Hecke Operators in Coding Theory

Elisabeth Nossek

RWTH Aachen University

07/20/2009

RWTHAACHEN UNIVERSITY

Elisabeth Nossek Hecke Operators in Coding Theory

Codes

- $C \leq \mathbb{F}_q^N$ is called a linear code over \mathbb{F}_q of length N.
- $b: \mathbb{F}_q^N \times \mathbb{F}_q^N \mapsto \mathbb{F}_q: (x, y) \mapsto \sum_{i=1}^N x_i \overline{y_i}$ be a bilinear or hermitian form.
- $C^{\perp} := \{ v \in \mathbb{F}_q^N | b(c, v) = 0 \, \forall c \in C \}$ is the dual code of C.
- C is called selfdual if $C^{\perp} = C$, then dim(C) = N/2.

Kneser-Neighbors

- C and D selfdual codes over 𝔽_q with length N are called (1)-neighbors C ~ D iff dim(C/C ∩ D) = 1.
- neighboring graph Γ : vertices $\mathcal{F} := \{C \leq \mathbb{F}_q^N | C = C^{\perp}\}$ and edges between neighbors.
- A adjacency matrix of Γ.

Results about the neighboring graph

• **Theorem**:(Kneser) Γ is connected.

Determine all selfdual Codes in \mathcal{F} (or \mathcal{F} /equivalence) by going through the neighboring graph.

• **Theorem**:(Nebe)

Description of eigenvalues and eigenspaces of A.

Higher Neighboring Relations

- C and D selfdual codes over 𝔽_q with length N are called k-neighbors C ∼_k D iff dim(C/C ∩ D) = k.
- k-neighboring graph Γ_k , A_k adjacency matrix of Γ_k .
- Question: Are there polynomials $p_k \in \mathbb{Q}[X]$ such that $A_k = p_k(A)$?

Adjacency Matrices

The powers of adjacency matrices "count" paths through the graph

 $(A^m)_{ij} = |\{\text{paths of length m from i-th to j-th vertex}\}|.$

Isometry Group

- $G(\mathbb{F}_q^N, b)$ the group of isometries acts transitively on $\mathcal{F} = \{C \leq \mathbb{F}_q^N | C = C^{\perp}\}$ (Witt's theorem).
- $G(\mathbb{F}_q^N, b)$ preserves neighboring relations.
- Hence $|\{D \in \mathcal{F} | D \sim_k C\}|$ is independent of the choice of C.

Example

Decomposition of A^k

Theorem:

Let m_{kr} be the number of paths of length k between $C \sim_r D$ in Γ_1

$$A_1^k = \sum_{r=0}^k m_{kr} A_r$$

Recursive formula for m_{kr} :

$$m_{kr} = b_{r,r-1}m_{k-1,r-1} + b_{r,r}m_{k-1,r} + b_{r,r+1}m_{k-1,r+1}$$

where $b_{ij} := |\{E \in \mathcal{F} | E \sim_j C \text{ and } E \sim_1 D\}$ for $C \sim_i D$.

Example continued

Example continued

Elisabeth Nossek Hecke Operators in Coding Theory

Example continued

Elisabeth Nossek

Hecke Operators in Coding Theory

Polynomial for A_k

Theorem: Let $P = (p_{ij})_{0 \le i,j \le k} := M^{-1}$ with $M = (m_{ij})_{0 \le i,j \le k}$

$$A_k = p_k(A) := \sum_{j=0}^k p_{kj} A^j$$

Elisabeth Nossek Hecke Operators in Coding Theory

$G(\mathbb{F}_q^N, b)$ -linearity

Let $\mathcal{V} := \mathbb{C}^{\mathcal{F}} = \langle e_{\mathcal{C}} | \mathcal{C} \in \mathcal{F} \rangle_{\mathbb{C}}$ be a complex vector space:

V is a G(F^N_q, b)-permutation module through the action of G(F^N_q, b) on F

$$A_k: \mathcal{V} \to \mathcal{V}: e_C \mapsto \sum_{D \sim_k C} e_D$$

- A_k is a $G(\mathbb{F}_q^N, b)$ -linear endomorphism on \mathcal{V} .
- Theorem: $\operatorname{End}_{\mathbb{C}G(\mathbb{F}_q^N,b)}(\mathcal{V}) = \mathbb{C}[A_1]$

۲

Hecke-Operators

Let S_N act on \mathbb{F}_q^N by permuting the components.

- Let [C] be the orbit under the induced action on $\mathcal F$
- $\overline{\mathcal{V}} := \langle [C] | C \in \mathcal{F} \rangle$
- Hecke operator:

$$T_k: \overline{\mathcal{V}} \to \overline{\mathcal{V}}: [C] \mapsto \sum_{D \sim_k C} [D]$$

$$A_k: \mathcal{V} \to \mathcal{V}: e_C \mapsto \sum_{D \sim_k C} e_D$$

• Corollary: $p_k(T_1) = T_k$

Hecke-Operators

Let S_N act on \mathbb{F}_q^N by permuting the components.

- Let [C] be the orbit under the induced action on $\mathcal F$
- $\overline{\mathcal{V}} := \langle [C] | C \in \mathcal{F} \rangle$
- Hecke operator:

$$T_k: \overline{\mathcal{V}} \to \overline{\mathcal{V}}: [C] \mapsto \sum_{D \sim_k C} [D]$$

 $A_k: \mathcal{V} \to \mathcal{V}: e_C \mapsto \sum_{D \sim_k C} e_D$

• Corollary: $p_k(T_1) = T_k$

Example for T_k

• \mathbb{F}_2 , N = 8

• 2 equivalence classes: $[e_8]$ and $[i_2^4]$.

• $T_1 = \begin{bmatrix} 7 & 7 \\ 2 & 12 \end{bmatrix}$.

$$T_{2} = \frac{1}{3}T_{1}^{2} - \frac{1}{3}T_{1} - \frac{14}{3}I_{2}$$

$$T_{3} = \frac{1}{27}T_{1}^{3} - \frac{4}{21}T_{1}^{2} - \frac{47}{21}T_{1} + 2I_{2}$$