AgGroup( D )
AgGroup converts a finite polycyclic group D into an ag group G.
G.bijection is bound to isomorphism between G and D.
gap> S4p := Group( (1,2,3,4), (1,2) );
Group( (1,2,3,4), (1,2) )
gap> S4p.name := "S4_PERM";;
gap> S4a := AgGroup( S4p );
Group( g1, g2, g3, g4 )
gap> S4a.name := "S4_AG";;
gap> L := CompositionSeries( S4a );
[ S4_AG, Subgroup( S4_AG, [ g2, g3, g4 ] ),
Subgroup( S4_AG, [ g3, g4 ] ), Subgroup( S4_AG, [ g4 ] ),
Subgroup( S4_AG, [ ] ) ]
gap> List( L, x -> Image( S4a.bijection, x ) );
[ Subgroup( S4_PERM, [ (1,2), (1,3,2), (1,4)(2,3), (1,2)(3,4) ] ),
Subgroup( S4_PERM, [ (1,3,2), (1,4)(2,3), (1,2)(3,4) ] ),
Subgroup( S4_PERM, [ (1,4)(2,3), (1,2)(3,4) ] ),
Subgroup( S4_PERM, [ (1,2)(3,4) ] ), Subgroup( S4_PERM, [ ] ) ]
Note that the function will not work for finitely presented groups, see AgGroupFpGroup for details.
GAP 3.4.4