_n(\mathbb{R})$ mit $\operatorname{Spur}(Ax^{tr}x) = 0$ für alle $x \in S(L)$ dann gilt:

$$\operatorname{\mathsf{Spur}}(Ax^{tr}x) = x^{tr}Ax = p_A(x) \in \mathcal{F}_{n,2}$$

und

$$\int_{S^{n-1}} (p_A(x))^2 dx = \frac{1}{|S(L)|} \sum_{x \in S(L)} (p_A(x))^2 = 0.$$

Also gilt $p_A(x) = 0$.

Ansätze zur Klassifikation

 Klassifikation von starkperfekten Gittern in fester Dimension: ab Dimension 13 Einschränkung auf dual starkperfekte Gitter.

Ansätze zur Klassifikation

- Klassifikation von starkperfekten Gittern in fester Dimension: ab Dimension 13 Einschränkung auf dual starkperfekte Gitter.
- 2 Klassifikation von ganzen Gittern mit festem Minimum: Übergang zu Designs von höherem Grad notwendig.

Sei L ein ganzes Gitter mit min(L) =: m.

Bem.:

• Für alle $x \neq \pm y \in S(L)$ gilt $|(x, y)| \leq \frac{m}{2}$.

$$s := (s_i)_{1 \le i \le \frac{m}{2}} := (|\{x \in S(L)|(y,x) = i\}|)_{1 \le i \le \frac{m}{2}} \in \mathbb{Z}^{\frac{m}{2}}.$$

Sei L ein ganzes Gitter mit min(L) =: m.

Bem.:

• Für alle $x \neq \pm y \in S(L)$ gilt $|(x, y)| \leq \frac{m}{2}$.

$$s := (s_i)_{1 \le i \le \frac{m}{2}} := (|\{x \in S(L)|(y,x) = i\}|)_{1 \le i \le \frac{m}{2}} \in \mathbb{Z}^{\frac{m}{2}}.$$

• Sei L nicht unimodular, dann gilt für alle $x \in S(L)$ und $\alpha \in \Lambda^* \setminus \Lambda$ die minimale Norm in $\alpha + \Lambda$ haben, dass $|(x,\alpha)| \leq \frac{m}{2}$.

$$t(\alpha) := (t_i)_{1 \le i \le \frac{m}{2}} := (|\{x \in S(L) | (\alpha, x) = i\}|)_{1 \le i \le \frac{m}{2}} \in \mathbb{Z}^{\frac{m}{2}}.$$

Satz: Sei S(L) ein sphärisches t-Design und Dann gilt:

$$As = c - (2m^{2i})_{1 \le i \le \frac{t}{2}}$$

mit
$$A := (i^{2j})_{1 \le j \le \frac{t}{2}, 1 \le i \le \frac{m}{2}}$$
, und $c := (c_{2j}|S(L)|)_{1 \le j \le \frac{t}{2}}$.

Satz: Sei S(L) ein sphärisches t-Design und Dann gilt:

$$As = c - (2m^{2i})_{1 \le i \le \frac{t}{2}}$$

$$\mathsf{mit}\ A := (i^{2j})_{1 \le j \le \frac{t}{2}, 1 \le i \le \frac{m}{2}}, \ \mathsf{und}\ c := (c_{2j}|S(L)|)_{1 \le j \le \frac{t}{2}}.$$

Satz: Sei L nicht unimodular und S(L) ein sphärisches t-Design und $\alpha \in L^*$ minimal in seiner Klasse modulo L. Dann gilt

$$At(\alpha) = c.$$

extremale unimodulare gerade Gitter

Satz (Hecke): Unimodulare gerade Gitter gibt es nur in durch 8 teilbaren Dimensionen.

Def.: Ein unimodulares gerades Gitter $L \leq \mathbb{R}^{24a+8b}$ heißt extremal falls $\min(L) = 2a + 2$.

extremale unimodulare gerade Gitter

Satz (Hecke): Unimodulare gerade Gitter gibt es nur in durch 8 teilbaren Dimensionen.

Def.: Ein unimodulares gerades Gitter $L \leq \mathbb{R}^{24a+8b}$ heißt extremal falls $\min(L) = 2a + 2$.

Satz (Venkov, 1984): Sei L ein unimodulares gerades extremales Gitter dann ist S(L) ein (11-4b)-Design. \star

Beweis

Sei

$$\vartheta_{L,p}(\tau) = \sum_{I \in L} p(I)q^{(I,I)} = \sum_{i=0}^{\infty} q^i \left(\sum_{I \in L_i} p(I)\right) \text{ mit } q = e^{\pi i \tau}$$

mit $p\in \operatorname{Harm}_{n,d}$ dann ist $\vartheta_{L,p}$ für $d\geq 1$ eine Spitzenform vom Gewicht $\frac{n}{2}+d$ und wird von $\Delta^{\frac{\min(L)}{2}}$ geteilt.

Falls

$$\frac{n}{2}+d<12\frac{\min(L)}{2}(\Leftrightarrow d<12-4b)$$

folgt also $\vartheta_{L,p} = 0$ und somit $\sum_{l \in L_i} p(l) = 0$ für alle i.

Ergebnisse

- 1 Minimum 1, 5-Design: \mathbb{Z} .
- 2 Minimum 2, 5-Design: \mathbb{A}_1 , \mathbb{A}_2 , \mathbb{D}_4 , \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 (Venkov).
- **3** Minimum 3, 5-Design: O_1 , O_7 , O_{16} , O_{22} , O_{23} (Venkov).
- **4** Minimum ≤ 5, 7-Design: \mathbb{E}_8 , O_{23} , Λ_{16} , Λ_{23} , Λ_{24} und die geraden unimodularen Gitter in Dimension 32 (Martinet).
- **⑤** Minimum ≤ 7, 9-Design: Λ₂₄ und die extremalen unimodularen, geraden Gitter in Dimension 48.
- **6** Minimum ≤ 9, 11-Design: Λ_{24} und die extremalen unimodularen, geraden Gitter in Dimension 48 und 72.
- Minimum ≤ 11 , 13-Design: keine Gitter.

minimaler Typ

Lemma: Sei *L* ein starkperfektes *n*-dimensionales Gitter dann gilt:

$$\min(L) \cdot \min(L^*) \geq \frac{n+2}{3}.$$

minimaler Typ

Lemma: Sei *L* ein starkperfektes *n*-dimensionales Gitter dann gilt:

$$\min(L) \cdot \min(L^*) \geq \frac{n+2}{3}.$$

Beweis: Sei $\alpha \in S(L^*)$ und bezeichne $m := \min(L)$, $m^* := -\min(L^*)$ dann gilt:

$$0 \leq \sum_{x \in S(L)} (x, \alpha)^4 - (x, \alpha)^2 = \frac{|S(L)|mm^*}{n} \left(\frac{3mm^*}{n+2} - 1\right)$$

Elisabeth Nossek

minimaler Typ

Lemma: Sei *L* ein starkperfektes *n*-dimensionales Gitter dann gilt:

$$\min(L) \cdot \min(L^*) \geq \frac{n+2}{3}.$$

Beweis: Sei $\alpha \in S(L^*)$ und bezeichne $m := \min(L)$, $m^* := -\min(L^*)$ dann gilt:

$$0 \leq \sum_{x \in S(L)} (x, \alpha)^4 - (x, \alpha)^2 = \frac{|S(L)|mm^*}{n} \left(\frac{3mm^*}{n+2} - 1\right)$$

Def.: Falls in der obigen Ungleichung Gleichheit gilt heißt L von minimalem Typ und $(x, \alpha) \in \{-1, 0, 1\}$ für alle $x \in \mathcal{S}(L)$ und $\alpha \in \mathcal{S}(L^*)$.

Klassifikation von Gitter von minimalem Typ

Satz: Sei L ein dual starkperfektes Gitter von minimalem Typ mit s := |S(L)| und $t := |S(L^*)|$ und n > 1 dann gilt:

$$P(b) := (s+t)^{2} \left(c_{6} + (2b - \frac{1}{4})c_{4} + (b^{2} - \frac{b}{2})c_{2} - \frac{b^{2}}{4} \right)$$

$$- 2st \left(\frac{(10-n)}{12n(n+2)^{2}} (3 + b(n+2)^{2}) - \frac{n-1}{6n}b^{2} \right)$$

$$- \frac{3}{2}(s+t)(1+b^{2}) \le 0$$

für alle $b \in \mathbb{R}$.

Beweis

O.b.d.A. können wir $\min(L)=1$ annehmen. Bezeichne $r:=\sqrt{\frac{3}{n+2}}$ und $S^*:=rS(L^*)$.

 $X:=S(L)\bigcup S^*$ ist ein sphärisches 4-Design und X=-X also gilt:

$$\sum_{x,y\in X} (x,y)^{2k} \ge c_{2k}|X|^2$$

mit Gleichheit für $k \in \{1, 2\}$.

Sei für $b \in \mathbb{R}$

$$f_b(x) := (x^2 - \frac{1}{4})(x^2 + b)^2$$

$$= x^6 + (2b - \frac{1}{4})x^4 + (b^2 - \frac{b}{2})x^2 - \frac{1}{4}b^2 \in \mathbb{R}[x],$$

dann gilt für alle $b \in \mathbb{R}$

$$f_b((x,y)) \leq 0$$

für $x \neq \pm y \in S(L)$ bzw. in S^* .

Beweis Teil 2

Damit folgt:

$$\sum_{x,y\in X} f_b((x,y)) \ge |X|^2 (c_6 + (2b - \frac{1}{4})c_4 + (b^2 - \frac{b}{2})c_2 - \frac{1}{4}b^2) =: P_1(b).$$

Für alle $b \in \mathbb{R}$ gilt:

$$0 \geq \sum_{x \neq \pm y \in S(L)} f_b((x,y)) + \sum_{x \neq \pm y \in S^*} f_b((x,y))$$

$$= \sum_{x,y \in X} f_b((x,y)) - 2 \sum_{x \in S(L),y \in S^*} f_b((x,y)) - 2 \sum_{x \in X} f_b((x,x))$$

$$\geq P_1(b) - 2t(n_r f_b(r) + n_0 f_b(0)) - 2(s+t) f_b(1)$$

$$= P_1(b) - 2st\left(\frac{(10-n)(3+b(n+2))^2}{12n(n+2)^2} - \frac{(n-1)b^2}{6}\right)$$

$$-\frac{3}{2}(s+t)(1+b^2)$$

Ergebnisse

Bis Dimension 12 sind alle starkperfekten Gitter bekannt (Nebe, Venkov):

dim	1	2	4	6	7	8	10	12
	\mathbb{Z}	\mathbb{A}_2	\mathbb{D}_4	$\mathbb{E}_6, \mathbb{E}_6^*$	$\mathbb{E}_7, \mathbb{E}_7^*$	\mathbb{E}_8	$K'_{10}, (K'_{10})^*$	K_{12}, K_{12}^*

Ergebnisse

Bis Dimension 12 sind alle starkperfekten Gitter bekannt (Nebe, Venkov):

dim	1	2	4	6	7	8	10	12
	\mathbb{Z}	\mathbb{A}_2	\mathbb{D}_4	$\mathbb{E}_6, \mathbb{E}_6^*$	$\mathbb{E}_7, \mathbb{E}_7^*$	\mathbb{E}_8	$K'_{10}, (K'_{10})^*$	K_{12}, K_{12}^*

In Dimension 13 bis 15 sind alle dual starkperfekten Gitter bekannt:

- in Dimension 13 und 15 existieren keine dual starkperfekten Gitter.
- in Dimension 14 gibt es nur ein dual starkperfektes Gitter: Q_{14} (Nebe, Venkov)
- in Dimension 16 sind 4 Gitter bekannt: Λ_{16} , O_{16} , O_{16}^* und N_{16} .