3. Übung Algebraische Zahlentheorie II

Prof. Dr. Nebe (WS 11/12)

(Quaternionenalgebren) Sei K ein Körper der Charakteristik Aufgabe 7. $\neq 2$ und D eine zentral einfache K-Algebra der Dimension 4. Zeigen Sie:

- (a) Es gibt $a, b \in K^*$, $i, j \in D$ mit $i^2 = a$, $j^2 = b$, ij = -ji. Bezeichnung: $D = \left(\frac{a,b}{K}\right).$
- (b) Für die reduzierte Norm gilt $N(x+yi+zj+tij)=x^2-ay^2-bz^2+(ab)t^2$.
- (c) Die Abbildung $x+yi+zj+tij\mapsto x-yi-zj-tij$ ist ein K-Algebren Isomorphismus zwischen D und D^{op} .
- (d) Ist D eine Divisionsalgebra, so hat [D] Ordnung 2 in Br(K).
- (e) $\left(\frac{a,b}{K}\right) \cong \left(\frac{\alpha,\beta}{K}\right)$ genau dann wenn die 3-dimensionalen quadratischen K-Vektorräume $(K^3, \operatorname{diag}(-a, -b, ab))$ und $(K^3, \operatorname{diag}(-\alpha, -\beta, \alpha\beta))$ isometrisch sind.
- $\operatorname{diag}(-a, -b, ab)$

Aufgabe 8.

- (a) $\left(\frac{a,b}{\mathbb{R}}\right)$ ist eine Divisionsalgebra, genau dann wenn a<0 und b<0.
- (b) Sind $a, b \in \mathbb{Z}$, so ist $\Lambda := \langle 1, i, j, ij \rangle_{\mathbb{Z}}$ eine \mathbb{Z} -Ordnung in $\left(\frac{a,b}{\mathbb{Q}}\right)$. Bestimmen Sie $\Lambda^{\#}$ und $|\Lambda^{\#}/\Lambda|$.
- (c) Zeigen Sie, dass für $a, b \in \mathbb{Z}$ die Hasse Invariante von $\left(\frac{a, b}{\mathbb{Q}}\right) \otimes \mathbb{Q}_p$ trivial ist, falls p kein Teiler von 2ab ist.
- (d) Bestimmen Sie die Hasse Invarianten von $\left(\frac{a,b}{\mathbb{Q}}\right) \otimes \mathbb{Q}_p$ für alle p und folgende
- Paare (a, b): (-1, -1), (-1, -3), (2, 5), (-2, -5), (-2, 5), (2, -5). (e) Sei $D = \begin{pmatrix} \frac{-2, -5}{\mathbb{Q}} \end{pmatrix}$. Zeigen Sie, dass $E = \mathbb{Q}[\zeta_5]$ ein Zerfällungskörper für Dist, jedoch kein echter Teilkörper von E die Divisionsalgebra D zerfällt.

Aufgabe 9.

Sei $A = \langle 1, \rho, i, \rho i \rangle_{\mathbb{Q}} \cong \mathbb{Q}[\rho] \oplus \mathbb{Q}[\rho]i$, wo $\rho^2 + \rho + 3 = 0$, $i^2 = -1$, $(i\rho)^2 = -3$.

- (a) Sei $\Lambda := \langle 1, \rho, i, \rho i \rangle_{\mathbb{Z}}$. Zeigen Sie, dass Λ eine Maximalordnung in A ist.
- (b) Bestimmen Sie alle Hasse Invarianten von A.
- (c) Sei $\Gamma = \langle 1, \rho + i, 2i, \frac{1+\rho i}{2} \rangle_{\mathbb{Z}}$. Zeigen Sie, dass Γ eine Maximalordnung ist. (d) Bestimmen Sie die Einheitengruppen von Γ und von Λ und folgern Sie, dass Λ und Γ nicht isomorph sind.

Abgabe: Freitag, den 28.10.2011, in der Vorlesung 10:00 Uhr im Hörsaal III.