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Spherical designs and lattices
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Abstract In this article we prove that integral lattices with minimum ≤ 7
(or ≤ 9) whose set of minimal vectors form spherical 9-designs (or 11-designs
respectively) are extremal, even and unimodular. We furthermore show that
there does not exist an integral lattice with minimum ≤ 11 which yields a
13-design.
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1 Introduction

The density of a sphere packing associated to a lattice Λ is given through the
Hermite function γ(Λ). The local maxima of γ are called extreme lattices and
were characterised through the geometry of their shortest vectors, S(Λ) :=
{l ∈ Λ|(l, l) = min(Λ)}, where min(Λ) := min{(x, x)|0 6= x ∈ Λ}, in the works
of Voronoi (1908), Korkine and Zolotareff (1872). A prominent subclass of
extreme lattices are the strongly perfect lattices introduced by Venkov (2001).
They are characterised by the property that S(Λ) forms a spherical 5-design:

Definition 1 A finite subsetX of the n-dimensional sphere Sn−1(m) of radius
m forms a spherical t-design if∫

Sn−1(m)

f(x)dx =
1

|X|
∑
x∈X

f(x)
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for all homogeneous polynomials f in n Variables and of degree ≤ t. A lattice
Λ such that S(Λ) is a spherical t-design is called a t-design lattice.

The classification of strongly perfect lattices is known up to dimension
12 (Nebe and Venkov (2000), Nebe and Venkov (2005)), but becomes very
complicated in higher dimensions. Venkov (2001) and Martinet (2001) imposed
further design conditions and classified all integral lattices of min ≤ 3 (resp.
min ≤ 5) whose minimal vectors form spherical 5-designs (resp. 7-designs).

This paper extends their work, more precisely we prove the following the-
orem:

Theorem 2 1. The only integral 9-design lattices with minimum ≤ 7 are the
Leech lattice Λ24 and the extremal even unimodular lattices in dimension
48.

2. The only integral 11-design lattices with minimum ≤ 9 are Λ24 and the 48
and 72 dimensional extremal even unimodular lattices.

3. There is no integral 13-design lattice with minimum ≤ 11.

2 Some facts about spherical designs and lattices

As 9 and 11-designs are also 7-designs, we will summarize their classification
known from Martinet (2001):

Theorem 3 The integral 7-design lattices with minimum ≤ 5 are E8, the
unimodular lattice O23 with minimum 3, the three laminated lattices Λ16 (the
Barnes-Wall lattice), Λ23 and Λ24 (the Leech lattice) and the unimodular lat-
tices of dimension 32 and minimum 4.

Martinet also proves that only the Leech lattice is an 11-design lattice and the
other lattices in Theorem 3 do not yield 8-designs (Martinet 2001, Proposi-
tion). Hence the only integral lattice with minimum ≤ 5 whose minimal vectors
form a 9 or 11-design is the Leech lattice.

In this article we will use the following characterisation (see (Venkov 2001,
th. 3.2)):

Theorem 4 A finite set X = −X ⊂ Sn−1(m) forms a spherical 2t+ 1-design
if and only if

D2i(α) :=
∑
x∈X

(x, α)2i = ci|X|mi(α, α)i

with ci :=

i−1∏
k=0

1 + 2k

n− 2k

holds for all i ≤ t and all α ∈ Rn.

In the following we will often distinguish between unimodular and non-
unimodular lattices. If Λ is an integral non-unimodular lattice then for v ∈ Λ∗
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minimal in its class modulo Λ holds that |(v, λ)| ≤ min(Λ)
2 for all λ ∈ S(Λ)

((Martinet 2001, Lemme 1.1)). For even non-unimodular lattices Λ we know
that Λ∗/Λ is a regular quadratic group in particular there exists an element
w ∈ Λ∗ with (w,w) 6∈ 2Z and we can assume w.l.o.g. that such a w is minimal
in its class.

3 9-design lattices of minimum ≤ 7

Throughout this section Λ ⊆ Rn denotes an integral 9-design lattice of mini-

mum m ≤ 7 with X
·
∪ −X := S(Λ) and s := |X|.

We will start by proving part 1 of Theorem 2. The characterisation in Theo-
rem 4 leads to the following system of linear equations for which only integral
solutions correspond to integral 9-design lattices.

Lemma 5 For all α ∈ S(Λ) put si(α) := |{x ∈ X|(x, α) = ±i}|. The si are
independent of α and si = 0 for i > 3. The following system of linear equations
has non-negative integral solutions for the si and for s if S(Λ) is a spherical
9-design:


1 22 32

1 24 34

1 26 36

1 28 38


s1s2
s3

 =


sm2

n −m
2

3sm4

n(n+2) −m
4

15sm6

n(n+2)(n+4) −m
6

105sm8

n(n+2)(n+4)(n+6) −m
8

 .

Proof The system of equations is just a result of the evaluation of the equations
in Theorem 4 for α ∈ S(Λ). ut

Remark 6 A simple calculation with Pari shows that for m = 7 there are no
non-negative integral solutions (n, s, s1, s2, s3) ∈ Z5

>0. For m = 6 non-negative
integral solutions exist only for the following values of n and s:

Table 1 Dimensions and kissing numbers for integral 9-design lattices.

n 26 36 44 46 48 49
s 69888 1149120 8500800 13395200 26208000 50992095

Following a method used in Martinet (2001) we will have a look at non-
unimodular lattices at first.

Lemma 7 If Λ is non-unimodular and min(Λ) = 6 then n ∈ {26, 36}.

Proof For all elements v ∈ Λ∗ \Λ that are minimal in their class modulo Λ we
can define ti(v) := |{x ∈ S(Λ)|(x, v) = i}|. The ti are independent of v and
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for i > 4 ti = 0. Therefore we get a system of equations again with t := (v, v):


1 22 32

1 24 34

1 26 36

1 28 38


t1t2
t3

 =


smt
n

3sm2t2

n(n+2)
15sm3t3

n(n+2)(n+4)
105sm4t4

n(n+2)(n+4)(n+6)

 .

t has to be rational and positive. For every pair (n, s) from Table 1 we get a
solution of the system and a polynomial equation pn of degree 4 whose positive
rational roots are the possible values for t. But the only cases in which pn has
such roots are n = 26 where t ∈ { 83 , 4} and for n = 36 where t = 4. ut

Lemma 8 There is no non-unimodular lattice in dimension 26 or 36 such
that its set of minimal vectors form a spherical 9-design.

Proof Let Λ be a non-unimodular lattice. Without loss of generality we can
assume that Λ is generated by its minimal vectors, hence Λ is even. For n = 36
we know that (v, v) = 4 for all v in Λ∗\Λ with minimal norm in its class modulo
Λ. Hence Λ∗ has to be even and therefore unimodular which contradicts our
assumption.

For n = 26 we know that (v, v) ∈ { 83 , 4} for v in Λ∗\Λ with minimal norm in
its class modulo Λ. Λ∗/Λ is a regular quadratic F3 space with q : Λ∗/Λ→ F3

with q(x + Λ) := 3(x,x)
2 mod 3. Because q(Λ∗/Λ) = {0, 1} we know that

Λ∗/Λ is an one-dimensional F3 space with a generator v with q(v) = 1. Hence
det(Λ) = 3 and γ(Λ) = 6

31/26
which is greater than the Hermite constant γ26

(see (Cohn and Elkies 2003, Table 3)). ut

Lemma 9 If Λ is unimodular and min(Λ) = 6 then n = 48 and Λ is even and
extremal.

Proof Let Λ(e) := {λ ∈ Λ|(λ, λ) ∈ 2Z} be the even sublattice of Λ then
S(Λ(e)) = S(Λ) and Λ(e) is even and unimodular as a result of Lemma 7 and
Lemma 8. Therefore n has to be divisible by 8 as a result of a theorem by
Hecke (see e.g. (Koecher and Krieg 1998, Satz V.2.5)), hence n = 48. As Λ(e)

is unimodular it has to be equal to Λ, so Λ is even and obviously extremal. ut

This concludes the proof of Theorem 2 Part 1.

Corollary 10 Both the Leech lattice and the 48-dimensional even unimodular
lattices yield not only 9-designs but also 11-designs.

Proof These lattice are all even, unimodular and extremal and their dimension
is divisible by 24 hence their sets of minimal vectors form 11-designs by a
theorem by Venkov (see e.g. (Conway and Sloane 1998, Chapter 7, Theorem
23)). ut
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4 11-design lattices with minimum ≤ 9

Throughout this section Λ ⊆ Rn denotes an integral 11-design lattice with

minimum m ≤ 9 and s = |X| with X
·
∪ −X := S(Λ). We will proceed in this

section with the proof of theorem 2 part 2 and compute the possible values
for the dimension and the kissing number in the same way as in Lemma 5.

Lemma 11 Using the definitions in the proof of Lemma 5 we get that si = 0
for i > 4. The following system of linear equations has non-negative integral
solutions for the si and for s := |X| if S(Λ) is a spherical 11-design:


1 22 32 42

1 24 34 44

1 26 36 46

1 28 38 48

1 210 310 410



s1
s2
s3
s4

 =



sm2

n −m
2

3sm4

n(n+2) −m
4

15sm6

n(n+2)(n+4) −m
6

105sm8

n(n+2)(n+4)(n+6) −m
8

945sm10

n(n+2)(n+4)(n+6)(n+8) −m
10

 .

Remark 12 We get no solutions (n, s, si)i≤4 ∈ Z6
>0 for m = 9 and for m = 8

we get such solutions only for the following values of n and s:

Table 2 Dimensions and Kissing numbers for 11-design lattices.

n 50 56 62 64 66
s 57256875 237875400 1071285600 1866110400 3236535225
n 68 72 76 78 82
s 474335190 3109087800 1263241980 866338200 470377215

Now we can see with the same arguments as in Lemma 7 and Lemma 8 that
an integral 11-design lattice has to be unimodular.

Lemma 13 There is no non-unimodular lattice with minimum 8 whose min-
imal vectors form a spherical 11-design.

Proof For all elements v ∈ Λ∗ \Λ that are minimal in their class modulo Λ we
can define ti(v) := |{x ∈ S(Λ)|(x, v) = i}|. The ti are independent of v and
for i > 5 ti = 0. Therefore we get a system of equations again with t := (v, v):


1 22 32 42

1 24 34 44

1 26 36 46

1 28 38 48

1 210 310 410



t1
t2
t3
t4

 =



smt
n

3sm2t2

n(n+2)
15sm3t3

n(n+2)(n+4)
105sm4t4

n(n+2)(n+4)(n+6)
945sm5t5

n(n+2)(n+4)(n+6)(n+8)

 .

t has to be rational and positive. For every pair (n, s) from Table 2 we get a
solution of the system and a polynomial equation of degree 5 whose positive
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rational roots are the possible values for t. The only dimension in which we
get a positive rational value for t is n = 56 with t = 6. But then Λ∗ would
have to be even and hence Λ would be unimodular. ut

Lemma 14 Let Λ be unimodular with min(Λ) = 8 and S(Λ) a spherical 11-
design, then n = 72 and Λ is even and extremal.

Proof Λ is even (see Lemma 9). As the theta-series of even unimodular lattices
are modular forms, n has to be divisible by eight and min(Λ) ≤ 2b n24c + 2
(Koecher and Krieg 1998, V.2.8.Satz). Therefore n = 72 for m = 8 is the only
possible combination. ut

5 13-design lattices of minimum ≤ 11

We will now prove that there is no integral lattice with minimum smaller or
equal to 11 whose minimal vectors form a 13-design. For minima smaller than
10 we can use the results for 11-designs.

Lemma 15 There is no integral lattice Λ with min(Λ) < 10 such that S(Λ)
is a spherical 13-design.

Proof If S(Λ) forms a 13-design it also forms an 11-design and hence can only
be an extremal even unimodular lattice of dimension 24, 48 or 72. But as a
result of (Martinet 2001, Proposition 4.1) we know that these lattices yield no
higher designs. ut

So the only statement left to prove is the following:

Lemma 16 There is no integral 13-design lattice of minimum 10 or 11.

Proof If we assume that Λ would be an integral 13-design lattice with min(Λ) ∈
{10, 11} then the following system of equations would have integral non-
negative solutions for s and s1, . . . , s5.


1 22 32 42 52

1 24 34 44 54

1 26 36 46 56

1 28 38 48 58

1 210 310 410 510

1 212 312 412 512




s1
s2
s3
s4
s5

 =



sm2

n −m
2

3sm4

n(n+2) −m
4

15sm6

n(n+2)(n+4) −m
6

105sm8

n(n+2)(n+4)(n+6) −m
8

945sm10

n(n+2)(n+4)(n+6)(n+8) −m
10

10395sm12

n(n+2)(n+4)(n+6)(n+8)(n+10) −m
12


.

But an easy calculation shows that there are no such solutions. ut
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