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All rings are associative and have a unit.

1 The ring of integers

1.1 The integral closure

Definition 1.1. An algebraic number field K is a finite extension of Q.

Example. K = Q[
√

5] ∼= Q[x]/(x2 − 5).

Remark 1.2. Let L/K be a finite extension of fields and let a ∈ L. Then εa : K[x] →
L, p(x) 7→ p(a) defines a K-algebra homomorphism with image K[a] (the minimal K-subalgebra
of L that contains a). Since K[x] is a principal ideal domain, the kernel of εa is generated
by a monic polynomial Kern(εa) = (µa(x)). The image of εa is an integral domain, so
µa(x) ∈ K[x] irreducible. This uniquely determined monic irreducible polynomial µa is called
the minimal polynomial of a over K.

Example. a = 1+
√

5
2
∈ Q[
√

5] ⇒ µa = x2 − x− 1 is the minimal polynomial of a over Q.

Definition 1.3. If B is a ring and A a subring of the center Z(B) := {b ∈ B | bx =
xb for all x ∈ B}, then B is called an A-algebra.
If B is an A-algebra then b ∈ B is called integral over A, if there is n ∈ N and a1, . . . , an ∈ A
such that

(?) bn + a1b
n−1 + . . .+ an−1b+ an = 0.

B is called integral over A, if any element of B is integral over A.

Theorem 1.4. Let B be an A-algebra and b ∈ B. The following are equivalent

(a) b is integral over A.

(b) The smallest A-subalgebra a A[b] of B, that contains b is a finitely generated A-module.

(c) b is contained in some A-subalgebra of B, that is a finitely generated A-module.

Proof. (a) ⇒ (b): If b is integral, then (?) implies that A[b] = 〈1, b, . . . , bn−1〉A.
(b) ⇒ (c): Clear.
(c) ⇒ (a): Let R = 〈b1, . . . , bn〉A ≤ B be some A-subalgebra of B that contains b. Assume
wlog that 1 ∈ R. Then there are (not necessarily unique) aij ∈ A such that

bbi =
n∑
j=1

aijbj for all 1 ≤ i, j ≤ n.

Let f = det(xIn − (aij)) ∈ A[x] be the characteristic polynomial of (aij) ∈ An×n. Then
f ∈ A[X] is monic and f((aij)) = 0 ∈ An×n. Therefore f(b)bi = 0 for all 1 ≤ i ≤ n, so
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f(b)1 = f(b) = 0, and hence b is integral over A. �

Example.
(a) α := 1+

√
5

2
∈ Q[
√

5] is integral over Z.
(b) 1

2
∈ Q is not integral over Z.

Theorem 1.5. Let B be a commutative A-algebra and

IntA(B) := {b ∈ B | b integral over A}.

Then IntA(B) is a subring of B called the integral closure of A in B.

Proof. We need to show that IntA(B) is a ring, so closed under multiplication and addition.
Let b1, b2 ∈ IntA(B) and

A[b1] = 〈c1, . . . , cn〉A, A[b2] = 〈d1, . . . , dm〉A.

Since cidj = djci for all i, j and 1 ∈ A[b1] ∩ A[b2] we get

A[b1, b2] ⊂ 〈cidj | 1 ≤ i ≤ n, 1 ≤ j ≤ m〉A.

This is a subring of B that is a finitely generated A-module and contains b1+b2, b1−b2, b1b2. �

Theorem 1.6. Let C be a commutative ring, A ≤ B ≤ C. If C is integral over B and B is
integral over A, then C is integral over A.

Proof. Let c ∈ C. Since C is integral over B there are n ∈ N and b1, . . . , bn ∈ B such that

cn + b1c
n−1 + . . .+ bn−1c+ bn = 0.

Put R := A[b1, . . . , bn]. Since B is integral over A this ring R is a finitely generated A-module.
Moreover c ∈ R[c] and R[c] is a finitely generated R-module. So also R[c] is a finitely gener-
ated A-module. and hence c is integral over A. �

Definition 1.7. Let A be an integral domain with field of fraction K := Quot(A).

IntA(K) := {x ∈ K | x is integral over A}

is called the integral closure of A in K.
If A = IntA(K), then A is called integrally closed.

Example. Z is integrally closed.
Z[
√

2] is integrally closed.
Z[
√

5] is not integrally closed.

Theorem 1.8. Let L ⊇ K be a finite field extension and A ⊂ K integrally closed with
K = Quot(A). The for any b ∈ L:
b is integral over A, if and only if µb,K ∈ A[x].
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Proof. ⇐ clear.
⇒: Let b ∈ L be integral over A. Then there are n ∈ N and a1, . . . , an ∈ A such that

bn + a1b
n−1 + . . .+ an−1b+ an = 0.

Put p(x) = xn + a1x
n−1 + . . .+ an−1x+ an ∈ A[x] and L̃ := ZerfK(p) be the spitting field of

p, Then all zeros b̃ ∈ L̃ of p are integral over A. The minimal polynomial µb,K of b over K
divides p, so also the zeros of µb,K are integral over A. The coefficients of µb,K are polynomials
in the zeros, so also integral over A. Since these lie in K, they indeed lie in IntA(K) = A. So
µb,K ∈ A[x]. �

Corollary 1.9. Let K be an algebraic number field. Then the ring of integers

ZK = IntK(Z) = {a ∈ K | µa,Q ∈ Z[x]}.

Any Z-basis of ZK is called an integral basis of K.

Example. For K = Q[
√

2] we obtain ZK = Z[
√

2] and (1,
√

2) is a Z-basis of K.
If K = Q[

√
5], then ZK = Z[(1 +

√
5)/2] and (1, (1 +

√
5)/2) is a Z-basis of K.

In the exercise you prove the more general statement: Let 1 6= d ∈ Z be square free and

K := Q[
√
d], then α := 1+

√
d

2
is integral over Z if and only if d ≡4 1. In this case (1, α) is an

integral basis of K, in all other cases (1,
√
d) is an integral basis.

1.2 Norm, Trace and Discriminant.

Remark 1.10. Let L/K be a extension of fields of finite degree [L : K] := dimK(L) = n <∞.

(a) Any α ∈ L induces a K-linear map

multα ∈ EndK(L);x 7→ αx.

In particular this endomorphism has a trace, determinant, characteristic polynomial
χα,K := χmultα and minimal polynomial µα,K := µmultα.

(b) The map mult: L→ EndK(L) is an injective homomorphism of K-algebras.

(c) The map SL/K : L → K,α 7→ trace (multα) is a K-linear map, called the trace of L
over K.

(d) The map NL/K : L→ K,α 7→ det(multα) is multiplicative, i.e. NL/K(αβ) = NL/K(α)NL/K(β)
for all α, β ∈ L. In particular it defines a group homomorphism NL/K : L∗ → K∗ be-
tween the multiplicative groups L∗ and K∗ = (K \ {0}, ·) of the fields.

(e) Let α ∈ L. Then µα,K ∈ K[X] is an irreducible polynomial of degree d := [K(α) :

K] := dimK(K(α)) dividing n and χα,K = µ
n/d
α,K.

(f) If χα,K = Xn − a1X
n−1 + . . .+ (−1)n−1an−1X + (−1)nan ∈ K[X], then NL/K(α) = an

and SL/K(α) = a1.
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Proof. Exercise. �

Theorem 1.11. Assume that L/K is a finite separable extension and let σ1, . . . , σn : L→ K
be the distinct K-algebra homomorphisms of L into the algebraic closure K of K (so n = [L :
K]). Then for all α ∈ L

(a) χα,K =
∏n

i=1(X − σi(α)).

(b) µα,K =
∏d

i=1(X − αi) where {σ1(α), . . . , σn(α)} = {α1, . . . , αd} has order d = [K(α) :
K].

(c) SL/K(α) =
∑n

i=1 σi(α).

(d) NL/K(α) =
∏n

i=1 σi(α).

Proof. (c) and (d) follow from (a) using Remark 1.10 (f) above.
To see (b) let d := [K(α) : K]. Since L/K is separable, also the subfieldK(α) is separable over
K, so µα,K =

∏d
i=1(X −αi) for d distinct αi ∈ K. The d distinct K-algebra homomorphisms

ϕ1, . . . , ϕd from K(α) into K correspond to the d possible images ϕi(α) = αi ∈ K of α.
In particular this proves (a) and (b) if L = K(α).
For the more general statement we use the following:
Fact.1 Any K-algebra homomorphism τ : E → K of some algebraic extension E of K into
the algebraic closure K extends to an automorphism τ̃ ∈ AutK(K).
Let ϕ̃j be such an extension of ϕj for all j = 1, . . . , d and let {τ1, . . . , τn/d} = HomK(α)(L,K).
Then

{σ1, . . . , σn} = {ϕ̃j ◦ τi | 1 ≤ j ≤ d, 1 ≤ i ≤ n/d}
In particular each ϕj can be extended in exactly n/d ways to a K-homomorphism ϕ̃j ◦ τi :
L→ K, 1 ≤ i ≤ n/d.

This implies that χα,K = µ
n/d
α,K and also (a) and (b) follow. �

Corollary 1.12. Let K ⊆ L ⊆ M be a tower of separable field extensions of finite degree.
Then

SM/K = SL/K ◦ SM/L and NM/K = NL/K ◦NM/L

Proof. Let m := [M : K], ` := [L : K] and n := [M : L]. Then m = `n. Define an equivalence
relation on {σ1, . . . , σm} = HomK(M,K) by

σj ∼ σi ⇔ (σj)L = (σi)L.

As we have seen in the last proof each equivalence class Aj contains exactly n elements.
Therefore for any α ∈M

SM/K(α) =
m∑
i=1

σi(α) =
∑̀
j=1

∑
σ∈Aj

σ(α).

1(1.33) of the script of the Algebra lecture
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Wlog we assume that Aj = [σj]. Then∑
σ∈Aj

σ(α) = Sσj(M)/σj(L)(σj(α)) = σj(SM/L(α)).

Therefore SM/K(α) =
∑`

j=1 σj(SM/L(α)) = (SL/K ◦ SM/L)(α). Similarly for the norm. �

Definition 1.13. Let L/K be a separable extension and let B := (α1, . . . , αn) be a K-basis
of L.

(a) The Trace-Bilinear-Form S : L × L → K, S(α, β) := SL/K(αβ) is a symmetric
K-bilinear form.

(b) The discriminant of B is the determinant of the Gram matrix of B, d(B) := det(S(αi, αj)i,j).

Remark 1.14. If {σ1, . . . , σn} = HomK(L,K) then d(B) = det((σi(αj))i,j)
2.

Proof. SL/K(αiαj) =
∑n

k=1 σk(αi)σk(αj) = [(σk(αi)i,k)
tr(σk(αi)i,k)]i,j so (SL/K(αiαj)) = AtrA

with A = (σk(αi)i,k). �

Example. If K = Q and L = Q[
√
d] then B := (1,

√
d) is a K-basis of L and d(B) =

2 · (2d) = det

(
1
√
d

1 −
√
d

)2

Theorem 1.15. Let L/K be a separable extension an let B := (α1, . . . , αn) be a K-basis of
L. Then the trace bilinear form is a non-degenerate symmetric K-bilinear form. In particular
d(B) 6= 0.

Proof. Choose a primitive element α ∈ L, so L = K(α) and B1 := (1, α, . . . , αn−1) is another
K-basis of L. By the transformation rule for Gram matrices, d(B) = d(B1)a2 where a ∈ K∗
is the determinant of the base change matrix between B and B1. So it is enough to show
that d(B1) 6= 0. By the remark above d(B1) = d(A)2 where

A = ((σi(α
j))j=0,..,n−1,i=1,..,n =


1 σ1(α) σ1(α)2 . . . σ1(α)n−1

1 σ2(α) σ2(α)2 . . . σ2(α)n−1

...
... . . . . . .

...
1 σn(α) σn(α)2 . . . σn(α)n−1


and {σ1, . . . , σn} = HomK(L,K). By Vandermonde det(A) =

∏
i<j(σj(α) − σi(α)), so

d(B1) = (
∏

i<j(σj(α)−σi(α)))2 6= 0, since the different embeddings of L into K have different
values on the primitive element α. �

Definition 1.16. Let K be an algebraic number field and B := (α1, . . . , αn) be an integral
basis of K (i.e. a Z-basis of the ring of integers ZK). Then the discriminant of K is
dK := d(B).
More general let A = 〈β1, . . . , βn〉Z be a free Z-module of full rank in K. Then

dA := d((β1, . . . , βn))

is called the discriminant of A.
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Remark 1.17. dK and dA are well defined, which means that they do not dependent on the
choice of the integral basis B.
If A′ ⊆ A ⊆ K are two finitely generated Z-modules of full rank in K, then by the main
theorem on finitely generated Z-modules (elementary divisor theorem) the index

a := [A : A′] := |A/A′| <∞

and dA′ = a2dA.

Example. K = Q[
√
d], 0, 1 6= d ∈ Z square-free. Integral basis, Gram matrix, discrimi-

nant.

1.2.1 An algorithm to determine an integral basis of a number field.

Definition 1.18. Let V ∼= Rn be an n-dimensional real vector space and Φ : V × V → R a
non-degenerate symmetric bilinear form.

(a) A lattice in V is the set of all integral linear combinations of an R-basis of V .

L = 〈B〉Z = {
n∑
i=1

aibi | ai ∈ Z}

for some basis B = (b1, . . . , bn) of V . Any such Z-basis B of L is called a basis of L and
the determinant of the Gram matrix of B with respect to Φ is called the determinant
of L.

(b) For a lattice L := 〈B〉Z the set L# := {x ∈ V | Φ(x, L) ⊆ Z} is called the dual lattice
of L (wrt Φ).

(c) L is called integral (wrt Φ), if L ⊆ L#.

Remark. L# is a lattice in V , the dual basis B∗ of any lattice basis B of L is a lattice basis
of L#. The base change matrix between B and B∗ is the Gram matrix MB(Φ) = (Φ(bi, bj))
of B. In particular det(MB(Φ)) = [L# : L] = |L#/L| for any integral lattice L.

Theorem 1.19. Let K be an algebraic number field, O ⊆ ZK a full Z-lattice in K. Then
(O, SK/Q) is an integral lattice and

O ⊆︸︷︷︸
f

ZK ⊆︸︷︷︸
dK

Z#
K ⊆︸︷︷︸

f

O#

which yields an algorithm to compute ZK.

Corollary. The ring of integers ZK in an algebraic number field is finitely generated, so
any algebraic number field has an integral basis.
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1.3 Dedekind domains.

Example. Let K = Q[
√
−5]. Then ZK = Z[

√
−5] and

21 = 3 · 7 = (1 + 2
√
−5) · (1− 2

√
−5)

has no unique factorization.
Note that the factors above are irreducible but not prime.
Reason: The ideals 3ZK = ℘3℘

′
3, 7ZK = ℘7℘

′
7, (1 + 2

√
−5)ZK = ℘3℘7, and (1− 2

√
−5)ZK =

℘′3℘
′
7 are not prime ideals, where

℘3 = (3, 1 + 2
√
−5), ℘′3 = (3, 1− 2

√
−5), ℘7 = (7, 1 + 2

√
−5), ℘′7 = (7, 1− 2

√
−5)

and so 21ZK = ℘3℘
′
3℘7℘

′
7 is a unique product of prime ideals.

A ring with a unique prime ideal factorisation is called a Dedekind ring:

Definition 1.20. A Noetherian, integrally closed, integral domain in which all non-zero
prime ideals are maximal ideals is called a Dedekind domain.

Example. Z[x] is not a Dedekind domain, because (x) is a prime ideal (the quotient is
isomorphic to Z) but not maximal, since Z is not a field.

Theorem 1.21. Let K be a number field. Then ZK is a Dedekind domain.

Proof. Clearly ZK is integrally closed and an integral domain.
We first show that ZK is Noetherian, i.e. any ideal of ZK is finitely generated. Let 0 6= AEZK
be an ideal and choose 0 6= a ∈ A. If B := (b1, . . . , bn) is an integral basis of K, then
aB := (ab1, . . . , abn) ∈ An is also a Q-basis of K. The lattice 〈aB〉Z ⊆ A ⊆ 〈B〉Z = ZK
has finite index in ZK . Therefore also A has finite index in ZK and, by the main theorem
on finitely generated Z-modules, A is finitely generated as a Z-module and hence also as a
ZK-module.
The above consideration also applies to non-zero prime ideals 0 6= ℘EZK of ZK , in particular
any such prime ideal has finite index in ZK . Therefore ZK/℘ is a finite integral domain, so
a field, which means that ℘ is a maximal ideal. �

Lemma 1.22. Any finite integral domain R is a field.

Proof. Let 0 6= a ∈ R, then multa : R→ R is injective (the kernel is 0, since R is an integral
domain) and hence surjective (since R is finite). In particular there is some x ∈ R such that
multa(x) = 1. �

Definition 1.23. Let R be a commutative ring and A,B ER. Then

A+B := {a+ b | a ∈ A, b ∈ B}ER, AB := {
n∑
i=1

aibi | n ∈ N, ai ∈ A, bi ∈ B}ER.

If A ⊆ B we say that B divides A. The greatest common divisor

ggT(A,B) := (A,B) = A+B

is the ideal generated by A and B.
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From now on let R be a Dedekind domain and K = Quot(R).

Main theorem 1.24. Any ideal 0 6= IER in R has a unique factorization into prime ideals,

I = ℘1 . . . ℘s, s ∈ N0, ℘i ER prime ideals .

For the proof we need two lemmata:

Lemma 1.25. If 0 6= I E R then there are non-zero prime ideals ℘1, . . . , ℘s E R such that
℘1 . . . ℘s ⊆ I.

Proof. Let M := { I ER | I 6= 0, and for all prime ideals ℘1, . . . , ℘s the product
℘1 . . . ℘s is not contained in I

}. We

need to show that M = ∅. Assume that M 6= ∅. Since any ascending chain of ideals
in R is finite, the set M contains some maximal element A ∈ M. Then A is not a prime
ideal, hence there are b1, b2 ∈ R such that

b1b2 ∈ A, b1 6∈ A, b2 6∈ A.

Let Ai := (bi)+A. Then Ai ) A but A1A2 ⊂ A. Since A is maximal inM, both Ai contain
a product of prime ideals, hence also A1A2 and therefore A, a contradiction. �

Lemma 1.26. Let 0 6= ℘ER be a prime ideal and put

℘−1 := {x ∈ K | x℘ ⊆ R}.

Then for any non zero ideal 0 6= AER the ideal A℘−1 properly contains A.

Proof. We first show that ℘−1 6= R: Choose some 0 6= a ∈ ℘ and let s ∈ N be minimal with the
property that there are non-zero prime ideals ℘1, . . . , ℘s in R such that ℘1 . . . ℘s ⊆ (a) ⊆ ℘.
(These exist since R is Noetherian.)
Claim. There is some i such that ℘i ⊆ ℘.
Otherwise there are ai ∈ ℘i \ ℘ for all i = 1, . . . , s, but a1 . . . as ∈ ℘1 . . . ℘s ⊆ ℘ which
contradicts the fact that ℘ is a prime ideal.
Assume wlog that ℘1 ⊆ ℘. Since R is a Dedekind domain, the non-zero prime ideal ℘1 is
maximal. Therefore ℘ = ℘1.
By the minimality of s we have that ℘2 . . . ℘s 6⊆ (a) so there is some b ∈ ℘2 . . . ℘s such that
a−1b 6∈ R. On the other hand

a−1b℘ = a−1b℘1 ⊆ a−1℘1 . . . ℘s ⊆ a−1(a) = R

so a−1b ∈ ℘−1 \R.
Now choose some nonzero ideal A E R and assume that A℘−1 = A. Let A = 〈α1, . . . , αn〉R
(observe that A is finitely generated, since R is Noetherian). Then for any x ∈ ℘−1 and
any i we have xαi =

∑n
j=1 xijαj for some matrix (xij) =: X ∈ Rn×n. Therefore the vector

(α1, . . . , αn)tr is in the kernel of (xIn − X) ∈ Kn×n, so the determinant of this matrix is 0.
But then x is a zero of some monic polynomial with coefficients in R, so x ∈ IntK(R) = R,
since R is integrally closed. This holds for any x ∈ ℘−1 contradicting the fact that ℘−1 6⊆ R. �
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Corollary 1.27. For any non-zero prime ideal 0 6= ℘ER the product ℘℘−1 = R.

Proof. ℘ ( ℘℘−1 ⊆ R. Since R is a Dedekind domain, ℘ is a maximal ideal, so ℘℘−1 = R. �

Proof of the main Theorem 1.24
Existence. LetM := {AER | 0 6= A 6= R,A 6= ℘1 . . . ℘s for all prime ideals ℘1, . . . , ℘s and all s ∈
N}. We need to show that M = ∅. If M 6= ∅, then M contains some maximal element, say
A. Since maximal ideals are prime ideals, the ideal A is not a maximal ideal. There is some
maximal ideal ℘ E R that contains A, so A ⊆ ℘ ⊆ R and hence A ( A℘−1 ⊆ ℘℘−1 = R.
Now A 6= ℘ was maximal in M, so there are prime-ideals ℘1, . . . , ℘s such that

A℘−1 = ℘1 . . . ℘s ⇒ A = ℘1 . . . ℘s℘

a contradiction.
Uniqueness. (this is analogues to the proof of uniqueness of prime factorization in Z) We
have seen in the proof of Lemma 1.26 that if a prime ideal ℘ divides the product of two
ideals, then it divides one of the factors

I1I2 ⊆ ℘⇒ I1 ⊆ ℘ or I2 ⊆ ℘.

So assume that
A = ℘1 . . . ℘s = Q1 . . .Qt

then ℘1 divides Q1 . . .Qt so it divides one of the factors, say Q1. Since Q1 is maximal, this
implies Q1 = ℘1, so

℘−1A = ℘2 . . . ℘s = Q2 . . .Qt

Definition 1.28. A fractional ideal of R is a finitely generated R-submodule 6= 0 of K.

Remark 1.29. Let J be a fractional ideal of R. Then there is c ∈ K, A E R, such that
cA = J .

Proof. Let J = 〈α1, . . . , αn〉R, αi = βi
γi
∈ K wit βi, γi ∈ R. Let γ := γ1 . . . γn. Then

A := γJ ER and J = γ−1A. �

Theorem 1.30. The set of fractional ideal of R is an abelian group, the ideal group of R.

Proof. The group law is of course ideal multiplication, this is associative, commutative, the
unit is (1) = R and the inverse is A−1 = {x ∈ K | xI ⊆ R}. �

Corollary 1.31. Any fractional ideal A of R has a unique factorization

A = ℘n1
1 . . . ℘nss

with non-zero prime ideals ℘1, . . . , ℘s and ni ∈ Z.

Definition 1.32. The ideal group of R is denoted by JR. It contains the subgroup {(c) |
c ∈ K∗} = PR of principal fractional ideals. The quotient ClK := JR/PR is called the
class group of K.
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There is an exact sequence

1→ R∗
ϕ1→ K∗

ϕ2→ JR
ϕ3→ ClK → 1

where ϕ1 is just the inclusion, ϕ2(c) = (c), and ϕ3 is the natural epimorphism. This means
that ϕ1 is injective, im(ϕ1) = ker(ϕ2), im(ϕ2) = PR = ker(ϕ3), and ϕ3 is surjective.

If R = ZK is the ring of integers in an algebraic number field K, then

� Z∗K is a finitely generated abelian group

� ClK is a finite group, hK := |ClK | is called the class number of K

2 Geometry of numbers.

Definition 2.1. Let (Rn, (, )) be a Euclidean space. Any Z-module generated by a basis
of Rn is called a full lattice in (Rn, (, )). Let Γ := 〈b1, . . . , bn〉Z be a full lattice. Then
B = (b1, . . . , bn) is called a basis of Γ and

E(B) := {
n∑
i=1

λibi | 0 ≤ λi ≤ 1}

the fundamental parallelotope of B. The determinant of Γ is det(Γ) := det((bi, bj))
and the covolume of Γ is

covol(Γ) := vol(Rn/Γ) := vol(E(B)) =
√

det(Γ).

Example. Z2: Different bases yield different E(B) but these have the same covolume.

Remark 2.2. E(B) is a fundamental domain for the action of Γ on Rn by translation.
this means that

Rn =
⋃
γ∈Γ

γ + E(B)

and this union is almost disjoint, Γ-translates of E(B) are either equal or intersect only in
the boundary.

Definition 2.3. Let ∅ 6= X ⊂ Rn.
(a) X is called centrally symmetric, if for any x ∈ X also its negative −x ∈ X.
(b) X is called convex, if for any two x, y ∈ X and any t ∈ [0, 1] also x+ t(y − x) ∈ X.

Clear: ∅ 6= X convex and centrally symmetric, then 0 ∈ X.

Theorem 2.4. (Minkowski) Let Γ ⊂ (Rn, (, )) be a full lattice in Euclidean space and let
X ⊆ Rn be convex and centrally symmetric. If vol(X) > 2n vol(Rn/Γ) then Γ ∩X 6= {0}.

Proof. We show that there are γ1 6= γ2 ∈ Γ such that

(
1

2
X + γ1) ∩ (

1

2
X + γ2) 6= ∅
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Then there are x1, x2 ∈ X such that 1
2
x1 + γ1 = 1

2
x2 + γ2 and hence

1

2
(x1 − x2) = γ2 − γ1 ∈ Γ ∩X

is a nonzero vector. Note that 1
2
(x1−x2) is the midpoint of the line between x1 and −x2 and

therefore in X.
So assume that the Γ -translates of the set 1

2
X = {1

2
x | x ∈ X} are disjoint,

(
1

2
X + γ1) ∩ (

1

2
X + γ2) = ∅ for all γ1 6= γ2 ∈ Γ

But then also the intersection with the fundamental parallelotope

(E(B) ∩ (
1

2
X + γ1)) ∩ (E(B) ∩ (

1

2
X + γ2)) = ∅ for all γ1 6= γ2 ∈ Γ so

vol(Rn/Γ) = vol(E(B)) ≥
∑

γ∈Γ vol(E(B) ∩ (1
2
X + γ)) =∑

γ∈Γ vol((E(B)− γ) ∩ 1
2
X) = vol(1

2
X) = 1

2n
vol(X)

which contradicts the assumption. �

Example. The bound is tight: Take Γ = Z2 and

X := {
(
x1

x2

)
∈ R2 | |x1| < 1 and |x2| < 1}.

Then vol(X) = vol(X) = 22, covol(Γ) = 1 and X ∩ Γ = {0}.
We now apply this to number fields K. For this aim we need to embed K into some

euclidean space.

Remark 2.5. Let K be an algebraic number field of degree [K : Q] =: n. Let

σ1, . . . , σn : K → Q ⊂ C

be the n distinct embeddings of K into the algebraic closure Q of Q which we embed into the
field of complex numbers. This yields an embedding

j : K ↪→ KC :=
n∏
k=1

C = C{σ1,...,σn}, x 7→ (σ1(x), . . . , σn(x)) = (xσ1 , . . . , xσn).

The Galois group of C over R Gal(C/R) = 〈 〉 ∼= C2 acts on KC via

(xσ1 , . . . , xσn) = (yσ1 , . . . , yσn) with yσj = xσj .

Here σj : K → C, σj(x) := σj(x). We call σ : K → C real, if σ = σ and complex if σ 6= σ.
Let

KR := Fix〈 〉(KC) := {(xσ) ∈ KC | xσ = xσ}.

Then j(K) ⊂ KR.
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Example. K ∼= Q[X]/(X3− 2) = Q[ 3
√

2]. Let α ∈ K with α3 = 2. Then α is a primitive
element of K and the embeddings of K into C are given by

σ1 : α 7→ 3
√

2(∈ R), σ2 : α 7→ ζ3
3
√

2, σ3 = σ2 : α 7→ ζ2
3

3
√

2.

Then σ1 is real, σ2 and σ3 are complex and the action of the complex conjugation on KC is

(x, y, z) = (x, z, y).

Therefore we obtain KR = {(a, b+ ic, b− ic) | a, b, c ∈ R}.

Remark 2.6. The mappings

N : KC → C, N(x1, . . . , xn) =
∏n

i=1 xi
S : KC → C, S(x1, . . . , xn) =

∑n
i=1 xi

extend norm and trace, in the sense that for any α ∈ K

NK/Q(α) =
n∏
i=1

σi(α) = N(j(α)), SK/Q(α) =
n∑
i=1

σi(α) = S(j(α)).

Remark 2.7. Let ρ1, . . . , ρr : K → R ⊂ C be the real places of K and σ1, σ1, . . . , σs, σs :
K → C the complex places of K, so n = [K : Q] = r + 2s. Then

m : KR → Rr+2s, (xρ1 , . . . , xρr , xσ1 , xσ1 , . . . , xσs , xσs) 7→ (xρ1 , . . . , xρr ,<(xσ1),=(xσ1), . . . ,<(xσs),=(xσs))

is a R-linear isomorphism that maps the restriction of the standard inner product 〈x, y〉 :=∑n
i=1 xiyi on KC to the canonical metric (Minkowski metric)

(x, y) :=
r∑
i=1

xiyi + 2
r+2s∑
j=r+1

xjyj.

Proof. Wlog r = 0, s = 1, so KR = {(x, x) | x ∈ C}. Then

〈(x, x), (y, y)〉 = xy + xy = 2(<(x)<(y) + =(x)=(y)).

�

In the following we will treat all lattices in KR as lattices in (Rr+2s, (, )) with respect to
the positive definite Minkowski metric.

Theorem 2.8. If 0 6= AE ZK is an ideal in ZK then Γ := j(A) is a full lattice in KR with
covolume

covol(Γ) =
√
|dK ||ZK/A|.

In particular det(j(ZK)) = |dK | is the absolute value of the discriminant of K.
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Proof. Let B = (α1, . . . , αn) be an integral basis of A. and let A := (σi(αj))
n
i,j=1 ∈ Cn×n.

Then the Gram matrix of B with respect to the trace bilinear form S is

MB(S) = AtrA.

So dA = det(MB(S)) = det(A)2 = [ZK : A]2dK . On the other hand

(〈j(αi), j(αk)〉)ni,k=1 = (
n∑
`=1

σ`(αi)σ`(αk))
n
i,k=1 = A

tr
A

and therefore vol(KR/Γ) =

√
det(A

tr
A) = | det(A)| =

√
|dK |[ZK : A]. �

Definition 2.9. For any nonzero integral ideal 0 6= AE ZK we define the norm of A to be
N(A) := [ZK : A].

Clearly for a ∈ ZK this is the usual norm NK/Q(a) = N((a)).

Remark 2.10. For any two nonzero integral ideals A,B we have

N(AB) = N(A)N(B)

so N defines a group homomorphism

N : JK → R>0, N(℘n1
1 · · ·℘nss ) := N(℘1)n1 · · ·N(℘s)

ns .

Proof. Since A,B have a factorisation into prime ideals it is enough to show the multiplica-
tivity in the following two cases
(a) gcd(A,B) = 1: But then AB = A ∩ B and by Chinese Remainder Theorem ZK/AB ∼=
ZK/A× ZK/B has order

N(AB) = |ZK/AB| = |ZK/A||ZK/B| = N(A)N(B).

(b) powers of prime ideals N(℘n) = N(℘)n. For any prime ideal 0 6= ℘ E ZK , the ideals of
ZK/℘n are precisely ℘i/℘n with 0 ≤ i ≤ n. This yields a composition series

ZK ⊇ ℘ ⊇ ℘2 ⊇ . . . ⊇ ℘n−1 ⊇ ℘n

where all composition factors ℘i/℘i+1 are isomorphic to ZK/℘. More precisely for any
p ∈ ℘ \ ℘2 multiplication by p yields an isomorphism between ZK/℘ and ℘/℘2, etc. So
|ZK/℘| = |℘/℘2| = . . . = |℘n−1/℘n| = N(℘) and |ZK/℘n| =

∏n
i=1 |℘i−1/℘i| = N(℘)n. �

3 Finiteness of the ideal class group.

Remark 3.1. For any n ∈ N there are only finitely many integral ZK-ideals I E ZK with
norm N(I) ≤ n. Here a fractional ZK-ideal is called integral, if it is contained in ZK, hence
if it is an ideal in the usual sense.
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Proof. Let I E ZK be an ideal with norm N(I) = |ZK/I| = n. Then nZK ⊆ I ⊆ ZK and
I/nZK is one of the finitely many subgroups of the finite abelian group ZK/nZK ∼= Z/nZ[K:Q].
�

General assumption:
K is a number field of degree [K : Q] = r + 2s = n,

σ1, . . . , σr : K → R ⊂ C, σr+1, . . . σr+s, σr+s+1 = σr+1, . . . , σr+2s = σr+s : K → C

the real resp. complex embeddings of K into C. These are also called the places of K.

Theorem 3.2. Let 0 6= A E ZK be an ideal. For any i ∈ {1, . . . , r + s} let ci = cσi ∈ R>0

such that cr+i = cr+s+i for all 1 ≤ i ≤ s (cσi = cσi) and

r+2s∏
i=1

ci >

(
2

π

)s√
|dK |N(A).

Then there is some 0 6= a ∈ A such that |σi(a)| < cσi for all 1 ≤ i ≤ n. In particular any
integral ideal contains an element 0 6= a ∈ A, such that |NK/Q(a)| ≤

(
2
π

)s√|dK |N(A).

Proof. Let X := {(x1, . . . , xn) ∈ KR | |xi| ≤ ci for all 1 ≤ i ≤ n}. Then X and its image
m(X) is convex and centrally symmetric, where m : KR → Rr+2s,

(x1, . . . , xr, xr+1, . . . , xr+s, xr+s+1, . . . , xr+2s︸ ︷︷ ︸
=xr+1,...,xr+s

) 7→ (x1, . . . , xr,<(xr+1),=(xr+1), . . . ,<(xr+s),=(xr+s))

and Rr+2s is endowed with the positive definite bilinear form (x, y) :=
∑r

i=1 xiyi+2
∑2s

j=1 xr+jyr+j.
With respect to this metric, the volume of m(X) is

vol(m(X)) = vol{(x1, . . . , xn) ∈ Rr+2s | |xi| ≤ ci, x
2
r+2j−1+x2

r+2j ≤ c2
r+j for all 1 ≤ i ≤ r, 1 ≤ j ≤ s} =

(
∏r

i=1 2ci)
∏s

j=1 2πc2
r+j = 2r+sπs

∏n
i=1 ci > 2r+sπs

(
2
π

)s√|dK |N(A) = 2r+2s vol(Rn/Γ) where
Γ = j(A). By Minkowski’s lattice point theorem there is some non-zero element in m(X) ∩
m(j(A)) = m(X ∩ j(A)). �

Theorem 3.3. Recall that the class group of K is ClK := JK/PK is the group of equivalence
classes of fractional ZK-ideals in K, where two ideals A and B are called equivalent, if they
differ by a principal ideal, so if there is 0 6= x ∈ K such that (x)A = B.

(a) Any ideal class [A] ∈ ClK contains an integral ideal A1 ∈ [A], A1 E ZK such that

N(A1) ≤MK :=

(
2

π

)s√
|dK |.

(b) The class number of K, hK := |ClK | is finite.
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Proof. (a) implies (b) since there are only finitely many integral ideals of norm ≤MK .
To see (a), let AE ZK an integral representative of the ideal class. By Theorem 3.2 there is
some 0 6= a ∈ A, such that |N(a)| ≤ MKN(A). Let A1 := (a)A−1. Then A1 is integral, in
the class of A−1 and N(A1) = |N(a)|N(A)−1 ≤MK . �

Example: K = Q[
√

5], dK = 5, r = 2, s = 0, so MK =
√

5 < 3 and any ideal class
contains some integral ideal of norm 1 or 2.

Norm 1 Then the ideal is (1) = ZK and therefore principal.

Norm 2 If N(I) = 2, IEZK , then 2ZK ⊆ I ⊆ ZK . The ring ZK/2ZK ∼= F2[x]/(x2 +x−1) ∼= F4

has no nontrivial ideals, so there are no ideals of norm 2 (note that N(2ZK) = 4).

So we have seen that ZK = Z[1+
√

5
2

] is a principal ideal domain.

Example: K = Q[
√

15], dK = 60, r = 2, s = 0, so MK = 2
√

15 < 8 and we have to
consider all integral ideals of norm 2,3,4,5,7.

Norm 2 ℘2 = (2, 1 +
√

15) is the unique ideal of norm 2. (ZK/2ZK ∼= F2[X]/(X2 − 15) ∼=
F2[X]/(X+1)2 has a unique non-trivial ideal). ℘2 is not a principal ideal since otherwise
Z[
√

15] contains an element a = x + y
√

5 of norm N(a) = x2 − 15y2 = ±2. Then
x2 ≡5 ±2 which is a contradiction.

Norm 3 ℘3 = (3,
√

15) but ℘2℘3 = (3 +
√

15) is a principal ideal.

Norm 4 2ZK = ℘2
2.

Norm 5 ℘5 = (5,
√

15) but ℘3℘5 = (
√

15) is a principal ideal.

Norm 7 ℘7 = (7, 1 +
√

15), ℘′7 = (7, 1 −
√

15). These ideals satisfy ℘7℘2 = (1 +
√

15) and
℘′7℘2 = (1−

√
15).

So in total ClK = 〈[℘2]〉 ∼= C2.

Example: K = Q[
√

5], O = Z[
√

5], dO = 20, r = 2, s = 0, so MO = 2
√

5 < 5

Norm 2 ℘2 = (2, 1 +
√

5) = 2ZK is the unique ideal of norm 2 in O. Note that ℘2
2 = 2℘2 so ℘2

is not invertible as an O-ideal.

Norm 3 no ideal of norm 3 as X2 − 5 is irreducible in F3[X].

Norm 4 Let XEO be of index 4. Then ZKXEZK is of index 4 or 8 and hence ZKX = 2ZK = ℘2.
So we have 2℘2 ⊂ X ⊂ ℘2 and need to enumerate all such O-modules. Now ℘2

∼= Z2

with basis B = (2, 1 +
√

5) and we compute

B
√

5
B

=

(
−1 2

2 1

)
.

So all submodules of ℘2/2℘2 are O-ideals; these are

2O, (1 +
√

5)O, (1−
√

5)O

and hence all isomorphic to O.
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Remark 3.4. Since any ideal is a product of prime ideals, the class group is generated by
the classes of prime ideals ℘iEZK such that N(℘i) ≤MK. Note that the norm of the prime
ideal ℘ is a power of the prime p with pZ = ℘ ∩ Z.

Remark 3.5. What is known about class numbers? Not much.
If K = Q[

√
d] (d < 0, d ∈ Z square free) is an imaginary quadratic number field then hK = 1

if and only if d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.
One conjectures that there are infinitely many real quadratic number fields K (so r = 2, s = 0)
for which hK = 1, but one cannot even prove that there are infinitely many number fields
(without restricting the degree) with class number 1.

4 Dirichlet’s theorem

We start with some preliminary technical remarks on lattices. Let V = (Rn, (, )) always
denote the Euclidean space of dimension n.

Lemma 4.1. A subgroup Γ ≤ V is a lattice (i.e. there are R-linear independent elements
(v1, . . . , vm) ∈ V m such that Γ = 〈v1, . . . , vm〉Z) if and only if Γ is discrete, which means that
for all γ ∈ Γ there is some ε > 0 such that Bε(γ) ∩ Γ = {γ}.

Proof. Let V0 := 〈Γ〉R and B := (γ1, . . . , γm) ∈ Γm a basis of V0. Put Γ0 := 〈γ1, . . . , γm〉Z.
Then Γ0 is a lattice. We prove that Γ/Γ0 is finite, because then Γ is finitely generated and
by the main theorem on f.g. abelian groups it is free of the same rank as Γ0.
Let E(B) be the fundamental parallelotope defined by B, then vol(E(B)) is finite and
V0 = ∪γ∈Γ0E(B) + γ. Since E(B) is compact and Γ is discrete, there are only finitely
many points in E(B)∩Γ = {x1, . . . , xa}. But then Γ = ∪ai=1xi + Γ0 and hence |Γ/Γ0| ≤ a. �

Lemma 4.2. Let Γ ≤ V be a lattice. Then Γ is a full lattice (i.e. contains a basis of V ), if
and only if Γ has finite covolume in V , if and only if there is some bounded set M ⊂ V such
that V = ∪γ∈ΓM + γ.

Proof. If Γ is a full lattice, and B a lattice basis of Γ, then M := E(B) is such a bounded
set.
On the other hand assume that Γ has not full rank in V and choose some v ∈ V \ 〈Γ〉R. If
V = ∪γ∈ΓM + γ for some bounded set M , then for any n ∈ N there is some an ∈ M such
that nv = an + γn for some γn ∈ Γ. Since M is bounded, limn→∞

1
n
an = 0, so

v =
1

n
(an + γn) = lim

n→∞

1

n
an + lim

n→∞

1

n
γn = lim

n→∞

1

n
γn ∈ 〈Γ〉R

because subspaces are closed. �

We now want to apply these basic facts on lattices to study the unit group Z∗K of the ring
of integers in some algebraic number field.

Recall that the places σ1, . . . , σr+2s of K define an embedding

j : K ↪→ KR = {(x1, . . . , xr, y1, . . . , ys, y1, . . . , ys) | xi ∈ R, yi ∈ C}
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and that we identified KR via the mapping m with Rr+2s where

m : KR → Rr+2s, (x1, . . . , xr, y1, . . . , ys, y1, . . . , ys) 7→ (x1, . . . , xr,<(y1),=(y1), . . . ,<(ys),=(ys)).

Note that j is a ring homomorphism so it defines a group homomorphism j : K∗ → K∗R.
Define the logarithm

` : K∗R → Rr+s, `(x1, . . . , xr, y1, . . . , ys, y1, . . . , ys) := (log(|x1|), . . . , log(|xr|), log(|y1|2), . . . , log(|ys|2)).

Then ` is again a group homomorphism from the multiplicative group K∗R to the additive
group of the vector space Rr+s.

Theorem 4.3. Let λ := ` ◦ j : Z∗K → Rr+s. Then λ is a group homomorphism with

ker(λ) = µK = {z ∈ K | za = 1 for some a ∈ N}

the group of roots of unity in K. Let Γ := λ(Z∗K) ≤ Rr+s.

Proof. It is clear that λ is a group homomorphism. The image of λ is a subgroup of the
additive group of a vector space, hence torsion free, so all elements of Z∗K that have finite
order lie in the kernel of λ and therefore µK ⊆ ker(λ). To see equality let x ∈ Z∗K be such
that λ(x) = 0. Then

j(x) ∈ X := {(x1, . . . , xr, y1, . . . , ys) ∈ KR | |xi| = 1, |yi|2 = 1}.

So j(ker(λ)) is contained in a bounded subset of KR. On the other hand j(x) ∈ j(ZK) =: Λ
is contained in the lattice j(ZK) = 〈j(b1), . . . , j(bn)〉Z for any integral basis (b1, . . . , bn) of K.
But Λ∩X is always finite, so ker(λ) is finite and hence a torsion group, so contained in µK . �

Remark 4.4. Since the norm is multiplicative Z∗K = {x ∈ ZK | NK/Q(x) = ±1}. Note that if
x ∈ ZK satisfies NK/Q(x) = 1 then x−1 ∈ Z[x] can be obtained from the minimal polynomial
of x.
Let UK := {x ∈ K | N(x) = ±1}.
Then λ(Z∗K) ⊆ λ(UK) = H := {(a1, . . . , ar+s) ∈ Rr+s |

∑r+s
i=1 ai = 0} ∼= Rr+s−1.

Theorem 4.5. Let Γ := λ(Z∗K) ≤ Rr+s. Then Γ ≤ H := {(a1, . . . , ar+s) ∈ Rr+s |
∑r+s

i=1 ai =
0} ∼= Rr+s−1 is a full lattice in H.

Proof. We have to show that Γ is a full lattice in H. It is clear that Γ ≤ H is a subgroup.
We first show that Γ is discrete. To this aim we show that for any c > 0 the set

Xc := {(am) ∈ Rr+s | |am| < c for all m}

meets Γ in only finitely many points. But

`−1(Xc) = {(x1, . . . , xr, y1, . . . , ys, y1, . . . , ys) ∈ KR | e−c ≤ |xi| ≤ ec, e−c ≤ |yi|2 ≤ ec}
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is bounded and therefore contains only finitely many points of the lattice Λ = j(ZK) ⊂ j(Z∗K).
Therefore also |Γ ∩Xc| <∞.
We now show that Γ has finite covolume in H: Choose c1, . . . , cr, d1, . . . , ds ∈ R>0 such that

r∏
i=1

ci

s∏
j=1

d2
j =: C > MK .

Let X := {(x1, . . . , xr, y1, . . . , ys, y1, . . . , ys) ∈ KR | |xi| < ci, |yj|2 < d2
j}. Then X ⊂ KR is a

bounded set.
Since there are only finitely many ideals of a given norm in ZK there are α1, . . . , αN ∈

ZK \ {0} such that for any element α ∈ ZK with |N(α)| ≤ C there is some unit u ∈ Z∗K and
some 1 ≤ i ≤ N such that α = uαi.

Let U := {y ∈ K∗R | N(y) = ±1} ≤ K∗R. Then `(U) = H and U is the full preimage of H
under `. Put

T := U ∩
N⋃
i=1

Xj(α−1
i ).

We then claim that U = ∪ε∈Z∗KTj(ε).
Let y ∈ U . Then Xy−1 = {x ∈ KR | |xi| ≤ c′i} where c′i = ci|yi|−1. Since

∏
i |yi| = N(y) = 1

also
∏

i c
′
i =

∏
i ci = C. By Minkowski’s theorem there is some 0 6= a ∈ ZK such that

j(a) ∈ Xy−1, so j(a) = xy−1 for some x ∈ X. This means that |NK/Q(a)| < C so there is
some u ∈ Z∗K and some i ∈ {1, . . . , N} such that a = uαi. Then

y = xj(a)−1 = xj(αi)
−1j(u)−1 ∈ Tj(u−1).

�

Corollary 4.6. Let t := r + s− 1. Then there are ε1, . . . , εt ∈ Z∗K and µ ∈ µK such that

Z∗K = 〈µ〉 × 〈ε1, . . . , εt〉 ∼= C|µK | × Zr+s−1.

The εi are called fundamental units of K.

Example. K = Z[
√

5], ZK = Z[1+
√

5
2

] then Z∗K = 〈−1〉 × 〈1+
√

5
2
〉.

Definition 4.7. A subset Γ ⊂ K is called an lattice in K, if there is some Q-basis B of K
such that Γ = 〈B〉Z.
A subset O ⊂ K is called an order in K, if O is a subring of K that is a lattice.

Example. If Γ ⊂ K is a lattice then

O(Γ) := {x ∈ K | xΓ ⊆ Γ}

is an order in K.

Clearly any order O is consists of integral elements and hence is contained in the unique
maximal order ZK of K. Since O also contains a basis of K, the index |ZK/O| is finite.
Moreover O∗ = {x ∈ O | N(x) = ±1}.
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Theorem 4.8. If O is an order in K, then O∗ ≤ Z∗K is a subgroup of finite index.

Proof. The same proof as above proves that also O∗ has t = r + s− 1 fundamental units. �

The Regulator

Definition 4.9. Let K be a number field and σi (1 ≤ i ≤ r + s) a complete set of pairwise
non- conjugate embeddings of K in C. Then the regulator of a set {ε1, ε2, ..., εr+s−1} of
r + s− 1 elements in K∗ of norm ±1 is defined as

Reg(ε1, ε2, ..., εr+s−1) = det(ni log |σi(εj)|)r+s−1
i,j=1 .

Here the integer ni ∈ {1, 2} equals 1 if σi is a real embedding and 2 otherwise. The regulator
Reg(R) of an order R in K is the regulator of a system of fundamental units for R∗. We
put Reg(R) = 1 if R∗ is finite, i.e., if R is either Z or an imaginary quadratic order. The
regulator of K is R(K) =Reg(ZK).

By the Dirichlet unit theorem, regulators of orders do not vanish. Unlike the discriminant
of the order, which is an integer, the regulator of an order is a positive real number that is
usually transcendental as it is an expression in terms of logarithms of algebraic numbers.

A few formulas relating regulator R(K), class number h(K), number of roots of unity
|µK | =: ω(K) and discriminant |d(K)|. We keep the notation [K : Q] = n = r + 2s.

Theorem 4.10. Let ζK(z) :=
∑

A
1

N(A)z
denote the Dedekind zeta function of K, where the

sum is over all non-zero integral ideals of ZK. Then ζK has an analytic continuation to C
with a simple pole at z = 1.

(a) limz→0 z
−(r+s−1)ζK(z) == h(K)R(K)ω(K)−1.

(b) limz→1(z − 1)ζK(z) = 2r(2π)s h(K)R(K)

ω(K)
√
|d(K)|

.

(c) limx→∞
NK(x)
x

= 2r(2π)s h(K)R(K)

ω(K)
√
|d(K)|

where NK(x) denotes the number of integral ideals

of ZK of norm ≤ x.

5 Quadratic number fields

Let K = Q[
√
d], d ∈ Z, d 6= 1, 0 square-free be a quadratic number-field (i.e. an extension of

Q of degree 2). Then ZK = Z[ω] with ω :=

{ √
d d ≡4 2, 3

1+
√
d

2
d ≡4 1

. Note that dK = d if d ≡4 1

and dK = 4d otherwise, in particular dK is either 0 or 1 modulo 4.

Theorem 5.1. Let Γ be a full lattice in K.
(a) There is some m ∈ Q and γ ∈ K such that Γ = 〈m,mγ〉Z.
(b) Let a, b, c ∈ Z, gcd(a, b, c) = 1, a > 0, such that aγ2 +bγ+c = 0. Then aγ = h+kω ∈ ZK
and

O(Γ) := {x ∈ K | xΓ ⊆ Γ} = 〈1, aγ〉Z = 〈1, kω〉Z.
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Proof. (a) Is just the Hermite normal form for integral matrices: If Γ = 〈α, β〉Z, then there
are x, y ∈ Q such that 1 = xα+ yβ. Choose m ∈ Q such that u := mx and v := my both lie
in Z and gcd(u, v) = 1. Then there are r, s ∈ Z such that 1 = us− rv. Put

γ :=
rα + sβ

m
, then Γ = 〈m,mγ〉Z.

(b) Clearly O(〈m,mγ〉Z) = O(〈1, 1γ〉Z), so wlog assume that m = 1. Then O(Γ) contains aγ,
since both, aγ and aγ2 = −bγ − c lie in Γ. On the other hand let x+ yγ =: δ ∈ O(Γ). Then
x+ yγ ∈ Γ, so x, y ∈ Z and yγ ∈ O(Γ), so yγ2 ∈ Γ implying that y is divisible by a. �

Corollary 5.2. Let O be an order in K. Then O = Of := 〈1, fω〉 for some f ∈ N. This
number f is called the conductor (Führer) of O.
We have fZK ⊂ Of ⊂ ZK and d(Of ) = f 2dK.

Remark 5.3. Let 〈σ〉 = Gal(K/Q) (so σ(
√
d) = −

√
d). Then for all a ∈ K we have

σ(a) = SK/Q(a)− a and in particular any order O in K satisfies σ(O) = O.

Definition 5.4. Let O ⊂ K be an order. Then

M(O) := {Γ ⊆ K | Γ is a lattice , O(Γ) = O}

Theorem 5.5. M(O) is a group with respect to the usual multiplication of ideals. If Γ =
〈m,mγ〉Z ∈M(O) where γ ∈ K,m ∈ Q, a, b, c ∈ Z are as in Theorem 5.1 (b), then we define
N(Γ) := m2

a
and the inverse of Γ is Γ−1 = N(Γ)−1σ(Γ).

Proof. Clearly ideal multiplication is associative, commutative, etc.
The unit element in M(O) is O.
We first show that the elements in M(O) have an inverse:
Let Γ = 〈m,mγ〉 ∈ M(O). Since O(σ(Γ)) = σ(O(Γ)) = O, also the conjugate σ(Γ) is in
M(O). Moreover

Γσ(Γ) = m2〈1, γ, σ(γ), γσ(γ)〉 = N(Γ)〈a, aγ, aσ(γ), aγσ(γ)〉

where a, b, c are as in Theorem 5.1 (b). Then aγ2 + bγ + c = 0 so b = aγ + aσ(γ) and
c = aγσ(γ). In particular

Γσ(Γ) = N(Γ)〈a, b, c, aγ〉 = N(Γ)O.

We now show that the product of two elements of M(O) is again in M(O):
Let Γ1,Γ2 ∈M(O). Then O ⊆ O(Γ1Γ2) by the associativity of ideal multiplication. Moreover

O = (Γ1Γ2)(Γ−1
1 Γ−1

2 ) = N(Γ1)−1N(Γ2)−1(Γ1Γ2)σ(Γ1)σ(Γ2)

so O(Γ1Γ2) ⊆ O(O) = O. �
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Definition 5.6. Let O be an order in K = Q[
√
d].

(a) e(O) := [Z∗K : O∗].
(b) K+ := {a ∈ K∗ | N(a) > 0}, n(O) := [K∗ : (K+O

∗)].
(c) Cl(O) :=M(O)/{aO | a ∈ K∗} is called the class group of O.
(d) Cl0(O) :=M(O)/{aO | a ∈ K+} is called the ray class group of O.

Remark 5.7. (a) If d < 0 then K+ = K∗, n(O) = 1.
(b) If d > 0 then O∗ = 〈−1〉 × 〈ε〉 and n(O) = 1 if and only if NK/Q(ε) = −1. Otherwise
n(O) = 2.
(c) The kernel of the map Cl0(O)→ Cl(O) has order n(O).
(d) Every class [Γ]0 ∈ Cl0(O) has a representative of the form Γ = 〈1, γ〉 with γ = x + yω,
x, y ∈ Q, y > 0. Such a γ ∈ K is called admissible.

Theorem 5.8. Let γ1, γ2 ∈ K be admissible and put Γi := 〈1, γi〉. Assume that O(Γ1) =
O(Γ2). Then

[Γ1]0 = [Γ2]0 ∈ Cl0(O)⇔ ∃A =

(
k `
m n

)
∈ SL2(Z), such that γ2 =

kγ1 + `

mγ1 + n
.

Proof. ⇒: Let [Γ1]0 = [Γ2]0. Then there is some α ∈ K, N(α) > 0 and A =

(
k `
m n

)
∈

GL2(Z) such that(
γ2

1

)
= A

(
αγ1

α

)
, so

(
γ2 σ(γ2)
1 1

)
= A

(
αγ1 σ(α)σ(γ1)
α σ(α)

)
.

Taking the determinant we obtain

(?) γ2 − σ(γ2) = det(A)N(α)(γ1 − σ(γ1)).

Since γ1 and γ2 are admissible, the coefficient of
√
d is positive on both sides and hence

det(A) > 0 (note that N(α) > 0 by assumption), so A ∈ SL2(Z). Moreover

γ2 =
γ2

1
=

kαγ1 + α`

mαγ1 + αn
=

kγ1 + `

mγ1 + n
.

⇐: Put α := 1
mγ1+n

. Then

αΓ1 = 〈α, αγ1〉 = 〈A
(
αγ1

α

)
〉 = 〈γ2, 1〉 = Γ2.

Because of (?) and det(A) = 1 we obtain N(α) > 0. �

Definition 5.9. Let Γ := 〈1, γ〉 ∈ M(O), γ ∈ K admissible and let a, b, c ∈ Z, a > 0,
gcd(a, b, c) = 1 such that aγ2 + bγ + c = 0. Then

Fγ := Fγ(X, Y ) :=
1

N(Γ)
(X − γY )(X − σ(γ)Y ) = aX2 + bXY + cY 2

is called the binary quadratic form defined by γ.
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Then Theorem 5.8 immediately implies

Theorem 5.10. Let Γi = 〈1, γi〉 ∈ M(O), γi admissible i = 1, 2. Then

[Γ1]0 = [Γ2]0 ∈ Cl0(O)⇔ ∃A =

(
k `
m n

)
∈ SL2(Z) such that Fγ1(nX−`Y,−mX+kY ) = Fγ2(X, Y ).

Proof. Put Ni := N(Γi). Then

N1Fγ1(nX−`Y,−mX+kY ) = ((nX−`Y )−γ1(−mX+kY ))((nX−`Y )−σ(γ1)(−mX+kY )) =

(n+mγ1)(n+mσ(γ1))(X − kγ1 + `

mγ1 + n
Y )(X − kσ(γ1) + `

mσ(γ1) + n
Y ) = N1Fγ2(X, Y ).

�

Definition 5.11. Let F = Fa,b,c = aX2 + bXY + cY 2 be a binary quadratic form.

(a) disc(F ) := −4ac+ b2 = − det

(
2a b
b 2c

)
is called the discriminant of F .

(b) Two forms Fa,b,c and Fa′b′c′ are called properly equivalent, if there is some A ∈ SL2(Z),
such

A

(
2a b
b 2c

)
Atr =

(
2a′ b′

b′ 2c′

)
.

(c) For any D ∈ Z we define

Q(D) := {Fa,b,c | a, b, c ∈ Z, gcd(a, b, c) = 1, a > 0,−4ac+ b2 = D}/ SL2(Z)

to be the set of proper equivalence classes of binary quadratic forms of discriminant D.

Theorem 5.12. Cl0(Of ) is in bijection with Q(f 2dK) by mapping [〈1, γ〉]0 to [Fγ] (where γ
is admissible).

Proof. We first show that the map is well defined: If Γ = 〈1, γ〉 and aγ2 + bγ + c = 0 with
a, b, c ∈ Z, a > 0, gcd(a, b, c) = 1 then O(Γ) = 〈1, aγ〉 has discrimimant

d(O(Γ)) = det

(
2 −b
−b b2 − 2ac

)
= −4ac+ b2.

Now the inverse bijection is given by assigning to F := Fa,b,c the admissible root γ of F (X, 1).

Then F (X, Y ) = a(X − γY )(X − σ(γ)Y ) with γ ∈ Q[
√
disc(F )] = Q[

√
f 2dK ] = K. �

5.1 Imaginary quadratic number fields.

Theorem 5.13. Let D = f 2dK < 0. Then

R(D) := {Fa,b,c | a > 0,−4ac+b2 = D, a, b, c ∈ Z, gcd(a, b, c) = 1, |b| ≤ a ≤ c, and b > 0 if a = c or |b| = a}

is a system of representatives for Q(D).
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Proof. Let Fa,b,c ∈ [Fa,b,c] ∈ Q(D) such that a is minimal. Then a ≤ c since(
0 1
−1 0

)(
2a b
b 2c

)(
0 −1
1 0

)
=

(
2c −b
−b 2a

)
Let k := ba−b

2a
c. Then(

1 0
k 1

)(
2a b
b 2c

)(
1 k
0 1

)
=

(
2a b+ 2ak

b+ 2ak 2(ak2 + bk + c)

)
with b′ = b+ 2ak ∈ [−a, a], c′ = ak2 + bk + c and Fa,b′,c′ ∈ R(D).
On the other hand any two forms in Q(D) are inequivalent under the action of SL2(Z) (ex-
ercise). �

Remark 5.14. If Fa,b,c ∈ R(D) then a ≤
√
|D|/3 because |D| = 4ac− b2 ≥ 4a2 − a2 = 3a2.

Example. D = −47, then a ≤
√

47/3 < 4, so a = 1, 2, 3. Moreover −47 = −4ac+ b2, so
b is odd.

a = 1:

(
2 1
1 24

)
.

a = 2:

(
4 1
1 12

)
,

(
4 −1
−1 12

)
.

a = 3:

(
6 1
1 8

)
,

(
6 −1
−1 8

)
.

Let ω := 1+
√
−47

2
. Then ω2 − ω + 12 = 0 and the corresponding ideals are

ZK = 〈1, ω〉, ℘2 = 〈2,−σ(ω)〉, ℘′2 = 〈2, ω〉, ℘3 = 〈3,−σ(ω)〉, ℘′3 = 〈3, ω〉.

The class group has order 5, so ClK = 〈℘2〉 ∼= C5.

Remark 5.15. The integral ideal 〈a, aγ〉 ∈ [〈1, γ〉]0 has norm N with a | N | a2.

The 2-rank of the class group.

This works similarly also for real quadratic number-fields, but we restrict to imaginary
quadratic fields. So let d ∈ Z be squarefree, d > 0, K = Q[

√
−d] with ring of integers

ZK = Z[
√
−d] and discriminant dK = 4d if −d ≡ 2, 3 (mod 4) resp. ZK = Z[1+

√
−d

2
] and

discriminant dK = d if −d ≡ 1 (mod 4).

Let α :=
√
−d resp. α := 1+

√
−d

2
denote a generator of ZK and f its minimal polynomial.

Let σ denote the non-trivial Galois automorphism of K, so σ(
√
−d) = −

√
−d.

Lemma 5.16. A prime p is a divisor of dK, if and only if there is a prime ideal ℘ E ZK
such that ℘2 = pZK. (We say that p is ramified in K.)

Proof. Let p be a prime. Then the prime ideals dividing p correspond to the maximal ide-
als of ZK/pZK ∼= Fp[x]/(f). This is a uniserial ring, iff f has a double zero mod p which
is equivalent to p dividing dK . (Treat 2 separately, for odd primes, one may replace f by
X2 + d where this is obvious). �
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Theorem 5.17. Cl(K)/Cl(K)2 ∼= Ω2(Cl(K)) = {[I] | [I]2 = 1} ∼= Cg−1
2 where g is the

number of distinct prime divisors of dK. More precisely for each prime divisor pj of dK let
℘j be the prime ideal dividing pjZK. Then

Ω2(Cl(K)) = 〈[℘j] | i = 1, . . . , g〉 and

{
℘1 · · ·℘g =

√
−d if − d ≡ 1, 2 (mod 4)

℘2 · · ·℘g =
√
−d if − d ≡ 3 (mod 4)

where we assumed in the last case that ℘2
1 = 2ZK.

It is clear that all ramified prime ideals ℘ have order at most 2 in the class group since
℘2 = pZK is principal. We need to show that
(a) Any class of order 2 contains an ideal A such that A = σ(A).
(b) Any such σ-invariant ideal is equivalent (in the class group) to a product of ramified
prime ideals.
(c) There is no other relation between the classes of the ramified prime ideals.

Lemma 5.18. (Hilbert 90) Let a ∈ K such that N(a) = aσ(a) = 1. Then there is some

b ∈ K such that a = σ(b)
b

.

Proof. If a = −1 then put b =
√
−d. Otherwise let b := (1 + a)−1. Then

σ(b)

b
=

1 + a

1 + σ(a)
=

(1 + a)a

(1 + σ(a))a
=

(1 + a)a

a+ 1
= a.

�

Lemma 5.19. Let A be a fractional ideal such that σ(A) = A. Then A = rQ where r ∈ Q>0

and Q is a (possibly empty) product of distinct ramified prime ideals.

Proof. By the uniqueness of the prime ideal decomposition it is enough to show this for prime
ideals ℘. The non-trivial Galois automorphism σ acts on the zeros of f mod p. If f has a
double zero mod p then σ fixes the prime ideal ℘ dividing p (these are the ramified primes).
If f is irreducible mod p, then pZK is a prime ideal.
If f is a product of two distinct linear polynomials then σ interchanges the two zeros of f
modulo p and p = ℘σ(℘) is a product of two distinct prime ideals. �

Lemma 5.20. Let AE ZK. Then Aσ(A) = N(A)ZK.

Proof. Again it is enough to show this for prime ideals where we did this in the last proof. �

The above lemma shows that for any ideal A the inverse [A]−1 = [σ(A)] in the class group
of K. In particular [A] = [σ(A)] if and only if [A] has order 1 or 2 in the class group.

Lemma 5.21. If [A] = [σ(A)] then this class contains a σ-invariant ideal.
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Proof. In this case there is some r ∈ K∗ such that σ(A) = Ar. ThenN((r)) = N(A)−1N(σ(A)) =
1 and therefore |N(r)| = 1. But the norm form is positive definite, so N(r) = 1 and there is
some b ∈ K∗ with r = b

σ(b)
. Put

B := Ab.
Then B ∈ [A] satisfies

σ(B) = σ(A)σ(b) = Arσ(b) = Ab = B
�

To see the last point (c), we need to show that no other product of distinct ramified prime
ideals is principal. For simplicity we only deal with the case −d ≡ 1, 2 modulo 4 and show
that in this case for any proper divisor 1 < m < d of d the ring ZK does not contain an
element of norm m. If x, y ∈ Z then the norm of x + y

√
−d is x2 + y2d = m then (since

0 < m < d) y2 needs to be 0, so m = x2 is a square which is a contradiction. In the case
−d ≡ 1 modulo 4 we also have integral elements (x + y

√
d)/2 where x and y are both odd.

The norm of this element is 1
4
(x2 + y2d) so (x2 + y2d) = 4m, which is only possible if y = ±1,

then x2 = 4m − d = m(4 − d
m

) and d
m

= 3. But this contradicts the fact that d and hence
also m is squarefree, in particular m is not a square.

6 Ramification.

Let Q ⊂ K ⊂ L be a tower of algebraic number fields and Z ⊂ ZK ⊂ ZL the corresponding
ring of integers.

Definition 6.1. Let 0 6= ℘E ZK be a prime ideal. Then

℘ZL = ℘e11 · · ·℘err

for prime ideals ℘i E ZK and e1, . . . , er ∈ N. Each ℘i defines a field extension

Fq ∼= ZK/℘ ↪→ ZL/℘i ∼= Fqfi

of degree fi, since ℘ = ℘i ∩ZK for all i. Then ei is called the ramification index of ℘i and
fi is the inertia degree of ℘i.

Example. K = Q, L = Q[
√
−7], α := 1+

√
−7

2
.

ramified prime: (
√
−7)2 = 7ZL, e = 2, f = 1.

inert prime: (3) = 3ZL, e = 1, f = 2.
decomposed prime: 2ZL = (α)(1− α), e1 = e2 = 1, f1 = f2 = 1.

Theorem 6.2. Let Q ⊂ K ⊂ L and 0 6= ℘E ZK be a prime ideal with ℘ZL = ℘e11 · · ·℘err for
prime ideals ℘iEZL and inertia degrees fi = [(ZL/℘i) : (ZK/℘)]. Then

∑r
i=1 eifi = n = [L :

K].

Proof. By the Chinese remainder theorem

ZL/℘ZL =
r⊕
i=1

ZL/℘eii .
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Put k := ZK/℘. Then ZL/℘ZL is a vector space over k and

dimk(ZL/℘ZL) =
r∑
i=1

dimk(ZL/℘eii ) =
r∑
i=1

eifi.

So we need to show that dimk(ZL/℘ZL) = n = [L : K].
To this aim let ω1, . . . , ωm ∈ ZL such that (ω1, . . . , ωm) is a k-basis of ZL/℘ZL.
Claim: (ω1, . . . , ωm) is a K-basis of L.
linearly independent: Assume that ai ∈ K not all = 0 are such that

∑m
i=1 aiωi = 0. Wlog

we may assume that all ai ∈ ZK . LetA := (a1, . . . , am)EZK and choose some a ∈ A−1\A−1℘.
Let bi := aai. Then

∑m
i=1 biωi = 0 with bi ∈ ZK not all bi ∈ ℘. Reducing this modulo ℘ we

obtain a linear dependence of the ωi which is a contradiction.
generating system: This follows essentially from Nakayama’s Lemma: Let

M := 〈ω1, . . . , ωm〉ZK ≤ ZL and N := ZL/M.

Then ZL = M + ℘ZL so ℘N ∼= (℘ZL + M)/M = ZL/M = N . We claim that N is a torsion
module. Let N = 〈α1, . . . , αs〉ZK with αi =

∑s
j=1 aijαj and aij ∈ ℘. Let d := det(A) where

A = (aij)
s
i,j=1 − Is ∈ Zs×sK . Then d ≡ (−1)s (mod ℘) and A∗A = dIs for A∗ ∈ Zs×sK the

adjoint of A. So

0 = A

 α1
...
αs

 = A∗A

 α1
...
αs

 =

 dα1
...
dαs


and therefore dN = 0, so |N | is finite. Since M is of finite index in ZL it has the same rank
as ZL and generates L as a vector space over K. �

6.1 How to compute inertia degree and ramification index ?

Let L = K(α) with α ∈ ZL, f := µα the minimal polynomial of α. Then O := ZK [α] ∼=
ZK [X]/(f(X)) is an order in L.

Definition 6.3. Let Fα := {a ∈ ZL | aZL ⊆ ZK [α]} be the largest ZL-ideal contained in
ZK [α]. Then Fα is called the conductor (Führer) of α.

Theorem 6.4. Let ℘ E ZK be a prime ideal such that gcd(℘ZL,Fα) = 1. Assume that
µα(X) = p1(X)e1 · · · pr(X)er ∈ ZK/℘[X]. Then ℘i := (℘, pi(α))) E ZL (1 ≤ i ≤ r) are the
prime ideals dividing ℘ZL and

℘ZL = ℘e11 · · ·℘err , fi := [ZL/℘i : ZK/℘] = deg(pi).

Proof. Let O := ZK [α]. Then

ZL = Fα + ℘ZL ⊆ O + ℘ZL ⊆ ZL

and hence O/℘O ∼= ZL/℘ZL ∼= k[X]/(µα(X)) with k = ZK/℘. The ideals in this ring can
be read off from the factorization of µα(X) ∈ k[X]. �
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Corollary 6.5. There are only finitely many prime ideals ℘EZK for which there is a prime
ideal ℘iEZL such that ℘2

i | ℘ZL. (For short: ZL contains only finitely many ramified primes.)

Proof. Since Fα has only finitely many divisors, we may assume that ℘ is prime to Fα. Then
the polynomial µα(X) ∈ k[X] has multiple factors, iff

gcd(µα(X), µ′α(X) 6= 1⇔ ℘ divides disc(µα) =
∏
i<j

(αi − αj) ∈ ZK .

where αi are the roots of µα in the algebraic closure of K. But this ideal has only finitely
many prime divisors. �

Example: Let f := X4 + 2X3 − 5X2 − 6X − 1 ∈ Q[X], L = Q[X]/(f(X)), α = X ∈ L,
so µα = f . Then Z[α] is of index 3 in ZL. dL = 1600, disc(f) = 14400 = 9dL.

f (mod 2) (X2 +X + 1)2 (2) = ℘2
2 e = f = 2

f (mod 3) (X + 2)2(X2 +X + 2)
f (mod 5) (X2 +X + 2)2 (5) = ℘2

5 e = f = 2
f (mod 7) (X2 + 4)(X2 + 2X + 5) (7) = ℘7℘

′
7 e1 = e2 = 1, f1 = f2 = 2

6.2 Hilbert’s theory of ramification for Galois extensions.

Let L ⊇ K be algebraic number fields and assume that L/K is Galois. Let G := Gal(L/K)
denote the Galois group.

Remark 6.6. For any σ ∈ G we have σ(ZL) = ZL. If ℘ E ZL is a prime ideal, then also
σ(℘)E ZL is a prime ideal and ℘ ∩ ZK = σ(℘) ∩ ZK.

Theorem 6.7. The Galois group acts transitively on the set of prime ideals of ZL that contain
a given prime ideal ℘ of ZK:

℘ZL = ℘e11 . . . ℘err ⇒ for all 1 ≤ i ≤ r there is σi ∈ G, σi(℘1) = ℘i.

Proof. Assume that ℘2 6= σ(℘1) for all σ ∈ G. By the Chinese remainder theorem there is
some x ∈ ZL such that

x ≡ 0 (mod ℘2), x ≡ 1 (mod σ(℘1)) for all σ ∈ G.

Then NL/K(x) =
∏

σ∈G σ(x) ∈ ℘2 ∩ ZK = ℘.
On the other had σ(x) 6∈ ℘1 for all σ ∈ G, so NL/K(x) 6∈ ℘1∩ZK = ℘ which is a contradiction.
�

Corollary 6.8. e1 = . . . = er =: e, f1 = . . . = fr =: f and [L : K] = n = ref .
e is called the ramification index of ℘, e = eL/K(℘) = eL/K(℘i) for all i.
f is called the inertia degree of ℘, f = fL/K(℘) = fL/K(℘i) for all i.
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Definition 6.9. Let ℘E ZL be a prime ideal in ZL. Then

G℘ := {σ ∈ G | σ(℘) = ℘}

is called the decomposition group of ℘ and Z℘ := FixG℘(L) := {x ∈ L | σ(x) =
x for all σ ∈ G℘} is called the decomposition field of ℘.

Theorem 6.10. Let ℘E ZL be a prime ideal in ZL and let ℘Z := ℘ ∩ Z℘, Z := Z℘.
(1) ℘ZZL = ℘e.
(2) fL/Z(℘) = fL/K(℘), eL/Z(℘) = eL/K(℘) = e.
(3) eZ/K(℘Z) = fZ/K(℘Z) = 1.

Proof. (1) G℘ = Gal(L/Z), so the set of all prime ideals of ZL that contain ℘Z is {σ(℘) | σ ∈
G℘} = {℘}.
(2) Let r := [G : G℘] and let {℘ = ℘1, . . . , ℘r} be the set of prime ideals of ZL that con-
tain P := ℘ ∩ ZK . Then ref = |G| = [L : K] where e = eL/K(℘), f = fL/K(℘). So
ef = |G℘| = eL/Z(℘)fL/Z(℘). Clearly eL/Z(℘) ≤ eL/K(℘) and fL/Z(℘) ≤ fL/K(℘) from which
one obtains (2).
(3) eL/K(℘) = eL/Z(℘)eZ/K(℘Z) and fL/K(℘) = fL/Z(℘)fZ/K(℘Z). �

Theorem 6.11. Let k(℘) := ZL/℘ and k := ZK/P with P = ℘ ∩ ZK. Then k(℘)/k(P ) is a
normal extension and G℘ → Gal(k(℘)/k(P )) is surjective.

Proof. We first note that k ∼= k(℘Z) = ZZ/℘Z so we may assume that Z℘ = K and G℘ = G.
Choose α ∈ ZL such that α := α + ℘ ∈ k(℘) is a primitive element, let f := µα,K ∈ ZK [X]
and g := µα,k ∈ k[X]. Then g divides f ∈ k[X]. Since L/K is normal, all roots of f lie in
ZL, so f ∈ ZL[X] is a product of linear factors, and hence also f and therefore g ∈ k(℘)[X]
is a product of linear factors, so k(℘)/k is normal.
Now let α1 ∈ k(℘) be a zero of g. Then there is α1 ∈ ZL with f(α1) = 0 such that α1 = α1+℘.
This yields the existence of some σ ∈ G = G℘ such that σ(α) = α1. This element σ maps
onto the Galois automorphism of k(℘) that maps α to α1. �

Definition 6.12.
1→ I℘ → G℘ → Gal(k(℘)/k)→ 1

is a short exact sequence. In particular the inertia group of ℘ is

I℘ := {σ ∈ G℘ | σ(x) ≡ x (mod ℘) for all x ∈ ZL}EG℘.

The fixed field T℘ := Fix(I℘) is called the inertia field of ℘.

Corollary 6.13. T℘/Z℘ is a Galois extension with Galois group

Gal(T℘/Z℘) ∼= Gal(k(℘)/k) ∼= G℘/I℘ ∼= Cf .
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L

e︷︸︸︷
⊇ T℘

f︷︸︸︷
⊇ Z℘

r︷︸︸︷
⊇ K

Gal(L/T℘) = I℘ Cf ∼= G℘/I℘ = Gal(T℘/Z℘) G℘ = Gal(L/Z℘)

Example. L = Q[ 3
√

2, ζ3], K = Q, Gal(L/Q) = S3.
Prime ideal decompositions:
5ZL = ℘5℘

′
5℘
′′
5 with fi = 2. Put Z := Q[ 3

√
2]. Then 5ZZ = p5p

′
5 with f = 1, f ′ = 2, wlog

℘5 = p5ZL then Z = Z℘5 , G℘5 = Gal(L/Z) ∼= C2 and T℘5 = L.
For the prime 2 we obtain 2ZL = ℘3

2 = ( 3
√

2)3, T℘2 = Q[ζ3], Z℘2 = Q, G℘2 = G, e = 3, f = 2.

7 Cyclotomic fields.

Definition 7.1. The cyclotomic polynomials are defined recursively by

Φ1(X) := (X − 1),Φn(X) := (Xn − 1)/
∏

d|n,1≤d<n

Φd(X)

The roots of Φn are the primitive n-th root of unity.

Remark 7.2. In the Algebra class we have seen the following facts:

(a) Φn(X) ∈ Q[X] is an irreducible polynomial with integral coefficients.

(b) Φn(X) =
∏

d∈(Z/nZ)∗(X − ζdn) where ζn is any primitive nth root of unity.

(c) deg(Φn(X)) = ϕ(n) = |Z/nZ∗|.

(d) Q[ζn] := Kn is a Galois extension of Q with Gal(Kn/Q) ∼= (Z/nZ)∗ with explicit
isomorphism mapping a ∈ (Z/nZ)∗ to σa : (ζn 7→ ζan). Kn is called the n-th cyclotomic
field.

(e) If n = pa11 · · · pass is a product of powers of distinct primes then

Kn = Kp
a1
1
· · ·Kpass , ζn =

s∏
i=1

ζpaii

Remark 7.3. (cyclotomic units)
(a) Assume that n = pa is a prime power and let i, j ∈ N such that p |6 ij. Then (1− ζjn)/(1−
ζ in) ∈ Z[ζn]∗.
(b) Assume that n is divisible by at least two distinct primes. Then (1 − ζn) ∈ Z[ζn]∗ and∏

j∈Z/nZ∗(1− ζjn) = 1.

Proof. Exercise. �

Theorem 7.4. If n = pa is a prime power then ZKn = Z[ζn] and d(Kn) = ±ppa−1(ap−a−1).
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Proof. Let
O := Z[ζn] = 〈1, ζn, . . . , ζp

a−1(p−1)−1
n 〉Z ∼= Z[X]/(Φn(X)).

Then ℘ := (1− ζn)EO is a Galois invariant ideal of norm

NKn/Q(1− ζn) =
∏
p |6 j

(1− ζjn) = Φn(1) = p.

Note that Φn(X) = (Xpa−1)/(Xpa−1−1) = (Y p−1)/(Y −1) = Y p−1 +Y p−2 +. . .+Y +1 with
Y = Xpa−1

. By comparing norms we obtain ℘d = pO with d = [Kn : Q] = ϕ(n) = pa−1(p−1).
So the unique maximal ideal dividing pO is a principal ideal, hence O = O(Jp(O)) is p-
maximal. But the determinant of O is the discriminant of Φn which is not divisible by any
prime ` 6= p, since the n-th roots of unity are pairwise distinct modulo `. Therefore O is also
`-maximal for all primes ` 6= p and hence a maximal order (Exercise 4, Sheet 2).

In particular we know that O = ZKn and that the discriminant of Kn is a power of p.
Put ζ := ζn. Then

d(O) = d(Φn) =
∏

i 6=j∈Z/paZ∗
(ζ i − ζj) =

∏
i∈Z/paZ∗

Φ′n(ζ i) = NKn/QΦ′n(ζ).

Note that Φ′n(X) = d
dX

∏
i∈Z/paZ∗(X − ζ i) =

∑
i∈Z/paZ∗

∏
j 6=i(X − ζj). To compute Φ′n(ζ) we

differentiate the equation (Xpa−1 − 1)Φn(X) = (Xpa − 1) to obtain

pa−1Xpa−1−1Φn(X) + (Xpa−1 − 1)Φ′n(X) = paXpa−1.

Evaluating at ζ we obtain (ζp
a−1 − 1)Φ′n(ζ) = paζp

a−1 since Φn(ζ) = 0. Now α := ζp
a−1

is a
primitive pth root of unity and hence NQ(α)/Q(α− 1) = ±p, so

NKn/Q(α− 1) = ±ppa−1

NKn/Q(ζ) = ±1

NKn/Q(pa) = ±(pa)p
a−1(p−1) ⇒

NKn/Q(Φ′n(ζ)) = ±ps

where s = pa−1(ap− a− 1). �

Theorem 7.5. Let n = pa11 · · · pass ∈ N. Then ZKn = Z[ζn] and d(Kn) =
∏s

i=1 d(Kp
ai
i

)
ϕ( n

p
ai
i

)
.

This follows from the next more general Lemma.

Lemma 7.6. Let K,K ′ be number fields of degree n = [K : Q], n′ := [K ′ : Q] and discrimi-
nants d := d(K) and d′ := d(K ′). Assume that gcd(d, d′) = 1 and L := KK ′ has degree nn′

over Q. If B := (w1, . . . , wn) and B′ = (v1, . . . , vn′) are integral bases of K resp. K ′, then
BB := (wivj | 1 ≤ i ≤ n, 1 ≤ j ≤ n′) is an integral basis of ZL and d(L) = dn

′
(d′)n.

Proof. (a) BB is a Q-basis of L: It is a generating set by definition of L and these elements
are linearly independent since we assumed that [L : Q] = nn′.
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(b) To compute d(BB) let σ1, . . . , σn : K → C resp. ϕ1, . . . , ϕn′ : K ′ → C be the distinct
embeddings. Then σiϕj : L→ C are the embeddings of L and

d(BB) = det(M)2, where M = (σiϕj(wkvl))(i,j),(k,l) = (σi(wk)ϕj(vl))(i,j),(k,l).

This matrix M is easily seen to be the Kronecker product M = A⊗A′ with A = (σi(wk))i,k
and A′ = (ϕj(vl))j,l. Hence d(BB) = dn

′
(d′)n as claimed.

(c) BB is an integral basis. Basis is clear, also that the elements of BB are integral. So it
remains to show that 〈BB〉Z = ZL. Let α =

∑
i,j aijwivj ∈ ZL with aij ∈ Q. We need to

show that all aij ∈ Z. Let A′ be as above and put

a := (ϕ1(α), . . . , ϕn′(α))tr, b := (β1, . . . , βn′)
tr, where βj =

n∑
i=1

aijwi.

Then a = A′b and d′b = det(A′)b = (A′)∗a. Since all entries are integers, the vector d′b only
has integral entries, so d′

∑n
i=1 aijwi ∈ ZK which implies that d′aij ∈ Z for all i, j. Similarly

we obtain daij ∈ Z for all i, j and hence aij ∈ Z since d and d′ are co-prime. �

We now investigate the ramification indices and inertia degrees of primes in Kn.

Theorem 7.7. Let p be a prime, m ∈ N not divisible by p and put n = pam ∈ N. Let
f ∈ N be minimal such that pf ≡ 1 (mod m). Then the ramification index of p in Kn is
e = ϕ(pa) = p(a−1)(p − 1) and the inertia degree of p in Kn is f . Moreover f divides ϕ(m)
and

pZ[ζn] = (℘1 · · ·℘r)e, fKn/Q(℘i) = f.

where r = ϕ(m)/f .

Proof. We need to factorise Φn(X) ∈ Fp[X]. If {αi | 1 ≤ i ≤ ϕ(pa)} is the set of primitive
pa-th roots of unity and {βi | 1 ≤ i ≤ ϕ(m)} is the set of primitive m-th roots of unity then

{αiβj | 1 ≤ i ≤ ϕ(pa), 1 ≤ j ≤ ϕ(m)}

is the set of primitive n-th root of unity and

Φn(X) =
∏
i,j

(X − αiβj) ≡p
∏
j

(X − βj)ϕ(pa) ≡p Φm(X)e.

The m-th roots of unity are distinct mod p and Fpf contains a primitive m-th root of unity,
iff m | pf − 1. So all irreducible factors of Φm(X) ∈ Fp[X] have degree f . �

Example. Let n := 45 = 325. Then Gal(Kn/Q) ∼= C6×C4, Kn = K9K5 and 3Z[ζn] = ℘6
3

is totally ramified in K9 and inert in K5. So e3 = 6, f3 = 4. So the decomposition field is
Z3 = Q, the inertia field is T3 = Q[ζ5].
Since 3 |6 5 − 1 the prime 5Z[ζn] = ℘4

5 with e5 = 4, f5 = 6. So the decomposition field is
Z5 = Q, the inertia field is T5 = Q[ζ3].
To compute the inertia degree of 2, we need to find the minimal f = f2 for which 2f − 1 is a
multiple of 45. 24 − 1 = 15, so f = 3 · 4 = 12 and 2Z[ζn] = ℘2℘

′
2. The decomposition field of
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2 is Q[
√
−15].

For the prime 11 one finds that 45 | 116 − 1 and hence f11 = 6 and 11Z[ζn] = ℘11℘
′
11℘
′′
11℘
′′′
11.

Since 35 ≡11 1, the prime ideals over 11 are

℘11 = (3− ζ5, 11), ℘′11 = (3− ζ2
5 , 11), ℘′′11 = (3− ζ3

5 , 11), ℘′′′11 = (3− ζ4
5 , 11).

The decomposition field of 11 is Z11 = Q[ζ5].

Corollary 7.8. Let n be either odd or a multiple of 4. Then p is ramified in Z[ζn] if and
only if p | n.

7.1 Quadratic Reciprocity.

Theorem 7.9. Let ` and p be odd primes and put `∗ := (−1)(`−1)/2`. Then p is (totally)
decomposed in Q[

√
`∗], if and only if pZ[ζ`] is a product of an even number of prime ideals.

Proof. Since K` has a subfield L of degree 2 over Q and ` is the only prime that ramifies in
K`, this is also the only prime that ramifies in this unique quadratic subfield, so L = Q[

√
`∗].

Now assume that pZL = ℘1℘2 is a product of two prime ideals in L and let σ ∈ Gal(K`/Q) =:
G be such that σ(℘1) = ℘2. Then σ yields a bijection between the set of prime ideals of Z[ζ`]
that contain ℘1 and the ones that contain ℘2, in particular the number of prime ideals of
Z[ζ`] that contain p is even.
To see the opposite direction let ℘ be a prime ideal of Z[ζ`] such that ℘ ∩ Z = pZ and let
G℘ := StabG(℘) be its decomposition group. Since by assumption |℘G| is even, the index
[G : G℘] is even. Now G is cyclic, so the unique quadratic subfield L of K` is contained in
the decomposition field L ⊂ Z℘ = Fix(G℘). Putting PZ := ℘ ∩ Z℘ then fZ℘/Q(PZ) = 1 so
also fL/Q(PZ ∩L) = 1. But p does not divide the discriminant of L, so it is not ramified, and
therefore totally decomposed in L. �

Definition 7.10. Let 2 6= p be a prime, a ∈ Z such that p |6 a.(
a

p

)
:=

{
1 if a ≡p x2 for some x ∈ Z
−1 otherwise.

is called the Legendre symbol of a at p.

Remark 7.11. (a)
(
a
p

)
= 1 ⇔ (a+ pZ) ∈ (Z/pZ∗)2 ⇔ a(p−1)/2 ≡p 1.

(b)
(
a
p

)(
b
p

)
=
(
ab
p

)
.

(c) Let a ∈ Z\{0, 1} be squarefree and K := Q[
√
a]. Then

(
a
p

)
= 1 ⇔ pZK = ℘1℘2 is totally

decomposed.

Theorem 7.12. (Gauss reciprocity)
(a) Let ` and p be distinct odd primes. Then(

`

p

)(p
`

)
= (−1)

p−1
2

`−1
2 .
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(b)
(
−1
p

)
= (−1)(p−1)/2.

(c)
(

2
p

)
= (−1)(p2−1)/8.

Proof. (b) is clear.
To see (c) we compute in Z[i]. Here (1 + i)2 = 2i. And

1 + ip ≡p (1 + i)p = (1 + i)((1 + i)2)(p−1)/2 ≡p (1 + i)2(p−1)/2i(p−1)/2 ≡p (1 + i)

(
2

p

)
i(p−1)/2

so (1 + i)
(

2
p

)
i(p−1)/2 ≡p 1 + i(−1)(p−1)/2.

If (p− 1)/2 is even, then this reads as (1 + i)
(

2
p

)
(−1)(p−1)/4 ≡p (1 + i). Dividing both sides

by (1 + i) we obtain
(

2
p

)
≡p (−1)(p−1)/4.

If (p−1)/2 is odd, then we have (1+i)
(

2
p

)
(−i)(−1)(p+1)/4 ≡p 1−i and hence

(
2
p

)
(−i)i(−1)(p+1)/4 ≡p

1 because 1+i
1−i = i. So

(
2
p

)
≡p (−1)(p+1)/4.

These two congruences may be summarised as in (c).
(a) Let `∗ := (−1)(`−1)/2` be as in Theorem 7.9. We show that(

`∗

p

)
=
(p
`

)
Then (p

`

)
=

(
`∗

p

)
=

(
−1

p

)(`−1)/2(
`

p

)
= (−1)(p−1)/2(`−1)/2

(
`

p

)
.

We have
(
`∗

p

)
= 1 iff p is decomposed in Q[

√
`∗] ⇔ p splits in Q[ζ`] into an even number of

prime ideals. Now pZ[ζ`] = ℘1 · · ·℘s with s = `−1
f

and f minimal such that pf ≡` 1. So s is
even ⇔

f | `− 1

2
⇔ p

`−1
2 ≡` 1⇔

(p
`

)
= 1

�

8 Discrete valuation rings.

Definition 8.1. (a) A discrete valuation ring R is a local principal ideal domain (com-
mutative, without zero divisors) which is not a field.
(b) Let K be a field. A discrete valuation of K is a mapping v : K → Z ∪ {∞} such that
(o) There is some x ∈ K∗ such that v(x) 6= 0.
(i) v(x) =∞ ⇔ x = 0.
(ii) v(xy) = v(x) + v(y) for all x, y ∈ K∗.
(iii) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K.

Clear: v(1) = 0, v(x−1) = −v(x), v : K∗ → (Z,+) is a group homomorphism.
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Remark 8.2. v(x+ y) = min{v(x), v(y)} if v(x) 6= v(y).

Proof. First note that v(ζ) = 0 for any ζ ∈ K such that ζn = 1 for some n. In particular
v(−1) = 0 and v(−y) = v(y).
Assume that v(x) < v(y). Then

v(x) = v(x+ y − y) ≥ min{v(x+ y), v(y)} ≥ min{v(x), v(y)} = v(x).

We therefore have equality everywhere and v(x + y) = v(x) (note that v(y) > v(x) by as-
sumption). �

Example 8.3. Let R be a Dedekind domain K := Quot(R) and 0 6= ℘ E R a prime ideal.
Then the localisation of R at ℘ is

R(℘) := {x
y
∈ K | x, y ∈ R, y 6∈ ℘}.

Then R(℘) is a discrete valuation ring with maximal ideal ℘R(℘) = πR(℘) for any element
π ∈ ℘ \ ℘2.
The prime ideal ℘ also defines a valuation v = v℘ : K∗ → Z by putting v(z) = n ∈ Z≥0 if
℘n | zR but ℘n+1 |6 zR and v(x

y
) = v(x) − v(y) for all z, x, y ∈ R. Then R(℘) = {x ∈ K |

v(x) ≥ 0}.
Proposition 8.4. (a) Let R be a discrete valuation ring with maximal ideal ℘ = πR 6= {0}.
Then K := Quot(R) =

.
∪i∈Z πiR∗ ∪ {0} and the mapping v : K → Z ∪ {∞}, v(πiR∗) :=

i, v(0) :=∞ is a discrete valuation of K.
(b) If v : K → Z ∪ {∞} is a discrete valuation, then R := {x ∈ K | v(x) ≥ 0} is a discrete
valuation ring with maximal ideal {x ∈ K | v(x) ≥ 1} =: ℘ = πR for any π ∈ K with
v(π) ≥ 1 minimal.

Proof. (a) Since R is a local ring the units are R∗ = R \ ℘. Any element a ∈ R is either
a unit (a ∈ R∗) or a multiple of π and then a1 := π−1a ∈ R. Also a1 is either a unit or a
multiple of π. Continuing like this, we may write any non zero element of R in a unique way
as a = πnu with u ∈ R∗ and n ∈ Z≥0. Similarly any element 0 6= x = a

b
∈ Quot(R) = K can

be written as πiw with w ∈ R∗ and i ∈ Z in a unique way. Therefore v is well defined. It
clearly satisfies (o), (i) and (ii). So it remains to show the strong triangular inequality. Let
x ∈ πiR∗, y ∈ πjR∗, i, j ∈ Z, i ≥ j. Then x+y ∈ πjR and so v(x+y) ≥ j = min{v(x), v(y)}.
(b) We prove that R is a ring: 0 ∈ R, 1 ∈ R, a, b ∈ R⇒ ab ∈ R and a+ b ∈ R.
The unit group of R is R∗ = {x ∈ K | v(x) ≥ 0 and − v(x) ≥ 0} = {x ∈ K | v(x) = 0}.
In particular ℘ is the unique maximal ideal of R. Choose π ∈ ℘ such that v(π) is minimal.
Then for any z ∈ ℘ we have v(z) ≥ v(π) and hence zπ−1 ∈ R. So ℘ = πR is a principal
ideal. �

Remark 8.5. Let R be a discrete valuation ring and x ∈ K = Quot(R). Then either x ∈ R
or x−1 ∈ ℘. In particular K = R ∪ {x−1 | 0 6= x ∈ ℘}.
Theorem 8.6. A Noetherian integral domain R is a Dedekind domain if and only if all
localizations R(℘) of R at non-zero prime ideals are discrete valuation rings.

Proof. (Exercise) �
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8.1 Completion

Remark 8.7. Let v : K → Z ∪ {∞} be a discrete valuation and s ∈ (0, 1). Then v defines
an ultra-metric

d : K ×K → R≥0, d(x, y) := sv(x−y)

where s∞ := 0. This means that d satisfies the following three axioms:
(i) d(a, b) = 0 if and only if a = b.
(ii) d(a, b) = d(b, a) for all a, b ∈ K.
(iii) d(a, c) ≤ max{d(a, b), d(b, c)} for all a, b, c ∈ K.

Definition 8.8. A metric space (M,d) is called complete, if any Cauchy sequence in M
converges towards a limit in M .

Theorem 8.9. Let v : K → Z ∪ {∞} be a discrete valuation of the field K. Put R the ring
of all Cauchy sequences in K and N the ideal of all sequences in K that converge to 0. Then
N E R is a maximal ideal and hence K := R/N is a field. The valuation v extends to a
valuation v of K and K is complete. The mapping ϕ : K ↪→ K, a 7→ (a, a, a, a . . .) + N is
injective and the image is dense in K. The field K is called the completion of K. It is
unique up to isomorphism.

Proof. See the lecture Computeralgebra. �

Theorem 8.10. Let v : K → Z ∪ {∞} be a discrete valuation of the field K with valuation
ring R and maximal ideal πR. Define

S := lim
←
R/πiR = {(a0, a1, . . .) | ai ∈ R/πi+1R, ai + πiR = ai−1}.

Then S is an integral domain and ϕ : R→ S, a 7→ (a+ πR, a+ π2R, . . .) is a ring monomor-
phism. The valuation v extends uniquely to a valuation v of S, v(a0, a1, . . . , ) := i if ai 6= 0,
ai−1 = 0. S is complete with respect to this valuation and K := Quot(S) is the completion
of K.

Proof. S is a ring with componentwise operations since the projections a+ πiR 7→ a+ πi−1R
are ring homomorphisms.
ϕ is injective because

⋂∞
i=0 π

iR = {0}.
It is clear that v is a valuation that extends the valuation of R (exercise).
To see the completeness of S let (xn)n≥0 be a Cauchy sequence in S, so lim

n,m→∞
v(xn−xm) =∞

or more concrete that for all k ≥ 0 there is some N(k) ∈ N such that v(xn − xm) > k for all
n,m ≥ N(k). Wlog assume that (N(n))n≥0 is monotone increasing. Put x = (xN(k),k)k≥0.
Then x ∈ S since

xN(k),k + πkR = xn,k + πkR = xn,k−1 = xN(k−1),k−1

for all n ≥ N(k). Similarly one shows that v(x − xn) → ∞ for n → ∞ so x is the limit of
the Cauchy sequence. �

For an example see the lecture Computeralgebra, where we introduced the p-adic numbers
Qp, the completion of Q at the p-adic valuation vp.

Example. The completion of K = Q[ζ3] at prime ideals over 2, 3, 7.
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8.2 Hensel’s Lemma

Theorem 8.11. Let K be a discrete valuated complete field with valuation v, valuation ring
R. Let f ∈ R[X] be a polynomial and a0 ∈ R such that

v(f(a0)) > 2v(f ′(a0))

Then there is some a ∈ R such that f(a) = 0. More precisely the sequence

an+1 := an −
f(an)

f ′(an)
∈ R

converges towards some a ∈ R such that f(a) = 0 and v(a− a0) ≥ v(f(a0))− v(f ′(a0)) > 0.

Proof. (see also Computeralgebra) Note that f(t + x) = f(t) + f1(t)x + f2(t)x2 + . . ., for

fi(t) ∈ R[t], f1(t) = f ′(t). Define b0 := − f(a0)
f ′(a0)

. Then v

(
f(a0)
f ′(a0)

)
= v(f(a0))− v(f ′(a0)) >

v(f ′(a0)) ≥ 0, so a1 ∈ R.
Moreover v(f(a0 + b0)) ≥ min{v(fi(a0)bi0) | i ≥ 2}, since f(a0) + f1(a0) · b0 = 0. Therefore
v(f(a1)) ≥ 2v(b0) > v(f(a0)). Now f ′(t+x) = f ′(t)+2xf2(t)+. . . implies v(f ′(a1)−f ′(a0)) ≥
v(b0) ≥ v(f ′(a0)), so v(f ′(a1)) = v(f ′(a0)).
This shows that f(ai) converges to 0 v(f(ai))→∞).
We now show that (ai) is a Cauchy sequence:

v(an+1 − an) = v(bn) = v

(
− f(an)
f ′(an)

)
= v(f(an)) − v(f ′(an)) → ∞, because that first sum-

mand is strictly monotonously increasing (in Z) and the second summand is constant. So if
m > n: v(am−an) = v((am−am−1) + (am−1−am−2) + . . .+ (an+1−an)) ≥ min{v(ai−ai−1) |
n < i ≤ m} → ∞ which means that (ai) is a Cauchy sequence. �

To prove a more general version of Hensel’s lemma, we need the fact that finite dimensional
vector spaces over complete fields are complete.

Theorem 8.12. (Hensel’s Lemma, more general version) Let (K, v) be a complete discrete
valuated field with valuation ring R and maximal ideal πR. Put F := R/πR and : R[X]→
F [X] the natural epimorphism. Let f ∈ R[X] be monic such that f = h0g0 with gcd(h0, g0) =
1. Then there are h(X), g(X) ∈ R[X] such that h = h0, g = g0 and f = gh.

Proof. We use the fact that v can be extended to a complete valuation on the finite dimen-
sional K-algebra A := K[X]/(f) and that also this algebra is complete, so that we may use
the usual Hensel procedure to lift zeros of polynomials in A. (see Skript of Computeralgebra).
For a more elementary proof I refer to the exercises (see also Neukirch, Kapitel II, (4.6)).
By Chinese remainder theorem F [X]/(f) = F [X]/(h0)⊕F [X]/(g0). Let e, e′ := 1− e be the
idempotents in F [x]/(f) corresponding to this decomposition and let e0 ∈ Λ := R[X]/(f) be
a preimage of e, so e0 = e.
We want to lift e0 to an idempotent in Λ. From this we obtain the required factorisation of
f in R[X] again by Chinese remainder theorem.
We apply the usual Newton-Hensel Iteration to p(X) = X2 −X.
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We have p(e0) ∈ πΛ and p′(e0) = 2e0 − 1 ∈ Λ \ πΛ.
Put en+1 := en − p(en)/p′(en) modulo π2n+1

Λ to achieve that e2
n − en ∈ π2nΛ. Modulo π2nΛ

we compute
(2en − 1)2 = 4e2

n − 4en + 1 ≡ 1 (mod π2nΛ).

Define the sequence (en) ∈ ΛN0 by

en+1 := en = (e2
n − en)(2en − 1) = en + kn = 3e2

n − 2e3
n

where kn = (e2
n − en)(1− 2en).

Claim: For all n ∈ N0 we have e2
n − en ∈ π2nΛ and (2en − 1)2 − 1 ∈ π2nΛ.

Proof: This is true for n = 0. If it holds for n then

e2
n+1−en+1 = (en+kn)2−(en+kn) = e2

n−2enkn+k2
n−en−kn = (e2

n−en)(1+(2en−1)(1−2en))+k2
n ∈ π2n+1

Λ.

From this computation we obtain that (en)n∈N is a Cauchy sequence since also kn ∈ π2nΛ.
Now K ⊗ Λ is a finite dimensional vector space over the complete field K and hence again

complete (say with respect to the maximum norm, w(
∑
aiX

i
) := min{v(ai)}, but all norms

are equivalent) and therefore (en) converges to some e∞ ∈ Λ with e2
∞ = e∞. For this idem-

potent one gets Λ = e∞Λ⊕ (1− e∞)Λ.
To obtain the factorization of the polynomial f , let e∞ = a(x)+(f) ∈ Λ, for some a(x) ∈ R[x],
then g := ggT(a, f) and h := f

g
are the required factors of f in R[x]. �

As an exercise you prove a little bit more general version that the previous theorem holds
also for primitive polymonials in f ∈ R[X], i.e. it suffices that one of the coefficients of f is
a unit in R.

Example. Factorise p(x) = x7 − 1 in Z2[x].
In Z[x] we compute p(x) = (x− 1)f(x) with f(x) = x6 + x5 + x4 + x3 + x2 + x+ 1. Since F8

contains a 7th root of unity we obtain

f = h0g0 ∈ F2[x] with h0 = x3 + x2 + 1, g0 = x3 + x+ 1.

With the Euclidean algorithm one computes

1 = gcd(h0, g0) = xg0 + (1 + x)h0 also e = xg0.

Put e1 := x4 + x2 + x ∈ Z2[x] then e2
1 − e1 ≡f −2(x4 + x2 + x+ 1). Put

e2 := 3e2
1 − 2e3

1 ≡ −x4 − x2 − x− 10(modulo f)

then
e2

2 − e2 ≡f 4(5x4 + 5x2 + 5x+ 27).

Put
e3 := 3e2

2 − 2e3
2 ≡ 595x4 + 595x2 + 595x+ 2178(modulo f)

Since we only need e3 modulo 16 we may reduce coefficients modulo 16 and work with
e3 := 3x4 + 3x2 + 3x+ 2. Then

e2
3 − e3 ≡f −16.
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Put
e4 := 3e2

3 − 2e3
3 ≡ 99x4 + 99x2 + 99x+ 50(modulo f)

Then e2
4 − e4 ≡f −17152 = 2867. So by accident we have

e2
n − en ≡f an ∈ 22n−1Z2

and obtain

en+1 = 3e2
n − 2e3

n = −2(e2
n − en)en + e2

n ≡f (e2
n − en) + (1− 2an)en ≡f an + (1− 2an)en

from which we obtain the recursion (a := an) an+1 = 4a3
n − 3a2

n since e2
n+1 − en+1 ≡f

(a+(1−2a)en)2−(a+(1−2a)en) = a2−a+2a(1−2a)en−2a(1−2a)e2
n+(1−2a)(e2

n−en) = 4a3−3a2.

8.3 Extension of valuations.

Lemma 8.13. Let (K, v) be a complete discrete valuated field and f(X) = a0X
n +a1X

n−1 +
. . .+ an−1X + an ∈ K[X] irreducible. Then v(ai) ≥ min{v(a0), v(an)} for all 0 ≤ i ≤ n.

Proof. Let t := min{v(ai) | 0 ≤ i ≤ n} and assume that t < min{v(a0), v(an)}. Let
r be maximal such that v(ar) = t. Then r 6= 0 and r 6= n and g(X) := a−1

r f(X) =
b0X

n + b1X
n−1 + . . . + bn−1X + bn ∈ R[X], br = 1, br+1, . . . , bn ∈ πR and also g(X) ∈ R[X]

is irreducible.
The reduction of g modulo π is

g = Xn−r︸ ︷︷ ︸
g0

(1 + br−1X + . . .+ b0X
r)︸ ︷︷ ︸

h0

∈ R/πR[X]

with gcd(g0, h0) = 1. This contradicts the general version of Hensel’s lemma for primitive
polynomials. �

Theorem 8.14. Let K be a complete discrete valuated field and L/K finite extension of
degree n = [L : K] Then there is a unique discrete valuation w : L→ 1

n
Z∪ {∞} that extends

the valuation of K. This valuation is given by w(α) := 1
n
v(NL/K(α)) for all α ∈ L and L is

complete.

Proof. Let R := Rv ⊆ K be the valuation ring of K and O := IntR(L) the integral closure of
R in L. So

O = {a ∈ L | ∃f ∈ R[X] monic, such that f(a) = 0} = {a ∈ L | µa ∈ R[X]}.

We claim that O = {a ∈ L | NL/K(a) ∈ R} = {a ∈ L | w(a) ≥ 0}.
If a ∈ L, then µa ∈ K[X] monic and irreducible, so by Lemma 8.13

µa ∈ R[X]⇔ µa(0) ∈ R⇔ NL/K(a) ∈ R.
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We now show that the map w above is a discrete valuation of L (it clearly extends the
valuation of K). The conditions (o), (i), (ii) are clearly fulfilled by the multiplicativity of the
norm. To show the strong triangle inequality let we need to show that for all α, β ∈ L

w(α + β) ≥ min{w(α), w(β)}

This is clear if one of them is 0, so assume that both are nonzero and that w(α) ≥ w(β).
Then by (ii) w(α

β
) ≥ 0 and hence α

β
∈ O. But then also α

β
+ 1 ∈ O and therefore w(α

β
+ 1) =

w(α + β)− w(β) ≥ 0 which proves (iii).
So we have established the existence.
For the uniqueness we need the following Lemma

Lemma 8.15. Let f(X) = Xn+a1X
n−1 + . . .+an ∈ K[X] irreducible. Then v(ak) ≥ k

n
v(an)

for all 1 ≤ k ≤ n.

Proof. Let L be the splitting field of f and w : L → R ∪ {∞} be the extension of v to L
constructed above. If f(X) =

∏n
i=1(X − βi) ∈ L[X], then w(βi) = 1

n
v(an) for all i. The

coefficient ak is a homogeneous polynomial in the βi of degree k, so

v(ak) = w(ak) ≥ kw(βi) =
k

n
v(an).

Now assume that there is a second (different) extension w′ of the valuation v and choose
α ∈ L such that w(α) 6= w′(α). Wlog we may assume that w(α) < w′(α) (otherwise replace
α by α−1). Let µα := Xm + a1X

m−1 + . . . + am ∈ K[X], then w(α) = 1
m
v(am) and all

coefficients satisfy v(ak) ≥ k
m
v(am) = kw(α). Then

w′(akα
m−k) = (m− k)w′(α) + v(ak) > mw(α) = v(am) for all k = 0, . . . ,m− 1.

But am = −am−1α− . . .− a1α
m−1 − αm and therefore

w′(am) = v(am) ≥ min{w′(akαm−k) | k = 0, . . . ,m− 1} > v(am)

a contradiction. �

Definition 8.16. Let (K, v) be complete, R = Rv, k = R/πR the residue field. Let L/K be
a finite extension, w : L∗ → R the extension of v, O = Rw the valuation ring with maximal
ideal ℘O and residue field ` := O/℘O. Then k ≤ `, v(K∗) ≤ w(L∗).
[` : k] =: f = f(w/v) is called the inertia degree and
[w(L∗) : v(K∗)] =: e := e(w/v) the ramification index of w over v.

Theorem 8.17. In the situation of the definition above we have πO = ℘eO and [L : K] = ef .

Proof. Clearly w(L∗) ≤ 1
n
Z, so w(L∗) = 1

e
Z for some divisor e of n and any element ℘ ∈ L

with w(℘) = 1
e

is a prime element of O. So πO = ℘xO with x = w(π)/w(℘) = e.
To see that [L : K] = ef we construct a K-basis if L. Let (b1, . . . , bf ) ∈ O such that their
images form a k-basis of `. We claim that

(℘ibj | 0 ≤ i ≤ e− 1, 1 ≤ j ≤ f) is a K-basis of L.



9 P-ADIC NUMBER FIELDS 41

These elements are linearly independent: Assume that there are aij ∈ K such that
∑

i,j aij℘
ibj =

0 such that not all aij are zero. Put si :=
∑

j aijbj. Then not all si are 0 (choose aij ∈ R
and not all in πR and use the fact that the bj form a basis of O/℘O) and if si 6= 0 then
w(si) ∈ v(K∗).
From the fact that

∑e−1
i=0 si℘

i = 0 and w(si℘
i) 6= w(sj℘

j) for all i 6= j for which sisj 6= 0 we
obtain that the nonzero summands have distinct valuations and therefore w(

∑e−1
i=0 si℘

i) =
min{w(si℘

i) | 0 ≤ i ≤ e− 1} <∞ a contradiction.
Generating set: Put M := 〈℘ibj | 0 ≤ i ≤ e − 1, 1 ≤ j ≤ f〉R. We claim that M = O and
hence (℘ibj | 0 ≤ i ≤ e− 1, 1 ≤ j ≤ f) is an integral basis of L.
Clearly M + πO = O so

O = M + πO = M + π(M + πO) = M + π2O = . . . = M + πnO for all n ∈ N.

So M is dense in O, R complete and M finitely generated R-module, so also M is complete
and so M = O. �

9 p-adic number fields

Definition 9.1. A p-adic number field is a finite extension of Qp.

Note that any p-adic number field K is a complete discrete valuated field. We assume in
the following that K is a p-adic number field with valuation w extending vp and valuation
ring R and prime element π. The inertia degree is denoted by f and the ramification index
by e. So

d = ef = [K : Qp], FK := R/πR ∼= Fpf , pR = πeR.

Theorem 9.2. Let K be a p-adic number field with valuation ring R and prime element π.
Then

K∗ = 〈π〉 × 〈µq−1〉 × U (1) = 〈π〉 ×R∗

where q = |R/πR|, µq−1 = {z ∈ K | zq−1 = 1} ∼= Cq−1, 〈π〉 = {πk | k ∈ Z} ∼= Z and
U (1) = 1 + πR = ker(R∗ → (R/π)∗).

Proof. It suffices to show that Cq−1
∼= µq−1 ⊂ K∗. The polynomial Xq−1 − 1 splits com-

pletely in q−1 distinct linear factors in the residue field FK = R/πR. By Hensels lemma this
implies that all zeros of Xq−1−1 ∈ R[X] already lie in R, so R∗ contains all q−1 roots of 1. �

We now aim to obtain an analogue of Dirichlet’s unit theorem for the structure of the
unit group of R.

Theorem 9.3. There is a unique continous group homomorphism log : K∗ → K such that
log(p) = 0 and log(1 + x) = x− x2

2
+ x3

3
− . . . for all 1 + x ∈ U (1).

Proof. Since (K,+) has no torsion, we have log(µq−1) = {0} for any group homomorphism
log. To show that the series for log(1 + x) converges note that for 1 + x ∈ U (1) we have
w(x) > 0 and so

w(
xn

n
) = nw(x)− vp(n)→∞ for n→∞
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because nw(x) grows linearly in n but vp(n) only logarithmically. Therefore (x
n

n
)n∈N tends to

zero which is (because of the nice properties of an ultra metric) equivalent to the convergence
of the series. The homomorphism property follows from the identity of formal power series

log((1 + x)(1 + y)) = log(1 + x) + log(1 + y).

Any α ∈ K∗ can be written uniquely as

α = πew(α) ε(α)︸︷︷︸
∈µq−1

α̃︸︷︷︸
∈U(1)

.

To define log(π) we first note that the prime element π is not unique, but we have the
equation p = πeε(p)p̃ and then put log(π) := −1

e
log(p̃) and hence

log(α) = ew(α) log(π) + log(α̃).

This defines a continous group homomorphism with log(p) = 0.
To see the uniqueness let λ : K∗ → K be a second logarithm such that λ|U(1) = log|U(1) and
λ(p) = 0. Then λ(µq−1) = {0} and

0 = λ(p) = eλ(π) + λ(p̃) = eλ(π) + log(p̃) implies λ(π) = log(π).

�

On U (n) the logarithm has a continous inverse, the exponential:

Theorem 9.4. For any n > e
p−1

=: m the mappings

exp : πnR→ U (n), x 7→ 1 + x+ x2

2
+ x3

6
+ . . . =

∑∞
i=0

xi

i!

log : U (n) → πnR, 1 + x 7→
∑∞

i=1
xi

i

are mutually inverse continuous group isomorphisms.

Proof. Let w be the unique contiuation of the p-adic valuation vp to K and v := ew be the
corresponding normed valuation, so v(p) = e, v(π) = 1.

(a) log is well defined: We need to show that for v(x) ≥ n and i ∈ N also v(x
i

i
) ≥ n.

For i = pai′ we have v(i) = evp(i) = ea. For a > 0 (and hence i > 1) we obtain

vp(i)

i− 1
=

a

pai′ − 1
≤ a

pa − 1
=

1

p− 1

a

pa−1 + pa−2 + . . .+ 1
≤ 1

p− 1

hence vp(i) ≤ i−1
p−1

and so v(i) = evp(i) ≤ m(i− 1) with m = e
p−1

as above. Therefore

v(
xi

i
) ≥ in−m(i− 1) = (n−m)i+m ≥ n since i ≥ 1, n > m.

(b) exp is convergent and maps πnR into U (n).
Let i = a0 + pa1 + . . .+ prar with 0 ≤ ai < p, si :=

∑r
j=0 ai ≥ 1. Then

vp(i!) =
i− si
p− 1

⇒ v(i!) =
e

p− 1
(i− si) = m(i− si)
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and so v(x
i

i!
= iv(x)−m(i−si) = i(v(x)−m)+sim ≥ i

p−1
and therefore exp(x) is convergent.

Moreover for i ≥ 1

v(
xi

i!
) = iv(x)−m(i−si) = v(x)+(i−1)v(x)−(i−si)m ≥︸︷︷︸

si≥1

v(x)+(i−1)(v(x)−m) ≥︸︷︷︸
v(x)≥n>m

v(x)

so exp(πnR) ⊆ U (n).
Now exp ◦ log = id and log ◦ exp = id since this is an identity of formal power series and
hence correct, whenever the series converge. �

Theorem 9.5. As a Zp-module the group U (1) = 1 + πR ≤ R∗ is canonically isomorphic to

U (1) ∼= Z/paZ× Zdp where Z/paZ = {x ∈ R | xp∗ = 1} torsion of U (1)

as a Zp module.

Proof. We first obtain the (continous) Zp-module structure of U (1):
The group U (1) is an abelian group and hence a Z-module. Let U (i) := 1 +πiR ≤ U (1). Then

U (1) > U (2) > . . . and U (i)/U (i+1) ∼= (R/πR,+)

since (1 + πia)(1 + πib) = 1 + πi(a + b) + π2iab. So the mapping (1 + πia)U (i+1) 7→ a + πR
defines a group isomorphism U (i)/U (i+1) ∼= (R/πR,+). Now R/πR is a Fp = Z/pZ-module,
so U (1)/U (n+1) is a Z/pnZ-module and therefore

U (1) = lim
←
U (1)/U (n+1) is a Zp = lim

←
Z/pnZ module.

More precisely the Zp-action of z = (zi)i∈N ∈ Zp, zi ∈ Z/piZ on U (1) is given by

z ∗ (1 + x) := (1 + x)z := lim
i→∞

(1 + x)zi .

For any x ∈ πR the mapping z 7→ (1 + x)z,Zp → U (1) is continous: If z ≡ z′ (mod pn), then
(1 + x)z ≡ (1 + x)z

′
(mod U (n+1)).

To obtain the rank of the Zp-module U (1) note that for n > m = e
p−1

the mapping log :

U (n) → πnR is a continous group homomorphism and also a Zp-module homomorphism,
since log((1+x)z) = z log(1+x). So U (n) ∼= πnR ∼= Zdp as Zp-module. Since [U (1) : U (n)] <∞
we have U (1) ∼= Zdp⊕T with T finite. Torsion in K∗ are roots of unity, and the roots of unity

in U (1) are those that map to 1 mod π and hence these are the p-power roots of unity. �

Remark 9.6. K∗ ∼= Z ⊕ Z/(q − 1)Z ⊕ Z/paZ ⊕ Z[K:Qp]
p as Zp-module. Any Zp-module

generating system of K∗ is called a topological generating system.

Example. (Proofs as exercise !!)
(a) Let p > 2 be an odd prime. Then Z∗p = Z/(p − 1)Z ⊕ Zp with Zp ∼= U (1) = 〈1 + p〉Zp .
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e = 1, p− 1 > 1 so n = 1 > e
p−1

works here.

(b) For p = 2 there are 2-power roots of 1 in Z∗2 and

Z∗2 = 〈−1〉 × U (2) = 〈−1〉 × 〈1 + 4〉Z2
∼= Z/2Z⊕ Z2

(c) Let K = Q5[
√

2], so f = 2, e = 1, R = Z5[
√

2]. Then K∗ ∼= 〈5〉 × 〈ζ24〉 × U (1) with

U (1) = 〈log(1 + 5), log(1 + 5
√

2)〉 ∼= 5R = 〈5, 5
√

2〉

indeed U (1) = 〈1 + 5, 1 + 5
√

2〉Z5 .
(d) Let K = Q5[

√
5], so f = 1, e = 2, e

p−1
< 1 and therefore

K∗ = 〈
√

5〉 × 〈ζ4〉 × 〈1 +
√

5, 1 + 5〉Z5 .

(e) Let K = Q3[
√

3], so f = 1, e = 2, e
p−1

= 1 and

K∗ = 〈
√

3〉 × 〈−1〉 × U (1)

but we only know U (2) = 〈1+3, 1+3
√

3〉Z3 from the theory. U (1)/U (2) = {1, 1+
√

3, 1−
√

3} =

〈1 +
√

3〉 ∼= C3 with (1 +
√

3)3 = 1 + 3
√

3 + 3
√

3
2

+
√

3
3 ≡ 1 + 6

√
3 modulo U (3), so

U (1) = 〈1 +
√

3, 1 + 3〉

(f) Let K = Q3[
√
−3], so f = 1, e = 2, e

p−1
= 1 and

K∗ = 〈
√
−3〉 × 〈−1〉 × U (1)

but we only know U (2) = 〈1 + 3, 1 + 3
√
−3〉Z3 from the theory. U (1)/U (2) = {1, 1 +

√
−3, 1−√

−3} = 〈1 +
√
−3〉 ∼= C3. But now (1 +

√
−3)3 = 1 + 3

√
−3 + 3

√
−3

2
+
√
−3

3
= −8 so here

U (1) ∼= C3 × U (2).

Corollary 9.7. For n ∈ N we have
(a) [K∗ : (K∗)n] = npdvp(n)|µn(K)|.
(b) [R∗ : (R∗)n] = pdvp(n)|µn(K)|.

As Exercise: explicit examples with n = 2 and n = 3.

9.1 Unramified extensions

Definition 9.8. Let K be a p-adic number field with valuation ring OK, prime element πK,
residue field OK/πKOK =: FK of characteristic p, discrete valuation vK such that vK(K∗) =
Z. Let L/K be a finite extension of K, with valuation ring OL, prime element πL, residue
field OL/πLOL =: FL of characteristic p, discrete valuation vL such that (vL)|K = vK.

(a) e(L/K) := vL(πL)−1 = [vL(L∗) : vL(K∗)] is called the ramification index of L over
K.
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(b) f(L/K) := [FL : FK ] is called the inertia degree of L over K.

(c) L/K is called unramified, if e(L/K) = 1.

(d) L/K is called purely ramified, if f(L/K) = 1.

(e) L/K is called tamely ramified, if p |6 e(L/K).

(f) L/K is called wildly ramified, if p | e(L/K).

Theorem 9.9. Let L/K be a finite extension of p-adic fields, q := |FK |, qf := |FL|. Then
there is a unique subfield K ≤ T ≤ L such that T/K is unramified and [T : K] = f = [FT :
FK ]. T := TL/K is called the inertia field of L/K. The field T = ZerfK(Xqf − X) is a
Galois extension of K with Galois group Gal(T/K) ∼= Gal(FT/FK) ∼= Cf . Any unramified
subfield K ≤M ≤ L with e(M/K) = 1 is contained in T .

Proof. By Hensel’s Lemma all roots of unity in the residue field FL lift to roots of unity in
L and hence T := ZerfK(Xqf −X) ≤ L. This extension has degree f over K and is totally
unramified. Totally unramified subfields of L are generated by certain qf − 1 roots of unity
(not necessarily primitive) and hence contained in T . �

Theorem 9.10. Let K be a p-adic number field, |FK | = q. For any f ∈ N there is a
unique unramified extension L = TL/K of K of degree f . This is a galois extension given as

L = ZerfK(Xqf −X) and Galois group ∼= Cf . The restriction map

α : Gal(L/K)→ Gal(FL/FK) = 〈Frobq〉, σ 7→ σ|OL mod πLOL

is a group isomorphism. The preimage ˜Frobq of Frobq is a generator of Gal(L/K) and called
the Frobeniusautomorphism of L over K.

Proof. Clear. The lifting of the Galois automorphisms is proven similarly as in the number
field case. �

Theorem 9.11. If L/K is tamely ramified and T := TL/K denotes the inertia field of L/K,
then there is some prime element πT ∈ T such that L = T [ e

√
πT ].

Proof. Assume wlog that K = T and let w be an extension of vK to L. Then [w(L∗) :
vK(K∗)] = e = [L : K] and for any prime element πL of L we have w(πL) = 1

e
. Note that

any prime element πL generates L. We have πeL = πKε for some unit ε ∈ O∗L. Since FK = FL
there is some unit b ∈ O∗K and u ∈ 1 + πLOL such that ε = bu, so πeL = (bπK)u = π′Ku. The
polynomial f(X) := Xe − u ∈ OL[X] has a zero modulo πL (take 1). Since e is prime to the
characteristic of FL, the derivative f ′(X) = eXe−1 satisfies f ′(1) = e ∈ O∗L. By Hensel, we
may hence lift 1 to a zero β ∈ O∗L of f(X), so βe = u. Then π′L := πLβ

−1 satisfies (π′L)e = π′K .
It is a zero of the Eisenstein polynomial (Xe − π′K) = µπ′L and hence L = K[π′L]. �
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Remark 9.12. The compositum of tamely ramified extensions is again tamely ramified and
hence any extension L/K contains a maximal tamely ramified subfield VL/K.

L ≥︸︷︷︸
pa

VL/K ≥︸︷︷︸
e′

TL/K ≥︸︷︷︸
f

K

with f = f(L/K), e = e(L/K) = pae′.

So the tamely ramified extensions of K with ramification index e and inertia degree f
correspond to O∗T/(O

∗
T )e ∼= 〈µq−1〉/〈µeq−1〉 where T is the unramified extension of degree f of

K and q = pf , p = |FK |.
Examples K = Q5:

Extensions of degree 2: Q5[
√

2] (f=2,e=1), Q5[
√

5], Q5[
√

10].
Extensions of degree 3 Q5[ζ124] (f=3,e=1), Q5[ 3

√
5] since Z∗5/(Z∗5)3 = 1.

Exercise: Classify all extensions of degree 4 of Q5.

10 Different and discriminant

Let K be a p-adic number field with valuation ring OK , prime element πK and residue field
FK = OK/πKOK . Let L/K be a finite extension.

Definition 10.1. SL/K : L→ K, x 7→ trace(multx) is called the trace of L over K.
S : L× L→ K,S(x, y) := SL/K(xy) is called the trace bilinear form.

O#
L := {x ∈ L | S(x, α) ∈ OK for all α ∈ OL} is called the inverse different of L/K.

O#
L is a fractional OL-ideal in L, so O#

L = πdLOL for some d ∈ Z, d ≤ 0.
The different of L/K is D(L/K) := π−dL OL and the discriminant of L/K is the norm

D(L/K) := NL/K(D(L/K)) = {NL/K(a) | a ∈ D(L/K)} = π−fdK OK EOK .

Theorem 10.2. If L/K is unramified then D(L/K) = OL, D(L/K) = OK.

Proof. Let B := (b1, . . . , bn) ∈ On
L be a lift of some FK-basis of FL. Since the trace bilinear

form of FL over FK is non degenerate, the determinant of the Gram matrix of B with respect
to S is not a multiple of πL and hence in O∗L. Therefore OL = O#

L . �

Theorem 10.3. Let K ⊆ L ⊆M . Then

D(M/K) = D(M/L)D(L/K).

Proof. Let O#
L := D(L/K)−1 = πaLOL, O#

M := D(M/K)−1 = πcMOM , and D(M/L)−1 =
πbMOM . For z ∈M we compute SM/K(zOM) = SL/K(SM/L(zOM)OL) so

z ∈ D(M/K)−1 ⇔ SM/K(zOM) ⊆ OK ⇔ SM/L(zOM) ⊆ D(L/K)−1 = πaLOL

⇔ SM/L(zπ−aL OM) ⊆ OL ⇔ zπ−aL ∈ D(M/L)−1 = πbMOM ⇔ z ∈ πaLπbMOM

So πcMOM = πaLπ
b
MOM = π

b+a·e(M/L)
M OM . �
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Corollary 10.4. Let T := TL/K. Then D(L/K) = D(L/T ).

Theorem 10.5. Assume that OL = OK [α] for some α ∈ L and let f :=
∑n

i=0 aiX
i ∈ OK [X]

denote the minimal polynomial of α over K. Then D(L/K) = f ′(α)OL.

Proof. Write
f(X)

X − α
= b0 + b1X + . . .+ bn−1X

n−1 ∈ L[X].

Then bn−i = αi−1 +an−1α
i−2 + . . .+an−i+1 ∈ OL for all i and (b0, . . . , bn−1) is also an OK-basis

of OL. Then we claim that the dual basis of (1, α, . . . , αn−1) is given by 1
f ′(α)

(b0, . . . , bn−1) to

deduce that O#
L = 1

f ′(α)
OL, from which we obtain the theorem. If α1, . . . , αn are the roots of

f then

SL/K(
f(X)

X − α
αr

f ′(α)
) =

n∑
i=1

f(X)

X − αi
αri

f ′(αi)
= Xr for 0 ≤ r ≤ n− 1

as the difference is a polynomial of degree ≤ n− 1 with zeros α1, . . . , αn. Comparing coeffi-
cients we find that

SL/K(
bj

f ′(α)
αi) = δij.

for 0 ≤ i, j ≤ n− 1. �

Corollary 10.6. Let L/K be a totally ramified extension, [L : K] = e(L/K) =: e and let w
denote the normalized valuation of L. Then D(L/K) = πsLOL with s = e − 1 if p does not
divide e and

e ≤ s ≤ e− 1 + w(e), if p divides e.

Proof. We have OL = OK [πL] for any prime element πL of L. Moreover w(πL) = 1 and
w(K∗) = eZ. Let f :=

∑e
i=0 aiX

i be the minimal polynomial of πL over K. Then f is an
Eisenstein Polynomial, i.e. ae = 1, w(a0) = w(NL/K(πL)) = e and the irreducibility of f
allows to apply Lemma 8.15 to deduce that w(ai) ≥ e for all 0 ≤ i < e. Theorem 10.5 says
that s = w(f ′(πL)) with

f ′(πL) = a1 + 2a2πL + . . .+ (e− 1)ae−1π
e−2
L + eπe−1

L .

The w-valuations of the summands lie in different congruence classes modulo eZ and hence
w(f ′(πL)) is the minimum of these valuations. If w(e) = 0 (i.e. the tamely ramified case)
then this minimum is e− 1. Otherwise this minimum s satisfies e ≤ s ≤ e− 1 + w(e). �

Corollary 10.7. If L/K is ramified of degree ef = n, e = [L/TL/K ] then D(L/K) = πe−1
L OL

if L/K is tame. If L/K is wildely ramified, then D(L/K) = πsLOL with e ≤ s ≤ e− 1 +w(e)
where w : L∗ → Z is the normalized valuation of L.

Proof. Because of Corollary 10.4 we may assume that K = TL/K and L/K is totally ramified
of degree e. �
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Corollary 10.8. L/K is ramified if and only if D(L/K) 6= OK.

(i). Q3(
√

3)/Q3 is tamely ramified and v3(D(Z3[
√

3]/Z3)) = v3(12Z3) = 1.

(ii). Q2(
√

3)/Q2 is wildly ramified and v2(D(Z2[
√

3]/Z2)) = v2(12Z2) = 2.

(iii). Q2(
√

2)/Q2 is wildly ramified and v2(D(Z2[
√

2]/Z2)) = v2(8Z2) = 3.

10.1 Cyclotomic p-adic fields

Theorem 10.9. Let m ≥ 1 and ζ := ζpm. Then

(a) Qp[ζ]/Qp is totally ramified of degree e = [Qp[ζ] : Qp] = ϕ(pm) = (p− 1)pm−1.

(b) Gal(Qp[ζ]/Qp) ∼= (Z/pmZ)∗.

(c) π := (ζ − 1) is a prime element of Qp[ζ] with norm N(π) = p.

(d) vp(D(Qp[ζ]/Qp)) = pm−1(mp−m− 1).

(e) D(Qp[ζ]/Qp) = πsZp[ζ] with s = pm−1(mp−m− 1) = w(e) + e− pm−1.

(f) U (1) = 〈ζ〉 × 〈1 + πi | 2 ≤ i ≤ pm, p 6| i falls i 6= pm〉

Proof. ζ is a zero of

h(X) := X(p−1)pm−1

+X(p−2)pm−1

+ . . .+ 1 ∈ Qp[X].

Put g(X) := h(X + 1). Then g(π) = h(ζ) = 0, g(0) = h(1) = p. As

h(X) = (Xpm − 1)/(Xpm−1 − 1) ≡ (X − 1)(p−1)pm−1

(mod pZp[X])

the polynom g is an Eisenstein polynomial and hence irreducible. We hence conclude (a) and
(c). Also (b) follows from the irreducibility of h, as the zeros of h are exactly the powers ζa

with a ∈ {1, . . . , pm} not divisible by p. The valuation ring of Qp[ζ] is Zp[π] = Zp[ζ], so we may
compute the discriminant as D(Qp[ζ]/Qp) = h′(ζ)Zp[ζ]. Now h(X) = (Xpm−1)/(Xpm−1−1)
so

h′(X) =
1

Xpm−1 − 1
(pmXpm−1 − pm−1Xpm−1−1h(X))

and h′(ζ) = pmζp
m−1

ζpm−1−1
. Now η := ζp

m−1
is a primitive p-th root of unity, so NQp[η]/Qp(η− 1) = p

and hence NQp[ζ]/Qp(η − 1) = pp
m−1

. Therefore vp(N(h′(ζ)) = pm−1(p − 1)m − pm−1 =
pm−1(mp−m− 1).
To conclude the last statement note that D(Qp[ζ]/Qp) = πsZp[ζ] with s = pm−1(mp−m− 1)
by (d). Now e = pm − pm−1, so w(e) = (m− 1)w(p) = (m− 1)(pm − pm−1) and

w(e) + e− pm−1 = (m− 1)(pm − pm−1) + pm − pm−1 − pm−1 = mpm −mpm−1 − pm−1.

�
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Corollary 10.10. Let n = pmk ∈ N such that p does not divide k and ζn be a primitive n-th
root of unity..

(a) Zp[ζn] is the valuation ring of Qp[ζn].

(b) T := T (Qp[ζn]/Qp) = Qp[ζ
pm

n ] is the maximal unramified subfield.

(c) f = [T : Qp] is the order of p in (Z/kZ)∗.

(d) e(Qp[ζn]/Qp) = (p− 1)pm−1.

(e) V (Qp[ζn]/Qp) = Qp[ζ
pm−1

n ] is the maximal tamely ramified subfield.

11 Application to algebraic number fields

11.1 Completion and field extensions

Let (K, v) be a discretely valuated field with completion Kv. Then v : Kv → Z ∪ {∞} has
a unique extension to a valuation v of the algebraic closure Kv. Now let L/K be a finite
extension. Any embedding τ : L→ Kv defines a valuation wτ = v ◦ τ of L that extends v.

Theorem 11.1. All extensions of v to L are of the form wτ = v ◦ τ . We have that wτ = wτ ′
if and only if τ ′ = σ ◦ τ for some σ ∈ AutKv(Kv) (then we say that τ and τ ′ are conjugate
over Kv).

Proof. Let w be an extension of v to L with corresponding completion Lw; view w as the
valutaion of Lw extending v : Kv → Z ∪∞. As Lw is an algebraic extension of Kv and the
uniqueness of extension of valuations for complete fields, we have w = v ◦ τ for all embed-
dings τ ∈ HomKv(Lw, Kv). Any other such embedding is of the form σ◦τ as in the theorem. �

Assume that L/K is separable with primitive element α ∈ L, so L = K(α). Let f :=
µα,K ∈ K[X] denote the minimal polynomial of α. Then f = g1 · · · gr ∈ Kv[X].

Corollary 11.2. The valuations {w1, . . . , wr} of L that extend v are in bijection with the
irreducible factors of f ∈ Kv[X]. For a ∈ L we have

L⊗K Kv =
r⊕
i=1

Lwi , NL/K(a) =
r∏
i=1

NLwi/Kv
(a), and SL/K(a) =

r∑
i=1

SLwi/Kv(a).

Proof. Any K-linear embedding of L into K is uniquely determined by mapping α to some
zero β of f . Two such embeddings are conjugate over Kv if and only if these zeros are zeros
of the same irreducible factor gi. Clearly

L⊗K Kv
∼= Kv[X]/((f(X)) ∼=

r⊕
i=1

Kv[X]/(gi(X)) ∼=
r⊕
i=1

Lwi .

The characteristic polynomial of any a ∈ L is the product of the characteristic polynomials
of the corresponding elements ai ∈ Lwi where (a1, . . . , ar) denotes the image of a ⊗ 1 under
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the above isomorphism. From this we obtain the equations for norm and trace. �

Let K be an algebraic number field with ring of integers R. Any prime ideal P ER of R
defines a valuation

vP : K∗ → Z, vP (α) := max{a ∈ Z | α ∈ P a}

with valuation ring R(P ) := {a
b
∈ K = Quot(R) | b 6∈ P}. The completion KP of K at vP is

a p-adic number field, where pZ = P ∩ Z. If P (R) denotes the set of all maximal ideals of
R, then

R =
⋂

P∈P (R)

R(P ).

Remark 11.3. Let P ER be a maximal ideal of R. Then

PZL = ℘e11 . . . ℘err

for pairwise distinct prime ideals ℘i E ZL and the inequivalent valuations of L that extend
v := vP are

w1 =
1

e1

v℘1 , . . . , wr =
1

er
v℘r .

Then ei is the ramification index of Lwi over Kv and fi := [ZL/℘i : ZK/P ] the inertia degree
of Lwi over Kv. As [Lwi : Kv] = eifi we re-obtain the formula

[L : K] =
r∑
i=1

[Lwi : Kv] =
r∑
i=1

eifi.

11.2 A review of Hilbert’s ramification theory

Let L ⊇ K be algebraic number fields and assume that L/K is Galois. Let G := Gal(L/K)
denote the Galois group. Let P be a prime ideal of ZK . Then G acts transitively on the set
of prime ideals of ZL that contain P and as in Section 6.2

PZL = (℘1 · · ·℘r)e.

Let ℘ := ℘1 and put
G℘ := {σ ∈ G | σ(℘) = ℘}

the decomposition group of ℘ and Z := Z℘ := FixG℘(L) := {x ∈ L | σ(x) = x for all σ ∈ G℘}
the decomposition field of ℘.

Denote by ℘Z := ℘ ∩ Z. Then ℘ZZL = ℘e, fL/Z(℘) = fL/K(℘), eL/Z(℘) = eL/K(℘) = e
and eZ/K(℘Z) = fZ/K(℘Z) = 1.

Corollary 11.4. Let ν := ν℘Z : Z → Z ∪ {∞} denote the ℘Z-adic valuation of Z. Then
ω := 1

e
ν℘ is the unique extension of ν to L.

I℘ := {σ ∈ G℘ | σ(x) ≡ x (mod ℘) for all x ∈ ZL} the inertia group with fixed field
T℘ := Fix(I℘). Then T℘/Z℘ is a Galois extension with Galois group Cf .
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Definition 11.5. For s ∈ N0 we put

Gs := Gs(℘) := {σ ∈ G℘ | σ(x) ≡ x (mod ℘s+1) for all x ∈ ZL}

the higher decomposition groups.

Remark 11.6. G0 = I℘ and Gs EG℘ for all s.

Let L℘ denote the completion of L at ν℘, Z℘Z the completion of Z at ν℘Z . Let R be the
valuation ring of L℘ andπ be a prime element of R.

Remark 11.7. Gal(L℘/Z℘Z ) ∼= G℘. The completion T of T℘ at ℘Z is the maximal unramified
subfield and L℘ = T [π] is totally ramified over T .

Recall that R× ≥ U (1) ≥ U (2) ≥ . . . ≥ U (i) = 1 + πiR.

Theorem 11.8. Let s ≥ 1. Then there is an injective group homomorphism

Gs/Gs+1 → U (s)/U (s+1), σGs+1 7→ σ(π)π−1U (s+1).

In particular G1 is the unique Sylow p-subgroup of G℘ and the fixed field of G1 is the unique
tamely ramified subfield of L/Z.

Proof. As L℘ = T [π] any element in σ ∈ Gs is uniquely determined by σ(π). If σ ∈ Gs then
σ(x) ≡ x (mod πs+1) for all x ∈ R. In particular σ(π) ≡ π (mod πs+1) so σ(π)π−1 ∈ U (s).
The set {σ ∈ Gs | σ(π)π−1 ∈ U (s+1)} = Gs+1. Now let σ, τ ∈ Gs. Then

(σ(τ(π)))π−1 = (σ(τ(π))τ(π)−1)(τ(π)π−1)

and the homomorphism property follows from the fact that

(σ(τ(π))τ(π)−1)U (s+1) = σ(π)π−1U (s+1).

To see this write σ(π) = π+xπs+1, τ(π) = π+ yπs+1. Then σ(τ(π)) = σ(π) +σ(y)σ(π)s+1 =
π + (x+ σ(y))πs+1 + zπs+2 and σ(τ(π))τ(π)−1 =

(π+(x+σ(y))πs+1+zπs+2)(π+yπs+1)−1 = (1+(x+σ(y))πs+zπs+1)(1+yπs)−1 ≡ 1+(x+σ(y)−y)πs)

modulo U (s+1). Now σ(y) ≡ y (mod πs) in particular σ(π)π−1 = 1 + xπs ≡ σ(τ(π))τ(π)−1

(mod U (s+1)).

11.3 Local properties

Let R be a Dedekind domain and K = Quot(R). For a prime ideal ℘ the localization of R
at ℘ is

R(℘) := {r
s
∈ K | s 6∈ ℘}.

This is the discrete valuation ring with respect of the ℘-adic valuation of K,

ν℘ : K → Z ∪ {∞}, ν℘(a) = i⇔ aR = ℘iA

for some fractional ideal A “prime to ℘”. We also denote by K℘ the completion of K at ℘
with complete discrete valuation ring R℘.

Let V be a K-vector space and L an R-lattice in V . The localization of L is R(℘)L and
an R(℘)-lattice in V . The completion of L at ℘ is R℘L.
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Definition 11.9. A property is called a local property, if it holds for an R-module M if
and only if it holds for all the localisations R℘M if and only if it holds for all completions
R℘M for all prime ideals ℘ of R.

Equality of lattices is a local property:

Theorem 11.10. Let R be a Dedekind domain with field of fractions K. Let V be a finite
dimensional K-vector space and let L,M be two R-lattices in V . Then the following are
equivalent:
(1) L = M .
(2) L(℘) := R(℘)L = M(℘) for all maximal ideals ℘ER.
(3) R℘ ⊗ L = R℘ ⊗M for all maximal ideals ℘ER.

Note that a lattice is an R-submodule of V that is finitely generated and contains a basis
of V . In particular if L andM are R-submodules of V such that L ≤M and Ann(M/L) 6= {0}
then if one of L or M is a lattice then so is the other.
Proof. (1) ⇒ (2) ⇒ (3) is clear.
To see that (3) implies (1) we use contraposition:
So assume that L 6= M , wlog L 6⊆ M and let ` ∈ L \M . Multiply ` with some element of
R to achieve that ` 6∈ M but ℘` ⊆ M for some maximal ideal ℘ of R. Then ` 6∈ R℘ ⊗M so
R℘ ⊗ L 6= R℘ ⊗M for this prime ideal ℘ER. �

Theorem 11.11. Let R be a Dedekind domain, V a K-vectorspace and L some R-lattice in
V .
(a) For any R-lattice M in V we have M(℘) = L(℘) for all but finitely may maximal ideals ℘
of R.
(b) Let X(℘) be R(℘)-lattices in V for all maximal ideals ℘ of R such that X(℘) = L(℘) for
all but finitely may ℘. Then M :=

⋂
℘X(℘) is a lattice in V such that M(℘) = X(℘) for all

℘.
(c) Let L℘ denote the completion L℘ := R℘ ⊗ L which is an R℘-lattice in V℘ := K℘ ⊗ V .
Then
(i) L = V ∩ (

⋂
℘ L℘).

(ii) Let X̂(℘) be an R℘-lattice in V℘ for all maximal ideals ℘ of R such that X̂(℘) = L℘ for

all but finitely may ℘. Then M := V ∩
⋂
℘ X̂(℘) is a lattice in V such that M℘ = X̂(℘) for

all ℘.
(d) Let ℘ be some maximal ideal in R. Then there are bijections

{M ≤ L | L/M is ℘-torsion} → {M ≤ L(℘) |M full lattice} → {M ≤ L℘ |M full lattice}

M 7→M(℘) 7→M℘ with inverse mapping M(℘) 7→ L ∩M(℘) and similarly M℘ 7→ L ∩M(℘).

Proof. (a) Y := L + M/L ∩M is an R-module of finite length. Let A := AnnR(Y ). Then
AER and for all prime ideals ℘ with A 6⊆ ℘ we have L(℘) = M(℘).
(b) For all but finitely many ℘ we have X(℘) = L(℘). For the other (finitely many) maximal
ideals ℘ with have

X(℘) ∩ L(℘) ⊆ X(℘), L(℘) ⊆ X(℘) + L(℘).
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As both are R(℘)-lattices in V , we have that Ann((X(℘) + L(℘))/(X(℘) ∩ L(℘))) = ℘a℘ for
some a℘ ∈ Z≥0. So

L ∩M ⊆M,L ⊆ L+M

and Ann((L + M)/(L ∩M)) =
∏
℘a℘ is a finite product of prime ideals and hence an ideal

in R. As L is a lattice, so is M .
(c) follows from (b) by noting that V ∩ L℘ = L(℘)

(d) Is a consequence of (b) and (c). �

11.4 The discriminant of an algebraic number field

Corollary 11.12. Let M := ZL, R = ZK PZL = ℘e11 . . . ℘err as before. Then

RP ⊗R D(M/R) =
r∏
i=1

D(Mwi/RP )

and
D(M/R) =

∏
℘∈P (M)

M ∩ D(M℘/R℘∩R).

In particular one may read of the ℘-component of D(M/R) from D(M℘/R℘∩R).

From Corollary 10.7 we now get:

Corollary 11.13. Let L/K be an extension of algebraic number fields and ℘ a prime ideal
of ZL. Then ℘ ramifies in L/K if and only if ℘ divides D(L/K). Let ℘s be the maximal
℘-power dividing D(L/K) and e be the ramification index of ℘ in L/K. Then

(i) If e 6∈ ℘ (so ℘ is tamely ramified) then s = e− 1.

(ii) If e ∈ ℘ (so ℘ is wildly ramified) then e ≤ s ≤ e− 1 + ν℘(e).

As an application of the Geometry of Numbers we obtain explicit bounds on the discrim-
inant:

Theorem 11.14. (see Neukirch Satz III (2.14)) Using Exercise 2 on Sheet 4 one can prove
that |dK |1/2 ≥ nn

n!
π
4
n/2 where n = [K : Q]. In particular there are no unramified extensions of

degree n > 1 of Q.

Theorem 11.15. Let S be a finite set of prime ideals of the algebraic number field K. Then
there are only finitely many extensions L/K of given degree n = [L : K] that are unramified
outside of S.
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