
PAMM header will be provided by the publisher

Computer algebraic methods for the structural analysis of linear control
systems

Eva Zerz∗1 andViktor Levandovskyy1

1 Department of Mathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany

We give an overview of the mathematical background of the SINGULAR control library.

Copyright line will be provided by the publisher

1 Multidimensional behavioral systems

LetD = K[∂1, . . . , ∂n] denote the ring of linear partial differential operators with constant (real or complex) coefficients, and
letA = C∞(Rn,K). A multidimensional behavioral system is defined as the smooth solution set of a homogeneous system
of linear constant-coefficient PDE, that is,B = kerA(R) = {w ∈ Aq | Rw = 0} for someR ∈ Dg×q.

The following two properties are fundamental in systems theory:B is autonomous if it has no free variables (inputs), or
equivalently, if there exists no0 6= w ∈ B with compact support [5].B is controllable if it is parametrizable, i.e., it has an
image representationB = kerA(R) = imA(M) for someM ∈ Dq×l. Equivalently, for allw1, w2 ∈ B and for all open sets
U1, U2 ⊂ Rn with U1 ∩ U2 = ∅, there existsw ∈ B such that [5]

w(x) =
{
w1(x) if x ∈ U1

w2(x) if x ∈ U2.

To a systemB = kerA(R), one associates the system moduleM = D1×q/D1×gR and the transposed system module
N = Dg/RDq. We have the following characterizations of autonomy and controllability in algebraic terms:B is autonomous
if and only ifM is torsion, that is, any representation matrixR of B has full column rank.B is controllable if and only if
M is torsion-free, that is, any representation matrixR of B is a left syzygy matrix, i.e., the rows ofR generate the left kernel
{z ∈ D1×q | zM = 0} of someM ∈ Dq×l. Both characterizations hold due to the injective cogenerator property of the
D-moduleA [4]. Pommaret and Quadrat [6, 7] introduced the following refinements of these concepts.

1.1 Autonomy degrees

B is autonomous if and only ifExt0
D(M,D) = 0. One says thatB has autonomy degree at leastr if Ext0

D(M,D) =
. . . = ExtrD(M,D) = 0, or equivalently, ifdim(M) < n − r. Clearly,B has autonomy degree at least0 if and only if B
autonomous, that is, allw ∈ B that vanish in a neighborhood of infinity must be identically zero.

A system has autonomy degree at least1 if and only if B is overdetermined, i.e., eachv ∈ C∞(U∞,K)q that satisfies the
system law locally, whereU∞ is the complement of a bounded convex set, can be uniquely extended tow ∈ B. The vanishing
of Ext1

D(M,D) guarantees the existence of such an extension, whereasExt0
D(M,D) = 0 yields its uniqueness [9].

A system has autonomy degree at leastn − 1 if and only if B is finite dimensional overK. Finally, autonomy degree at
leastn corresponds toB = 0.

1.2 Controllability degrees

Instead of the system moduleM, we investigate the transposed moduleN . Note thatN is not uniquely determined byB, but
ExtiD(N ,D) for i ≥ 1 is. Pommaret and Quadrat [6, 7] showed thatM is torsion-free if and only ifExt1

D(N ,D) = 0. One
says thatB has controllability degree at leastr if Ext1

D(N ,D) = . . . = ExtrD(N ,D) = 0. Clearly, controllability degree
at least1 corresponds to controllability ofB. Controllability degree at leastn means thatB is flat, i.e.,M is projective, or
equivalently, free, according to the Quillen-Suslin theorem. A discussion of flat systems in the context of multidimensional
behavioral systems can be found in [9].

2 Strong controllability

B is strongly controllable if for allv∞ ∈ C∞(U∞,K)q and allv0 ∈ C∞(U0,K)q, whereU0 is bounded and convex andU∞ is
the complement of a bounded convex set withU0 ∩ U∞ = ∅, each satisfying the system law locally, there existsw ∈ B that
connectsv∞ andv0. This property is equivalent toB being both controllable and extendable, that is,Ext1

D(N ,D) = 0 and
Ext1

D(M,D) = 0 [8].
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3 One-dimensional parameter-dependent systems

LetD = K[p1, . . . , pN ][ ddt ] andR ∈ Dg×q, wherep = (p1, . . . , pN ) is a vector of system parameters. ThenR describes a
family of ODE systems: for each choice ofp0 ∈ KN , we obtainR|p=p0 ∈ K[ ddt ]

g×q, and thus a one-dimensional (n = 1)
behavioral system

B|p=p0 = {w ∈ Aq | R|p=p0w = 0}.

First, suppose thatR has full column rank. Then we call the system familyB generically autonomous. Specific parameter
constellations may cause a rank drop inR. This determines the parameter valuesp0 in which the systemB|p=p0 loses
autonomy.

However, even if the rank of the representation matrix is constant for all parameter values, special parameter constellations
may destroy controllability. For this, assume thatR|p=p0 has full row rank for allp0 ∈ KN . ThenB|p=p0 is controllable
if and only if R|p=p0 is right invertible overK[ ddt ]. We say that the system familyB is generically controllable ifR is right
invertible overK(p1, . . . , pN )[ ddt ]. This implies thatB|p=p0 is controllable for almost allp0 ∈ KN . More precisely,B|p=p0

is controllable for allp0 outside the algebraic variety

V = V(ann(N ) ∩K[p1, . . . , pN ]),

whereN = Dg/RDq is defined as above, and thusann(N ) = {d ∈ D | ∃X ∈ Dq×g : RX = dI}. However, in view
of applicability to large examples, one would like to avoid the computation of the annihilator ideal. A heuristic method for
detecting critical parameter constellations consists in checking generic controllability overK(p1, . . . , pN )[ ddt ] and keeping
track of all denominators and content extractions in the computations. The result may be conservative in the sense that it may
yield more candidates for controllability-destroying parameter constellations than necessary. However, the same is true for the
approach using the annihilator ideal, because the set of points in which the system actually loses controllability will usually
be a proper subset ofV . On the other hand, the heuristic method can also be applied to rationally (rather than polynomially)
parameter-dependent system families, and it can be used in the multidimensional case.

4 Implementation

The calculation of autonomy and controllability degrees is implemented in the SINGULAR [2] library control.lib . It is
included in the distribution of SINGULAR from version 3.0 on. The procedurecontrol provides additional output such as
parametrizations, flat outputs etc. The main aims of our implementation are computational efficiency and user-friendliness, in
particular, by requiring minimal algebraic preknowledge, its target audience consists mainly of control theorists.

A comparable functionality is offered by the MAPLE package OREMODULES [1], however, since the computational cost
is not a primary issue of OREMODULES, it is outperformed bycontrol.lib in the vast majority of examples.

The SINGULAR control library also contains the proceduregenericity realizing the heuristic method for detecting
critical parameter constellations described above. For the upcoming extension to variable coefficients, we will use the non-
commutative subsystem SINGULAR :PLURAL [3] of the system SINGULAR.
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[3] V. Levandovskyy, H. Scḧonemann, PLURAL : a computer algebra system for noncommutative polynomial algebras,Proc. Int. Symp.
Symbolic Algebraic Computation (ISSAC 2003), Philadelphia, USA.

[4] U. Oberst, Multidimensional constant linear systems,Acta Appl. Math.20, 1–175 (1990).
[5] H. K. Pillai, S. Shankar, A behavioral approach to control of distributed systems,SIAM J. Control Optimization37, 388–408 (1999).
[6] J.-F. Pommaret, A. Quadrat, Algebraic analysis of linear multidimensional control systems,IMA J. Math. Control Inf.16, 275–297

(1999).
[7] J.-F. Pommaret, A. Quadrat, Equivalences of linear control systems,Proc. 14th Int. Symp. Math. Theory Networks Systems (MTNS

2000), Perpignan, France.http://www.univ-perp.fr/mtns2000 .
[8] E. Zerz, P. Rocha, Strong controllability of continuous multidimensional behaviors,Proc. 16th Int. Symp. Math. Theory Networks

Systems (MTNS 2004), Leuven, Belgium.
[9] E. Zerz, Multidimensional behaviours: an algebraic approach to control theory for PDE,Int. J. Control77, 812–820 (2004).

Copyright line will be provided by the publisher


