Unitäre Gruppen

Vortrag zum Seminar zur Algebra, 23.06.2010

Anika Nehnes und Jan Hackfeld

§1 Einleitung

In diesem Vortrag bezeichne $\mathbb F$ einen Körper, V einen endlich dimensionalen $\mathbb F$ -Vektorraum der Dimension n und $\mathcal P(V)$ der zugehörige projektive Raum. Weiter sei β stets eine nicht-ausgeartete σ -hermitsche Sesquilinearform. Für $a \in \mathbb F$, benutze die Schreibeweise $\overline{a} := \sigma(a)$ und λ_a für die Skalarmatrix mit a auf der Diagonalen.

Definition 1.1. Die unitäre Gruppe ist definiert als

$$U(V) := \{ f \in GL(V) | \beta(f(u), f(v)) = \beta(u, v) \ \forall \ u, v \in V \}$$

und die **spezielle unitäre Gruppe** als $SU(V) := \{ f \in U(V) | det(f) = 1 \}.$

Lemma 1.2. Sei (v_1, \ldots, v_n) eine Basis von V und $f \in GL(V)$ mit Abbildungsmatrix A bezüglich dieser Basis. Weiter sei $J := (\beta(v_i, v_j))$ die Grammatrix von β . Dann gilt:

- 1. $f \in U(V) \Leftrightarrow A^t J\sigma(A) = J$, wobei $\sigma(A)$ eintragsweise zu verstehen ist.
- 2. $det(A)det(\sigma(A)) = det(A)\sigma(det(A)) = 1$
- 3. $det: U(V) \to \{a \in \mathbb{F}^{\times} \mid a\sigma(a) = 1\}$ ist surjektiv

Korollar 1.3. Für die **projektive unitäre Gruppe** PU(V) und die **spezielle projektive unitäre Gruppe** PSU(V) gelten folgende Isomorphien:

- 1. $PU(V) \cong U(V) / \{\lambda_a | a\sigma(a) = 1\}$
- 2. $PSU(V) \cong SU(V) / \{\lambda_a | a\sigma(a) = 1 \text{ und } a^n = 1\}$

§2 Der Körper F

Definition 2.1. Sei $\mathbb{F}_0 := \{a \in \mathbb{F} | a = \overline{a}\}$, dann heißt

$$Tr: \mathbb{F} \to \mathbb{F}_0, \ a \mapsto a + \overline{a}$$

die Spurabbildung und

$$N: \mathbb{F}^{\times} \to \mathbb{F}_{0}^{\times}, a \mapsto a\overline{a}$$

die Normabbildung.

Lemma 2.2. Die Spur- und Normabbildung haben folgende Eigenschaften:

- 1. Tr ist eine \mathbb{F}_0 -lineare, surjektive Abbildung.
- 2. $Tr(a) = 0 \Leftrightarrow a = b \overline{b}$ für ein $b \in \mathbb{F}$.
- 3. *N* ist ein Homomorphismus.
- 4. $N(a) = 1 \Leftrightarrow a = \frac{b}{b}$ für ein $b \in \mathbb{F}^{\times}$.
- 5. Falls \mathbb{F} endlich ist, ist N surjektiv.

§3 Hyperbolische Paare

Lemma 3.1. Ist $dim(V) \ge 2$ und die Normabbildung surjektiv, dann enthält V isotrope Vektoren.

Korollar 3.2. Ist $dim(V) \ge 2$ und \mathbb{F} ein endlicher Körper, dann enthält \mathbb{F} isotrope Vektoren.

Lemma 3.3. Falls $L = \langle e, f \rangle < V$ eine hyperbolische Gerade ist, so gilt

$$V = \langle e, f \rangle \perp \langle e, f \rangle^{\perp}$$

Lemma 3.4. Es existiert eine Zerlegung

$$V = L_1 \perp L_2 \perp \ldots \perp L_m \perp W$$

von V, wobei m der Wittindex von V ist, W ein anisotroper Unterraum und $L_i = \langle e_i, f_i \rangle$ hyperbolische Geraden sind. Falls \mathbb{F} endlich ist, gilt entweder dim(W) = 1, falls dim(V) ungerade, oder dim(W) = 0, falls dim(V) gerade.

Definition 3.5. Sei \mathbb{F} endlich, $V = L_1 \perp L_2 \perp \ldots \perp L_m \perp W$ und $L_i = \langle e_i, f_i \rangle$ wie oben. Falls dim(W) = 0 nennt man $(e_1, f_1, \ldots, e_m, f_m)$ eine **unitäre Basis**. Falls dim(W) = 1 sei $W = \langle w \rangle$. Dann ist $(e_1, f_1, \ldots, e_m, f_m, w)$ eine **unitäre Basis**.

Bemerkung 3.6. U(V) operiert regulär auf Basen dieser Art.

Lemma 3.7. Sei \mathbb{F} endlich und dim(V) ungerade. Weiter seien $e_1, f_1, \dots, e_m, f_m \in V$ fest gewählt, sodass

$$V = L_1 \perp L_2 \perp \ldots \perp L_m \perp W$$
,

wobei W ein anisotroper Unterraum und $L_i = \langle e_i, f_i \rangle$ hyperbolische Geraden sind. Dann existieren genau q+1 verschiedene $w \in W$ mit $W = \langle w \rangle$ und $\beta(w,w) = 1$.

Lemma 3.8. Sei (V, β) ein unitärer \mathbb{F} -Vektorraum, dann existiert eine Orthogonalbasis von V bezüglich β . Falls die Normabbildung surjektiv ist, gibt es eine Orthonormallbasis.

Lemma 3.9. Enthält V mindestens einen isotropen Vektor, so existiert eine Basis von V, die nur aus isotropen Vektoren besteht.

§4 Ordnungen

Falls $|\mathbb{F}_0| = q$ und V ein Vektorraum der Dimension n ist, schreibt man auch U(n,q), SU(n,q), usw.

Lemma 4.1. Eine hyperbolische Gerade $L := \langle e, f \rangle$ enthält genau q + 1 isotrope Punkte.

Lemma 4.2. *V* enthält $(q^{n-1} - (-1)^{n-1})(q^n - (-1)^n)$ isotrope Vektoren.

Lemma 4.3. *V* enthält $q^{2n-3}(q^{n-1}-(-1)^{n-1})(q^n-(-1)^n)$ hyperbolische Paare.

Satz 4.4. Sei $n \in \mathbb{N}$. Dann ist $|U(n,q)| = q^{\frac{1}{2}n(n-1)} \prod_{k=1}^{n} (q^k - (-1)^k)$.

Korollar 4.5. $|PU(n,q)| = |SU(n,q)| = q^{\frac{1}{2}n(n-1)} \prod_{k=2}^{n} (q^k - (-1)^k)$

Korollar 4.6. $|PSU(n,q)| = d^{-1}q^{\frac{1}{2}n(n-1)} \prod_{k=2}^{n} (q^k - (-1)^k)$, wobei d := ggT(n,q+1).

§5 Unitäre Transvektionen

Lemma 5.1. Falls $f \in U(V)$, dann gilt $ker(id - f)^{\perp} = im(id - f)$.

Lemma 5.2. Falls $t_{\varphi,u} \neq id$, dann gilt:

- 1. $ker(id t_{\varphi,u}) = ker(\varphi)$
- 2. $im(id t_{\varphi,u}) = \langle u \rangle$
- 3. Falls $t_{\varphi,u} \in U(V)$, dann ist u isotrop.

Satz 5.3. Sei t eine Transvektion. Dann gilt: $t \in U(V) \Leftrightarrow t(v) = v + a\beta(v, u)u$ mit $a \in \mathbb{F}$, wobei $a + \overline{a} = 0$, und u isotroper Vektor ist.

Definition 5.7. T(V) sei die von Transvektionen erzeugte Untergruppe von SU(V).

§6 Hyperbolische Geraden

Satz 6.1. Falls *L* eine hyperbolische Gerade ist, dann ist $SU(L) \cong SL(2, \mathbb{F}_0)$.

Lemma 6.2. PSU(L) operiert zweifach-transitiv auf den isotropen Punkten von $\mathcal{P}(L)$.

Korollar 6.3. Für eine hyperbolische Gerade *L* gilt:

- 1. T(L) = SU(L); d.h. SU(L)wird von Transvektionen erzeugt.
- 2. T(L) = SU(L)', außer für $\mathbb{F} = \mathbb{F}_4$ oder $\mathbb{F} = \mathbb{F}_9$

Lemma 6.4. Für alle $a \in \mathbb{F}_0 \setminus \{0\}$ ist die Operation von SU(L) auf der Menge $\Omega := \{v \mid \beta(v,v) = a\}$ regulär.

§7 Die Operation der PSU(V) auf den Isotropen Punkten

Lemma 7.1. Sei $V = L \perp W$, wobei $L = \langle e, f \rangle$ für ein hyperbolisches Paar $(e, f) \in V \times V$, und $d \in \mathbb{F}$ mit $d\overline{d} = 1$. Dann existiert $g \in U(V)$ mit $g|_{W} = id_{W}$, $g(\langle e \rangle) = \langle e \rangle$, $g(\langle f \rangle) = \langle f \rangle$ und $det(g) = d^{-1}$.

Satz 7.2. Sei Ω die Menge der isotropen Punkte von $\mathcal{P}(V)$. Dann gilt:

- 1. Ist der Wittindex von V gleich 1, so operiert PSU(V) zweifach-transitiv und treu auf Ω .
- 2. Ist der Wittindex von V mindestens 2, so operiert PSU(V) primity auf Ω .

§8 Dreidimensionale unitäre Geometrien

In diesem Abschnitt sei V ein unitärer Raum der Dimension 3 mit Wittindex 1.

Korollar 8.1. $Stab_{SU(V)}(e) = Q := \{Q(a,b) \mid a\overline{a} + b + \overline{b} = 0\}$ und es gelten die folgenden Formeln für die Multiplikation und die Bildungung der inversen Matrix:

$$Q(a_1, b_1)Q(a_2, b_2) = Q(a_1 + a_2, b_1 + b_2 - \overline{a_1}a_2)$$

 $Q(a, b)^{-1} = Q(-a, -b - a\overline{a})$

Lemma 8.2. Die Kommutatoruntergruppe Q' von Q ist die Wurzelgruppe $X_{\langle e \rangle, \langle e \rangle^{\perp}}$ und es gilt $T(V) \subseteq SU(V)'$

Lemma 8.3. Falls \mathbb{F} ein endlicher Körper mit $|\mathbb{F}| > 4$ ist, operiert T(V) transitiv auf der Menge $M := \{v \in V \mid \beta(v,v) = 1\}.$

Lemma 8.4. Sei $P = \langle p \rangle \in \mathcal{P}(V)$. Dann ist die Wurzelgruppe $X_{P,P^{\perp}}$ ein abelscher Normalteiler von $Stab_{SU(3,a)}(\langle p \rangle)$.

Satz 8.5. Für $q \neq 2$ sind die Gruppen PSU(3,q) einfach.

§9 Die Einfachheit von PSU(V)

Lemma 9.1. Ist $\mathbb F$ ein endlicher Körper und $dim(V) \ge 2$, so operiert die von Transvektionen erzeugte Untergruppe T(V) transitiv auf $M := \{v \in V \mid \beta(v,v) = 1\}$, außer für den Fall $\mathbb F = \mathbb F_4$ und dim(V) = 3

Lemma 9.2. Sei $dim(V) \ge 2$, dann operiert T(V) transitiv auf $\{v \in V \mid \beta(v,v) = a\}$ für beliebiges $a \in \mathbb{F}_0^{\times}$, außer für den Fall $\mathbb{F} = \mathbb{F}_4$ und dim(V) = 3.

Lemma 9.3. Ist $dim(V) \ge 2$ und der Wittindex von V mindestens 1, so gilt T(V) = SU(V) außer für den Fall SU(V) = SU(3,2).

Lemma 9.4. Sei $dim(V) \ge 3$ und der Wittindex von V mindestens 1, so gilt SU(V) = SU(V)' außer für den Fall SU(V) = SU(3,2).

Satz 9.5. Ist $dim(V) \ge 2$ und der Wittindex von V mindestens 1, dann ist die Gruppe PSU(V) einfach, außer für die Fälle PSU(2,2), PSU(2,3) und PSU(3,2).