Strongly perfect lattices

Elisabeth Nossek

RWTH Aachen

6/7/2011

Definition: Let E := (V, (,)) be an euclidian vector space and (b_1, \ldots, b_n) linear independent then

- $L := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_n$ is a lattice.
- $G(\mathcal{B}) := ((b_i, b_j))_{1 \le i,j \le n}$ is its Gram matrix.
- det(L) := det(G(B)) is independent of the choice of B.
- $L^* := \{ v \in V | (v, \lambda) \in \mathbb{Z} \forall \lambda \in L \}$ is the dual lattice of L.
- $\min(L) := \min\{(\lambda, \lambda) | 0 \neq \lambda \in L\}.$
- $S(L) := \{\lambda \in L | (\lambda, \lambda) = \min(L) \}.$
- |S(L)| is called the kissing number of L.

Density of a lattice

Definition: Density of a lattice *L* is defined as

$$\Delta(L) := \frac{\operatorname{Vol}(S^{n-1}) \left(\sqrt{\min(L)}/2\right)^n}{\operatorname{Vol}(\operatorname{fundamental area})} = \frac{\operatorname{Vol}(S^{n-1})}{2^n} \left(\frac{\min(L)^n}{\det(L)}\right)^{1/2}$$

where $S^{n-1} := \{x \in \mathbb{R}^n | (x, x) = 1\}.$

Definition:

Lattices that are local maxima of Δ are called extreme.

Strongly perfect lattices

Definition:

• A finite subset $X \subset S^{n-1}$ is called a spherical t-design if

$$\int_{S^{n-1}} f(x) dx = \frac{1}{|X|} \sum_{x \in X} f(x) \qquad \forall f \in \mathcal{F}_{n,m} m \leq t$$

where $\mathcal{F}_{n,m}$ are all homogenous polynomials of degree *m* in $\mathbb{R}[X_1, \ldots, X_n]$.

• A lattice L is strongly perfect if $S(\frac{1}{\sqrt{\min(L)}}L)$ is a spherical 4-design.

Theorem (Venkov):

Strongly perfect lattices are extreme.

Theorem: *L* is strongly perfect if and only if for all $\alpha \in \mathbb{R}^n$ holds:

$$\sum_{x \in S(L)} (x, \alpha)^2 = \frac{|S(L)|\min(L)|}{n} (\alpha, \alpha)$$
$$\sum_{x \in S(L)} (x, \alpha)^4 = \frac{3|S(L)|\min(L)^2}{n(n+2)} (\alpha, \alpha)^2$$

Methods for classification

- Theorem above applied for $\alpha \in L^*$.
- Known boundaries for |S(L)| and $\min(L)\min(L^*)$.
- θ -series for lattices.
- Maximal even superlattices.

The classification is complete up to dimension 12 (Nebe, Venkov):

dim	1	2	4	6	7	8	10	12
	\mathbb{Z}	\mathbb{A}_2	\mathbb{D}_4	$\mathbb{E}_6, \mathbb{E}_6^*$	$\mathbb{E}_7, \mathbb{E}_7^*$	\mathbb{E}_8	$K_{10}', (K_{10}')^*$	K_{12}, K_{12}^*

Classification of dual strongly perfect lattices:

- n = 13: no dual strongly perfect lattice (Nebe, Venkov, N).
- n = 14: one lattice Q_{14} (Nebe, Venkov).
- *n* = 15 and 17: probably no dual strongly perfect lattice, classification almost complete.

Remark: Further lattices are known in higher dimensions e.g.: Barnes-Wall lattice in dimension 16, Leech lattice in dimension 24.