Automorphisms of doubly-even self-dual binary codes.

Annika Günther and Gabriele Nebe

Abstract

The automorphism group of a binary doubly-even self-dual code is always contained in the alternating group. On the other hand, given a permutation group G of degree n there exists a doubly-even self-dual G-invariant code if and only if n is a multiple of 8, every simple self-dual \mathbb{F}_2G -module occurs with even multiplicity in \mathbb{F}_2^n , and G is contained in the alternating group.

1. Introduction.

Self-dual binary codes have become of great interest, also because of Gleason's theorem [6] that establishes a connection between coding theory and invariant theory of finite groups. Optimal self-dual codes often have the additional property of being doubly-even, which means that the weight of every codeword is divisible by 4 (see Definition 1). It follows from Gleason's theorem that the length n of a doubly-even self-dual code $C \leq \mathbb{F}_2^n$ is a multiple of 8, see [9, Theorem 3c], for instance.

This note studies the automorphism group $\operatorname{Aut}(C) := \{\pi \in \operatorname{Sym}_n \mid C\pi = C\}$ of such a code. Theorem 5.1 shows that the automorphism group of any doubly-even self-dual code is always contained in the alternating group, a very basic result which astonishingly does not seem to be known. On the other hand Theorem 5.2 characterizes the permutation groups $G \leq \operatorname{Sym}_n$ that fix a doubly-even self-dual binary code. This result generalizes results by Sloane and Thompson [12] and Martínez-Pérez and Willems [14].

The first section considers codes as modules for their automorphism group. The main result is the characterization of permutation groups that act on a self-dual code in Theorem 2.1. Section 4 treats permutation groups as subgroups of the 2-adic orthogonal groups. The most important observation is Lemma 4.2 that expresses the sign of a permutation as a certain spinor norm. Given a self-dual doubly-even binary code C, the automorphism group of the even unimodular \mathbb{Z}_2 -lattice obtained from C by construction A (see Section 3) is contained in the kernel of this spinor norm. This immediately yields Theorem 5.1. Theorem 5.2 follows from this result together with Theorem 2.1.

2. Codes.

DEFINITION 1. A binary code C of length n is a linear subspace of \mathbb{F}_2^n . Let $b: \mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{F}_2$, $b(x,y) := \sum_{i=1}^n x_i y_i$ be the standard scalar product. The dual code is

$$C^{\perp} := \{ v \in \mathbb{F}_2^n \mid b(v, c) = 0 \text{ for all } c \in C \}.$$

The code C is called self-orthogonal if $C \subseteq C^{\perp}$ and self-dual if $C = C^{\perp}$. The weight $\operatorname{wt}(c)$ of a codeword $c \in C$ is the number of its nonzero entries. The code C is called doubly-even, or Type II, if the weight of every word in C is a multiple of 4.

This section investigates binary linear codes as modules for a subgroup G of their automorphism groups. The main result is Theorem 2.1 that characterizes the permutation groups acting on some self-dual code. To this aim we need the representation theoretic notion of self-dual modules, cf. Definition 2. Note that this paper uses two different notions of duality. The dual of an \mathbb{F}_2G -module S over the finite group G is the \mathbb{F}_2G -module $S^* = \operatorname{Hom}_{\mathbb{F}_2}(S, \mathbb{F}_2)$, whereas the dual of a code $C \leq \mathbb{F}_2^n$ is as in Definition 1. For $G \leq \operatorname{Aut}(C)$ the code C is also an \mathbb{F}_2G -module, which is represented with respect to a distinguished basis.

DEFINITION 2. Let S be a right G-module. Then the dual module $S^* = \operatorname{Hom}_{\mathbb{F}_2}(S, \mathbb{F}_2)$ is a right G-module via $fg(s) := f(sg^{-1})$, for $f \in S^*$, $g \in G$ and $s \in S$. If $S \cong S^*$ then S is called self-dual.

THEOREM 2.1. Let $G \leq \operatorname{Sym}_n$. Then there exists a self-dual code $C \leq \mathbb{F}_2^n$ with $G \leq \operatorname{Aut}(C)$ if and only if every self-dual simple \mathbb{F}_2G -module S occurs in the \mathbb{F}_2G -module \mathbb{F}_2^n with even multiplicity.

The proof of this theorem is prepared in a few lemmas.

LEMMA 2.2. Let S be a simple self-dual \mathbb{F}_2G -module, and assume that S carries a non-degenerate symmetric G-invariant bilinear form $\varphi: S \times S \to \mathbb{F}_2$. Then φ is unique, up to isometry.

Proof. Since φ is non-degenerate and G-invariant, it induces an \mathbb{F}_2G -isomorphism $\alpha_{\varphi}: S \to S^*$, $s \mapsto (s' \mapsto \varphi(s, s'))$. Let $\psi: S \times S \to \mathbb{F}_2$ be another non-degenerate symmetric G-invariant bilinear form on S, then $\alpha_{\psi} = \alpha_{\varphi} \circ \vartheta$ for some ϑ in the finite field $\mathfrak{E} := \operatorname{End}_G(S)$ of all \mathbb{F}_2G -endomorphisms of S, and hence

$$\psi(s,s') = \alpha_{\psi}(s)(s') = \alpha_{\varphi}(\vartheta(s))(s') = \varphi(\vartheta(s),s')$$

for all $s, s' \in S$. Consider the involution ^{ad} on \mathfrak{E} given by $\varphi(s, \alpha(s')) = \varphi(\alpha^{\mathrm{ad}}(s), s')$, for $s, s' \in S$. Since both φ and ψ are symmetric we have

$$\varphi(\vartheta(s), s') = \psi(s, s') = \psi(s', s) = \varphi(\vartheta(s'), s) = \varphi(s, \vartheta(s')) = \varphi(\vartheta^{\mathrm{ad}}(s), s')$$

for all $s, s' \in S$ and hence $\vartheta \in \mathfrak{F} = \{\alpha \in \mathfrak{E} \mid \alpha^{\mathrm{ad}} = \alpha\}$. The involution $^{\mathrm{ad}}$ is either the identity on \mathfrak{E} or a field automorphism of order 2. In the first case $\mathfrak{F} = \mathfrak{E} = \{\alpha\alpha^{\mathrm{ad}} = \alpha^2 \mid \alpha \in \mathfrak{E}\}$ since squaring is an automorphism of the finite field \mathfrak{E} . In the second case the map $\mathfrak{E} \to \mathfrak{F}$, $\alpha \mapsto \alpha$ α^{ad} is the norm map onto the fixed field \mathfrak{F} . Hence in either case there exists some $\gamma \in \mathfrak{E}$ with $\gamma\gamma^{\mathrm{ad}} = \vartheta$. Now γ induces an isometry between the spaces (S, φ) and (S, ψ) since $\psi(s, s') = \varphi(\vartheta(s), s') = \varphi(\gamma^{\mathrm{ad}}(\gamma(s)), s') = \varphi(\gamma(s), \gamma(s'))$ for all $s, s' \in S$.

LEMMA 2.3. Let $G \leq \operatorname{Sym}_n$ and let $N \leq M \leq \mathbb{F}_2^n$ be G-submodules (i.e. G-invariant codes). Then $(M/N)^* \cong N^{\perp}/M^{\perp}$.

Proof. Let $M_N^* := \{ f \in \operatorname{Hom}_{\mathbb{F}_2}(M, \mathbb{F}_2) \mid f(n) = 0 \text{ for all } n \in N \} \leq M^*$. Then M_N^* is canonically isomorphic to $(M/N)^*$. Let $\beta : N^{\perp} \to M_N^*$, $n' \mapsto (m \mapsto b(m, n'))$. Then β is well-defined and surjective, since $\Upsilon : \mathbb{F}_2^n \to M^*$, $v \mapsto (m \mapsto b(m, v))$ is surjective, and $\Upsilon(v) \in M_N^*$ if and only if $v \in N^{\perp}$. Clearly β has kernel M^{\perp} and hence $N^{\perp}/M^{\perp} \cong M_N^* \cong (M/N)^*$.

COROLLARY 2.4. Let $G \leq \operatorname{Sym}_n$. If there exists a self-dual code $C \leq \mathbb{F}_2^n$ with $G \leq \operatorname{Aut}(C)$ then every self-dual simple G-module occurs with even multiplicity in a composition series of the \mathbb{F}_2G -module \mathbb{F}_2^n .

Proof. Let $C = N_k \ge N_{k-1} \ge ... \ge N_1 \ge N_0 = \{0\}$ be a composition series of the \mathbb{F}_2G -module C. Then

$$C = C^{\perp} = N_k^{\perp} \le N_{k-1}^{\perp} \le \dots \le N_1^{\perp} \le N_0^{\perp} = \mathbb{F}_2^n$$

is a composition series of \mathbb{F}_2^n/C^{\perp} , since dualizing yields an antiautomorphism $W \mapsto W^{\perp}$ of the submodule lattice of \mathbb{F}_2^n . The composition factors satisfy

$$N_{i-1}^{\perp}/N_i^{\perp} \cong (N_i/N_{i-1})^*,$$

cf. Lemma 2.3. Hence the claim follows.

LEMMA 2.5. Let S be a simple self-dual \mathbb{F}_2G -module endowed with a non-degenerate G-invariant symmetric bilinear form φ . The module $(U, \psi) := \perp_{i=1}^k (S, \varphi)$ contains a submodule X with

$$X = X^{\perp,\psi} := \{ u \in U \mid \psi(u,x) = 0 \text{ for all } x \in X \}$$

if and only if k is even.

Proof. If U contains such a submodule $X = X^{\perp,\psi}$ then k is even according to Corollary 2.4. Conversely, if k is even then $X := \{(s_1, s_1, s_2, s_2, \dots, s_{k/2}, s_{k/2})\} \leq U$ satisfies $X = X^{\perp,\psi}$.

Proof. (of Theorem 2.1) If $C \leq \mathbb{F}_2^n =: V$ is a self-dual G-invariant code then every self-dual simple module occurs with even multiplicity in a composition series of V (see Corollary 2.4). Conversely, assume that every self-dual composition factor occurs in V with even multiplicity, and let $M \leq M^{\perp} \leq V$ be a maximally self-orthogonal G-invariant code, i.e. there is no self-orthogonal G-invariant code in V which properly contains M.

On the G-module M^{\perp}/M there exists a G-invariant non-degenerate symmetric bilinear form

$$\varphi: M^{\perp}/M \times M^{\perp}/M \to \mathbb{F}_2, \ (m'+M, m''+M) \mapsto (m', m'').$$

Any proper \mathbb{F}_2G -submodule X of $(M^{\perp}/M, \varphi)$ with $X \subseteq X^{\perp, \varphi}$ (cf. Lemma 2.5) would lift to a self-orthogonal G-invariant code in V properly containing M, which we excluded in our assumptions. This implies that every \mathbb{F}_2G -submodule $X \leq M^{\perp}/M$ has a G-invariant complement $X^{\perp, \varphi}$, i.e. M^{\perp}/M is isomorphic to a direct sum of simple self-dual modules (see for instance [3, Proposition (3.12)]), $(M^{\perp}/M, \varphi) \cong \perp_{S \cong S^*} (S, \varphi_S)^{n_S}$, where φ_S is a non-degenerate G-invariant bilinear form on S, which is unique up to isometry by Lemma 2.2.

According to our assumptions, every simple self-dual G-module occurs with even multiplicity in M^{\perp}/M , i.e. all the n_S are even. But this means that the n_S must all be zero, according to Lemma 2.5, that is, $M = M^{\perp}$ is a self-dual code in V.

The criterion in Theorem 2.1 is not so easily tested. The next result gives a group theoretic condition that is sufficient for the existence of a self-dual G-invariant code. To this aim let $G \leq \operatorname{Sym}_n$ be a permutation group and write

$$\{1,\ldots,n\}=B_1\stackrel{.}{\cup}\ldots\stackrel{.}{\cup}B_s$$

as a disjoint union of G-orbits and let $H_i := \operatorname{Stab}_G(x_i)$ be the stabilizer in G of some element $x_i \in B_i$ (i = 1, ..., s). For $1 \le i \le s$ let

$$m_i := |\{j \in \{1, ..., s\} \mid H_i \text{ is conjugate to } H_i\}| \text{ and } n_i := [N_G(H_i) : H_i].$$

PROPOSITION 2.6. Assume that the product $n_i m_i$ is even for all $1 \le i \le s$. Then there is a G-invariant self-dual binary code $C \le \mathbb{F}_2^n$.

Proof. If H_i and H_j are conjugate for some $i \neq j$ then the permutation representations of G on B_i and B_j are equivalent and by Theorem 2.1 there is a self-dual G-invariant code in the direct sum $\mathbb{F}_2^{B_i \cup B_j} \cong \mathbb{F}_2^{|B_i|} \perp \mathbb{F}_2^{|B_j|}$ of two isomorphic \mathbb{F}_2G -modules. It is hence enough to show the proposition for a transitive permutation group $G \leq \operatorname{Sym}_n$ with stabilizer $H := \operatorname{Stab}_G(1)$ for which $[N_G(H):H] \in 2\mathbb{Z}$. Let (f_1,\ldots,f_n) be the standard basis of \mathbb{F}_2^n such that $\pi \in \operatorname{Sym}_n$ maps f_j to $f_{j\pi}$ for all $j=1,\ldots,n$ and choose $\eta \in N_G(H)-H$ such that $\eta^2 \in H$. Put $N:=\langle H,\eta \rangle$ and

$$G = \dot{\cup}_{s \in S} Ns = \dot{\cup}_{s \in S} (Hs \dot{\cup} H\eta s).$$

Define $C := \langle f_{1s} + f_{1\eta s} : s \in S \rangle_{\mathbb{F}_2}$. Then C is a G-invariant code in \mathbb{F}_2^n and $C = C^{\perp}$ since the given basis of C consists of |S| = n/2 pairwise orthogonal vectors of weight 2.

3. From codes to lattices.

There is a well-known construction, called construction A (see [2, Section (7.2)]) that associates to a pair (R,C) of a ring R with prime ideal \wp and residue field $R/\wp \cong \mathbb{F}$ and a code $C \leq \mathbb{F}^n$ an n-dimensional lattice over R. We will apply this construction for binary codes and two different base rings: $R = \mathbb{Z}$ and $R = \mathbb{Z}_2$, the ring of 2-adic integers, where the prime ideal $\wp = 2R$ in both cases. So let R be one of these two rings and let K denote the field of fractions of R and let $V := \langle b_1, \ldots, b_n \rangle_K$ be a vector space over K with bilinear form defined by

$$(\ ,\): V \times V \to K, (b_i, b_j) := \frac{1}{2} \delta_{ij} = \left\{ \begin{array}{ll} 1/2 & i = j \\ 0 & i \neq j \end{array} \right.$$

and associated quadratic form $q:V\to K, q(v):=\frac{1}{2}(v,v)$. The orthogonal group of V is

$$O(V) := \{ g \in GL(V) \mid (vg, wg) = (v, w) \text{ for all } v, w \in V \}.$$

DEFINITION 3. A lattice $L \leq V$ is the R-span of a basis of V. The dual lattice

$$L^{\#} := \{ v \in V \mid (v, \ell) \in R \text{ for all } \ell \in L \}$$

is again a lattice in V. L is called integral if $L \subseteq L^{\#}$ or equivalently $(\ell_1, \ell_2) \in R$ for all $\ell_1, \ell_2 \in L$. L is called even if $q(\ell) \in R$ for all $\ell \in L$ and odd if L is integral and there is some $\ell \in L$ with $q(\ell) \notin R$. L is called unimodular if $L = L^{\#}$. The orthogonal group of L is

$$O(L) := \{g \in O(V) \mid Lg = L\}.$$

The following remark lists elementary properties of the lattice obtained from a code by construction A which can be seen by straightforward calculations.

REMARK 1. Let $M = \langle b_1, \dots, b_n \rangle_R$ be the lattice generated by the basis above and let $C \leq \mathbb{F}_2^n$ be a binary code. Then the R-lattice

$$L := A(R, C) := \{ \sum_{i=1}^{n} a_i b_i \mid a_i \in R, (a_1 + 2R, \dots, a_n + 2R) \in C \}$$

is called the *codelattice* of C. Note that $2M \subset L \subset M$ and L is the full preimage of $C \cong L/2M$ under the natural epimorphism $M \to (R/2R)^n = \mathbb{F}_2^n$. The lattice L is even if and only if the code C is doubly-even. The dual lattice is $A(R,C)^\# = A(R,C^\perp)$ and hence L is unimodular if and only if C is self-dual, and L is an even unimodular lattice if and only if C is a doubly-even self-dual code.

The symmetric group Sym_n acts as orthogonal transformations on V by permuting the basis vectors. This yields an injective homomorphism

$$\iota: \operatorname{Sym}_n \to O(V), \ \iota(\pi): b_i \mapsto b_{i\pi}.$$

If $G = \operatorname{Aut}(C)$ is the automorphism group of C then $\iota(G) \leq O(A(R,C))$.

4. Permutations as elements of the orthogonal group.

Let \mathbb{Q}_2 denote the field of 2-adic numbers, $v_2:\mathbb{Q}_2\to\mathbb{Z}\cup\{\infty\}$ its natural valuation and $\mathbb{Z}_2:=\{x\in\mathbb{Q}_2\mid v_2(x)\geq 0\}$ the ring of 2-adic integers with unit group $\mathbb{Z}_2^*:=\{x\in\mathbb{Z}_2\mid v_2(x)=0\}$. Let $V:=\langle b_1,\ldots,b_n\rangle_{\mathbb{Q}_2}$ be a bilinear space over \mathbb{Q}_2 of dimension n>1 as in Section 3, in particular $(b_i,b_j)=\frac{1}{2}\delta_{ij}$. The orthogonal group O(V) is generated by all reflections

$$\sigma_v: V \to V, x \mapsto x - \frac{(x,v)}{q(v)}v$$

along vectors $v \in V$ with $q(v) \neq 0$ (see [7, Satz (3.5)], [10, Theorem 43:3]). Then the spinor norm defines a group homomorphism $h: O(V) \to C_2$ as follows:

DEFINITION 4. Let $h: O(V) \to C_2 = \{1, -1\}$ be defined by $h(\sigma_v) := (-1)^{v_2(q(v))}$ for all reflections $\sigma_v \in O(V)$. Let $O^h(V) := \{g \in O(V) \mid h(g) = 1\}$ denote the kernel of this epimorphism.

Note that the definition of h depends on the chosen scaling of the quadratic form. It follows from the definition of the spinor norm (see [10, Section 55]) that

LEMMA 4.1. The map h is a well-defined group epimorphism.

The crucial observation that yields the connection to coding theory in Section 5 is the following easy lemma.

LEMMA 4.2. Let $\iota : \operatorname{Sym}_n \to O(V)$ be the homomorphism from Remark 1. Then $h \circ \iota = \operatorname{sign}$.

Proof. The symmetric group Sym_n is generated by transpositions $\tau_{i,j} = (i,j)$ for $i \neq j$. Such a transposition interchanges b_i and b_j and fixes all other basis vectors and hence $\iota(\tau_{i,j}) = \sigma_{b_i - b_j}$. Clearly

$$h(\sigma_{b_i-b_j}) = (-1)^{v_2(q(b_i)+q(b_j))} = (-1)^{-1} = -1 = \operatorname{sign}(\tau_{i,j}).$$

LEMMA 4.3. Let $L \leq V$ be an even unimodular lattice. Then $O(L) \leq O^h(V)$.

Proof. By [7, Satz 4.6] the orthogonal group O(L) is generated by reflections

$$O(L) = \langle \sigma_{\ell} \mid \ell \in L, v_2(q(\ell)) = 0 \rangle.$$

Since $h(\sigma_{\ell}) = (-1)^{v_2(q(\ell))} = 1$ for those vectors ℓ , the result follows.

We now assume that n is a multiple of 8 and choose an orthonormal basis (e_1, \ldots, e_n) of V (i.e. $(e_i, e_j) = \delta_{ij}$). Let $L := \langle e_1, \ldots, e_n \rangle_{\mathbb{Z}_2}$ be the unimodular lattice generated by these vectors e_i and let

$$L_0 := \{ \ell \in L \mid q(\ell) \in \mathbb{Z}_2 \} = \langle e_1 + e_2, \dots, e_1 + e_n, 2e_1 \rangle$$

be its even sublattice. Then $L_0^\# = \langle e_1, \dots, e_{n-1}, v := \frac{1}{2} \sum_{i=1}^n e_i \rangle$. Since n is a multiple of 8 the vector $2v \in L_0$ and $(v,v) = \frac{n}{4}$ is even. Hence $L_0^\#/L_0 \cong \mathbb{F}_2^2$ and the three lattices L_i with $L_0 < L_i < L_0^\#$ corresponding to the three 1-dimensional subspaces of $L_0^\#/L_0$ are given by

$$L_1 := \langle L_0, v \rangle, \ L_2 := \langle L_0, v - e_1 \rangle, \ L_3 = L.$$

Note that L_1 and L_2 are even unimodular lattices, whereas L_3 is odd. In particular $O(L) = O(L_0)$ acts as the subgroup

$$\{1, -1\} = C_2 \cong \{I_2, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\} \leq \operatorname{GL}_2(\mathbb{F}_2)$$

on $L_0^\#/L_0$ (with respect to the basis $(v+L_0,e_1+L_0)$). Let $f:O(L)\to C_2=\{\pm 1\}$ denote the resulting epimorphism. So the elements in the kernel of f (which equals $O(L)\cap O^h(V)$ as shown in the next lemma) fix both lattices L_1 and L_2 and all other elements in O(L) interchange L_1 and L_2 .

LEMMA 4.4. $f = h_{|O(L)}$

Proof. Let $R(L_0) := \langle \sigma_\ell \mid \ell \in L_0, q(\ell) \in \mathbb{Z}_2^* \rangle$ be the reflection subgroup of $O(L_0)$. By [8, Satz 6] $R(L_0)$ is the kernel of f. Since $h(\sigma_\ell) = 1$ for all $\sigma_\ell \in R(L_0)$, the group $R(L_0) \subset O(L) \cap O^h(V)$ is also contained in the kernel of h. The reflection σ_{e_1} along the vector $e_1 \in L$ is in the orthogonal group $O(L) = O(L_0)$, interchanges the two lattices L_1 and L_2 , and satisfies $h(\sigma_{e_1}) = -1$. Since $R(L_0)$ is a normal subgroup of index at most 2 in O(L), we obtain $O(L) = \langle R(L_0), \sigma_{e_1} \rangle$ and the lemma follows.

5. The main results.

THEOREM 5.1. Let $C = C^{\perp} \leq \mathbb{F}_2^n$ be a doubly-even self-dual code. Then the automorphism group of C is contained in the alternating group.

Proof. We apply construction A from Section 3 to the code C to obtain the codelattice $L := A(\mathbb{Z}_2, C)$. By Remark 1 the lattice L is an even unimodular lattice. Hence by Lemma 4.3 its orthogonal group $O(L) \leq O^h(V)$ is in the kernel of the epimorphism h from Definition 4. The image of Aut(C) under the homomorphism ι from Remark 1 is contained in O(L), hence

 $\iota(\operatorname{Aut}(C)) \leq O(L) \leq O^h(V)$. Since $h \circ \iota = \operatorname{sign}$ by Lemma 4.2 we have $\operatorname{sign}(\operatorname{Aut}(C)) = \{1\}$ and therefore $\operatorname{Aut}(C) \leq \operatorname{Alt}_n$.

THEOREM 5.2. Let $G \leq \operatorname{Sym}_n$. Then there is a self-dual doubly-even code $C = C^{\perp} \leq \mathbb{F}_2^n$ with $G \leq \operatorname{Aut}(C)$ if and only if the following three conditions are fulfilled:

- (a) $8 \mid n$.
- (b) Every self-dual composition factor of the \mathbb{F}_2G -module \mathbb{F}_2^n occurs with even multiplicity.
- (c) $G \leq Alt_n$.

Proof. \Rightarrow : (a) is clear since the length of any doubly-even self-dual code is a multiple of 8. (b) follows from Theorem 2.1 and (c) is a consequence of Theorem 5.1. \rightleftharpoons : By Theorem 2.1 the condition (b) implies the existence of a self-dual code $X = X^{\perp}$ with $G \leq \operatorname{Aut}(X)$. If X is doubly-even then we are done. So assume that X is not doubly-even and consider the codelattices

$$L := A(\mathbb{Z}, X)$$
 and $L_X := A(\mathbb{Z}_2, X) = L \otimes \mathbb{Z}_2$.

Then L is a positive definite odd unimodular \mathbb{Z} -lattice and hence its 2-adic completion $L \otimes \mathbb{Z}_2 = L_X$ is an odd unimodular \mathbb{Z}_2 -lattice having an orthonormal basis (see for instance [7, Satz (26.7)]). Hence L_X is isometric to the lattice L constructed just before Lemma 4.4. Since $G \leq \operatorname{Alt}_n$, the group $\iota(G) \leq O(L_X)$ lies in the kernel of the homomorphism f from Lemma 4.4 and therefore fixes the two even unimodular lattices L_1 and L_2 intersecting L_X in its even sublattice. Let $M = \langle b_1, \ldots, b_n \rangle_{\mathbb{Z}_2}$ be the lattice from Remark 1 such that $2M < L_X < M$ and identify $M/2M = \bigoplus_{i=1}^n \mathbb{Z}_2/2\mathbb{Z}_2 b_i = \bigoplus_{i=1}^n \mathbb{F}_2 b_i$ with \mathbb{F}_2^n . Then the code $C := L_1/2M \leq \mathbb{F}_2^n$ (such that $L_1 = A(\mathbb{Z}_2, C)$) is a self-dual doubly-even code with $G \leq \operatorname{Aut}(C)$.

6. An application to group ring codes.

As an application of our main Theorem 5.2 we obtain a result (Theorem 6.3) on the existence of self-dual doubly-even binary group codes, given in [12] and also in [14]. Binary group codes are ideals of the group ring \mathbb{F}_2G , where G is a finite group, i.e. these are exactly the codes in $\mathbb{F}_2^{|G|}$ with $\rho_G(G) \leq \operatorname{Aut}(C)$, where $\rho_G : G \to \operatorname{Sym}_G$, $g \mapsto (h \mapsto hg)$ is the regular representation of G. Clearly $\rho_G(G) \leq \operatorname{Alt}_G$ if and only if the image $\rho_G(S)$ of any Sylow 2-subgroup $S \in \operatorname{Syl}_2(G)$ is contained in the alternating group. Let k := [G : S] be the index of S in G. Then k is odd and the restriction of ρ_G to S is $(\rho_G)_{|S} = k\rho_S$. Hence $\rho_G(S) \leq \operatorname{Alt}_G$ if and only if $\rho_S(S) \leq \operatorname{Alt}_S$.

LEMMA 6.1. Let $S \neq 1$ be a 2-group. Then $\rho_S(S) \leq \text{Alt}_S$ if and only if S is not cyclic.

Proof. If $S = \langle s \rangle$ is cyclic, then $\rho_S(s)$ is a |S|-cycle in Sym_S and hence its sign is -1 (because |S| is even). On the other hand assume that S is not cyclic. Then S has a normal subgroup N such that $S/N \cong C_2 \times C_2$ is generated by elements $aN, bN \in S/N$ of order 2, with abN = baN. Let $A := \langle a, N \rangle$ and $B = \langle b, N \rangle$. Then

$$S = \langle A, B \rangle = A \stackrel{.}{\cup} bA = B \stackrel{.}{\cup} aB$$

and b induces an isomorphism between the regular A-module A and bA, so A is in the kernel of the sign homomorphism. Similarly a gives an isomorphism between the regular B-module B and aB, so also B is in the kernel of the sign homomorphism.

The following observation follows from Proposition 2.6 and is proven in [13, Theorem 1.1].

THEOREM 6.2. There is a self-dual binary group code $C \leq \mathbb{F}_2G$ if and only if the order of G is even.

Proof. \Rightarrow : Clear, since dim(C) = $\frac{|G|}{2}$ for any $C = C^{\perp} \leq \mathbb{F}_2 G$. \Leftarrow : Follows from Proposition 2.6, because ρ_G is a transitive permutation representation and the full group G is the normalizer of the stabilizer $H := \operatorname{Stab}_G(1) = 1$. □

THEOREM 6.3. (see [12],[14].) Let G be a finite group. Then \mathbb{F}_2G contains a doubly-even self-dual group code if and only if the order of G is divisible by 8 and the Sylow 2-subgroups of G are not cyclic.

Proof. The condition that the group order be divisible by 8 is equivalent to condition (a) of Theorem 5.2 and also implies (with Theorem 6.2) that there is some self-dual G-invariant code in \mathbb{F}_2G , which is equivalent to condition (b) of Theorem 5.2 by Theorem 2.1. The condition on the Sylow 2-subgroups of G is equivalent to $\rho_G(G) \leq \operatorname{Alt}_G$ by Lemma 6.1 and hence to condition (c) of Theorem 5.2.

Our last application concerns the automorphism group $G = \operatorname{Aut}(C)$ of a putative extremal Type II code C of length 72. The paper [1] shows that any automorphism of C of order 2 acts fixed point freely, so any Sylow 2-subgroup S of G acts as a multiple of the regular representation. In particular |S| divides 8. Our results show that S is not cyclic of order 8, which already follows from [12, Theorem 1].

COROLLARY 6.4. Let C be a self-dual doubly-even binary code of length 72 with minimum distance 16. Then C does not have an automorphism of order 8.

7. A characteristic 2 proof of Theorems 5.1 and 5.2

As remarked by Robert Griess one may prove Theorem 5.1 and 5.2 without using characteristic 0 theory.

Assume that n is a multiple of 8 and let $\mathbf{1} := (1, \dots, 1) \in \mathbb{F}_2^n$ denote the all ones vector. Then

$$V = \mathbf{1}^{\perp}/\langle \mathbf{1} \rangle = \{x \in \mathbb{F}_2^n \mid \operatorname{wt}(x) \text{ is even } \}/\langle \mathbf{1} \rangle$$

becomes a quadratic module of dimension n-2 over \mathbb{F}_2 by putting

$$q: V \to \mathbb{F}_2, \overline{x} := x + \langle \mathbf{1} \rangle \mapsto \frac{1}{2} \operatorname{wt}(x) + 2\mathbb{Z}.$$

The associated bilinear form $b(\overline{x}, \overline{y}) = q(\overline{x} + \overline{y}) - q(\overline{x}) - q(\overline{y}) = x \cdot y$ is inherited from the standard inner product and the maximal isotropic subspaces of V are the images of the doubly-even self-dual codes in \mathbb{F}_2^n .

The orthogonal group $O(V,q) \cong O_{n-2}^+(2)$ acts transitively on the set of maximal isotropic subspaces of V. Fix one such subspace U. Then the *Dickson invariant* is

$$D: O(V,q) \to \{1,-1\}; D(g) := (-1)^{\dim(U/U \cap Ug)}$$

a well-defined homomorphism that does not depend on the choice of U ([11, Theorem 11.61]). The symmetric group Sym_n acts by coordinate permutations on \mathbb{F}_2^n . Since $\mathbf{1}\pi = \mathbf{1}$ for all $\pi \in \operatorname{Sym}_n$ and permutations preserve the weight this gives rise to an embedding $\iota : \operatorname{Sym}_n \to O(V, q)$. The following lemma also follows from the geometric characterization of the Dickson invariant in [11, p. 160] (see also [5] and [4]).

Lemma 7.1. $D \circ \iota = \text{sign}$.

Proof. It is enough to find a transposition that is not in the kernel of the Dickson invariant. To this aim choose the Type II code C with generator matrix

and let $U := C/\langle \mathbf{1} \rangle$. Then $U\iota(\tau_{1,2}) \cap U$ has co-dimension 1 in U

Now we can use the Dickson invariant D to replace the spinor norm h to obtain the main results. It is immediate that $\operatorname{Stab}_{O(V,q)}(U) \subset \ker(D)$ (see also [11, Exercise 11.19]) from which one obtains Theorem 5.1.

The proof of Theorem 5.2 can also be modified. Condition (b) implies the existence of a self-dual G-invariant code X. If X is doubly-even, then we are done; if not, then let $X_0 :=$ $\{x \in X \mid \operatorname{wt}(x) \in 4\mathbb{Z}\}\$ denote the doubly-even subcode of X. This is a subcode of codimension 1 in X and $X_0^{\perp}/X_0 \cong \mathbb{F}_2 \oplus \mathbb{F}_2$ is of dimension 2. Since the length of X is divisible by 8, the full preimages C_1 and C_2 of the other two non-trivial subspaces of X_0^{\perp}/X_0 both are self-dual doubly-even codes. Since the co-dimension of the intersection $\dim(C_i/(C_1 \cap C_2)) = 1$ is odd, any permutation π with $C_1\pi = C_2$ has to have $\operatorname{sign}(\pi) = D(\iota(\pi)) = -1$. Since $G \leq \operatorname{Alt}_n$, all elements of G have to fix both codes C_1 and C_2 and hence these yield G-invariant doubly-even self-dual codes.

References

- 1. S. Bouyuklieva, On the automorphisms of order 2 with fixed points for the extremal self-dual codes of length 24m. Designs, Codes, Cryptogr. 25, 5-13 (2002)
- 2. J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups. Springer Grundlehren 290, 1993.
- 3. C.W. Curtis, I. Reiner, Methods of Representation Theory I. Wiley classics 1990.
- J. Dieudonné, Pseudo-discriminant and Dickson invariant. Pacific J. Math. 5, 907-910 (1955)
- 5. R.H. Dye, A geometric characterization of the special orthogonal groups and the Dickson invariant. J. LMS (2) **15**, 472-476 (1977)
- 6. A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities. in Actes, Congrés International de Mathématiques (Nice, 1970), Gauthiers-Villars, Paris, 1971, Vol. 3, pp. 211-215.
- 7. M. Kneser, R. Scharlau, Quadratische Formen. Springer 2002
- 8. M. Kneser, Erzeugung ganzzahliger orthogonaler Gruppen durch Spiegelungen. Mathem. Annalen 255, 453-462 (1981)
- 9. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977; 11th impression 2003.
- 10. O.T. O'Meara, Introduction to Quadratic Forms. Springer Grundlehren 117, 1973.
- 11. C.E. Taylor, The geometry of the classical groups. Heldermann Verlag Berlin 1992.
- 12. N.J.A. Sloane, J.G. Thompson, Cyclic Self-Dual Codes. IEEE Trans. Inform. Theory 29, 1983
- 13. W. Willems, A note on self-dual group codes. IEEE Trans. Inform. Theory 48 (2002), no. 12, 3107–3109.
- 14. C. Martínez-Pérez, W. Willems, Self-dual codes and modules for finite groups in characteristic two. IEEE Trans. Inform. Theory 50 (2004), no. 8, 1798–1803.

A. Günther and G. Nebe, Lehrstuhl D für Mathematik, RWTH Aachen University 52056 Aachen, Germany

annika.guenther@math.rwth-aachen.de, gabriele.nebe@math.rwth-aachen.de