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ABSTRACT * We calculate the action of some explicit Hecke operators on the space
generated by the 24 isometry classes of even unimodular lattices in dimension 24 and hence
the 24 eigenforms for the Hecke algebra. We find the degrees of these eigenforms in most
cases and so determine the dimensions of the spaces of Siegel modular cusp forms of weight
12 generated by theta series.

1 Introduction

Since the work of Witt [11] there was much interest in studying linear relations between
Siegel theta series of even unimodular lattices of a given dimension n. For n = 16 the
theta series of the two lattices are linearly dependent in degrees < 3 and linearly
independent in degree 4 (and give the Schottky cusp form of degree 4 and weight
8). The next interesting case of dimension 24 was initiated by Erokhin [6], where it
was proved that the 24 theta series in question are linearly independent in degree 12.
Recently this topic was reconsidered in the interesting paper [3|, where the authors
give a new construction for the resulting unique Siegel cusp form of degree 12 and
weight 12 and find many interesting properties of this cusp form.

In this paper we study the whole filtration on the vector space V' of formal linear
combinations of the 24 isometry classes of Niemeier lattices, given by the theta series
of different degrees.

We start from the explicit Hecke operator K on V', which is given by the adjacency
matrix of the Kneser 2-neighbour graph (with the natural multiplicities), which was
essentially found by R. Borcherds for the purpose of classifying odd unimodular lattices
in dimension 24 (see [4], Chapter 17). The operator K fixes the filtration. Also it has
a simple spectrum and the 24 eigenvectors give the 24 Siegel cusp forms, which are
eigenfunctions for the Hecke algebra, of different degrees and weight 12.

It is a non trivial problem to find the exact degrees of these 24 eigenforms, which
we have solved only partially: We consider a natural Hermitian scalar product on V'
(an algebraic analogue for the Petersson scalar product for Siegel cusp forms), and
introduce a multiplication for which the dual filtration behaves well (Proposition 2.3).
The resulting graduated algebra has nice properties that enable us to place most of
the 24 eigenforms exactly in the filtration. In two cases we use a different construction
with theta series with harmonic coefficients (Section 3.3). As a result we calculate the
dimensions of the subspaces of Siegel cusp forms of weight 12, that are generated by
theta series, in most of the degrees (see Theorem 3.7). There remains essentially one
undecided case, where we could not decide whether an explicit cusp form of degree 10
is zero or not.
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group “Arithmetik”. We also acknowledge the financial support of the Graduiertenkol-
leg at Aachen which enabled the stay of the second author in Aachen.

2 The general situation

2.1 Notation

Let G be a genus of lattices in Euclidean space (R™, (,)). For I' € G, we denote by [I]
its isometry class. Let V = V(G) be the C-vector space with basis ([['] | " € G). If a
sum runs over isometry classes [I'] we always mean, that it runs over all of the finitely
many isometry classes of lattices in G.

Since we only need the situation that m =0 (mod 8) and G is the genus of even
unimodular lattices of rank m, we will henceforth assume this.

Let M, be the vector space of Siegel modular forms of weight £ and degree n with
respect to the full symplectic group Sp(2n,Z). Then for each n > 0 and each T" € G,
the degree-n Siegel theta series

@%n) € Mn,m/Z-

Since we fix the dimension n, M, ,,/2 will be denoted by M,,. Extending O™ linearly
on V' we obtain a linear map

(1) 0™ :V = M,: W er[l]) ==Y erO”
(1]

(]

The maps O™ commute with the Siegel ®-operator, i.e. ® 0 0™ = Q-1

2.2 The basic filtration

Let V,, := ker(©(™) be the kernel of ©™ ie. those linear combinations of lattices
which have trivial degree-n Siegel theta series.
By (1) we get the filtration

V=V,.2V2W2.. 2V,={0}

Vo={v =2 per[ll| > er =0} is of codimension 1 in V.

Let M! be the image of ©™. Then M is the subspace of M, spanned by degree-n
Siegel theta series. S. Bocherer [2] has proved that M) = M,, for n < m/4 and it is an
important open problem if M} = M, for all n.

If S,, denotes the space of cusp forms in M, and S} := M) NS, then

VootV &S,



2.3 The scalar product on VV and the dual filtration
Let (,) denote the Hermitian scalar product on V defined by

([T]; [A]) == (#Aut(T))dpry o)

Then (, ) is non degenerate and positive, that is it gives on V' a Hilbert space structure.
Let W, be the orthogonal complement of V,,. We then have the ascending filtration

0o=W_ ,CWyCW,C...CW,,=V
For an even, symmetric, positive semi definite n x n-matrix N € Sym(;g (Z) let

an([[]) == #{(71,.--,m) €™ | (v, 7) = Nig}

be the N-the Fourier coefficient of @ ([T']) and extend this definition linearly on V.
Denote by

=3 e (T eV

Then clearly
an(v) = (v,by) for all v € V.

(So by plays the role of the Poincaré series in the theory of modular forms.)

Proposition 2.1
W = (b | N € Sym$y(2))

Proof. The inclusion D follows because (v,by) = an(v) = Oforallv € V,,N €
Symgg (Z). On the other hand, the orthogonal complement of the right hand side in

W, is 0: Let = € W, with ay(z) = 0 for all N € Sym(:g(Z). Then z € V,, and
therefore x € W, N'V,, = 0. - dJ

Remark 2.2 Let Y, .=V, 1NW,. ThenY, 2V, 1/V, =S is canonically isomor-
phicto S, (n=0,...,m) and one obtains an orthogonal decomposition V= >3""_Y,.

2.4 The multiplication on V.

The rule
[I] o [A] := #(Aut (L)) Sy, ag[I]

defines a commutative and associative multiplication on V. The elements (#Aut(T")) ™[I
form a set of pairwise commuting idempotents summing up to the unit element

1
e:= %:#Tt(r)m'

With respect to this multiplication the Hermitian form (,) is associative, i.e.
(v1 0 w9, v3) = (v1,v3 0 w3) for all vy, vg,v3 € V.

The second filtration by the W,, behaves well with respect to this multiplication:
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Proposition 2.3
Wn o I/Vl g Wn—H

Proof. By Proposition 2.1 it is enough to show that
an © le

is a linear combination of some by, ,, for any N, € Sym(zng (Z), N, € Sym(zl)o(Z). But
1
b by, = — r ).
3o 0 b ; o (Do (D1

Now

aNn CLNl E GM

where the sum goes over all matrices M € Sym”“(Z) of the form M = ( ]\i” ;[ )
!

This is a very well known property of the Fourier coefficients of the theta series (cf.
[10], Theorem 1). O

From Proposition 2.3 one deduces the following property of the V,.
Corollary 2.4 For all j > 1 one has

WioV; C Vi

2.5 Hecke operators.

There are some natural linear operators on V' which preserve the V,, and the scalar
product and which act on V,,_,/V,, & S/ as certain combinations of Hecke operators.

We define these operators in terms of correspondences on lattices. Fix a lattice I,
a prime p and a natural number d. Then

Kpa(IL]) = ) [A],

A

where the sum runs over all lattices A in the genus of I" such that
I/(ANT) =2 A/(ANT) 2 F and (ANT) is of level p.

Clearly the result depends only on the isometry class of I' and not on the particular
choice of T" € [I].
We also define operators T'(p) for primes p, where

T = Y [vp Tsl

ECT /pr



where the sum runs over all maximal isotropic subspaces E in (I'/pI’, (,)) and g :=
{yel'|y+pl'e E}.

All these operators K,, and T'(p) pairwise commute. They are also symmetric
with respect to (,). So there is a basis of V' consisting of pairwise orthogonal common
eigenvectors di,...,ds for all K,,; and T(p) where s = dim(V') is the number of
isometry classes of lattices in G. Since the subspaces Y,, = V,,_1 N W,, are invariant
under all the operators K, 4 and T'(p), each eigenvector lies in some Y,,. If d; € Y,,,
then n is called the degree of d;. We order the d; by increasing degree. Then d; = e
(up to a scalar) is the only element of degree 0, etc.

For each 1 < i < s we define v(i) € {—1,...,m — 1} by

d; € Viy, di & Vagiyy1-
Analogously let w(i) € {0,...,m} be defined by
di € Wy, di &€ We-1-

If the degree of d; is n then v(i) < n —1 and w(i) > n. The next lemma shows that
one has equality if the eigenspaces are 1-dimensional.

Lemma 2.5 Let 1 < 1 < s and assume that d; generates the full eigenspace to the
corresponding character of the Hecke algebra. Then w(i) = v(i) + 1.

Proof. Let n := w(i). Then d; ¢ W,_1. Since W,_; is generated by some of the
eigenvectors and the eigenvectors to different eigenvalues are orthogonal, it follows
that d; 1 W,_; and so d; € V,,_, = W.-,. If d; € V,,, then (d;,d;) = 0 which is a
contradiction. Therefore n — 1 = v (). O

3 The special case m = 24.

Now let m = 24 and G be the genus of even unimodular 24-dimensional lattices. Then
G contains 24 isometry classes of lattices, represented by the 24 Niemeier lattices
['y,..., Ty in the order of [4], Table 16.1. The root system of T'; is

1| 1 2 3 4 3 6 7 8
Dyy | DigEg Eg Ay | D?y, | AirEr | DyoE7 | AisDy

1|9 10 11 12 13 14 15 16
D§ | Al, |AuD:Es | Eg | A3Ds | Dj Az | DA

1| 17 18 19 20 21 22 23 24
A} | DyAR D§ AS | A8 | A2 | AM 0

The basis elements [[';] of V' are abbreviated to e; (i = 1,...,24).
The filtration
V=V42WoVi2...2Vis=0

ends with Vi, (see [6], [3]). Dually we have Wi, = V.
Let K := Ky; and T'(2) be the Hecke operators as defined in Section 2.5.
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Theorem 3.1 (a) The Hecke operator K with respect to the basis above is given
by right multiplication with the matriz on page 11. K has 24 distinct integral
eigenvalues ev(1) > ev(2) > ... > ev(24) with

ev(1) = 8390655, ev(2) = 4192830, ev(3) = 2008332, ev(d) = 1049832,
ev(b) = 533160, ev(6) =519120, ev(7) = 268560, ev(8) = 244800,
ev(9) = 145152,  ev(10) = 126000, ev(11) =99792, ev(12) = 91152,
ev(13) = 89640, ev(14) = 69552, ev(15) =51552, ev(16) = 45792,
ev(17) = 35640,  ev(18) = 21600,  ev(19) = 17280,  ew(20) = 5040,
ev(21) = —7920, ev(22) = —16128, ev(23) = —48528, ev(24) = —98280

(b) The operator T(2) is a polynomial in K, and can be calculated from the image
[LT(2) = eT(2) = 561196350(1127¢; + 159390e; + 75900e; + 3349444e; +
10200960e7 +507907620e9 + 2271527104€14 + 20891566080e16 + 53441979360e19 +
284357427200ey; + 255926200320e53 + 9248440320e94). The explicit matriz can
be obtained from [9].

Proof. To determine the operator K, we use the Kneser 2-neighbour graph calculated
by R. Borcherds during the classification of odd unimodular lattices of dimension 24.

If the intersection of the two even unimodular lattices L, Ly € G is of index 2 in
these lattices, then L; N Ly is contained in a unique odd unimodular lattice O. If O
has a vector of norm 1, then the reflection along this vector maps L; to Lo. Therefore
the two even neighbours of O are isometric. If O does not contain vectors of norm 1,
then O and the two even neighbours L; and L, are listed in [4], Table 17.1. (Note that
there are misprints in the tables given in the first and second edition.) The lattice O
#Aut(r,)
#Aut(o)
one adds these numbers where L; = I'; and Ly = I';. The diagonal entry Kj; then is

U +1)(212-1) - > iz K-

One then easily determines the eigenvalues of the matrix K. Because the eigenval-
ues of K are distinct and 7'(2) commutes with K, the operator 7'(2) is a polynomial in
K. To determine 7'(2) it therefore suffices to calculate the image of the Leech lattice
[[94]T'(2) which is done in [5]. O

yields neighbours of L; that are isometric to Ly. To calculate K;; with 7 # j,

Definition 3.2 Let d; € V be an eigenvector of K to the eigenvalue ev(i).

The eigenvectors dy, ..., dys € V can be calculated explicitly as linear combinations
of the e;. All this data may be obtained from [9].

3.1 Inequalities for the degree of d;.

Fori=1,...,12 let w(i) and v(i) be defined as in Section 2.5. Then by Lemma 2.5,
the degree of d; is w(i) = v(i) — 1. The Fourier coefficients of © (e;) which correspond
to the irreducible root systems

0; Al; AZ; A3; A4a D4a A5a D51 AG’ DG; EG’ A7’ D7a E7’ AS, DS, ES; A9a D9a AlOa DlOa Alla Dlla D12

6



are given in [3]. From this table one easily calculates the corresponding Fourier coef-
ficients of ©( (d;), which shows the following inequalities for the w(3):

Lemma 3.3

S

W
IA
wW
S

VAN
W
S

IA
W

(1) (2) <1 (3) <2 (4) <3, (5) <4, (6) <4,
w(7) <5, w®@ <5 w9 <6, wl0)<6, w(ll)<6, w(l12) <7,
w(13) <8, w(14) <7, w(15) <8, w(l6)<7, w(l7) <8, w(18) <8y,
w(19) <9, w(20)<9, w(21) <10, w(22) <10, w(23) <11, w(24) < 12.
3.2 Equalities for the w(i)
Proposition 3.4 We have
w(l) =0, w(2)=1, w3)= w(4) =3, w(d)=4, w(6)=41,
w(7) = 5, w(®) =5,  w(9) =6, w(10) =6, w(1l)=6, w(12)=6
w(13) =6,7,8, w(l4)=7, w(15)=6,7,8, w(l6)=7, w(1l7) =8, w(18) =38
w(19) =7,8,9, w(20)=9, w(21)=2_8,9,10, w(22) =10, w(23) =11, w(24) =1

Proof. Clearly w(1) = 0. Since V; is of dimension one and ds is linearly independent
of dy, also w(2) = 1 is clear. In [3], a nonzero cusp form of degree 12 is constructed,
as linear combinations of Siegel theta series. By Lemma 3.3 all the other eigenforms
d; with i < 24 have degree < 12. Therefore the cusp form of [3] is a multiple of dy,
and w(24) = 12. To prove the proposition, we calculate the multiplication o on V'
with respect to the basis (di, ..., dss) and use the property that W; o W; C W, ; by
Proposition 2.3.

We see that
23

di o dj = Ayjdas + Y _ b,

=1

with a nonzero coefficient A;; for the following pairs (7, j):
(2,23), (3,22), (4,20), (5,17), (6,18), (7,14), (8,16), (9,9), (10,10), (11,11)

(The structure constants for the multiplication in the basis of the d; can also be
obtained from [9].) One concludes, that for all the 17 elements occurring in one of
those pairs, the inequality in Lemma 3.3 is indeed an equality:

Let us illustrate the reasoning by treating the first pair (2,23). Seeking for a
contradiction we assume that w(2) < 1 or w(23) < 11. Then the sum w(2)+w(23) < 11
and therefore ds o dos € Wiy by Proposition 2.3. Since dy, ..., dss € Wiy the fact that
A 93 # 0 implies that dos € Wi; which contradicts w(24) = 12. Analogously one gets
all the w(i) except for i = 12,13,15,19 and 21.

The fact that A12,12, A13,13 and A15,15 75 0 shows that d12, d13, and d15 do not lie in
Ws. Therefore w(12) =6 or 7, w(13) = 6,7, or 8 and w(15) = 6,7, or 8 using Lemma
3.3. Using A719 # 0 and As 91 # 0, one obtains the remaining bounds w(19) =7, 8, or
9 and w(21) = 8,9, or 10. O



3.3 w(13) =w(15)=38

In this section we calculate w(13) and w(15). The idea is based on the following
construction of cusp forms:

Let I be an even unimodular lattice of dimension m and F C I' ® C an isotropic
subspace of dimension n, E = (eq, ..., e,).

Then for even natural [ and Z € H,, in the Siegel upper half space we let

n

Org)(72) = Z (det(ei,%’))lexp(mZ(%%’)Zij)

V1o Yn €T 1,j=1

Then Or g, is a Siegel modular form of degree n and weight [ + % (cf. [7]).
Proposition 3.5 w(13) = w(15) = 8.

Proof. Let X = P(WWg) be the projection of Wy obtained by taking only the coefficients
of the generating theta series that correspond to

ES, A87 D8a E7a7 D7C, D7b7

where Gram matrices for the last three lattices are

/2—1000000\ (21000001
-1 2 =1 0 0 0 0 O 12100001
0 -1 2 -1 0 0 -1 0 01210001
Ba—| 0 0 -1 2 -1 0 0 -1 De—| 00121001
7 0 0 0 -1 2 -1 0 o0 |7 00012111
0 0 0 0 -1 2 0 1 00001201
0 0 -1 0 0 0 2 1 00001020
\o 0 0 -1 0 1 1 4 ) \11111104
(21000000
12100 0 0 0
01210 0 0 0
00121 0 0 0
and Drb:=1 g g g1 9 1 1 o
00001 2 0 —1
00001 0 2 1
00000 -11 4 )

Then dim(X) < 4 and X is spanned by P(di7), P(dis), and possibly P(d;3) and
P(dy5), if w(13) = w(15) = 8. One easily checks that the four vectors P(d;) (j =
13,15,17,18) are linearly independent.

Let I' := Eg L Eg be the decomposable even unimodular lattice of dimension
16. Let zq,...,23 € I' be 8 pairwise orthogonal roots in the first copy of Eg and
Yi,--.,Ys € [' similar elements in the second copy. Define e; := z; +1y;, 7 =1,...,8,

where ¢ = y/—1 and let E := (ey,...,es). Then E is a totally isotropic subspace

8
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of ' ® C. Hence © := Or g4 lies in Ws. Therefore P(©) can be written uniquely
as a linear combination of P(di3), P(dis), P(di7) and P(dig). One checks that the
coefficients of the first three basis vectors in this linear combination are not zero.
Therefore di3 and di5 are in Wy and the proposition follows.
The calculation of P(©):

The coefficients of © that correspond to Eg, Ag and Dg can be calculated easily, since
all sublattices of I' isometric to one of these three lattices already lie in one of the
orthogonal summands Eg of I'. Since Eg has exactly one sublattice isometric to Ejg,
135 sublattices Dg and 960 sublattices Ag, one calculates the first three coefficients of
P(©) to be 2 - 216 = 131072, 270 - 2* - 216 = 283115520, respectively 1920 - 3* - 216 =
10192158720. In the other 3 cases, either the sublattice lies in one of the two orthogonal
summands Fjg or the basis vector of length 4 is a sum v; + vy, where v; is a root in
the jth orthogonal summand Eg of T (j = 1,2). Since the determinants of the Gram
matrices are 5, 9, respectively 12, only the lattice D;c is a sublattice of Eg (giving a
summand 2 - 1080 - 3* - 2!6 of the corresponding coefficient). To treat the other cases,
one fixes 8 vectors in Eg with inner product matrix A — diag(0,0,0,0,0,0,0, 2), where
A is one of the 3 matrices above. If the 8. vector corresponds to v;, one has to go
through all 240 possibilities for v, and sum up the fourth powers of the corresponding
determinants (e.g. with maple). The result must be multiplied with the number of
different sublattices obtained in this way, i.e. with 2 - 240 in the case E7a, 2 - 1080 in
the case D;c respectively 2 - 1080 - 2 in the case Db, where one has 2 possibilities for
v1. In total one obtains P(©) =

131072 283115520 10192158720 —10569646080 —T76865863680 —380507258880 .

O

Since dyod;s is a linear combination of dy, di2, di3 and di5 with nonzero coefficients
at di3 and dp5 the fact that w(13) = w(15) = 8 and w(2) = 1 now implies that
w(l2) =7.

Corollary 3.6 w(12) =7.

Summarizing we get the following theorem.

Theorem 3.7 The dimensions of the spaces of cusp forms S, generated by Siegel theta
series of weight 12 are

n (011123456 7 8 9 10 |11 |12
dim|1(1]1]|1(2]|2|3|3—-4|4-6|1-3(1—-2|1 |1

From [2] follows that the space of Siegel cusp forms of degree 5 is generated by
Siegel theta series. Therefore we have the following corollary:

Corollary 3.8 The dimension of the space of cusp forms of degree 5 weight 12 is



Since dy o dig involves dy; with a non zero coefficient, one can also show that
w(21) = 10 implies that w(19) = 9.

Conjecture w(21) = 10.

Theorem 3.9 If the conjecture is true then dim(S)) is as follows:

n [0]1)23]4|5(6(7|8]9]|10]11 |12
dim|1(1|1]|1(2|2|3|3|4|2]2|1]1

3.4 Open questions.
1) Prove the conjecture above.
2) Which of the eigenforms d; satisfy the Ramanujan conjecture? Note that d3, ds, d11, d13,

and dyy are Ikeda lifts from elliptic modular forms (see [8]) so they do not satisfy this
conjecture.
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