Strongly perfect lattices

Elisabeth Nossek

RWTH Aachen
6/7/2011
RMNHAACHEN
UNIVERSITY

Lattices

Definition: Let $E:=(V,()$,$) be an euclidian vector space and$ $\left(b_{1}, \ldots, b_{n}\right)$ linear independent then

- $L:=\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{n}$ is a lattice.
- $G(\mathcal{B}):=\left(\left(b_{i}, b_{j}\right)\right)_{1 \leq i, j \leq n}$ is its Gram matrix.
- $\operatorname{det}(L):=\operatorname{det}(G(\mathcal{B}))$ is independent of the choice of \mathcal{B}.
- $L^{*}:=\{v \in V \mid(v, \lambda) \in \mathbb{Z} \forall \lambda \in L\}$ is the dual lattice of L.
- $\min (L):=\min \{(\lambda, \lambda) \mid 0 \neq \lambda \in L\}$.
- $S(L):=\{\lambda \in L \mid(\lambda, \lambda)=\min (L)\}$.
- $|S(L)|$ is called the kissing number of L.

Density of a lattice

Definition: Density of a lattice L is defined as

$$
\Delta(L):=\frac{\operatorname{Vol}\left(S^{n-1}\right)(\sqrt{\min (L)} / 2)^{n}}{\operatorname{Vol}(\text { fundamental area })}=\frac{\operatorname{Vol}\left(S^{n-1}\right)}{2^{n}}\left(\frac{\min (L)^{n}}{\operatorname{det}(L)}\right)^{1 / 2}
$$

where $S^{n-1}:=\left\{x \in \mathbb{R}^{n} \mid(x, x)=1\right\}$.

Definition:

Lattices that are local maxima of Δ are called extreme.

Strongly perfect lattices

Definition:

- A finite subset $X \subset S^{n-1}$ is called a spherical t-design if

$$
\int_{S^{n-1}} f(x) d x=\frac{1}{|X|} \sum_{x \in X} f(x) \quad \forall f \in \mathcal{F}_{n, m} m \leq t
$$

where $\mathcal{F}_{n, m}$ are all homogenous polynomials of degree m in $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$.

- A lattice L is strongly perfect if $S\left(\frac{1}{\sqrt{\min (L)}} L\right)$ is a spherical 4-design.

Theorem (Venkov):

Strongly perfect lattices are extreme.

Strongly perfect lattices

Theorem: \mathbf{L} is strongly perfect if and only if for all $\alpha \in \mathbb{R}^{n}$ holds:

$$
\begin{aligned}
\sum_{x \in S(L)}(x, \alpha)^{2} & =\frac{|S(L)| \min (L)}{n}(\alpha, \alpha) \\
\sum_{x \in S(L)}(x, \alpha)^{4} & =\frac{3|S(L)| \min (L)^{2}}{n(n+2)}(\alpha, \alpha)^{2}
\end{aligned}
$$

Methods for classification

- Theorem above applied for $\alpha \in L^{*}$.
- Known boundaries for $|S(L)|$ and $\min (L) \min \left(L^{*}\right)$.
- θ-series for lattices.
- Maximal even superlattices.

Classification of strongly perfect lattices

The classification is complete up to dimension 12 (Nebe, Venkov):

dim	1	2	4	6	7	8	10	12
	\mathbb{Z}	\mathbb{A}_{2}	\mathbb{D}_{4}	$\mathbb{E}_{6}, \mathbb{E}_{6}^{*}$	$\mathbb{E}_{7}, \mathbb{E}_{7}^{*}$	\mathbb{E}_{8}	$K_{10}^{\prime},\left(K_{10}^{\prime}\right)^{*}$	K_{12}, K_{12}^{*}

Classification of dual strongly perfect lattices:

- $n=13$: no dual strongly perfect lattice (Nebe, Venkov, N).
- $n=14$: one lattice Q_{14} (Nebe, Venkov).
- $n=15$ and 17: probably no dual strongly perfect lattice, classification almost complete.
Remark: Further lattices are known in higher dimensions e.g.: Barnes-Wall lattice in dimension 16, Leech lattice in dimension 24.

