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Finite Quaternionic Matrix Groups

Gabriele Nebe

ABSTRACT. Let D be a definite quaternion algebra such that its center has
degree d over Q. A subgroup G of GL, (D) is absolutely irreducible if the Q-algebra
spanned by the matrices in G is D™"*". The finite absolutely irreducible subgroups of
GL,(D) are classified for nd < 10 by constructing representatives of the conjugacy
classes of the maximal finite ones. Methods to construct the groups and to deal with
the quaternion algebras are developed. The investigation of the invariant rational
lattices yields quaternionic structures for many interesting lattices.



1 Introduction.

The rational group algebra of any finite group is a semisimple algebra, hence
a direct sum of matrix rings over division algebras. Whereas for any n € N
there exists a finite group G such that Q™™ is a direct summand of QG (in
other words GL,(Q) has a finite absolutely irreducible subgroup) this is not
true for an arbitrary division algebra # Q. Clearly the centers of the occurring
division algebras are generated by the character values of the corresponding
character of G and hence finite abelian extensions of Q. If the center is real,
then the involution on QG defined by g — ¢! for all ¢ € G preserves the
corresponding direct summand D"*" and therefore induces an involution on
it. From this one deduces the Theorem of Brauer and Speiser, which says that
if the center K := Z(D) is a totally real number field, then D is either K or a
quaternion algebra over K.

For fixed n and fixed degree d := [K : Q] of the real field K over Q the
unit group of the direct summand of QG embeds into GL4,(Q) if D = K is
abelian and into G Lyg,(Q) if D is a quaternion algebra over K. The image of
G under this homomorphism is a finite subgroup of GLg4,(Q) resp. G Ly, (Q)
with enveloping algebra D™*™. Since for given m € N the group GL,,(Q) has
finitely many conjugacy classes of finite subgroups, this shows that for fixed n
and d, there are only finitely many possibilities for D.

This paper deals with the case where D is a definite quaternion algebra
over K. All D are determined for which D"*" is a direct summand of QG for
a finite group G, in other words G has an absolutely irreducible representation
into GL,(D), if n - [K : Q] < 10. We derive a much finer information on
the unit group GL,(D) of D™*™ by determining all its absolutely irreducible
(cf. Definition 2.1) maximal finite, abbreviated to a.i.m.f., subgroups. The
classification results are given in the form of tables containing representatives
for the primitive a.i.m.f. subgroups of GL,(D) and some information on the
invariant lattices (cf. Table 6.3, Theorem 12.1, Table 12.7, and the Theorems
12.15, 12.17, 12.19, 13.1, 13.3, 13.5, 14.1, 14.14, 15.1, 15.3, 16.1, 17.1, 18.1,
19.1, and 20.1). The conjugacy classes of the a.i.m.f. subgroups are interrelated
via common absolutely irreducible subgroups (cf. Definition 2.12) and we
determine the resulting simplicial complexes for n < 7, (n,d) # (4, 2).

Quaternionic matrix groups have already been studied by various authors.
For instance in [Ami 55] the finite subgroups of GL, (D) are classified, [HaS 85]
treats the quasisimple finite subgroups of GLs(D), and A.M. Cohen determines
the finite quaternionic reflection groups in [Coh 80]. Quite a few of these
reflection groups are a.i.m.f. subgroups (cf. Remark 5.2). The last article is
somehow closer to the present paper, since Cohen describes the corresponding
root systems. But none of the authors treats the subject from the arithmetic
point of view and looks at the G-invariant lattices for the various maximal



orders in D.

Any subgroup G of GL, (D) may be considered as a subgroup of G L4, (Q)
via the regular representation of D. The rational irreducible maximal fi-
nite subgroups of GL,,(Q) are classified for m < 31 (cf. [PIN 95], [NeP 95],
[Neb 95], [Neb 96], [Neb 96a]). As a consequence of this paper one obtains cer-
tain maximal finite subgroups of GL,,(Q) which contain an a.i.m.f. group. So
the results give a partial classification of the rational irreducible maximal finite
subgroups of GL,,(Q) for the new degrees m=32, 36, and 40 (see Appendix).

Finite subgroups of GL,,(Q) act on Euclidean lattices. In particular the
maximal finite groups are automorphism groups of distinguished lattices. The
action of an a.im.f. subgroup G of GL,(D) < GLy4,(Q) on such a lattice
L defines a Hermitian structure on L as a lattice over its endomorphism ring
Endg(L), which is an order in the commuting algebra Cgmxm (G) = D. Only
those lattices L where Endg(L) is a maximal order in D are investigated. This
yields Hermitian structures for many nice lattices. For example for the Leech
lattice, the unique even unimodular lattice of dimension 24 without roots,
we find, in addition to the two well known structures as Hermitian lattice
described in [Tit 80], 9 other structures over a maximal order of a definite
quaternion algebra D preserved by an a.i.m.f. subgroup of GL, (D).

There is a mysterious connection between large class numbers of number
fields and the existence of nice lattices. For example the Leech lattice occurs as
an invariant lattice of the group SL2(23) due to the fact that the class number
of Z[HQﬂ] is 3. The occurence of large prime divisors of the determinants of
invariant lattices of maximal finite groups also has an explanation using class
groups. In GL(Q) there are 2 irreducible maximal finite subgroups fixing
no lattice of which the determinant only involves primes dividing the group
order. The same phenomenon happens in GL33(Q) where there are at least
four such primitive groups. These four groups contain a.i.m.f. subgroups of
GLy(D) where D is the quaternion algebra with center Q[v/3,+/5] ramified
only at the 4 infinite places. The narrow class group of the center of D, which
is isomorphic to the group of stable classes of left ideals of a maximal order
in D (cf. [Rei 75]), is of order 2 and the norm of any integral generator has a
prime divisor > 11. Related to this the determinants of the integral lattices of
the six maximal finite groups have prime divisors > 11.

The article is organized as follows: Chapter 2 contains the fundamental
definitions and generalizations of some important properties of rational matrix
groups to matrix groups over quaternion algebras. The most important notion
is the one of imprimitivity reducing the determination of a.i.m.f. groups to the
one of primitive ones. In the next chapter known restrictions on the quaternion
algebras that can be Morita equivalent to a direct summand of a group algebra
of a finite group are used to introduce a notation for these quaternion algebras.



Chapter 4 derives methods to compute representatives of the conjugacy classes
of maximal orders in a definite quaternion algebra D and describes the results
for the occurring D by expanding the mass formulas. Section 5 introduces some
notation used for finite matrix groups. As an application of the classification of
finite subgroups of GLy(C) and a Theorem of Brauer the a.i.m.f. subgroups of
G L, (D) for arbitrary quaternion division algebras D are determined in Section
6. The invariant lattices are only determined if the degree of the center of D
over Q is < 5 since the class number of D rapidly increases afterwards.

In the situation of this paper one does not know the quaternion algebra
D in advance. So, before one can use arithmetic structures and calculate the
a.i.m.f. group G as an automorphism group of a lattice, one has to build up
a fairly large subgroup of G to get enough restrictions on D. To this purpose
methods, to conclude from the existence of a small normal subgroup N in G,
the existence of a (much) bigger one, the generalized Bravais group of N (cf.
Definition 7.1), are developed further. For some groups N this generalized
Bravais group splits as a tensor factor and reduces the determination of G' to
the one of C¢(N) which is a maximal finite subgroup in the unit group of the
commuting algebra of N. If the enveloping algebra of NV is a central simple
K-algebra, the general case is not much harder.

The possible normal p-subgroups of primitive a.i.m.f. groups may be de-
rived from a Theorem of P. Hall and are essentially extraspecial groups. The
investigation of the automorphism groups of the relevant p-groups leads to a
determination of the generalized Bravais groups of these groups in Chapter 8.
The next chapter contains a table of the occurring quasisimple groups to fix
the notation for the irreducible characters and to give the information that is
used from the classification of finite simple groups and their character tables
in [CCNPW 85].

When building up the primitive maximal finite subgroups of GL, (D) by
normal subgroups one needs not only the maximal finite matrix groups in
smaller dimension but the maximal pairs of finite groups together with their
normalizers. Some of these “building blocks” are classified in Chapter 10. In
Chapter 11 four infinite series of a.i.m.f. groups which come from representa-
tions of the groups SLy(p) for primes p are presented. The last nine Chapters
deal with the determination of the a.i.m.f. groups of GL, (D) for definite
quaternion algebras D with n[Z(D) : Q] < 10. There is one chapter for each
dimension n = 2,...,10.

The general strategy is as follows: Let G be a primitive a.i.m.f. subgroup
of GL,(D) for some n € N and a d-dimensional Q-division algebra D. Then
the order of G is bounded in terms of nd (cf. Proposition 2.16). One has
only finitely many possibilities for the maximal nilpotent normal subgroup
P := Tl Op(G) (see Table 8.7). The centralizer C(P) is an extension of

a direct product of quasisimple groups @ := Cg(P)(>) by a subgroup of the



outer automorphism group of (). The possibilities for () are deduced from the
classification of finite simple groups and their character tables in [CCNPW 85|
(cf. Table 9.1). So one has a finite list of possible normal subgroups QP < G
with G/QP < Out(QP). The methods developed in Chapter 7 now allow to
conclude the existence of a usually much larger normal subgroup B := B°(QP)
in G. The possible extensions G of B by outer automorphisms of QP not
induced by elements of B can now be handled case by case.

In an appendix the invariants of the lattices of the new maximal finite
subgroups of GL33(Q), GL3(Q), and G L4 (Q) are displayed in the form of
tables.

The computer calculations were mainly done by stand alone C-programs
(for solving systems of linear equations, calculating sublattices invariant under
an order in Q*™ with the algorithm described in [PIH 84], calculating auto-
morphism groups of positive definite lattices as described in [PIS 97], ...) de-
veloped at the Lehrstuhl B fiir Mathematik of the RWTH Aachen (Germany).
These algorithms are or will be also available in MAGMA (cf. [MAGMA]).
The investigation of the isomorphism type of the matrix groups was done with
the help of the two group theory packages GAP (cf. [GAP 94]) and MAGMA.
Invariant Hermitian forms for the primitive a.i.m.f. subgroups of GL,, (D) can
be obtained from the author’s home page, via http://www-math.math.rwth-
aachen.de/~LBFM/.

The work for this paper was a research project during a one year DFG-
fellowship at the University of Bordeaux. I want to thank both organizations.
In particular I express my gratitude to J. Martinet who encouraged me to treat
quaternion algebras and towards the institute of applied mathematics of the
University of Bordeaux for allowing me to use one of their computers.

2 Definitions and first properties.

In this paper maximal finite subgroups of the unit group G L, (D) of D™ for
totally definite quaternion algebras algebras D over totally real number fields
will be determined.

Since the representation theoretical methods generalize to arbitrary di-
vision algebras D, let D be a division algebra whose center K is a finite
extension of Q. The module V := D" is a right module for D™*". Tts
endomorphisms are given by left multiplication with elements of D. For com-
putations it is convenient to let also the endomorphisms act from the right.
Then Endpnx« (V) = D% which we identify with D in the case of quaternion
algebras.

The following definition can also be found in [ShW 86].



Definition 2.1 Let G be a finite group and A : G — GL,(D) be a represen-
tation of G.

(i) Let L be a subring of K. The enveloping L-algebra LA(G) is defined as

LA(G) :=A{ Z lyg |1, € L} C D™,
9EA(G)

(11) A is called absolutely irreducible if the enveloping Q-algebra A(G) :=

QA(G) of A(G) is D™,

(11i) A is called centrally irreducible if the enveloping K-algebra KA(G) is
ann'

(iv) A is called irreducible if the commuting algebra Cpnxn(A(G)) is a divi-
ston algebra.

(v) A subgroup G < GL, (D) is called irreducible (resp. centrally irreducible,
absolutely irreducible), if its natural representation id : G — G L, (D) is
irreducible (resp. centrally irreducible, absolutely irreducible).

Being only interested in those groups G, to which the quaternion algebra
D is really attached, only the absolutely irreducible maximal finite (a.i.m.f.)
subgroups of GL, (D) will be determined. The irreducible maximal finite sub-
groups G of GL, (D) are absolutely irreducible in their enveloping Q-algebra G,
which is a matrix ring over some division algebra G & D'™*™ with m2dimg(D’)
dividing n*dimqg(D). The reducible maximal finite subgroups of GL,, (D) can
be built up from the irreducible maximal finite subgroups of GL;(D) for | < m.

As in the case D = Q, the notion of primitivity gives an important reduc-
tion in the determination of the maximal finite subgroups.

Definition 2.2 (¢f. [Lor 71] (1.3)) Let G < GL,(D) be an irreducible finite
group. Consider V := D" as D-G-bimodule. G is called imprimitive, if
there exists a decomposition V =V, @& ... & Vs of V as a non trivial direct
sum of D left modules such that G permutes the V; (i.e. for all g € G, for all
1<i<s,31 <j<s suchthat V;g CV;). If G is not imprimitive, G is called
primitive.

If G is an imprimitive group and V =V, & ... @ V; a non-trivial G-stable
decomposition of V' as in the definition, the natural representation of G is
induced up from the natural representation A; of the subgroup U := Stabg (V1)
on V1. If G is absolutely irreducible, then A; : U — Endp(V7) is also absolutely
irreducible. Especially the imprimitive a.i.m.f. subgroups of GL, (D), being



maximal finite, are wreath products of primitive a.i.m.f. subgroups of GL4(D)
with the full symmetric group Sz of degree 7 for divisors d of n.
As for D = Q, the primitive groups have the following frequently used

property:

Remark 2.3 Let G < GL,(D) be a primitive finite group and N I G be a
normal subgroup. Then the enveloping K -algebra KN C D™*™ is simple.

Proof: Assume that KN is not simple. Since KN is semisimple there exists a
decomposition 1 = e;+...+e, of 1 € KN into centrally primitive idempotents
e; € KN (1 <4< s). The group G acts by conjugation on N, hence on KN
and therefore on the set of centrally primitive idempotents in KN. So the
decomposition V = Ve, & ... @ Ve, is stable under the action of G. By
primitivity of G this implies s = 1. O

Corollary 2.4 Let G < GL,(D) be a primitive finite subgroup and N < G be
a normal subgroup.

(i) If N is a p-group, then (p — 1) - p* divides dimg(K) - n for some a > 0.
(i1) If N is abelian, then N is cyclic.

Notation 2.5 Let G be a primitive subgroup of GL,(D) and N <G a normal
subgroup of G. By Remark 2.3, the restriction of the natural character of G
to N is a multiple of a K-irreducible character x, where K := Z(D). By
the Theorem of Skolem-Noether the knowledge of x is sufficient to identify
the conjugacy class of N in GL,(D). This will be expressed by the phrase G
contains N with character x.

Invariant Hermitian lattices.

For the rest of this chapter assume that D is a totally definite quaternion
algebra, and let * : D — D be the canonical involution of D such that
zz* € K = Z(D) for all x € D and such that * induces the identity on the
center K. (cf. [Scha 85, (8.11.2)]) We extend * to D™ " by applying the
involution to the entries of the matrices. Then g — (g*)* where g* denotes the
transposed matrix of g is an involution on the algebra D"*".

Then the maximal finite subgroups of GL, (D) can be described as full
automorphism groups of totally positive definite Hermitian lattices according
to the following

Definition and Lemma 2.6 Let G be a finite subgroup of GL,(D) andV :=
D" the natural G-right-module and let M be an order in D = Endpnx (V).



(i) An IM-lattice L <V is a finitely generated projective IM-left module with
QL =V.

(ii) The set
Zm(G) :={L <V | L is a M-lattice and Lg C L}
of G-invariant IM-lattices in 'V is non empty.

(i1i) The K wvector space
F(G) :={F € D" | F' = F* and gF (¢*)! = F for all g € G}

of G-invariant Hermitian forms contains a totally positive definite form,
i.e. Fso(G) = {F € F(G) | e(F) is positive definite for all embeddings
e: K > R} #0.

(iv) Let L be an M-lattice in V and F € D" ™ q totally positive definite
Hermaitian form. The automorphism group

Aut(L,F):={g€ GL,(D) | Lg C L and gF(g*)"' = F}
of L with respect to F' is a finite group.

(v) The a.i.m.f supergroups of G are of the form Aut(L,F) for some L €
Zon(G) and F € Fso(G).

Proof:

(ii) Let (by,...,b,) be a D-basis of V. Then L := {30  m;big; | m; €
m, g; € G} € Zgj((G)

(iii) Choose any totally positive definite Hermitian form F' € D"*". Define
Fy = Y e 9F (g)". Then Fy € F+(G) is totally positive definite.

(iv) Fix an embedding € : K — R and let m := maz{e(vF (v*)!) | v € S},
where S is a finite subset of L generating L. Then the set {z € L |
e(zF(z*)") < m} is a finite set containing the images of the elements of S
under the automorphisms g € Aut(L, F'). Since g is uniquely determined
by these images, one has only finitely many possibilities for g.

(v) Follows from (ii)-(iv).
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In view of 2.6 (v), one may calculate all a.i.m.f. supergroups of a finite
subgroup G < GL, (D) as automorphism groups of G-invariant lattices.

The centralizer Cgy,(p)(G) of G in GL, (D) acts on Zgn(G). Two lattices
are called isomorphic if they ly in the same orbit under this action. Clearly a
system of representatives of isomorphism classes of lattices in Zgn(G) suffices
to get all a.i.m.f. supergroups. So the Theorem of Jordan and Zassenhaus says
that one may always find a finite critical set of invariant lattices in the sense
of the following definition.

Definition 2.7 A set of lattices S C Zgn(G) is called critical (resp. normal
critical ) if for all finite groups H with G < H < GL,(D) (resp. G I H <
GL,(D)) there is a L € S and some F € Fso(QG) such that H < Aut(L, F).
If S = {L} consists of one lattice, L itself is called (normal) critical.

Definition 2.8 Let L € Zg(G) and F € Fso(G).

(i) The Hermitian dual lattice is defined as
L*:={v e D" |vFl' € Mforall | € L}.

(i1) If L is integral (i.e. L* D L), then its Hermitian determinant is det(L) :=
L7/ L],

Remark 2.9 For all L € Zon(G) and F € Fso(G) the Hermitian dual lattice
L* is also in Z9n(G) (cf. [Neb 96b, Lemma 1.1]).

The rational maximal finite supergroups.

Recall that D is a totally definite quaternion algebra with center K and
d := [K : Q]. Via the regular representation of D, one may embed GL,(D)
into G Lyg, (Q). Therefore it makes sense to ask for the rational maximal finite
supergroups G < H < GL44,(Q) of an a.i.m.f. subgroup G of GL,(D). The
relation of the lattices is given in the following

Definition 2.10 (c¢f. [Scha 85, p. 848]) Let M be an order in D and L
an M-lattice. Let F' € D™™ be a totally positive definite Hermitian form.
The corresponding Euclidean Z-lattice L is the set L (considered as Z-module)
together with the trace form tr(F) : (v,w) — tr(vF(w*)") where tr is the
reduced trace of D over Q.

Remark 2.11 (i) Since tr(x) = tr(z*), the trace form tr(F) of a Hermitian
form F 1s a symmetric Q-bilinear form. If F s totally positive definite, then
tr(F) is positive definite.
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(ii) Let G < GL,, (D) be absolutely irreducible. Since D is totally definite the Q-
vector space of G-invariant quadratic forms on Q" is {tr(F) | F € F(G)} =
{tr(aFy) | a € K} for any Fy € F<o(G). As in Remark 2.6 one gets that
the rational mazimal finite supergroups of G are of the form Aut(L,tr(F)) :=
{9 € GLyn(Q) | Lg = L, gtr(F)g' = tr(F)} for some F € Fso(G) and
L € Z9n(G), where M := Endg(L) is an order in D.

(iii) As the G-invariant Hermitian forms give rise to embeddings of G into an
orthogonal group over K, one may also consider the invariant skew-Hermitian
forms to get embeddings of G into the symplectic group over K. For an a.i.m.f.
subgroup G of GL,(D) the K wvector space F(Q) is of dimension one, whereas
the K wvector space of invariant skew-Hermitian forms is DoJF(G), where Dy
denotes the quaternions of trace 0 in D, is of dimension 8 over K. Therefore
the embedding of G into the symplectic group is not unique.

Common absolutely irreducible subgroups.

Having found the a.i.m.f. subgroups of GL, (D), one may interrelate them
via common absolutely irreducible subgroups in the sense of the following
definition.

Definition 2.12 The simplicial complex M (D) of a.i.m.f. subgroups of
GL,(D) has the GL,(D)-conjugacy classes of a.i.m.f. groups of degree n as
vertices. The s + 1 vertices Py, ..., P; form an s-simplez, if there exist repre-
sentatives G; € P; and an absolutely irreducible subgroup H < GL, (D) with
HLG; fori=0,...,s.

This definition is a straightforward generalization of the definition of M (Q)
for rational irreducible matrix groups cf. [Ple 91]. One might think of general-
izations of this definition to common uniform subgroups U (i.e. dimg(F(U)) =
1) of a.im.f. groups in GL,(D) and GL,(D’) for (different) quaternion alge-
bras D and D’ with the same center K. A second possibility to interrelate
a.im.f. subgroups of GL,(D) for different quaternion algebras D (or even
simplices in M7 (D)) is described in Remark 12.11.

In this paper we determine the simplicial complexes M/ (D) for n < 7
with (n,[Z(D) : Q]) # (4,2).

As for the simplicial complexes of rational matrix groups the D-isometry
class of the invariant Hermitian forms distinguishes the different components
of M (D). By [Scha 85, Theorem 10.1.7] two Hermitian forms are isometric
if and only if their trace forms (cf. Definition 2.10) are isometric quadratic
forms over the center K = Z (D). Hence in our situation all totally positive
definite Hermitian forms of a given dimension are isometric.

To build up the a.i.m.f. groups, but also to find their common absolutely
irreducible subgroups, it is helpful to know divisors of the group order.
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Lemma 2.13 Let U < GL,(D) be an absolutely irreducible subgroup, MM a
mazimal order in D and L € Zgn(U). Let p € Z be a prime.

(i) If p ramifies in D, then p divides the order of U.

(ii) Let F' be a U-invariant Hermitian form on L. If p divides |AL*/L| for
all fractional ideals A of K such that AL* O L, then p divides the order
of U.

Proof: (i) If p ramifies in D , then p divides the discriminant of the maximal
orders in D™*". The order ZU is contained in some maximal order and hence
its discriminant is also divisible by p. Since ZU is an epimorphic image of the
group ring ZU, p divides the order of U.

(ii) Since 9M is a maximal order, by [Neb 96b, Lemma 1.1] the Hermitian dual
lattice L* is also a 9t — U-lattice. Let R be the ring of integers in K and gp be
a prime ideal containing p. Assume that pJ|U|. Then by (i) o does not ramify
in D and therefore the twosided ideals of R, @z 90 are of the form R, ® z AN
for fractional ideals A of R. If for all fractional ideals A of R the completion
R,®r AL* # R, ®p L, then the R,-order R, @ g MU is not a maximal order
and therefore p divides |U| which is a contradiction. O

The next Lemma may be proved similar as Lemma (IL.7) of [NeP 95]:

Lemma 2.14 Let NG < GL,(D) be a normal subgroup of G with |G/N| =:
s. Then s - dimg(QN) > dimgQG.

Proof: If G = U;_, Ng; and (by, ..., by) is a Q-basis of QN, then the elements
bjgi (1 <i<s,1<j<m)generate QG. |
For normal subgroups of index two in an absolutely irreducible subgroup

G of GL,(D) one now may strengthen Lemma 2.13:

Lemma 2.15 Let N <G be a normal subgroup of index two in an absolutely
irreducible subgroup G of GL, (D). If p is a prime_ramifying in D, then p
divides the discriminant of the enveloping Z-order ZZN of N.

Proof: If N is already absolutely irreducible, the lemma follows from Lemma
2.13. So assume that N is not absolutely irreducible. Let ¢ € G — N. Then
ZG contains the order O := ZN @ ZNg of finite index. The discriminant of O
is disc(ZN)? the square of the discriminant of ZN. 0

By the formula in [Schu 05] the prime divisors of the order of a finite group
G may be bounded in terms of the character degree and the (degree of) the
character field of an irreducible faithful character of G.
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Proposition 2.16 Let x be a faithful irreducible rational character of a finite
group G with x(1) = n. Then the order of G divides

M, = H an/(pfl)J+Ln/(p(pfl))J+Ln/(p2(P*1))J+---
p<n+1

where the product runs over all primes p < n + 1.

In view of Lemma 2.13 (i), one now has only finitely many candidates for
quaternion algebras D such that GL,(D) has a finite absolutely irreducible
subgroup, if one bounds n and the degree of the center of D over Q.

But there remain too many candidates for D to be dealt with separately.
So the main strategy to find the primitive maximal finite absolutely irreducible
subgroups G < GL, (D) will be to build them up using normal subgroups.

The following Lemma can be shown to hold as in [Neb 96, Lemma 1.13]:

Lemma 2.17 Let N <G < GL,(D) be a normal subgroup of G with |G/N| =
2. Assume that QN and QG = D™" are simple algebras with centers K resp.
K, where K is compler and K is the mazimal totally real subfield of K.
Then the isoclinic group is not a subgroup of G L, (D).

Immediately from the Theorem of Brauer and Witt one gets the following
lemma:

Lemma 2.18 Let U < G, x an irreducible character of G and x1 an irre-
ducible constituent of xr. Assume that the character fields of x and x, are
equal. If (xju, x1) is odd then the Schur index of x is 2 at exactly those primes
where x1 has Schur index 2.

3 The Schur subgroup of the Brauer group.

Standard references for this section are [Yam 74] and [Rei 75].

Let K be a number field and Br(K) denote the Brauer group of K. If
GG is a finite group then by Maschke’s Theorem, the algebra K G is a finite
dimensional semisimple K-algebra, hence KG = @ A; decomposes into a direct
sum of simple K-algebras A; & D™ which are full matrix rings over K-
division algebras D;. The Schur subgroup S(K') of Br(K) consists of the classes
[D] where D is a central simple K-division algebra for which there isan € N
and a finite group G such that D™"*" is a ring direct summand of KG.

If D™*™ is a ring direct summand of the rational group algebra QG and
K contains the center Z(D), then [K ®yp) D] € S(K), so the algebra QG
contains all information about the Schur subgroups of the Brauer group of
algebraic number fields.
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Definition 3.1 Let D be a Q-division algebra. Define (D) :=
min{n € N | D"*" is a ring direct summand of QG for some finite group G}
€ NU {oo}.

If (D) < oo, then the center K := Z(D) is the character field of some
character of a finite group, hence an abelian extension of Q.

Moreover, by a Theorem of Benard and Schacher (cf. [Yam 74], Theorem
6.1), D has uniformly distributed invariants, which means in particular, that
the Schur index of the completions D ® K,,, does not depend on the prime p
of K but only on the rational prime p N Q contained in it.

In this paper, we only treat the case, where K is a (totally) real num-
ber field. In this case, the Theorem of Brauer and Speiser says, that D is a
quaternion algebra, i.e. all local Schur indices are 1 or 2. So D is uniquely
determined by the set of the rational primes that are contained in primes of
K that ramify in D.

Notation 3.2 Let u(D) < oo and assume that K := Z(D) = Qla] is a (to-
tally) real number field. Let (D) := {p1,...,pr} C NU{oo} be the set of those
rational primes that are contained in a prime of K that ramifies in D. Then
D s denoted by

Qa)ply'":pk -

If K =Q or K = Q/d] is a real quadratic field, then the Theorems 7.2,
7.8, and 7.14 of [Yam 74] characterize the set of all central simple K-division
algebras D with p(D) < oo.

The results of this paper in particular give information on u(D) for quater-
nion algebras D with totally real center and [Z(D) : Q] - u(D) < 10 (cf. Table
4.1). Tt turns out that in these small dimensions, the p; are either inert or
ramified in Z (D).

It is not true, that for all n > u(D) there is a finite group G such that
D™ " is a ring direct summand of QG. However, taking wreath products (or
tensor products with absolutely irreducible subgroups of GL4(Q)) one shows
that this holds for all multiples n = d-u(D) of u(D). It would be interesting to
know, if the ideal generated by the n for which there is a finite group G such
that D™*™ is a ring direct summand of QG in general is Z.

4 Algorithms for quaternion algebras.

Let D be a totally definite quaternion algebra over K = Z (D). Let G be
an a.i.m.f. subgroup of GL, (D). To find some distinguished integral lattices
on which G acts, we embed GL,(D) (and hence G) into GL4g,(Q). In the
tables we will give rational irreducible maximal finite (r.i.m.f.) subgroups of
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G L44,(Q) containing G and fixing a G-lattice L for which Endg(L) C D is a
maximal order. The set of isomorphism classes of such G-lattices is the union
of the sets of isomorphism classes of 9MG-lattices where 901 runs through a
system of representatives of conjugacy classes of maximal orders in D.

To check completeness we use the well known mass formulas developed by
M. Eichler [Eic 38] (cf. [Vig 80]).

Let h be the class number of K, D the discriminant of D over K, and
9 any maximal order in D. Let ([;)1<i<s be a system of representatives of
left ideal classes of 9, M; := {x € D | Lz C I;} the right order of I; and
w; = [9NF : R*] the index of the unit group of R in the unit group of ;. Then
one has: ,

Yowi =20 (=D -h- [T (n(p) - 1)

i=1 oD
where the product is taken over all primes p of R dividing the discriminant D
of D and n denotes the norm of K over Q.

If 9M; and 9M; are conjugate in D, one may choose a new representative for
the class of I; to achieve that 9; = 9M;. Then I;'I; is a 2-sided 9M;-ideal.
Moreover the 9M-left ideals I; and I; are equivalent, if and only if I[IIJ- is
principal.

So if one reorders the 9; such that the first ¢t orders My, ..., IM; form a
system of representatives of conjugacy classes of maximal orders in D and H;
the number of isomorphism classes of 2-sided ideals of 9M; (1 < i < t), then

s t
Yt =Y wlH,
=1 =1

The occurring quaternion algebras have the additional property that they
have uniformly distributed invariants (cf. Chapter 3). Therefore the Galois
group Gal(K/Q) acts on D:

Choose a K-basis (1 =: by, by, b3,bs) of D. An element 0 € Gal(K/Q)
defines an automorphism o of the Q-algebra D by o(3 a;b;) := ¥ o(a;)b;. By
the Theorem of Skolem and Noether the class o Inn(D) of the automorphism o
does not depend on the chosen basis. Therefore one gets a well defined action
of Gal(K/Q) on the set of conjugacy classes of maximal orders in D. This
action preserves w; and H;.

Let w} := |{z € M; | zz* = 1}| be the index of 1 in the group of units
in 9; of norm 1, and w?* := N(9M})/(R*)2. Then w; = w;-wr.

If n; denotes the length of the orbits of the class of 9M; under Gal(K/Q)
one gets the following table:

Table 4.1 The totally definite quaternion algebras Q with d := [Z(Q) : Q] < 5
for which there is ann < % such that GL,(Q) has a finite absolutely irreducible
subgroup:



D n S ni(whw?) "L H;
Qo2 1...10 1271
Qo3 1...10 6~
Qo5 2,4,6,8,10 37!
Q02,35 8 3714371
00,7 3,4,6,8,9,10 271
Qoo,11 9,6,10 271 4 371
Qoo,13 6 1
Qoo,17 8 14371
Doo,19 9,10 14271
Q\fz,oo 1...5 2471
Q\/é,oo,2,3 27 4 1
Q\/é,oo,2,5 4 371
Q3,00 1...5 (12-2) '+ (12-2) !
Q\/g’oo 1...5 60!
Q\/g,oo,2,3 4 571'2
Q\/g,oo,Z,S 27 4 5_1
Q\/g’oo,5,3 2,4 51+37¢
Q /600 2,4 (12-2) 1+ (6-2) 1 + (4-2) !
Q. /70 3,4 (4-2)7 14 (3-2) '+ (12-2) !
Q /1500 4 3t42 4127441
Q\/ﬁ,oo ) 1271 4271
Q\/ﬁ,oo 3 1271
Q /15,00 4 3T+ (12 P+ (2:2) T +6 1+
32y '+2t+1271 4 (2:2) 1
Q\/ﬁ,oo 4 61
Q\/Q—Loo 3,4 1271 + 671
Q\/?g’oo ) 6~ +37t
Qo,.00,7 1...3 1471
Q07,oo,2 2 1271
907,00,3 2 6_1 + 7_1
Qeg,oo,?) 1...3 1871
Qbo,00,2 2 12714971
Quis,00,13 2 1
leg,oo,lg 3 2_1 +1+3-1

15
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d D n Soni(wh-w!) "L H;
4 Qb1s.00 1,2 (30-2)"t+ 607"
Qp16.00 1,2 167" + 2471
Qbr0 00 1,2 (20-2)7' + (12-2)~1 4+ 607"
Q9,4 00 1,2 (24-2)7" 4+ (8-2)~1 + 247!
iz 00 2 671 +2-1271
Qzrvioo | 2 2471+ 607"
Quarvsoons | 2 571 42-1-2
Qirao 00 2 (10-2)~' + 60" + 571

+(2-2)7 + (12-2)7t + (4-2) 7!
Quaiviee | 2 607" + (12-2)71 + (12-2)~' + (5-2)~*
Dnas o0 2 (6-2) 1+ (2:2) 1 +2.3 14241
+(8-2) ' +2-(1-2) 1 + (4-2) !
+(1-2)" 1+ (8-2) 14 (2-2) !

) D011 00,11 1,2 29T 131
Q011 00,2 2 127+ 1 411t
Qoisoos | 2 67 17124 517 + 1712

Qr25,00,5 2 |3 t+5.372+45.172 4517+ 517!

In the first column the degree d := [K : Q] is given, in the second one
the name of the quaternion algebra D as explained in Notation 3.2. The
third column contains the relevant dimensions n and in the last column, the
mass formula of D is expanded. Here the sum is taken over a system of
representatives of the orbits of Gal(K/Q) on the conjugacy classes of maximal
orders in D.

For the algebraic numbers the following notation is used:

Notation 4.2 As usual (,, denotes a primitive m-th root of unity in C and
Vm a square root of m. Moreover 0y, := (n + (.} denotes a generator of the
mazimal totally real subfield of the m-th cyclotomic field. wy, (resp. Nm, Om)
denote generators of a subfield K of Q[(n] with Gal(K/Q) = Cs (resp. Cy,
Cs).

The algorithmic problems in evaluating these formulas are:
a) determine the ideals I;.
b) decide whether two maximal orders are conjugate in D.
¢) determine the length of the orbit of 9T under the Galois group Gal(K/Q).
d) determine w; ' H;.

Problem a) is the major difficulty here. There is of course the well known
geometric approach to this question using the Minkowski bound on the norm
of a representative of the ideal classes. From the arithmetic point of view one
may apply two different strategies to find the ideals I;:

There is a coarser equivalence relation than conjugacy namely the stable iso-
morphism cf. [Rei 75, (35.5)]. The theorem of Eichler [Rei 75, (34.9)] says
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that the reduced norm is an isomorphism of the group of stable isomorphism
classes of M-left ideals onto the narrow class group of the center K. This gives
estimates for the norms of the ideals I;.

A second arithmetic strategy is to look for (commutative, non full) suborders
O of D. The number of the maximal orders 9; containing O as a pure sub-
module can be calculated using the formula [Vig 80, (5.12)].

Example: Let D := Q s, /5 - Then the narrow class group of K = Q[vV3+V5)
has order 2 and is generated by a prime ideal dividing 11. So there are 2 stable
isomorphism classes of 91-ideals one containing the ideal classes of I, I, and
I3, the other one the one of I, (in the notation of Table 4.1). The second
strategy applied to O = Z[(s, \/3] gives that there are 2 orders 91; containing
a fifth root of unity, because the class number of O is 2 (and again a prime
ideal dividing 11 generates the class group).

The problems b), ¢), and d) can be dealt with using the normform of D:

Let D be a definite quaternion algebra over K and N be its reduced norm
which is a quadratic form with associated bilinear form (z,y) = tr(zy*) where
tr is the reduced trace and * the canonical involution of D. The special
orthogonal group SO(D,N) := {¢ : D — D | N(¢(z)) = N(z) for all z €
D, det(p) = 1} is the group of all proper isometries of D with respect to
the quadratic form N. The following proposition is surely well known (cf.
[Vig 80, Théoreme 3.3]) (cf. also [DuV 64] for a geometric interpretation of
the quaternionic conjugation).

Proposition 4.3 With the notation above one has
SO(D,N) = {z + ayza," | a; € D*, N(ay) = N(ay)}

1s induced by left multiplication with elements of D of norm 1 and conjugation
with elements of D*.

Proof: Clearly the mapping = — a;7a; ' with a; € D* and N(a;) = N(ap) is a
proper isometry of the K-vector space (D, N).

To see the converse inclusion let D = (1,1,75,ij = k = —ji)x with > = a
and j2 = b and ¢ : D — D be an isometry of determinant 1 with respect to
N. Then N(p(1)) =1 and after left multiplication by ¢(1)™" we may assume
that ¢(1) = 1. Let by := ¢(3), b3 := ¢(j), and by := (k). Then tr(bil) =0
and hence bf = —b; for all i = 2,3,4, and b2 = a, b3 = b, b3 = —ab. Moreover
tr(bib;) = 0 = —tr(b;b;) and hence b;b; = —b;b; for all 2 < i # j < 4. Thus
(babs)by = by(bobs) and therefore by € Kbybs is an element of trace 0 in the
field generated by bobs. Since b2 = (byb3)?, this implies that by = =bybs. If
by = bybs, then ¢ is an K-algebra automorphism of D and hence induced
by conjugation with an element of D* and we are done. In this case ¢ is of
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determinant 1. Hence if by = —bybs, the mapping ¢ has determinant —1, which
is a contradiction. a

Corollary 4.4 Let 9M; (i = 1,2) be two orders in D. Then M, is conjugate
to My if and only if the lattices (M, N) and (My, N) are properly isometric.

Proof: Clearly if the two orders are conjugate the lattices are properly isomet-
ric, so we show the converse: let ¢ : 9; — My be a proper isometry with
respect to N. By the Proposition there are elements a;, as € D* with N(a;) =
N(ag) such that a;9Ma;' = My. Since 1 € M, this implies that ayay’ is
an element of norm 1 in 9, and hence M, = a1a51a2m1a51 = agﬂﬁlagl is
conjugate to M. O

Since * is the identity on the subspace K and the negative identity on

the 3-dimensional subspace 1+ consisting of the elements of D with trace 0,
one easily sees that * is an improper isometry (of determinant -1) of (D, N).
Thus, if one of the orders 901, or 9M, is stable under *, one may omit the
word ”properly” in the Corollary above. Note that this holds particularly for
maximal orders.

Corollary 4.5 Let I be an order in D. The group of proper isometries of
the lattice (I, N) is induced by the transformations of the form b~ azbr™!,
where a € M is an element of norm 1 and x € Np«(IM) normalizes IN.

By Corollary 4.5 the order of the isometry group |Aut(9;, N)| = w; -w;-2°-
2-2-H; ' where s is the number of finite primes of K that ramify in D. Now
2w, is simply the number of shortest vectors of the lattice (9;, N) and can
easily be calculated. Hence w; ' H; = |Aut(9M;, N)|~1-2512.w].

Corollary 4.6 Let 9 be an order in D and o € Gal(K/Q). Then M is
conjugate to o(IM), if and only if the R-lattices (M, N) and (M, 0 o N) are
1sometric.

Proof: The Corollary follows from Corollary 4.4 and the fact that ¢tr(o(x)o(y*)) =
o(tr(zy*)). O

5 Notation for the finite matrix groups.

The notation for the absolutely irreducible maximal finite (a.i.m.f.) subgroups
of GL, (D) is similar to the one for the rational irreducible maximal finite
(abbreviated as r.i.m.f.) subgroups of GL,(Q).

If D = Qups,..p,, then the (conjugacy class of an) a.im.f. group G <
GL, (D) is denoted by ap,....p.[Gln-
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The automorphism groups of root lattices are usually denoted by the name of
the corresponding root system A,, ..., Eg, F}.

For the quasisimple groups the notation in [CCNPW 85] is used with the
exception that the alternating group of degree m is denoted by Alt,,.

A maximal finite matrix group always contains the negative unit matrix. If G
is a matrix group then +G denotes the group generated by G and the negative
unit matrix. _

The symbols M,1; and Aéﬂ)l (i,’%l € {2,3,4,6} with 27 | p — 1) denote
(automorphism groups of) lattices of PSLs(p) as described in Chapter V of
[PIN 95].

Let G < GL,(D) and H < GL,(D') be two irreducible finite matrix
groups. Let A be a subalgebra of Cpnxa(G) such that AP is isomorphic to a
subalgebra of Cpmxm (H), such that D" @ 4, D'™*™ = D" i again simple.
Then tensoring the natural representations of G and H yields a representation
of the direct product G x H. The corresponding matrix group G ® 4 H is
a subgroup of GL;(D') and isomorphic to a central product of G and H. If
A = Qo] is a field or A = Q, is a quaternion algebra, the matrix group
G ®4 H is abbreviated as G @ aH and if A=Qas G® H.

Already the groups C5 =2 G < GL;(Q|(5]) and Ss > H< GL1(Qx,3) show
that this tensor notation needs to be extended. Though Q[(5]® Qw3 = Q[(5]**?
the maximal common subalgebra of the two algebras Q[(5] and Qu 3 is Q. We
use the symbol G® = H to denote the corresponding subgroup of GL, (Q[¢))-

To describe quite frequently occurring extensions of tensor products of
matrix groups of index 2 as in Theorem 7.11, we use the notation introduced

in [PIN 95, Proposition (II.4)]: The symbols C%%D N, C&}V and O§1\7 denote
primitive matrix groups G that are extensions of the tensor product of the two
matrix groups N and C by an automorphism x with 2?2 € C® N. Since N (as
well as C' = Cg(N)) is a normal subgroup of G, one may write the elements of
G as tensor products as in [CuR 81, Theorem (11.17)]. Let 2 = y ® 2. In the

first case G = C?ép)N, yeC,z€ N,G=C®N and p € Z(G) is the norm of
y which is also the norm of z (cf. Definition 7.10). If G = @%)}V then y ¢ C

but still z € N and p is the norm of z. In the last case z induces nontrivial
automorphisms on both centers Z(N) and Z(C).

If p =1 it is omitted. Also the symbol x and « is omitted if either N or
C' is contained in A.

Remark 5.1 As the referee pointed out, one should like to compare the classi-
fication of mazimal finite subgroups of GL, (D) with Aschbacher’s classification
of subgroups of the finite classical groups in [Asc 84].

In Aschbacher’s classification the groups in Cy (reducible groups), Cy (im-
primitive groups), C3, and Cs reduce to smaller situations, the same is true
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here. But the cases 3 and & are harder to be dealt with, since Galois groups
of abelian extension fields are not necessarily cyclic. One may not always ez-
tend the cocylces to overgroups, as one sees from the maximal finite subgroups
[D120-2]16, @ = 1,2 of GL16(Q).

The types Cg and Cg (extraspecial resp. simple groups) are dealt with in
chapter 8 and 9 of this paper.

The main difficulty are the tensor products (types Cy and Cy of Aschbacher’s
classification). These difficulties lead to section 10, where a first approach is
made to classify the possible tensor factors. These factors are not necessarily
mazimal finite subgroups of the unit group of a smaller algebra as the following
example shows.

Consider the symmetry group Dg of a square. This is an imprimitive
mazimal finite subgroup of GLy(Q). It admits an outer automorphism o €
Ner, (Ds) satisfying o = 215, Similarly the matriz group Lo(7) < Aut(As)
admits an additional outer automorphism 8 € Ngreq)(L2(7)) with 3% = 2Is.
Hence a ® B also normalizes the tensor product Dg @ Lo(7) < GL12(Q) The
group Dg%g) Ly(7) = (Ds ® Ly(7), 20 ® B) is a mazimal finite subgroup of
GL12(Q) though the group +Ly(7) is not mazimal finite in GLg(Q).

The general phenomenon may be described by the groups Glide(N) of glid-
ing automorphisms as defined in Definition 7.3.

Example 5.2 The quaternionic reflection groups of Table I1I in [Coh 80] that
are a.i.m.f. groups are

Os = 003[SL2(9)]2, O3 = 53,00.00[2-56]2,

Py = 2[(Ds ® Qs).Alts]y, P3= ﬁ,oo,oo[(Ds ® Qs)-Ss]2,

Q= 3[U3(3)]3, R= 500 002-J2]3,

S3 = 00,2[2175.05 (2)14,

T = /5l(SL2(5)0 SL2(5)@5 SLy(5)) : Ssla, and U =« 2[*U5(2)]5.

6 The a.i.m.f. subgroups of GL(Q).

Let Q be a totally definite quaternion algebra over its center K and assume that
K is a (totally real) number field. Let G < GL;(Q) be a finite subgroup such
that QG = Q. The classification of finite subgroups of PGLy(C) in [Bli 17]
shows that G/Z(G) is either a dihedral group or one of the 3 exceptional groups
Alts, Sy or Alts. Using this classification one gets the following

Theorem 6.1 Let G < GL(Q) be an a.i.m.f. subgroup of GL,(Q), where
Q is a totally definite quaternion algebra over an totally real number field
K=17(Q).

Then K s the mazimal totally real subfield of a cyclotomic field.
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If [K = Q <2, then G is one of «2[SLa(3)]1, 0,3[9]1, 5001511,
\/5,00[@24]1, or \/E,OO[SLZ(E’)]L

If [K : Q > 3, let m be even such that K = Q[f,] < Q[(n]- Then
G = Qom = C.Cy < GL1(Q) is a generalized quaternion group, a non split
extension of a cyclic group of order m by a Co. If 5 = p® is a power of the
prime p = 3 (mod 4) then Q = Qy,, cop s ramified at the place over p. In
all other cases, the quaternion algebra Q is only ramified at the infinite places
of K.

Proof: The possible groups G may immediately be obtained from [Bli 17]. So
we only have to compute the local Schur indices of the groups (Q2,,. To this
purpose let p be a prime and 2 < r be a divisor of m. Then the restriction y’
of the natural character x of ()o,, to the subgroup ()4 remains irreducible. By
the Theorem of Brauer [Bra 51| (cf. also [Lor 71]) the Schur index of x and
the one of x' over Q,[0,,] are equal. If r is a prime such that p does not divide
2r then by Lemma 2.13 the p-adic Schur index of y' is 1. This is also true if
p = 2 and r is odd, since then the Sylow 2-subgroup of the cyclic subgroup
of index 2 in @y, is Cy ([Lor 71, p. 98]). So if % is not a prime power, the
quaternion algebra Q is not ramified at any finite prime.

If % is a power of some prime / = 1 (mod 4), then  contains a fourth
root, of unity. Hence the [-adic Schur index of x’ is 1. (This follows also from
the parity of the number of ramified primes, since [Q[f;] : Q] is even.) If m is a
power of 2, then m > 16. Since [Q2[0,,] : Q] is even, Q[0,,] splits Qs ® Qoo 2
Choosing » = 4 in the consideration above, this yields that the 2-adic Schur
index of X' = x|gs over Qu[0,,] is 1. If Z = p* is a power of a prime p = 3
(mod 4). Choosing r = p, the Schur index of x’ over Q,, hence also the one
over the character field Q,[x'] = Q,[6,] is 2. But now [Q,[0,,] : Q,[6,]] = p*~*
is odd, hence the character field Q,[x] does not split the quaternion algebra
Q, ® Qp,,00p- Therefore Q is ramified at the place over p, which again also
follows from the fact that [Q[f,,] : Q] is odd in this case. a

Remark 6.2 Let Q be an indefinite quaternion algebra with totally real center
K. If GL(Q) has an absolutely irreducible finite subgroup G then Q = K?*2,

Proof: Let G < GL;(Q) be a finite absolutely irreducible subgroup and p be a
finite prime ramified in Q. As in the proof of Theorem 6.1 one concludes that
G = 2Cpa.Cy, K = Q[f,=] and the finite primes of K ramified in Q divide p.
Since all infinite primes of K are not ramified in Q and p is totally ramified in
K, this contradicts the fact that the number of primes in K that ramify in Q
is even. O

If Q is a definite quaternion algebra and the degree of the center of Q over
Q is < 5, the a.i.m.f. subgroups of GL;(Q) and their r.i.m.f. supergroups are
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given in the following table. The first column gives a name for the a.i.m.f.
group G also indicating the quaternion algebra Q. This entry is followed by
the order of G. In the last column the r.i.m.f. supergroups fixing an G-lattice
with maximal order as endomorphism ring are given. If there is no such group,
at least one r.i.m.f. supergroup of GG is specified in brackets. If there is more
than one conjugacy class of maximal orders 971 in O they are listed in the next

lines separated by dashed lines in the same order as they are displayed in Table
4.1.

Table 6.3 The a.i.m.f. subgroups of GL,(Q), where Q is a definite quaternion
algebra such that [Z(Q) : Q] < 5:

lattice L |Aut(L)| | r.i.m.f. supergroups
00,2[SLa2(3)]1 23.3 Fy
0,3[53]1 22.3 | A
pelSh | 73 By
\/g,oo[Q24]1 233 A%v F42
Ay ® Fy, Ejg
p)
\/g,oo[SLQ(5)]1 2335 Eg, [(SL2(5) DSL2(5)) . 2]8
07,00,7[@28]1 227 (A6)2a (A§52))2
09,00,3| @361 22.37 AS, E;
yi
015,00 @601 2%.3-5 | (A2 ® A4)?, [(5L2(5) OSLy(5)) : 2I3, E§
Ay @ [(SLa(5 )DSL2(25)) 2]s, A2 ® Eg,
[SL2(5) O SLQ( ) : ?X DlO]
016,00[Q32]1 25 (316)
F}, E§
)
820,00 Qa0]1 2°-5 | Al [(SL2(5)0SLy(5)) : 23, EZ
AL ® Fy, FyQFy,
[SL2(5052?) 214 Alts]se
[(SLa(5 )DSL2( ) : g]s, Eg,
[SL2(5) O SL2(5) . % Dlo]lﬁ
p)
621,00 Qus]1 203 | A5, E§, [(SLo(5) QS Ly(5)) : 23,
(A ® Fy)?, F}
()
(A, ® Fy)?, F4®Fy, Ay ® Fs,
Eg, [SL2(5@) 21 Al
011,00,11[@44]1 2211 (A10)2a (Ago)) (A(3))
23
[L2(11)<§>)D12]20 [Lo( 11@12]20
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7 Normal subgroups of primitive groups.

Throughout this chapter let K denote an abelian number field, and R the
maximal order in K. Then R is a Dedekind ring.

Let N 9@ be a normal subgroup of the primitive group G in GL,(K). As
proved in Section 2 (cf. 2.3) the enveloping K-algebra of N is a simple algebra.

Generalizing the notion of a generalized Bravais group (as defined in Def-
inition (I1.9) of [NeP 95] for K = Q) to arbitrary number fields K, one may
often conclude the existence of a larger normal subgroup B%(N) in G if G is
maximal finite.

To this purpose recall the radical idealizer process (cf. [BeZ 85]): Let A
be a R-order in a simple K-algebra A. The arithmetic (right) radical AR, (A)
of A is defined as the intersection of all those maximal right ideals of A which
contain the discriminant ideal of A. The arithmetic radical is a full R-module in
A. Tts (right) idealizer Id,.(AR,(A)), which is defined as the set of all elements
a € A, such that AR, (A)a C AR,.(A), is again a R-order in A containing A.
The repeated application of (Id, o AR,) is called the radical idealizer process.
It constructs a finite ascending chain of R-orders in A. The maximal element
of this chain (Id,o AR,)*(A) is necessarily a hereditary order in A cf. [Rei 75]
pp 356-358.

Definition 7.1 Let N < GL,(K) be a finite group and F an N invariant
Hermitian form on K™. Assume that the algebra A := KN is simple. Then the
natural A-module K™ decomposes into a direct sum of | copies of an irreducible
A-module V. Let A :== RN, be the R-order generated by the matrices in N. and
Ao := (Id,0AR,)*(A) be the hereditary order in A obtained applying the radical
idealizer process to the R-order A. Let L,...,Ly CV be representatives of the
isomorphism classes of the irreducible Ag-lattices in V. Then the generalized
Bravais group of N is defined as

Byx(N):={ge KN | Lig=L;,1<i<s,9Fg =F}.
If K = Q, the group By(N) is also denoted by B°(N).

Note that the definition of B3 (N) does not depend on the choice of F €
Fso(N), since the elements in KN commute with all F'F~! for F' € F(N).
As for K = Q in [NeP 95, Proposition (I1.10)] one proves:

Proposition 7.2 Let k be a subfield of K.

(i) If X is a finite subgroup of the unit group (kN)* of kN with N <X, then
X < BY(N).
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(i1) If D is a central K-division algebra of indexr s and G is a primitive
a.i.m.f. group in GL,(D) < GLgy,(K) with N <G then N < By(N) =:
B 4 G. In particular B = GNEN 1s the unique mazimal finite subgroup
of the normalizer of N in (EN)*. Moreover the centralizer of N in G is
Cq(B) = Cg(N).

Example The generalization of the definition to arbitrary number fields K
provides stronger restrictions on the possible normal subgroups of G. E.g. for
K := Q[v2] and N = Qs one has B (N) = S, whereas BY(N) = SLy(3).

In the situation of Proposition 7.2 (i), the a.i.m.f. group G contains the nor-
mal subgroup NCg(N). The quotient group G/NCg(N) embeds into the outer
automorphism group Out(N) of N. The image of G/Cg(N) in Aut(N) con-
tains the group of automorphisms that are induced by Bj% (/N) and is contained
in the subgroup Autg,(N) of Aut(N) consisting of those automorphisms of
N, that stabilize the irreducible constituent x of the natural character of V.

Definition 7.3 Let N < GL,(K) be a finite subgroup of GL,(K), such that
the enveloping algebra KN is a simple K-algebra. Let x be an absolutely
wrreducible character occurring in the natural character of N.

(i) The automorphism group Aut(N) acts on the set of irreducible char-
acters of N. Autgew(N) := Stabauyn)(X) is called the group of stable
automorphisms of the matriz group N.

(i) N is called primitively saturated over K, if N < B%(N) and all stable
automorphisms of N are induced by conjugation with elements of B3 (N).

(iii) The factor group Glide(N, x, K) := Glideg (N) := Autsqp(N) /(B3 (N))
of Autsap(N) modulo the group of automorphisms induced by conjugation
with elements of By (N) is called the group of gliding automorphisms of
the matriz group N. We set Glide(N) := Glideg(N).

Remark 7.4 Let N, A, Ay be as in Definition 7.1. Since the elements of
Autgap(N) define Z(A)-algebra automorphisms of A, the Theorem of Skolem
and Noether says that there are elements in A* inducing these automorphisms
on A. Since these elements normalize N, they also normalize Ay and therefore
act as inclusion preserving bijections on the set of Ag-lattices. The subgroup
induced by conjugation with elements in B3 (N) is the kernel of this action and
therefore a normal subgroup of Autsy(N). Hence Glidex (N) is well defined.
For a mazimal ideal p of R let A, and A, denote the completions of A and A
at p. Since A, is hereditary the A, -lattices in a simple A,-module are linearly
ordered by inclusion. Since By (N) stabilizes all A,-lattices one gets an action
of Glidex (N) on this chain of A,-lattices (shifting up or down).



25

Proposition 7.5 In the situation of Proposition 7.2 (ii), assume that N is
primitively saturated over K and that the center of KN is K. If B := B} (N)
and C := Cg(N) then G = BC.

Proof: Since G is primitive, the automorphisms of N that are induced by g € G
stabilize . Hence there is a b € B such that bg € C. O

The automorphism groups of the indecomposable root lattices A, (n > 4),
Eg, E7, and Ejy provide examples for primitively saturated groups:

Corollary 7.6 Let D be a Q-division algebra and G a primitive irreducible
mazimal finite subgroup of GL,(D). Assume that G contains a normal sub-
group N isomorphic to either Alt, (n > 5), Uy(2) = Aut(Es), Se(2) =
Aut(E;)', or 2.0§(2) = Aut(FEg)' (where the corresponding irreducible con-
stituent x of the natural character of N is of degree n — 1, 6, 7, respectively

8). Then G = B°(N) ® Cg(N).

Proof: In all cases Autgq,(N) is already induced by conjugation with elements

of B°(N). O

Corollary 7.7 Let Q be a definite quaternion algebra with center K and G
a primitive a.i.m.f. subgroup of GL,(Q). Then G has no normal subgroup
N isomorphic to My, 2.Myo, or 2.Myy where the restriction of the natural
character of G to N is a multiple of the sum of the two Galois conjugate
complex characters of degree 10.

Proof: Since the whole outer automorphism group of N is already induced
by conjugation with elements in B°(N), the group G is of the form G =
B°(N)Cg(N). In particular the character field of the natural character of G
is complex. Therefore G is not an absolutely irreducible subgroup of GL,(Q).
O

The following theorem is a version of a well known theorem of Clifford (cf.
[CuR 81, Theorem (11.20)]), which is usually only formulated for algebraically
closed fields.

Theorem 7.8 Let G < GL,(K) be a finite group, N < G a normal sub-
group such that the enveloping K-algebra A := KN is central simple. Let
C := Czg(A) be the commuting algebra of A in KG. Then the natural rep-
resentation A : G — GL,(K) is a tensor product A = Ay ® Ay of projective
representations A : G — A* and Ay : G — C*.

Proof: Let ¢ € G. Since N < (G, conjugation with g induces a K-algebra
automorphism of A. By the Theorem of Skolem and Noetﬁr, there is an
a € A*, such that aqg =: b€ C. Hence g=a®be A® C = KG. O
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In the situation of Theorem 7.8, A(G) is a (not necessarily finite) subgroup
of the normalizer of N in the unit group of its enveloping algebra N4s(N). If
one additionally assumes that G is (primitive and) maximal finite and chooses
A; and A, appropriately then B := B%.(N) = Ker(Ay) is the unique maximal
finite subgroup of N4« (N).

Lemma 7.9 Let N < GL,(K) be a finite matriz group such that the algebra
KN is simple with center Z. Let denote the complex conjugation on the
abelian number field Z and Z* be the mazimal totally real subfield of Z. Let
o € Glidex(N). Then there is a € KN such that a representative of o is
induced by conjugation with a. Moreover there is q € Z+ such that aFa' = qF
for all F € F(N). The element q is a totally positive element of Z+ unique
up to multiplication with elements of the group {2z | z € Z}.

Proof: Let F' € F5¢(N) be a N-invariant K-quadratic form. Then the matrix
aFa' is again N-invariant, because a normalizes N. Hence thereisa g € C :=
Cgnxn(N), such that aFa® = ¢F. Every element x € C' may be written as a
sum of a symmetric and a skew symmetric element (with respect to F), i.e.
r=zxt+2" withat,z= € Cand 2tF = F(z*)! and 2= F = —F(z~)". Then
clearly ¢ = aFa'F~! is symmetric. Since a commutes with 2= and 2~ one has
2tg =axtFa!F~!' = gzt and 27¢ = gz~. Hence ¢ € Z lies in the center of
C. If F' € F(N) is another N-invariant quadratic form, then there is ¢ € C
such that F' = c¢F. Then aF'a’ = acFa' = caFa' = cqF = ¢F'. Since a
is unique up to multiplication with elements of Z and Fz!F~! = zF for all
z € Z, q is unique up to norms (resp. up to squares if Z = Z*) of elements
in Z. Moreover if F is totally positive definite then also aFa! = ¢F is totally
positive definite, whence ¢ is totally positive. |

Definition 7.10 The element q in the lemma above is called the norm of c.

If A is a central simple algebra over a totally real field K, then A, (G)/(K*B%(N))
is of exponent < 2, as shown in the next theorem. This is somehow an explana-
tion for the fact that the constructions given in Proposition (I1.4) of [PIN 95]
suffice to describe all r.i.m.f. groups in dimension < 31.

Theorem 7.11 Let K be a real abelian number field and N < GL,(K) a
finite matriz group such that the enveloping algebra KN is simple with center
K. Assume that N QB3 (N) =: B. Then Glidex(N) is of exponent 1 or 2.

Proof: Let a € Autq5(N). Since KN is central simple, there is an a € (KN)*,
such that « is induced by conjugation with a. Let F' be a N-invariant K-
quadratic form. By Lemma 7.9 there is ¢ € K = Z(KN) such that aFa' =
gF. Therefore a?q¢ 'F(a?q~')! = F. Since the automorphism « has finite
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order, there is an m € N such that (a’¢~")™ € Z(KN) = K. One calculates
F = (a%~)"F((a*q~)"™)" = (a%q~)?™F. Hence (aq~)™ = 1 and (a%"")
is an element of finite order in ( KN)* normalizing N. By Proposition 7.2

a’q ! € B. O

If Glidey(N) is of order 2 and KN is a central simple K-algebra, the
primitive a.i.m.f. groups G with normal subgroup N contain a subgroup of
index 1 or 2 which is a tensor product B ® Cg(N). If a € Autgap(N) — k(B)
and ¢ are as in the proof above, we call N nearly tensor decomposing with
parameter q.

Note that Theorem 7.11 is false if one omits the assumption that K is
real. One counterexample is provided by the faithful character of degree 144
of the group 3.U3(5) (cf. [CCNPW 85]). The smallest counterexample I know
is N (C3 x (C7:C3). Let N := {(z,2,y | 23,27,y 2 = 22). then N has an
automorphism s of order 3, with z° = 2z, 2° = z, y°* = yz. N has a faithful
representation into GL3(K) where K := Q[v/—3,+/—7|. The corresponding
character x extends to +N : (s) but the character value of zs involves further
irrationalities. So the order of Glidex (N) is divisible by 3.

Corollary 7.12 With the notation of the proof of Theorem 7.11, the element
a € Glideg (N) is uniquely determined by the class of q in K*/(K*)2.

Proof: Let a, 3 € Autgq(N) be induced by conjugation with a resp. b €
(KN)* such that aFa®’ = ¢F and bFb' = r?qF, with q,7 € K*. Replacing b by
br=! we assume that r = 1. Then ab~'F(ab™!)! = F. As in the proof above,
the matrix ab~! € KN is an element of finite order normalizing N and hence
ab~t € B%(N). 0

8 The normal p-subgroups of primitive groups
and their automorphism groups

In this section we calculate the generalized Bravais groups and outer auto-
morphism groups of the relevant p-groups N which are candidates for normal
p-subgroups of a primitive a.i.m.f. group G. Since all abelian characteristic
subgroups of N are cyclic (Corollary 2.4), these groups are classified by P.
Hall:

Theorem 8.1 (cf. [Hup 67], p. 357) Let N be a p-group, such that all abelian
characteristic subgroups of N are cyclic.

If p > 2 then N is a central product of a cyclic group and an extraspecial group
of exponent p.

If p = 2, then N 1s a central product of an extraspecial 2-group with a cyclic
dihedral, generalized quaternion, or quasidihedral 2-group.
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If K is an abelian number field then all these groups have a (up to au-
tomorphism) unique K-irreducible faithful representation. The corresponding
matrix group is called an admissible p-group over K.

The automorphism groups of the extraspecial groups are well known (cf.
[Win 72]). For these groups one finds:

Proposition 8.2 Let n € N, p be a prime, and N = p!™*" or N = glt2(n—1)
ifp=2. If N IB°(N) =: B then B is as follows:

If p> 2 then B = +p}™" Spyy, (p).

If N =247 then B = 272".03,(2).

IfN =252 ghen B = 2220V 0 (2).

Proof:

Case p > 2: By [Win 72| the subgroup of the outer automorphism group of the
extraspecial p-group pi*t?" = N of exponent p which centralizes the center C,, of
N is the symplectic group Spo,(p). Hence if N < B, then B < £N.Spo,(p). In
[Wal 62], Wall constructs a lattice of dimension (p—1)p"™ on which £N.Sp,, (p)
acts. Therefore +N.Spo,(p) < B.

Case p = 2: If p = 2, the proposition can be checked directly for n < 3. So
assume n > 4. Let € be + or —. Then by [Win 72] the outer automorphism
group of 2!*2" is the orthogonal group SO, (2) = GOS,(2). It contains a
subgroup 05,,(2) of index 2 (cf. [CCNPW 85, p. xii]).

By [Wal 62] the group B; := 2}7>".03,(2) is the full automorphism group
of a lattice of dimension 2". Now N = Dg®...® Dy is conjugate in G Lo (Q) to
the tensor product of n copies of Dg. If Dg € GL4(Q) is given in the monomial
representation, then a := 1 _i normalizes Dg and satisfies a? = 2I,.
Hence the element ¢ := a«a ® I, ® ... ® I, normalizes N and hence B. Since
a’ = 2 is not a square in Q*, there is no element of finite order in G Ly (Q)
inducing the same automorphism on N as a. Therefore (B;,a) & N.SO4,(2)
is the full holomorph of N and B; = B the unique maximal finite subgroup of
the normalizer Ngr,. (@) (V).

If e = — then N = 21721 — Dy ®...® Dg ® Qg is the centralizer of a
subgroup Qs < 212", One finds a subgroup of index two in the holomorph
of N as centralizer of the subgroup Qg in 2}72".03,(2). Since a normalizes N
and lies in the enveloping Q-algebra of N the proposition follows. ]

Lemma 8.3 Let N := 27"Y(C, = 212"YC,. Then the outer automorphism
group Out(N) is isomorphic to Ogpi1(2) x Co.

Proof: The mapping ¢ : N/N' — N', zN' — z? is a well defined non de-
generate quadratic form on N/N’ = F2"*! The inner automorphisms induce
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the identity on N/N' and ¢ is Out(N)-invariant. Since every isometry of
(N/N',q) can be extended to an automorphism of N, one gets an epimor-
phism Aut(N) — Out(N) = Ogy+1(2). The kernel H consists of all automor-
phisms of N inducing the identity on N/N'. Now N = QsY ...YQsYC, =
<A1,Bl>Y. . Y<An,Bn>Y<A> where <AZ,BZ> = Qg and Az and Bz comimute
with A; and B; for i # j. Let o € H. If a(A;) = A?A; for some 4, we multiply
o with the inner automorphism xp, induced by conjugation with B; to achieve
a(A;) = A; for all i. Analogously for B;. After this « is either the identity
or a = ap where ag(A4;) = A, ap(B;) = B; for all 7, and ag(A) = A3. Hence
H/Inn(N) = ({c)Inn(N))/Inn(N) < Qut(N) is a normal subgroup of order
2 of Out(N). Since Ogp41(2) = Aut(N)/H = Cown)(Z(N)) < Out(N) one
has Out(N) =2 Oz,11(2) % (ag). O

Corollary 8.4 Let m,n € N, m > 1, p be a prime, and N = pt*>"YCpm. If
N < B°(N) =: B then B = +N.Span(p).
Moreover Out(N) = Spap(p) x Aut(Cym).

Proof: If p > 2, then Cpm = Z(N) and p™" = Q;(N) are characteristic
subgroups of N. Since the elements in B centralize the center of N, the first
statement follows from Proposition 8.2. For p = 2, the groups Com = Z(N) and
V = 21*2Y (Cy = Qy(N) are characteristic subgroups of N. The holomorph of

V can be constructed as the centralizer of an element of order 4 in 2?2(”“) in

25’2("“).0;(” +1)(2). Hence by Lemma 8.3 the subgroup of the automorphism
group of N centralizing the center of N is induced by B. Since Og,41(2) =
Spon(2) (cf. e.g. [Tay 92, Theorem 11.9]), the first statement follows.

The outer automorphism group Out(N) contains a normal subgroup x(B) =
Cou(n)(Z(N)) =2 B/+N, the image of B in Out(N). The automorphisms of
Z(N) may be extended to outer automorphisms of N, hence Out(N)/k(B) &
Aut(Z(N)) is isomorphic to the automorphism group of Cpm = Z(N). The
kernel of the epimorphism Out(N) — Spa,(p) constructed above is a normal
complement of x(B) in Out(N) which shows that Out(N) = k(B) x Aut(C}").
O

Lemma 8.5 Let m > 3. The outer automorphism groups of the dihedral,
quasidihedral, or generalized quaternion groups U are:

O’U,t(DQm) = Out(ng) = 02 X 02m72 and O’U,t(QDQm) = 02m72.

Proof: In all three cases U has a unique subgroup V isomorphic to Com-1 of
index 2 which is therefore characteristic in U. U/V induces a subgroup of
order 2 of the automorphism group of V. Since Aut(V') is abelian Out(U) has
an epimorphic image Com—2 with kernel H consisting of those outer automor-
phisms that induce the identity on V' modulo inner automorphisms of U.
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Let Dym = (z,y | 22" ', 9? (zy)?). The elements of order 2 in Dym — V are
2’y with 1 <4 < 2™~ Since y® = 272y these form 2 orbits under the group
of inner automorphisms of Dsym. Via the absolutely irreducible faithful repre-
sentation of degree 2 the group Do can be viewed as subset of G the algebra
Q[fgm-1]**2. If z, y denote the corresponding elements of G, the element (1—1)
normalizes G since (1—z) " 'y(1—z) = (1—z")(1—2) 'y = =2 ~'y. Hence
the outer automorphism induced by (1 — z) generates H.

Analogous considerations hold for the generalized quaternion group Qom.
The elements of the group QDom = (z,y | 22" ', y% 2¥ = 2" ~!) that are
not in V' again form two conjugacy classes. But now one of them consists of
elements of order 4 the other one of elements of order 2. Hence here H = 1. O

Corollary 8.6 Let m,n € N, m > 3, and U be one of Dom, Qom, or QQDom.
If N := 23r+2”YU s a normal subgroup of an a.i.m.f. matriz group G then
B := B°(N) = N.O9,11(2) and Out(N) is isomorphic to Ogp11(2) X Co X Coym—2
Zf U= ng, or QQm, and OUt(N) = 02n+1(2) X Cgm—2 ZfU = QDQm.

Proof: Since m > 3, U has a unique subgroup V isomorphic to Com-1 of index 2.
V is the center of the subgroup 23r+2”YV =: W of N generated by the elements
of order 2™ 1. Therefore V and W are characteristic subgroups of N and
hence normal in G. Thus with Corollary 8.4 W.04,,1(2) = B°(W) = GNQW
is a normal subgroup of G (and therefore also of B). In particular, these
automorphisms do extend to automorphisms of V.

If g€ N — W, then g induces the Galois automorphism of the center of
QW over the center of QN. Hence Ngxy. (W) = (Ngm). (W), g) with the
Theorem of Skolem and Noether. Hence B = N.Os,.1(2) by Corollary 8.4.

By the same corollary the full automorphism group of W is Cy x Com-2 X
Os1,+1(2). These automorphisms extend to automorphisms of N. Since a
subgroup Cy of Out(W) is induced by conjugation with elements of U, Out(N)
has an epimorphic image Com—2 X Qg 11(2). Let H be the kernel and 1 # = € H.
Then one may choose the representative x of £ modulo the group of inner
automorphisms of N such that x centralizes W (and N/W = (). Then z
maps C := Cy(U) == 2/ and hence U = Cy(C) into themselves. Hence H
is a subgroup of the outer automorphism group of U. Since all automorphisms
of U can be extended to N, the group H is isomorphic to Out(U) and the
corollary follows from Corollary 8.5. O

The results of this section are summarized in the following table.

Table 8.7 Let D be a finite dimensional Q-division algebra and G be a prim-
itive a.i.m.f. group in GLy(D). Then O,(QG) is one of the following groups
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N B°(N) N Glide(N)
Py p> 2 =N .Span(p) QLG " 1

21f2n N.O3,(2) Q¥ Cy (2)

oL +2n N.O,,,(2) 2, Cy (2)
Cpm =N Q[¢pm] 1

P Cym, m>1 | +N.Spo(p) QlGm 7 i
21427Y Dowm, m >3 | £N.Spo,(2) Q[fgm—r ] X2 Cy (2 — Oym-1)
257Y Qom, m >3 | £N.Spay,(2) QG Cy (2 —Ogm1)
2122Y QDym, m > 3 | £N.Spon(2) | QlGom1 — Cor 127 2 1

The first column contains the isomorphism type of the admissible p-group
N. The information in the second column is only proved under the assumption
that N is a normal subgroup of its generalized Bravais group over Q (cf.
Definition 7.1), which is necessarily the case if N is a normal subgroup of
a primitive a.i.m.f. subgroup. Under this assumption, the second column
contains the generalized Bravais group of N. The third column gives the
enveloping Q-algebra N of N and the last column contains the factor group
Glide(N) of the subgroup of the automorphism group of N that acts trivially
on the center Z of N. For all a.i.m.f. subgroups G containing N as a normal
subgroup the quotient G/(B°(N)Cq(N)) is a subgroup of Glide(N).Gal(Z /Q).
If |Glide(N)| = 2, a norm (cf. Definition 7.10) of a non trivial element in
Glide(N) is given in brackets.

Definition 8.8 Let N <G. Then N is called self centralizing, if Cq(N) < N.

Proposition 8.9 Let D be a definite quaternion algebra with center K. Let
G be a primitive a.i.m.f. subgroup of GL,(D) and Os(G) a self centralizing
normal subgroup. Then G = B3 (09(G)), n = 2™t is a power of 2, and Ox(G)
is centrally irreducible. Moreover one of the following three possibilities occurs:
(1) K =Q, O5(G) = 2*?™ and G = 2172™.05,,(2).

(ii) K = Q[V2] and G is one of 2+2™ GO, (2) or (257 ™ ™V @ Q16).0om—1(2).
(iii) K = Q] with s > 3 and G = (2274™ Y @ Qget1).00m_1(2).

Proof: By Theorem 8.1 the group O,(G) is a central product of an extraspe-
cial 2-group with a cyclic, dihedral, quasidihedral, or generalized quaternion
group. Since Oy(G) is self centralizing, G/O2(G) is a subgroup of Out(Os(G))
with O9(G/O2(G)) = 1. Hence by Corollary 8.6 and Lemma 8.3 either G =
B°(0,5(G)) or 05(G) = 212" K = Q[v/2] and G = B5%(0,(G)) = 2'+?™.GOs,,(2).
O
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Corollary 8.10 Let N be an admissible p-group over K and p® := |Z(N)| the
order of the center of N. If N is not an extraspecial 2-group or K contains
Q[v2], then Glidex(N) = 1 and Aut(N)/Autge(N) is isomorphic to the
Galois group Gal(K[(p]/K).

Lemma 8.11 Let G < GL, (D) be a primitive a.i.m.f. group such that Fit(G) :
[y Op(G) is a self centralizing normal subgroup. Then F'it(G) is irreducible.

Proof: If Oy(G) is not an extraspecial 2-group, the Lemma follows from Corol-
lary 8.10 and Lemma 2.14.

So assume that Oy(G) is an extraspecial 2-group and let B := B%(02(G)).
Then N := Cg(B)B is a normal subgroup of index 1 or 2 in G.

Let Z := Z(K Fit(Q)) be the center of the enveloping K-algebra of Fit(G),
z:=1[7Z: K], f :=dimg(KFit(G)) = m%z, and g := dimg(KG) = 4n%. By
Corollary 8.10, the center of KN is a subfield K C Z(KN) C Z, say of degree
x over K.

Assume that F'it(G) is reducible. Then mz < 2n and by Lemma 2.14 and
Corollary 8.10 dimg (KN) = (mz)%z~! < (mz2)? < n?. With Lemma 2.14, this
contradicts the absolute irreducibility of G. |

The next lemma is useful to exclude cyclic normal subgroups (cf. also
Lemma 11.2).

Lemma 8.12 Let G be a primitive a.i.m.f. group and 3 <p=3 (mod 4) be
a prime. If Op(G) = C,, then N :=C, : C% is not a normal subgroup of G.

Proof: Assume that N < G. Since G is primitive, the enveloping algebra of
N is QN = Q[,/p|"7 **= . If C := Cg(N), then G/CN embeds into Cs, the
outer automorphism group of N. Now N is a subgroup of M := Ly(p) C QN.
Since Ng+«(M) > Ng-(N), the group G also normalizes M and hence (G, M)

is a proper supergroup of G. O

Remark 8.13 Ifp=1 (mod 4) then the outer automorphism group of C, :
Cpa =N < GLI%(Q[\/T)]) is Cy x Cy, where the additional automorphism is

-1

induced by conjugation with (1 — () € QN = Q[\/ﬁ]p;_lxpT, where ( generates
the normal p-subgroup of N.

9 The candidates for quasi-semi-simple nor-
mal subgroups.

In this section we list the information used from the classification of finite
simple groups and their character tables as given in [CCNPW 85]. Let G be a
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primitive a.i.m.f. subgroup of GL,,(D). Then the minimal normal subgroups of
the centralizer in G of the Fitting group of G are central products of isomorphic
quasisimple groups. Such groups are called quasi-semi-simple. The candidates
for the quasi-semi-simple normal subgroups of G may be derived from the
following table:

Table 9.1 Table of the quasisimple matriz groups admitting a homogenous
representation into Q™ ™ for a totally definite quaternion algebra Q with center
of degree d over Q and d-n < 10:

group N | B°(N) Chf‘);aj(\}ter QN | Glide(N)
Alts +Alts Xza + X3 | Q53 1
Alts £S5 X4 Q4 1
Alts +Sg X5 Q> -
SLy(5) SLy(5) | 2(x2a + X2) | 25000 1
SLy(5) SLy(9) 2X4 o3 -
SL,6) | SL.0) 26 G0
Ly(7) =Ly (7) Xsa +x30 | QUV-TPP3 1
Ly(7) £L,(7) X6 Qe Cs (2)
Ly (7) +56(2) X7 Q™" -
L2(7) iL2(7) 12 X8 Q8X8 1
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character

group N | B°(N) of N QN Glide(N)
SL2 (7) SL2(7) X4a + X4b Q[\/E]ALXAL 1
SLy(7) SLy(7) 2(X6a + Xeob) ?\’/%?oo’oo Cy (2+V2)
SL2(7) SL2(7) 2Xs if;é Cy (3)
Altg +Sg X5a I'€SP. Xs5b QP 1
Altg +S10 X9 Q79 -
Altg £S5 X10 Q010 C, (2)
SLy(9) SLy(9) | 2Xu4a reSP. 2Xap o s (3)
SLy(9) SLy(9) 2(X8a + Xsb) Ql\l/xg[,loo,oo Cs (5+2v/5)
SLy(9) SLy(9) 2(X10a + X105) f/%?oo’oo Csy (2+V2)
a + XI =

3.Alt 3. Alt X3a ¥ X3a 5, /-3]3%3 1

0 o +X36 + X3 v \_/_]
3. Altg 3. Altg X6 + X5 Q[v/-3]%° C, (2)
3.Altg +3. Mg Xo + Xb Q[v/-3]%? 1
Ly(8) £56(2) X7 Q™" -
L,(8) | 20§(2)2 Xs i -
Ly(11) £Ly(11) Xsa + Xsb Qv/-11] 1
L2(11) iLQ(l]_) 12 X10a QIOXIO 1
Ly(11) Lo(11) X10b Qo™ O, (3)
SLy(11) | SL»(11) X6a + Xob Q[v-11]5%° 1
SLy(11) SLy(11) 2X10 X3 Cy (2)
SLy(11) SLy(11) 2(X10a + X10) E\)/%?oo,oo Cs (2)
L,(13) +15(13) X7a + X7b Qv/13]™*" 1
SL,(13) SLy(13) 2(X6a + Xob) Q3 oce 1
SLy(13) SLy(13) 2X14 3 Cy (2)
SLQ(I?) SL2(17) 2(X8a + ng) 11/%,00,00 1
SLy(17) SLy(17) 2X16 58 Cy (3)
Alt7 iS7 X6 Q6X6 1
Alty = Alty X10a + X10b Q[\/-_ﬂmxw 1
2. Alt; 2.Alt; X4a + X4b Q-7 1
2Alt7 2Alt7 2X20a c1>2’>§10 CQ (3)
2. Alty 2. Alt; 2X208 %10 C, (6)
3. Alt, 6.U4(3).2 X6 + X Q-3¢ -
Ly(19) +15(19) X9a + Xob Q[\/‘_lg]gxg 1
SLy(19) | SLy(19) X10a + X10b Q[v/-19]10x10 1
SL,(19) SL,(19) 2X18 ) Cy (2)
SLy(19) SLy(19) 2X20 %10 Cy (3)




group N Bo (N) Chi;&](\?;ﬁer @—N Glzde(N)
Us(3) Uy (3) 2x6 o C, (3)
Us(3) +S55(2) Xz Q7 -
Us (3) Us (3) o Cy X7a T X7b Q[\/'1]7X7 1
SLy(25) | SL»(25) 2x12 S C2 (5)
M11 iSll X10a Q10X10 -
My, + My Xiop + X10e | Q[v-2]1010 1
Alts 55(2) X7 Q™7 -

2. Altg 2.07 (2).2 Xs Qe -
2.L5(4) | 2.L3(4) : 2 | Xi0a+ 006 | Q-7 1
6.L3(4) 6.L3(4) Xo + X4 Q-3¢ | G5 (2)
Us(2) Uy(2)0Cs | xsat+ x| QV-3]"P 1
UL(2) U, (2) : 2 X6 Q® 1
U4(2) £Us(2) o C3 | X10a + X10b Q[\/‘ﬂmxw 1
2.U4(2) | 2.Us(2) 0 C3 | Xaa + Xab Q[v/-3]" 1
2.U4(2) 2.U4(2) 2X20 oz C: (2)
Us(4) 2.G1(4) 2X12 205 -
2.M, 2.Myy 1 2 X10a + X106 | Qv/-2]10%10 1
Us(5) +Us(5) : 3 2x20 b5 Cs (5)
Altg 2.0 (2).2 Xs Q>® -

2. Altg 2.05(2).2 | Xsa T€SD- Xgb QPx® -

2. My 2.Myq : 2 X10a + X10b Q[\/ﬁ]mxm 1
2.J2 2J2 2(X6a + X6b) 3\/%?00’00 1
2.J2 2J2 2X14 Zz;’; CQ (2)
S6(2) +S55(2) Xz Q™" 1
2.56(2) 2.07(2).2 X8 Q*® -
Altyg +S10 X9 QP 1
2.0,(3) | 2.Us(3)4 2X20 005 Cs (3)
6.U,(3) 6.U4(3)-2 Xs + X5 Q[v/-3]%%6 1
Us(2) +U5(2) 2X10 o Cy (2)
Alty, +S11 X10 QlelO 1
2.07(2) | 2.07(2):2 Xs Q@*>® 1
2.G5(4) 2.G5(4) 2X12 b2 C: (2)
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The first column contains the quasisimple matrix group N, the second

column its generalized Bravais group over Q (cf. Deﬁnition?._l) followed by
the character y of a Q-irreducible constituent of the natural Q/N-module and

the enveloping algebra QN . If G is a primitive maximal finite group in G L, (D)

with normal subgroup N then G has a normal subgroup B°(N)Cg(N) such

that the factor group G/(B°(N)Cg(N)) embeds into Glide(N).Gal(Q[x]/Q)
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(cf. Definition 7.3). Especially if |Glide(N)| = 2, a norm of a nontrivial
element of this group (cf. Definition 7.10) is given in brackets.

10 Some building blocks.

By Chapter 7 we may build up the primitive maximal finite matrix groups
using normal subgroups that satisfy a certain maximality condition.

Let D be a definite quaternion algebra with center K and N = B°(N) be
a normal subgroup of a primitive a.i.m.f. subgroup G of GL,(D). Assume
that KN is a central simple K-algebra and let G = (A; ® Ay)(G) be as
in Theorem 7.8. Since K is totally real Theorem 7.11 says that G contains
the normal subgroup U := Cg(N) = ker(A;) with (Ay(G)K*)/(Ax(U)K*) =
(A1(G)K*)/(A1(N)K*) of exponent 1 or 2. Choose g; € Ay(G) such that
(g1,---,9s) maps onto a basis of (Ay(G)K*)/(A2(U)K*). Then there are ¢; €
K* such that ¢, '¢? € U.

Lemma 10.1 In the situation above, the pair (U,S = {g1,-..,9s}) satisfies
the following mazximality condition: For all finite supergroups V' > U that are
contained in KAo(G) =: A, such that g; € Na<(V) for all 1 < i < s, one has
V=U.

Call such a pair (U, S) a mazimal pair and U a nearly mazimal finite sub-
group of A*. Note that if (U,S) is a maximal pair then, since Ny-(U) C
Na«(B°(U)), one has U = B°(U).

Table 10.2 Assume that A is a quaternion algebra with center Q and s = 1.
Then the mazimal pairs (U,{g}) may be derived from the following table:

U |norm(g)| A
+(Csy 2 Qo3
i03 1 Q2><2
Cy 3 Qo3
04 1 Q2><2
S3 3 Qo3
SLy(3) 2 Qo2
DS 2 Q2><2
ng 3 Q2><2

Here the first column displays the matrixz group U, the second column gives
a norm of the element g = g1 in the normalizer of U in A* as defined in

Definition 7.10, and the last column the central simple Q-algebra A = Ay(G)
generated by U and g.
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For central simple algebras KN the most important situation is that the
g; ly in the enveloping algebra (cf. Theorem 7.11). For the determination of
the maximal possibilities for N, the following is helpful:

Remark 10.3 In the situation of Theorem 7.11, let a € Nz~ (N) be normal-
ized such that aFa® = qF where ¢ € R is a norm of « (c¢f. Definition 7.10). Let
L be an a’q~'-invariant RN -lattice and assume that F € Fso(N) is integral
on L. Then qL C La C L. If the ideal generated by q and det(F, L) is the ring
of integers of K, then F defines a bilinear form F : L/qL x L/qL — R/qR
Since the dual lattice of La with respect to F is (La)* = q 'L*a, the lattice
La corresponds to a mazimal isotropic subspace of L/qL.

Let N(< GLg(Q)) be a finite matrix group such that the enveloping Q-
algebra N is a central simple Q-algebra of dimension 16. Assume that all
abelian characteristic subgroups of N are cyclic. If the pair (N, {g}) with
9 € Ngw (N) is a maximal pair, then N is one of the groups in the following

table:

Table 10.4

N norm(g) | QN

A4 1 Q4><4

+(Cy 1 Oy 5 Q4

F4 17 2 Q4X4

C,0SL,(3) | 3,6 |Q>!

S3 ® Dy 2,6 | QY

SLy(5) : 2 1,5 2

SLy(5).2 1,5 %

21+ Alts 1,2 1

3D 3.6 22
S;®SLy(3) | 1,2,3,6 | QX3
2
C308Ly(3) | 1,2,3,6 | QX3

S3 ® Dg 2,6 Y

CE%B 1a25316 332

S3® SLa(3) | 1,2,3,6 | Q3%

In the first column of this table the finite matrix group N is given using the
notation of Chapter 5. The last column displays the enveloping Q-algebra A :=
N of N. The second column allows to read off the elements g € N4.(N) such
that (N, {g}) is a maximal pair, since these are modulo N uniquely determined
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by their norms (cf. Corollary 7.12) . In particular N is a maximal finite
subgroup of A*, if and only if a “1” appears in this column.

Proof: The proof is divided into 5 cases according to the possible enveloping
algebras QN = 9%**2 where Q is either a definite or an indefinite quaternion
algebra with center Q. If Q is definite, Theorem 12.1 below implies that Q
is one of Qu 2, Doo,3, OF Qoo In the indefinite case it follows from [Sou 94]
that Q is either Q%% or Qy3. In the last case, N is already maximal finite,
since the 2 maximal finite subgroups of GLy(Qs3) are the generalized Bravais
groups of their minimal absolutely irreducible subgroups.

If QN = Q*** then N is contained in one of the three r.i.m.f. subgroups
G = Ay, Fy, or A2 of GL4(Q). Let L be the natural G-lattice.

If N < A4, then the order of N is divisible by 5. Hence N = Ay & +S;
or N = =(C5 : ()} is the generalized Bravais group of one of the two mini-
mal absolutely irreducible subgroups Alts or C5 : Cy of A4. In the first case,
Ngr,@(N) = Q°N, by Corollary 7.6. In the other case, N fixes addition-
ally the lattices A4(1 — z) and A4(1 — )? where = generates O5(N). Hence
Ner, @) (N) additionally contains an element (z + 2~') of norm 5 inducing a
similarity Ay ~ A4(1 — z)2.

Since the lattice F}; is 2-modular, the normalizer Ngy,(@)(F4) contains an
element of norm 2 ([Neb 97, Proposition 3]). Apart from 2L#, there is no
other sublattice M with 2L C M C L which is similar to L. Moreover 2
and 3 are the only primes dividing the group order. Hence by Remark 10.3,
the absolutely irreducible nearly maximal finite subgroups N contained in F}
are the absolutely irreducible stabilizers of the maximal isotropic subspaces of
L/3L. There are 8 such subspaces lying in one orbit under the action of the

group Fy. The stabilizer of such a subspace is SLs(3) I2303.

Similarly, the absolutely irreducible nearly maximal finite proper subgroups
of AZ stabilize one of the 6 maximal isotropic subspaces of (A42)/2(A43%). All
these stabilizers are conjugate to S3 ® Ds.

Now assume that Q is a definite quaternion algebra. Then N embeds into
one of the six primitive a.i.m.f. groups of Theorem 12.1 or into SLy(3)?Cs or
S50 Cy. Let 9 be a maximal order of Q.

If @ = Qu;, then N embeds into one of SLy(5).2 or SLy(5) : 2. As in the
case N < A, the only other possibility for a nearly maximal finite group is
+('5.C,. But now the outer automorphism of +C5.Cy mapping an element x of
order eight in =C5.Cy onto —z extends to an automorphism of SLy(5).2 and
SLy(5) : 2 stabilizing the character. Hence the non split extension +C5.Cy is
not a nearly maximal finite group.

If @ = Qpo, then N is a subgroup of one of the three a.i.m.f. groups
214 Alts, SLy(3) ® Ss, or SLy(3) 1 Cy. Since 21+% Alts has an element of
norm 2 in its normalizer, and the stabilizers of the other ten 90t/290-subspaces
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of L/2L corresponding to lattices which are similar to L are not absolutely
irreducible, one finds with Remark 10.3 that NV is a stabilizer of one of the 40
M-sublattices corresponding to the maximal isotropic subspaces of the 9t/39-
module L/3L, where L is a 92174 Alts-lattice. These lattices ly in one orbit

under 2!4. Alt;. One calculates N = Cg%g in this case.

All prime divisors of the order of G := S5 ® SLy(3) arise as norms of ele-
ments of the normalizer of N in N". Since the absolutely irreducible subgroups
of G' are characteristic in G' Corollary 7.12 implies that the group N has no
proper nearly maximal finite subgroups.

If N is a subgroup of S L, (3)Cy, the 40 maximal isotropic 2t/39M-subspaces
of L/3L fall into two orbits of length 16 and 24. Their stabilizers are not
absolutely irreducible. The stabilizers of the 13 9t/29-subspaces of L/2L
corresponding to lattices which are similar to L are either SLy(3) ¢ Cy which
has a non cyclic abelian normal subgroup or the subgroup Ds®SLs(3) of index
12. Since B°(Dg ® Qg) = 21+*. Alts, one finds no groups N here.

In the last case, @ = Qs 3. Now N is a subgroup of one of the a.i.m.f.

groups G conjugate to SLs(3) %103, SLy(9), or S31C,. All three groups admit
an element of norm 3 in their normalizer.
In the first case, G itself admits an element of norm 2 in its normalizer.

The minimal absolutely irreducible subgroups of G are Sy and Qs 12303. For
p = 2 and 3, there is only one proper IMS,-sublattice of L containing pL
which is similar to L. This lattice is also fixed by G, hence N # Si. Clearly
N # Qs I22|03, because N # B°(N) = G.

In the other two cases, the proper subspaces of the 9t/39% module L/3L
give rise to 31 resp. 37 lattices similar to L. In the first case, their stabilizers
are either G or subgroups of index 20 resp. 10 in G' normalizing a Sylow 3-
subgroup (= C3 x C3) of G. In the last case, the 37 lattices fall into 2 orbits.
The lattices which are not fixed by GG have a reducible stabilizer = Cg.

Hence by Remark 10.3 N is an absolutely irreducible stabilizer of one of
the 15 90 sublattices corresponding to the maximal isotropic subspaces of
the 9t/29M-module L/2L, where L is a 9MG-lattice. In the first case, these
subspaces form one orbit. The stabilizer of such a subspace is S; and not
absolutely irreducible. In the last case, the 15 maximal isotropic subspaces
fall into 2 orbits of length 9 respectively 6 under the action of G. Only a
representative of the second orbit has an absolutely irreducible stabilizer N =
Dg ® 53. O
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11 Special dimensions

There are some cases where it is easy to describe an infinite family of simplicial
complexes M" (D). Two of them are dealt with in the next Theorem.

Theorem 11.1 (i) Let p=1 (mod 4) be a prime. M%(Q\/ﬁ,oo) consists
of a single vertex: ﬁ,oo[SLQ(p)]%. The group SLy(p) fizes an even
unimodular Z-lattice (of rank 2(p — 1) ).

(ii) Let p be a prime.
Ifp=1 (mod 4) then M%(Qoo,p) consists of one 1-dimensional sim-
plex:

sop[SL2(p)-2] e wop[SLa(p) : 2]os

where the common absolutely irreducible subgroup of the two a.i.m.f.
groups is *C,.Cy,_1. The corresponding Z-lattices are unimodular (for
the non-split extension oo,p[SLQ(p).Q]%) resp. p-modular (for the split

extension o p[SLa(p) : 2]%)

If p = —1 (mod 4) then M%(Qoo,p) consists of one single vertex:
oo,p[iLg(p).Q]%. The group oo,p[iLg(p).Q]% fizes an even p-modular
Z-lattice (of rank 2(p — 1) ).

To prove the theorem, we need a lemma which is also of independent in-
terest in later chapters

Lemma 11.2 Let D be a definite quaternion algebra with center K and d :=
[K : Q =1 or 2. Let p be an odd prime such that n := ”2;(11 e N If
G < GL,(D) is an a.i.m.f. subgroup then O,(G) = 1.

Proof: Assume the O,(G) > 1. Then by the formula in [Schu 05] P := O,(G) =
Cp and in the case d = 2, K = Q[\/p] and p = 1 (mod 4). Since the
commuting algebra Cpnxn(P) is isomorphic to Q[(,], the centralizer C(P) =
+P. Now G is absolutely irreducible, so G/Cg(P) = de;l is isomorphic to

the subgroup of index d in the automorphism group of P. The split extension
+P : Cp-1 has real Schur index 1, and the non split extension G = +P.Cp-1

is a subgroup of pocSLa(p)]est (if d = 2), woplSLa(p)-2ecs (if d = 1 and
p=1 (mod 4)), resp. oo,p[iLQ(p).Q]% (ifd=1and p=3 (mod 4)) which
is a contradiction. O
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Proof of Theorem 11.1: From the classification of a.i.m.f. subgroups of
GL1(Qys,,) and GL%(QOOJ,) for p < 11 in this paper, the Theorem is true
for p < 11. So we may assume p > 13.

(i) Let Q@ := Q oo, m := E1, and G be an a.im.f. subgroup of GL,(Q).
Then by Lemma 2.13 p divides the order of G. By Proposition 2.16 the Sylow
p-subgroup P of G is = (). Since the degree of the natural character of G
is 251 [Fei 82, Theorem VIIL.7.2] implies that either G/Z(G) & PSLy(p) or
P <G is normal in G. The second case is excluded by Lemma 11.2. Since =1
are the only roots of unity contained in the center Q[,/p|, the results on the
Schur indices of the characters of SLy(p) in [Fei 83] yield that G = SLy(p) in
the first case. The SLy(p)-invariant Z-lattices are described in [Neb 96b].

(ii) Let -1 € G < GL% (Quo,p) be absolutely irreducible. Then by Lemma
2.13 p divides the order of G. By Proposition 2.16 the Sylow p-subgroup of G
has order p. Let 9 be a maximal order in Q, ,, P the maximal twosided ideal
of M containing p, and L € Zgp(G) a IMG-lattice in the natural G-module

p—1
Q}xi(,pT. Then L := L/PL is a F,:G-module of dimension ’%1. Since the
kernel of the action of G on L coincides with the one on PL/pL this kernel
is contained in O,(G). By Lemma 11.2 O,(G) = 1, so L is a faithful F,.G-
module and [Fei 82, Theorem (VIII.3.3)] implies that G is of type Lo(p), i.e.
the unique composition factor O (G)/(O” (G)NOy(G)) of G of order divisible
by p is either isomorphic to La(p) or to C,. Here OP (G) is the smallest normal
subgroup of G of index prime to p and O (@) the largest normal subgroup
of G of order prime to p. Let g be an element of order p in G. Then Cg(9)
embeds into GL;(Q[(,]) hence is (+g). Therefore g acts fixed point freely on
Oy (G)/(1). By Thompson’s theorem (cf. [Hup 67], pg. 505) Oy (G)/(=1) is
nilpotent. Let r # p be a prime and A an abelian normal r-subgroup of G.
Then A is cyclic by Corollary 2.4 and the enveloping algebra of A is contained
in QP~Yx(=1)  Hence by Corollary 2.4 r < p and g centralizes A. Therefore
r =2 and A < (1). Hence Oy (G) = O2(@) and the maximal abelian normal
subgroup of G is (+1).

If O5(G) > 1, then Proposition 8.9 gives a contradiction to the fact that
the p-adic Schur index of the natural representation of G is 2.

Hence Oy(G) = =1 and O” (G) is one of £Ly(p), SLy(p), or £C,. By Lemma
11.2 the latter possibility does not occur. [Fei 83, Theorem 6.1] yields that the
p-adic Schur indices of the representations of SLy(p) are 1. Hence the C-
constituents of the restriction of the natural representation of G' to O (G) are
of degree -1, Using the character tables in [Schu 07] one concludes that if
p=—1 (mod 4) then G is the unique extension of +Ly(p) < GL%(Q[\/$D
by Cy = Out(Ly(p)) with real Schur index 2, and if p=1 (mod 4), then G
is one of the 2 extensions of the matrix group SLs(p) of (i).
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For p =1 (mod 4), the SLy(p).2-invariant and SLy(p) : 2-invariant Z-
lattices are described in [Neb 96b, Remark 2.5]. For their determinants cf.
[Tie 97, Section 5]. If p=3 (mod 4), the natural representation of the group
Ly(p) < 00,p[ﬂ:Lg(p).Z]% is a globally irreducible representation ([Gro 90,
Chapter 11]). The Z[@]Lg(p)—lattices are unimodular Hermitian lattices
over Z[HQﬂ]. The lattices of which the endomorphism ring is a maximal
order M of Q , containing Z[@] and which are preserved by the a.i.m.f.
group oo p[*Lo (p).2]p%1 are scalar extensions of these unimodular lattices and

therefore also unimodular Hermitian. Since the discriminant of 91 is generated
by \/—p, they become p-modular Z-lattices. O

12 The a.i.m.f. subgroups of GLy(Q).
Z(Q)=Q

Theorem 12.1 Let Q be a definite quaternion algebra with center Q and G
be a mazimal finite primitive absolutely irreducible subgroup of GLy(Q). Then
Q is one of Qo 2, Qoos, 07 Qoo and G is conjugate to one of the groups in
the following table.

List of the primitive a.i.m.f. subgroups of GLy(Q).

lattice L |Aut(L)| | r.im.f. supergroups
002|214 Alts], 27.3.5 | Fy

002[5L2(3)]1 ® Ay 2032 | QK

00,35 L2(9)]2 24.32.5 | FEy

wslSLa(3)OCs], | 2432 | F?

515L2(5)2]5 9735 | Bq

woslSLa(5): 2, | 2435 | [(SLa(5)BISLa(5)) : 2)s

Proof: If G contains a quasi-semi-simple normal subgroup, [HaS 85] and [CCNPW 85]
show that either G() 22 SLy(5) and G = o 5[SL2(5)-2] or G =  5[SLy(5) :
2]y or G = G®) = 3[SLy(9)],- Now assume that G contains no quasi-semi-
simple normal subgroup. By Lemma 11.2 O5(G) = 1. If O3(G) = 1 then
O5(@G) is a self centralizing normal subgroup of G. With Proposition 8.9 one
finds that G = B°(02(Q)) = o 2[25 Alts],.

If O3(G) > 1 then O3(G) = C3, G contains C := Cg(03(G)) of index two,
and C is an absolutely irreducible subgroup of (Q[(3] ® Q)*. Using [Bli 17]
one finds that C is one of C3 0 SLy(3) or C3 ® Dg. In both cases, one has
two possible automorphisms of C' yielding each a unique extension G = C.2 in
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GLy(Q) (cf. Lemma 2.17). In the first case, G is one of  2[SL2(3)]; ® Ay or
00,39 L2 (3) %103]2. In the second case, one finds no groups G, since S5 ® D is
imprimitive and Cﬁ%g a proper subgroup of o o217 Alt5]s. O

Theorem 12.2 M,(Qu2)"" is as follows.

oo,2[ 214 Alts), 002[SLa(3)]? 00 2[SL2(3)]1 ® Ay

List of the maximal simplices in M (Q, 2)

simplex a common subgroup
(o022 Alts]y, 002[SLa(3)]7) | Ds ® Qs

Proof. The a.i.m.f. subgroups of GLy(Qu2) can be deduced from Theo-
rem 12.1 and Theorem 6.1. The completeness of the list of maximal simplices
in M3 (Qy,2) follows from the fact, that the unique minimal absolutely ir-
reducible subgroup of 2[SL2(3)]; ® Ay is S3 ® Qs and does not fix any
3-unimodular lattice with maximal order as endomorphism ring.

O

Theorem 12.3 M5(Q43)"" is as follows.

oo,g[SLQ(?)) I2jC’g,]g 00,3[SL2(9)]2 oo,3[g3]%

List of the maximal simplices in M (Qy 3)

simplex a common subgroup

(003[5L2(9)]2; 00,3[53]3) . (Nng x C3).Cy
((003[SL2(9)]2, 00,3[SL2(3)OC3]2) | Sa

Proof. The a.i.m.f. subgroups of GLy(Qw 3) can be deduced from Theorem
12.1 and Theorem 6.1. The completeness of the list of maximal simplices
in M¥7(Q4,3) follows from the fact, that the minimal absolutely irreducible

subgroups of o 3[SL2(3) 12303]2 are S; and Qs I%ICg. Whereas the first group

also embeds into « 3[SL2(9)]2, the second one has a unique a.i.m.f. supergroup.
O
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Theorem 12.4 My(Qy5)"" is as follows.

00,5[SL2(5)2]2 00’5[SL2(5) : 2]2

List of the maximal simplices in Mi"(Quo 5)

simplex a common subgroup
( 0075[SL2(5).2]2, 00,5[5[42(5) : 2]2) (i05).C4

Proof. The Theorem follows immediately from Theorem 12.1 and Theorem
6.1. O

Z(Q) real quadratic.

Theorem 12.5 Let G be an absolutely irreducible mazimal finite subgroup
of GLy(Q), where Q is a totally definite quaternion algebra with center K
and [K : Q = 2. Assume that G has a quasi-semi-simple normal sub-
group. Then Q is isomorphic to Q s ., or Q .z, and G is conjugate to one
of \/g,oo[SLQ(5)(\875 Diola; 5.00lSL2(5)]1 ® A, /5,50[2-S6l2, or the imprimitive

group 5. .[SLa(5)]3.

Proof: Let G be such a maximal finite group and N <G a quasi-semi-simple nor-
mal subgroup. If G is imprimitive Theorem 6.1 implies that G =z  [SL2(5)];-
Assume now that G is primitive. By Table 9.1 N is either SLy(5) or SLy(9)
(cf. also [HaS 85]). Assume first that N is SLy(5). Then the enveloping alge-
bra of N is QN = Q5 .. If K # Q[v/5] then N is an irreducible subgroup
of GLy(Q). The centralizer C;(N) embeds into Car,(g)(IN) = K[v/5]*. Since
K[V/5] is a totally real field, one gets that Cg(N) = 1. Therefore G contains
N of index 2 and by Lemma 2.14 the enveloping Q-algebra of G is of dimen-
sion 8 or 16, contradicting the assumption that GG is an absolutely irreducible
subgroup of GLy(Q).

Hence K = Q[v/5] is the center of the enveloping algebra QN. Then N is
primitively saturated over K and hence G = N (18{; C, for some centrally irre-
ducible maximal finite subgroup of (Cg2x2(N))* The commuting algebra of N
is an indefinite quaternion algebra with center Q[y/5] ramified at those primes
on which Q ramifies. The classification of finite subgroups of GL,(C) ([Bli 17])
now shows that Cg2x2(QN) is isomorphic to Q[v/5]?*2. Moreover Cg(N) is one
of £Dyg, £S5, or Dg. One computes that the two groups \/5700[5112(5)% D)2
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and 5 [SLa(5)]1 ® Ay are maximal finite whereas the third group is a proper
subgroup of the imprimitive maximal finite group 5 [SLa2(5)];.

If N = SLy(9), the enveloping algebra QN of N is Q23. Therefore the
centralizer C' := Cg(N) has to be contained in the center of GLy(Q) = K*.
Since K is totally real, one has C = +1. The factor group G/N is a subgroup
of Glide(N) = Cp and [CCNPW 85] implies that Q = Q 5 . and G = N.2

= \/5,00[2-56]2- O

Theorem 12.6 Let G be an absolutely irreducible maximal finite subgroup of
GLy(Q), where Q is a totally definite quaternion algebra with center K and
[K : Q| = 2. Assume that G has no quasi-semi-simple normal subgroup. Then
Q is isomorphic to Qﬂ,oo: Q\/Q,OO,Q,?,, Q\/??,oo: Q\/g,oo,2,57 Q\/g,oo,5,37 or 9\/5.’00
and G is conjugate to one of the primitive groups \/5,00[21_“.55]2, Vil St ®

2(24+v2 2(24+v2 2(2) 2(2
A2, 002303 @b16]2; V3.00,23(C3 16)25 \/g,oo[D24é> SLy(3)]2, \/5,00,2,5[CE§72)8];

2(2 2(3 2 2
Vo5l CBR Lo (3)], 5005 8[5CEDO5], 505 5[CER05], 07 5.0 [GLa(3)F Cila,

or to one of the imprimitive groups 5 ,,[Sal? or /5,4 [C12.Cal3.

Proof: The imprimitive a.i.m.f. groups may be determined with Theorem 6.1 so
assume that G is primitive. If p is a prime with O,(G) # 1, then by Corollary
2.4 one has that p € {2,3,5}.

Assume first that Os(G) # 1. Then N := O5(G) = C5. The centralizer
C := C;(05(@)) embeds into the commuting algebra Cg2x2(05(G)) which is
either isomorphic to an indefinite quaternion algebra Q' with center Q[(5] if
K = Q5] or to K|[(s] if the center K of Q is not the maximal real subfield of
Q[¢5]- In the latter case one finds C = +C5 which contradicts the assumption
that G is absolutely irreducible. Therefore K = Q[v/5]. Since the prime
divisors of |G| lie in {2,3,5} the only finite places, on which Q is ramified
contain one of these 3 primes. Therefore, Q[(5] splits @ and one has Q' =
Q[¢5]**2. Moreover G contains C' of index 2. Hence by Lemma 2.14, C is
an absolutely irreducible subgroup of GL,(Q[(5]). Using the classification of
finite subgroups of PG'Ly(C) in [Bli 17] together with the assumption that G
contains no quasi-semi-simple normal subgroup, O5(G) = Cs and C = B°(C),
one finds that C is one of C5 ® Ds, 05@5, SLy(3), +C5 ® Ss, or 05@5, Ss.

If G centralizes C'/Os(G) then G is a proper subgroup of one of the 3 groups
involving SLs(5) of Theorem 12.5.

If G induces the non trivial outer automorphism of C/Os5(G), one has
2= |H?*(C4,Cy)| possible extensions G = C.2, only one of which has real

Schur index 1, by Lemma 2.17. One computes that G is \/5’00,2’5[6152§>2b8],
22 23 2 _
\/5,00,2,5[CE§1">)'L2(3)]: \/5,0055,3&6@.%'3], \/5,00,553[6@%3], respectively.
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Assume now that Os(G) = 1 and O3(G) # 1. Then O3(G) = C5. The
centralizer C' := Cg(O3(G)) embeds into the commuting algebra Cgzx2(03(G))
which is isomorphic to an indefinite quaternion algebra Q' over K[(3]. Since G
is absolutely irreducible and contains C of index 2, Lemma 2.14 implies that
C is an absolutely irreducible subgroup of GL,(Q'). Hence Q' = K[(3]**2.
The classification of finite subgroups of PG Ly(C) ([Bli 17]) together with the
assumption that G is primitive, has no quasi-semi-simple normal subgroup,
and satisfies O5(G) = 1, one finds that C is one of C3 ® D1g, C3 ® QDxsg,
03 ® GLQ(?)), 03 @) Qlﬁ, 03 o) 54, or OQ(C) = 04 o) Qg and C = CgBO(OQ(G)) =
C3® (Cy0 SLy(3)).2.

If C = C3® Dig or C3 0 Q16, the normalizer N(Q—C)*(C) of C in the unit
group of its enveloping algebra contains C K[(3]* of index 2. In the other cases
one has a unique outer automorphism of C' inducing the Galois automorphism
of K[(3] over the maximal totally real subfield K of K|[(3]. Therefore one finds
in these cases only two possible extensions G = C.2, only one of which has

real Schur index 1. One concludes that G is one of S5 ® Dy, 032(2+E\§b16,

03122 @Dy, Cﬁ? GLs(3), Cs 2(2+\f16, S3® Q16, S5 ® Sy, respectively CglE2 (Cyo
SLy(3)).2. The first group is a proper subgroup of 5 ,[2'%*.55],, the third is

contained in the fourth group \/g,oo[GLQ(3)E? (3]s, the sixth one in the seventh
group 5.,0[Sil1 ® Az, and the last group is \/5700[6322 (Cy05Ls(3)).2), =

Vi D2i® SLa(3)]e,

If 0,(G) =1 for all odd primes p then Proposition 8.9 gives that Oq(G)
is one of Dg @ Qg or Dg ® Q1. In the first case G = \/5’00[21,“.55]2 is
maximal finite. In the last case, O2(G) is an absolutely irreducible subgroup
of GLy(Q,54)- Let M be the up to conjugacy unique maximal order in
Q,/3.00- One computes the Bravais group on a normal critical IOy (G)-lattice
(cf. Definition 2.7) to be 5 [217%.S5]5, contradicting the assumptions on

OQ(G) O

Table 12.7 List of the primitive a.i.m.f. subgroups of GLy(Q) where Q is a
totally definite quaternion algebra over a real quadratic number field Z(Q).
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lattice L |Aut(L)| | r.i.m.f. supergroups
Va 00l 257.S5]2 28.3.5 | Fu®F,, E3
\/5,00[84]1(8)142 25'32 (A2®F4)27 A2®E8
2(2+v2
V3,002,303 ( ‘3’22)16]2 2°-3 | (A2® Fy)?, A
2(2+v2
V3002303 ( Eﬁwb 25.3 F}, E2
\/5,00[D24%§)2)SL2(3)]2 20.3% | (A, ® Fy)*, F§
AQ ® Es, F4®F4
\/5,00[2-56]2 25.3%2.5 Sp4 O 03[)?» SLQ
03
[SL2 é?) SLy( ) 216, FA®F),
\/S,oo[SL2(5)@g D10]2 2*-3-5 [(SL2( © SLz 2\% D10]16
Vool SL2(5)]1 ® Ay 24.3%2.5 | A, ®[(SLa(5) DSLQ( ) : 2], Ax ® Fj
2
\/3,00,2,5[052%%8] 24.5 A}
2(2 2
\/5,00,2,5[ Ly(3)] 2*-3-5 Ega [(SLy(5) OSLy(5)) 2]%
206
\/3,00,5,3[%15_%&3] 2235 | (A2 ® Ay)?
(A ® Ay)°
2 7
5,005/ CE953] 23.3-5 | EZ, [(SLa(5) OISLa(5)) : 23
2
B2, ((SLa(3) BSLa(5)) : 21
ool (S3 @ SLa(3)).2: | 2°-3° | (A2 ® Fu)?, Fu®F,

(4, ® Fu), Fi, [(SLy(5) BSLy(5)) : 213

Ay ® Ey, E2, [SL2(5[I§>) 21+ Alts )6

The first column contains representatives GG of the conJugacy classes of
a.i.m.f. subgroups of GLy(Q), the second the order of the corresponding
groups. In the third column the r.im.f. supergroups of G that act on a
lattice L € Zgn(G) for some maximal order of Q are given. There is one line
for each conjugacy class of maximal orders in Q which come in the same order

as in Table 4.1.

Theorem 12.8 M3 (Q.s3..) is as follows.

\/i,oo[g‘l]%

\/i,w[2£+4'85]2 . \/5,00[5’4]1 ® Ay

List of the mazimal simplices in MQZ'"(Q\@’OO)

simplex

a common Subgroup

(V30025 S5l, \5.00[54]7) | @16 ® Ds
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Proof. The completeness of the list of a.i.m.f. subgroups in GL3(Q s )
follows from Theorems 6.1, 12.5 and 12.6. To see that the list of maximal
simplices in M3 (Q, /5 ,,) is complete one has to note that the unique minimal

absolutely irreducible subgroup of \/5,00[54]1 ® Ay is Q16®S3 and not contained
in one of the other a.i.m.f. groups. a

Theorem 12.9 M} (Q /5 ,93) consists of two 0-simplices

. 2(24+v2 . 2(24v2
V2,002,303 @%16]2 V3002303 :6316]2

Proof: The completeness of the list of a.im.f. subgroups in GL2(Q, /5, 3)
follows from Theorems 6.1, 12.5, and 12.6. Both a.i.m.f. groups are minimal
absolutely irreducible whence the theorem follows. O

Theorem 12.10 M3 (Q 5..) is as follows.

V3,00 2-56]2

V00 D2s® SLy(3)]5 V.00l @24]?

List of the mazimal stmplices in Mg”‘(Q\/g,oo)

simplex a common subgroup
5 :
( VBoo[D24® S La(3)]2, 3.00[Q24]7) | Dos ® Qs

)
(V3.o D2 SLo(3)s, yam0l2-S6)2) | 5.2
( \/?’,,oo[sz;Ha \/5,00[2'56]2) (C5 x C3).Ds

Proof. The completeness of the list of a.i.m.f. subgroups in GLy(Q,/3,)
follows from Theorems 6.1, 12.5, and 12.6. The list of maximal simplices in
Mér’"(Q\/gm) is complete as one sees computing the lattices of (+C5 x C3).Dg
and S,.2, the minimal absolutely irreducible subgroups of \/3’00[2.56]2 of order
not divisible by 5. a

Remark 12.11 The simplicial complex Ms(Q 3 ) contains Ma(Qew2), in the
sense, that for every verter v € My(Quo2) there is a vertez of v' € Mz(Q, /54.)
with representatives G, respectively Gy, such that G, < Gy and for every
simplex (vi,...,v5) € My(Qw2), the corresponding simplex (vi,...,v.) is a
simpler in Ma(Q 5 )

In this sense the simplicial complex MQ(Q\/g,OO) contains My (Qeo3)-



49

Theorem 12.12 M3 (Q 5.,.) is as follows.

DlO]Z

e VEoolSL2(5)]t * VB SL2(5)]1 ® As

List of the mazimal simplices in M3 (Q sz )

simplex a common subgroup
( \/5700[51’2(5)(?}5 Diols, \/g,oo[SLZ(5)]%) QZO% Dy

Proof. The completeness of the list of a.i.m.f. subgroups in GLy(Q,/5,,,)
follows from Theorems 6.1, 12.5, and 12.6. To see that the list of maximal
simplices in M3 (Q,/5 ) is complete one has to note that the unique minimal
absolutely irreducible subgroup of  z [SL2(5)]1 ® Az is Q2 ® S3 and not,
contained in one of the other a.i.m.f. groups. |

Theorem 12.13 M3 (Q j5,,05) consists of two 0-simplices

* Vo5 CEBDs)s * V50025l CERS Lo (3)]s

Proof. The completeness of the list of a.i.m.f. subgroups in GLy(Q. /540 25)
follows from Theorems 6.1, 12.5, and 12.6. The completeness of the list of
maximal simplices in M3 (Q /5 o 55) follows from the fact that the group

VE.00,2.5 [CE%%B]Q is minimal absolutely irreducible. OSimilarly one gets:

Theorem 12.14 M3 (Q /5, 53) consists of two 0-simplices

¢ \/5,00,5,3[%15%%3]2 ¢ \/5,00,5,3[675%%3]2

Z(Q) real cubic.

Theorem 12.15 Let Q be a definite quaternion algebra with center K of de-
gree 3 over Q and G a primitive a.i.m.f. subgroup of GLy(Q). Then G is one
of the groups in the following table, which is built up as Table 12.7:
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List of the primitive a.i.m.f. subgroups of GLy(Q).
lattice L |Aut(L)| | r.i.m.f. supergroups

2(2 2
99,0073[615%%) SLy@3) | 23 | Ff, 3 SLGE SLG),
89,00,2| D18 ® SL2(3)]2 24.33 (Ay @ Fy)? , Fy @ Eg

F,® Eg
0,00,2[CoDs)> 243 | B2, [Spi(3)d 3142 SLy(3)hs
(45%), (E5)
0r,00,7[Q28]1 ® Ag 23.3.7 | (A ® 452, (AP ® A,)?
07.,00,7] 2_37) 53]2 23.3.7 [6.U4(3).22]%2

3 2(2) 2
07,00,7[@75%)8]2 4.7 [L2(7)<§> Dsl2,, [L2(7D§68]§2
970021010 ® SLa(3)]a | 2437 | As® Fi, AY @ F)

002l OB L, 3)]y | 2037 | [Lo(T)8 Filua, [Lo(WF s

97,00,3[ia5-2§>%3]2 23.3-7 | [6.U4(3).2%3,
(A2 ® 46)%), (42 ® AP)?)
6003 D1a ® S3s 23.3.7 | (43 ® Ag)%, (A, @ AY))2
([6.U4(3)-2]%,)
wi3,00,13[2C13.Cal2 23.13 | (A%

[2.C01]a1 , [SLa(1315 Lo (3)]ae

Proof. Let Q be a definite quaternion algebra with center K of degree 3
over Q and G a primitive a.i.m.f. subgroup of GLy(Q). Then K is contained
in a cyclotomic field of degree < 12, hence K = Q[f;], Q[fs], or Q[w13], where
w1z is a generator of the subfield of degree 3 over Q of the cyclotomic field
Q[¢13] and the 6; = (; + (' generate the maximal real subfield of Q[¢;] (cf.
Notation 4.2). By [CCNPW 85], G has no quasi-semi-simple normal subgroup.
If K = Qwss], then 13 divides |G|. One concludes that O.3(G) = Ci3 and
G = 413,0013[¥C13.C4]2. Now assume that K = Q[f]. Then 7 divides the order
of G. Since the possible normal 2- and 3-subgroups have no automorphism of
order 7, one has O;(G) = C7. The centralizer C := Cg(C7) is a centrally
irreducible subgroup of GL;(D) for a quaternion algebra D with center Q[(7].
One only has the possibilities D = Q[(;]**? and C = +C7 x U, where U is one
of Dg, Ss, or S3, or D = Qp, 9, where C' = C; ® SLy(3). Since |Out(+U)| = 2,
one has in each case 2 possibilities for G = (.2, where there is always a unique
extension yielding a representation with real Schur index 2 (cf. Lemma 2.17).
Since (Qog ® Dy is imprimitive, one finds the groups of the proposition. The
case K = Q[fy] is dealt with analogously. O

Corollary 12.16 Let Q be a definite quaternion algebra with center K of de-
gree 3 over Q and G an a.i.m.f. subgroup of GLy(Q). Then Q is one of
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Q09,00,37 999,00,2: Q97,0o,77 Q07,00,27 Q07,00,37 or Qw13,00,13' The SZmplZCZG,l com-
plexes MY (Q) consist of zero-simplices each.

Proof: Theorems 6.1 and 12.15 prove the completeness of the list of quater-
nion algebras Q and of a.im.f. subgroups of GLy(Q). That there are no
common absolutely irreducible subgroups, may easily been seen, since the

2(2 23) = 2(2
groups 09,00,2[09_5&’b8]2, 07.00,7|Q2s]1 @ Ag, 07,oo,7[a%g_7»7 Ss]a, 07,oo,7[074_lg>b8]2,

97,00,3[i61§)?g'3]2, and 97,00,3[D14®5’3]2 are minimal absolutely irreducible and the
minimal absolutely subgroups of g, « 2[D14®SL2(3)]2 resp. 97,00,2[61%23%2(3)]2

2(2
are D4 ® Qg resp. C@ég and not isomorphic.

Let 9t be a maximal order of Qp, 3 and U a minimal absolutely irreducible

ag%i) SLy(3)]ls. Then U/O,(U) & Dis. Hence the 2-

subgroup of g, 03[

modular constituents of the natural representation of U ®g, M < G L2 (Q)
are of degree 12, so U cannot fix a 2-modular and a 2-unimodular lattice.
So there is no common absolutely irreducible subgroup of 99,00,3[6236]% and

2(2)
99,00,3[ 23 SL2(3)]2- O

Z(Q) real quartic.

Theorem 12.17 Let Q be a definite quaternion algebra with center K of de-
gree 4 over Q and G a primitive a.i.m.f. subgroup of GLy(Q). Then G is one
of of the groups of the following table:

List of the primitive a.i.m.f. subgroups of GLs(Q), where Q is a definite
quaternion algebra with center K and [K : Q] = 4. In the first line of each
box the a.i.m.f. group G and its order is given. In the next lines some r.i.m.f.
supergroups fixing a G-lattice with maximal order as endomorphism ring are
given. If I did not find such groups, at least one r.i.m.f. supergroup of G is
specified in brackets. If there is more than one isomorphism class of maximal
orders in Q they are listed in the following lines, headed by the symbols Oy,
Oy, ... to distinguish the different Z-isomorphism classes of maximal orders,
in the same order as they are displayed in Table 4.1.



916,00[@32]1 ® As ( 26-3)
(43%)
(Fi® As)*, (Es ® Ap)?

52

916,00[54@5 D]y (28-3)
(F%)
(F4®F4)27 Eél

020001918 Dagla (27-37)

(A ® Fy)*, (A2 ® Es)? (Fy®Fy)?, Fy

(Eg), (A2 ® Fy)*)

(F1®F1)%, (A ® Eg)?, Ay @ Fi®Fy, [21710.013(2)]3

020,00 [Q10]1 ® Ao (2%.3-5)

(A2 ® Au)*, (A2 ® [(SLa(5) OIS Ly(5)) : 2)s)?, (A2 ® Ey)?
Ay R AL Q@ Fy, Ay @ FiQFy,

(A ® [(SLa(5) 1S Lo(5)) : 2]s)?, (Ao ® Ey)2,

Ay ® [SLy(5) 0 SLa(5) : 2;531)10116

O1
O
O3

S L2(5)8, Dlz (20-3-5)

Eg, [(SLa(5) OSLy(5)) : 20, [SLa(5) 0 SLa(5) : 2\/2531)10]%6

Fx ® Fi, [(SL2(5) BSLa(5)) : 2)s @ P, [2544. 4115, SLa(58, Dl
[((SL2(5) 0 SLa(5 ))E (§L2(5) 0 SL2(5))) = Salszi (i = 1,2)

[SL3(5) 0 SLy(5) : 22 Diols

O,
0,
O3

L (C4°SL2( )-2)]2 (226 3-5)

(FOF,)?, (A ® Fy)?, [SLa(555. 21+ Alt ]2

00,2

Ay ® Es, [241°.04(2)]ss, [SL2(5D§ 214605 (
Es ® Fy, [(SLa(5) BSLa(5)) : 2]s ® Fi [21+4 Alts® , SLy 5)? Diolss

O1

O,

015,00[S L2(5)®) 3 Dyl (2%-3%-5%)
[SLa(5) 0 SLy(5) : 2\/253 Diol%, (A2 ® Ey)?,
(A2 ® [(SLa(5) OIS Ly(5)) : 2s)?

4, ® [SLa(5) 0 SLy(5) : 3 Dol

[((SLa(5) 0 SLo(5) (SLa(5) 0 SLs(5))) : Silsa (i = 1,2)




O,
O,

s lCiR. SLa(3) (24:3:5)
(A1 ® F)?, [SLa(509, (SLa(3) BCs)[Es, [Spa(3) o O, SLa(3)]s
Es®Fy, F; ® [(SLQ( )DSL2(5)) 2]s,

2

[(SLy(5)8 Dm&é?' (SLa(3) B1Cs)]s

O,
O,

e, 00[0@238 (2:-3-5)
(Fi®F)?, [Diso-(Ca x C)]2% [SLQ(sz?) 914 Alts]2,

(224 Alts® , SLa(5 )R Dol

[((SLQ( )OSLQ Q\éz CEé)b 3QZ 1—1 2

Wl?,oo[i017-c4]2 (23 17)

1S Ly (17800 (i = 1,2), [SLo(17) S 551as
[21119.015(2)]s2

ViselSli ® 5[=Digl2 (2°-3-5)
2
(A; ® Fy)?, Ay Q Eg, [C5 : Cﬁgf)’zx]sz

2
[SL2(5) o} SL2(5) : %/% DIO]%G [(21+4 Alt5® SLQ( )g» D10]32

[SLy(9) ® Do 1S Lo (5)]s2, [(SLa(5)® D10[)§>) SLy(3) BCy)]ss

O,

VoolSL2(8)]1 ® 5[Digla (2°-3- 5)

25510.055(2)z, [(SPa(3)8.; Spa(3)) : 26Cs}aa,

[SLy 2;%2 214 Alt s, [SL2(5[)§>) 2146 07 (2)]30,
F4®F4) [SLy (5[)%2) 21+ Ajt:2,

(S1a(5) o S1205)) + B (OBl (1=1,2), By & F

(
[(
[(SLa(5) BSLa(5)) : 24, [(SLa(5 )DSLz( )) : 20s ® Fu, By

\/§+\/5,oo,2,5[6152§’22716]2 (2°-5)
Af, (A4 ® Fy)?, [Digo-(Cy x Co)]g
([D120.(Cy x 02)]%6)

0,

22
f2+\/5,oo,2,5[a~5§’8216]2 (25 -5)

[Sh(i»iz% SLa(9)3s. [SL2(90E . SLa(9)F, [5L2(5a§?) oL ALt 2
2
1

[Sp4(3)ocamf SLy(3)] - [SL2 55)525”) SLy(3)BICy) 2,
Eg, (F4®F4)2, [(SL2(5) 5L2( ) : 2l3
([Spa(3) o C\a/'if—g SLy(3)]3s)

93



o4

O,

0,

O3
Oy

Os

1i0.00[C8 QDiglz (2°-5)

A8, (Ay ® )2, (Fu®F,)?, BL, [(SLa(5) OIS La(5)) = 214,
[SL2(5Dz§>) 21+ Alts)%

[(SL2(5 )DSLz( ) : 218, EL, FL® [(SLa(5) BSLs(5)) : 2s,

Fi® By, [SLa(5) 0 SLa(5) : 3 Duols,
2)
(214, Alts ) SLo(5) B Dol

(A%), ([(SLQ( )DSLz( ) 2]8), (Eg)
Fy ®[(SLy(5 )DSL2( ) : 2]g, Fi ® Eg, [271°.015(2)]32

(2144, Alt5®), SLa(5)B, Diolse [5L2(5[)z%) 214,04 (2))32
250,052, (44 ® Ff, SL25¢§>)2”6 05 (2)]s2
A4 ® By, (FOF), [SLy(555, 214 Alts [

A ® Eg, (FOF)?, [SL2(5[)O%>) 21+ Alts]2

O1

O,

Oy

[25410.0%, ()]s, (As ® Fi)2, [SLz(mz%?’ 214605 (2)]3
Vool SL2(5)1 ® 5[ Daal2 (35 -3%-5)

(A2 ® Eg)?, (A2 ® [(SLa(5) OSLa(5)) : 2]s)?,

Fy @ [(SL(5) 1S Ls(5)) : 2s,

[((SL2(5) 0 SLy(5 ))/22 (SLa(5) 0 SL2(5))) & Salazs (1=1,2),
Fi ® By, [((SLa(5) 0 SLy(5) Q%f) O3 )32 (i = 1, 2)
F,® Eg, F, @ [(SLy(5 )DSLQ( ) : 2]s, A @ FyQF, [2“’10.0%(2)]32,

Ay ® [SLy 5[)5% 2144 Alts)ag, [SLa(555, 250 (2)]an,
[(SP4(3)®.; Spa(3)) : 261Gs52, [5L2(5'ZO§’ (Spa(3) BIC3)lso
(A ® Ey)?, (As ® [(SLs(5)BSLy(5)) : 20s)2, Fi®F2,
SLy(555) 21+ Alts[Rg, Ef,
(SLy(5)OSLy(5)) : 2]s

2
2(3 2
SLy(5, (SLx(3) BCs)[Es, [Spa(3) 0 C SLa(3) s
(

w"w

00,3

[
[
[
[SLy(5) o CE§B24]32
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Va00l@24]1 ® 5[ D1ols (2*-3-5)
O [e= Alt5® SLz( )g)Dlo]?ﬁ; [(SL2(5 )(?}g Dlo%iii,) (SLs(3) IQHC’3)]32,

2
[SLy(5) 0 SL2( ) : g/Z D10]167 Ay ® [SLy(5) 0 SLy(5) : % Diplie

Oy Ai®Es, Ao Ay ® Fy, [C5: 612_%274]32,
(25 Alts® | SL(5 ))g?nm]gz

O3 (A ® Ay, (F4 ® A4) , [D120-(Cy x Cy)|36,
[SLy(5) o SLy(5) : %Dlo]%

Oy ([D120 2]16 1)

\f+\foo[C%WZ4]2 (2*:3-5)
O [SLa(3) cg§324]32

Oy [SLa(3) 0]

O3 ([D1go- 2]16,1) )
Os  [((SLa(5) o SL(5 )\)/Z (SLa(5) 0 SLy(5))) = Salaz,t,

[((SLa(5) 0 SLa(5)) : B9 (Ce$Ds)]sa

\/§+\/g,oo[05\% Q242 (2*-3-5)
01 [SLy(5)o C@i%?’Q24132
0, [SL(3) 18D Q)]s
O3 ([D120-2]i52)

Os  ([(SLy(5) BSLy(5)) : 25), ((Fa®F4)*)

nis.00[C5 QDsgly (26-3)
01 A%6, (A2®F4)4a Ff’ Egl
0, (FP), (A)
Os (AlG) (F?), (Eg)

Oy 8s (F4®F4) ) (A2 ® Fy)*, (As ® Es)?
Os ( 5°), (FY)

O (AF), 004

O; (A; ® Eg)?, (A2 ® Fy)*, (Fi®F,)?, Ey

E

08 [21+10 O+( )]32
09 (A%G ’ (Ff)
O (A3°), (F})

Proof. Let Q be a definite quaternion algebra with center K of degree 4
over Q and G a primitive a.i.m.f. subgroup of GLy(Q). Then K is contained
in a cyclotomic field of degree 8 or 16 over Q. If K is the maximal real subfield
of a cyclotomic field of degree 8 over Q then K is one of Q[f;5], Q[f20], Q[f24],

or Q[Glﬁ-]
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Assume first that K = Q[f;5]. If G contains a quasi-semi-simple normal
subgroup, then SLy(5) < G. The centralizer C' := Cg(SLy(5)) embeds into
the commuting algebra D := Cg2x2(SLs(5)), which is an indefinite quaternion
algebra with center K. Since SLy(5) is primitively saturated over K the group
G is of the form G = SL4(5)C. Hence C is a maximal finite subgroup of D* and

the enveloping Q[v/5]-algebra Q[v/5]C of C is D. By the classification of finite
subgroups of PGL,(C) in [Bli 17], this implies that D = K?*? and C = +Ds,.
Hence G = 915,00[51’2(5)@3 D)y in this case. Now assume that G does not
contain a quasi-semi-simple normal subgroup. Since K is the character field
of the natural character of (G, an inspection of the relevant groups in Table
8.7 yields that Os5(G) > 1. Hence Os(G) = C5 and G contains the normal
subgroup N := B%(0s5(G)) = =C15. The centralizer Cg(N) = B°(Cg(N)) is
a centrally irreducible subgroup of (Q ®x Q[(i5])* and G/Cg(N) = Cy. By
Theorem 8.1 Cg(N) is either 015@__3 SLy(3) or C15 ® Dg. In each case there

are two possible automorphisms. Since the group Qgo ® Dg is imprimitive and
D3y @ SLy(3) embeds into 915,00[51)2(5)@g D3p)s one finds that G is one of

2 2
915,00[01@%)112(3)]2 or 015,00[01@%8]2-
The case K = Q[fy] is similar: if G contains a quasi-semi-simple normal
subgroup one easily concludes that G = 920,00[SL2(5)@5 Dyls- If G has no

quasi-semi-simple normal subgroup, then as above, O5(G) = C5 and N :=
B;((O5(G)) = 020 g G. Let C = CG'(N) If OQ(G) > 04, then OQ(C) =
Cy® Dg =2 Cyo0Qg and C = By (C) = C5 @ (Cy 0 SLy(3).2). There is only
one possible automorphism and therefore G = 920,00[03422 (Cy 0 SLy(3).2)]2 in
this case. If O3(C) > 1 one has to remark that Qs ® S3 = Cj(%? S; and

Dyy® S5 = Cj&g')g. Since the last group is a subgroup of g,5.00[SL2(5)®. Daolo,
one finds that G is g, 00[Q0]1 ® Az in this case.

In the last two cases, K does not contain a subfield Q[y/5]. Since K is the
character field of the natural character of G, one finds that O3(G) = 1 and
that G does not contain a quasi-semi-simple normal subgroup.

If K = Q[f4] clearly O3(G) # 1. Hence O3(G) = C3 and G contains a
normal subgroup N := B%(03(G)) = Cy4. One concludes that O2(G) = CsoQs
and Cg(N) = B}(CM@__I Qs) = C’48<\8?5 Sy. Now S, is primitively saturated

@5

over K and therefore G = 924,00[5’4% Dyslo

In the last case K = Q[f5]. If O3(G) > 1, then O3(G) = C3 and C(03(Q))
is an absolutely irreducible subgroup of Q[v/-3] ® Q. Since Ss ® Dyp = Cléﬁ%)g
embeds into 916,00[5'4% Dssla, G is g,4,00[@32)1 @ A = 916,00[015%)3]2.
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If O3(G) =1, then Oy(@G) is a self centralizing normal subgroup of G and
G=pB° (OQ(G)) = 016,00[514% D32]2 with Proposition 8.9.

Now we consider the case, where K does not embed into a cyclotomic field
of degree 8 over Q. Since K is real and of degree 4, this implies that K is
contained in one of the cyclotomic fields Q[¢;] for i = 17, 40, 60, 48 of degree 16
over Q and that K is one of Q[n:17], Qv2, V5], Qno], QV3, V5], or Q[nas].
The fields Q[n;] denote subfields of Q[¢;] with Gal(Q[n;]/Q) = C,.

In all cases i divides the exponent of G. If K = Q[n;] is a cyclic extension of
@, then K is generated by a single character value. So in these cases G contains
an element z of order 7. Since K is the character field of the natural character
of G, the whole Galois group I' := Gal(Q[;]/Q[n;]) is induced by conjugation
with elements in the normalizer Ng({x)). Hence G contains the irreducible
subgroup +C;.I'. Computing the automorphism group of the invariant lattices

one gets G = =C;.I" is one of ,,, [*C17.C4la, 7,40,00[0512? @ D+g)2, respectively
rissso[CH QDo

Now let K = Q[v/2,v/5]. If G contains a quasi-semi-simple normal sub-
group one easily concludes that G = 5 [SL2(5)]1 ® z[Diel2. Otherwise G
contains a normal subgroup N = C5. The centralizer C(N) is an absolutely
irreducible subgroup of GL;(Q ® Q[(5]) and G contains Cg(N) of index 2.
Hence clearly O3(G) = 1 and by Table 8.7 Oy(G) is one of Qg, D1, or Q6. In
the first case, G contains the normal subgroup B3 (O3(G)) = S;. This group
is primitively saturated over K and therefore G = ﬁ,oo[§4]1 ® 5[EDiolo.

In the other two cases the elements in G — Cg(/N) may induce two different
automorphisms. Since the groups ()20 ® Dy resp. Dy ® ()16 are contained in
VaooOL2(5)1 ® 5[Disla resp. 5 o[Sa]i ® 5[+ Digla, one finds that G is one

2(2 22
of \/§+\/5,oo,2,5[61§§’b16]2 _resp. \/§+\/5,00,2,5[6E§é16]2-
In the case K = Q[v/5, /3], one analogously gets that G is one of ool SL2(5)1®

2
\/§[D24]2, \/g,oo[Q24]1® \/g[iDlo]m \/§+\/5,oo[cé)24]2, or \/§+\/g,oo[c%l Q24]2.
O

Theorem 12.18 Let Q be a definite quaternion algebra with center K and
(K : Q] =4. If G is an a.i.m.f. subgroup of GLy(Q) then Q is one of Qpyq.00,

9024,00; Qﬁzo,oo; Qéﬁs,oo; an,oo; Qﬁ+\/g,oo; Q\/§+\/5,oo,2,5’ Qmo,OOf Q\/?_)—l—\/g,oo’ or
Qnio,0- If K is not the mazimal real subfield of a cyclotomic field, the simplicial

complezes MY (Q) consist of zero simplices. For K = Q[6;] (i = 16,24,20,15)
the simplicial complezes MY (Q) are as follows.

916;00[84% D32]2 ¢ * f16,00 [Q32]% b 016,00[Q32]1 ® A2
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924,00[54% Dyglre——s 4,, [Qus]?

. 020,00[51—42(5)@5 D40]2

tonolC (Cy 0 SLa(3)).2], A\
020,00[6240]%

- * 020,00[Q40]1 ® As

2(2
015,00[SL2(5)@5 D30]2’—' 015,00[6260]% ° 915,00[01%) SL2(3)]2

2
* 015,00 [CIQDS]Z

List of the maximal simplices in M (Q)

: a common
simplex
subgroup

( 016,00[54({% Dss)a, 916,00 @32] Q32 ® Dy

( 024,00[54@5 Dagl2, 954,00[Qus] Qs ® Dy
2

( 920,00[SL2(5)(\®£ D40]2’ 920,00[6240]%’ 920,00[6'5|Z (04 © SL?(B))Q]Q) Q40 02 DS

( 015,00[5112(5)@3 Do, 915,oo[Q60]%) 6220@g D5,

1)
)

Z(Q) real quintic.

Analogously one finds:

Theorem 12.19 Let Q be a definite quaternion algebra with center K of de-
gree 5 over Q and G a primitive a.i.m.f. subgroup of GLy(Q). Then G is
one of the groups of the following table, which is built up as table 12.7. The
simplicial complexes consist of zero simplices each.

List of the primitive a.i.m.f. subgroups of GLy(Q), where Q is a definite
quaternion algebra with center K and [K : Q] = 5.
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lattice L |Aut(L)| | some r.i.m.f. supergroups
01,0011 Q1a]1 ® Az 23.3-11 | (A2 ® Aj)?, (A2 ® A10 )% (A ® A )2
(L2118 Dialo), ([La( noz%u o)
11,0011 [C1E3 L (3)]: 24.3.11 | [SLy(11) SS Lo(3) 30, [Us(2) S 'SLo(3) 3
[LQ(H)@_T1 SLy(3) ® S3)-2]40
Yol A 23311 | [Ly(1153D1af3y, [L2(11)& Dislly
(A2 ® Ay)?)
102 | 2O 211 | [SLy(11 @5’ 214 Alts] 0,
Us(2) @%2 21+4 Alts]uo
(12. M12 2® 5 GLa(3)]a0)
((A%)), (((A%)) ), ((AT)Y)
0 [ED22]1 ® wo2[SL2(3)]1 | 2%-3-11 | Ajy ® Fy, A%) ® Fy, A&%) ® Fy
(A1p ® Fy)
[SLa(11) °6 Lo (3) 3,
0 [ED22]1 ® o0 3[S3l1 28311 | (A1 ® 42)%, (A% ® 45)%, (AT © 4,)°
(A1 ® Ag)?)
(A1 ® 43)%)
(A1 ® 42)%)
1003 EC Y] 23.3-11 | [Lo(113D10]2y, [La(11)8 Diol2,
([Lo(1155D15%0), (IL2(11)& Disll)
(Lo (11551, ]3). ([Lz(n)jézbubo)
(L1153 1530), (IL2(11)8 Disl3)
ras.00.512C25.Cill 93.52 | B3, [(SLa(5) OIS La(5)) : 2I2
(BD). ((SLa(5) OSLy(5)) - 21)
(Eg), ([(SLy(5) ISSL2(5)) 1 213)
(Eg), ([(SLy(5) I35112(5)) 1 213)
(E3), ([(SL2(5)OSLy(5)) : 2]3)

13 The a.i.m.f. subgroups of GL3(Q).

Z(Q)

-Q

Theorem 13.1 Let Q be a definite quaternion algebra with center Q and G

be a primitive a.i.m.f. subgroup of GL3(Q).

the following table.

Then G is one of the groups in
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List of the primitive a.i.m.f. subgroups of GL3(Q).

lattice L |Aut(L)| | r.i.m.f. supergroups
02[SLa(5)]5 93.3.5 | [SLy(5)°6 S Lo(3)]1o
3205 (3)]3 26.35.7 | [6.U4(3)-2712
0s[*32.GLy(3)]s | 2°-3* | E?

so[£La(7).2]5 25.3.7 | (APY)?

Proof. Let Q be a definite quaternion algebra with center Q and G be a
primitive a.i.m.f. subgroup of GL3(Q). Assume that 1 # N < G is a quasi-
semi-simple normal subgroup of G. With [CCNPW 85] one finds that N is
one of Alts, SLy(5), Lo(7), or Us(3). The centralizer C' := Cg(N) in G of N
embeds into the commuting algebra Cgsxs(IN), which is isomorphic to Q[v/5],
Q, Q[V-T7], resp. Q in the respective cases. Therefore C = =1 in all cases
and G/+N embeds into Cy, the outer automorphism group of N. This gives
a contradiction in the first case, since both groups (+Alt;).2 are subgroups of
GLg(Q). In the second and fourth case, one finds that N = G = 2[SLa(5)]3
resp. N = G = ,3[*U;(3)]s, because the extensions of the natural character
of N to N.2 are not rational. In the third case G =  7[=L2(7).2]3 has to be
isomorphic to a non split extension of +N by Cs.

Now assume that G does not contain a quasi-semi-simple normal subgroup
and let p be a prime with O,(G) # 1. Then by Corollary 2.4 one has p €
{2,3,7}. By Lemma 11.2 O;(G) = 1.

Therefore Proposition 8.11 gives that O3(G) # 1. From Table 8.7 one gets
that O3(G) is one of C3, Cy, or 31*2. In the first two cases, C(03(G)) =
+03(@G) and G contains Cg(03(G)) of index 2, contradicting the irreducibility
of G. In the last case, G contains the generalized Bravais group B°(03(G)) =
+31%% 1 SL,(3) of index 2. The split extension is a subgroup of GLg(Q), so G
has to be isomorphic to the non split extension G =  3[+3772.GLy(3)]5. O

Theorem 13.2 Let Q be a definite quaternion algebra with center Q and G

be an a.i.m.f. subgroup of GL3(Q). Then Q is one of Qx2, o3, 07 Qoo 7-
The simplicial complezes MY (Q) are as follows:

walSLa(B)s  senlSL(3)?

sl U5B3)]s sl GLB)s oSl
L4 0077[53112(7).2]3

List of maximal simplices in M¥"(Q3):
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simplex a common subgroup
(03[ Us(3)], 00,3[=3172.GLa(3)]3) | 31"% : Gy
((00,3[93]3; 003[¥31"%.GLy(3)]5) (+317%).Co

Proof. Theorems 13.1 and 6.1 prove the completeness of the list of quater-
nion algebras @ and of a.i.m.f. subgroups of GL3(Q). The completeness of
the list of maximal simplices in M (Q) for the respective quaternion algebras
Q can be seen as follows: M?f’"’"(Qoo,g) consists of two 0-simplices, because the
group o0 2[SL2(5)]3 is minimal absolutely irreducible. The unique minimal
absolutely irreducible subgroup of  3[*Us(3)]s is 31*? : Cs as one sees from
the list of maximal subgroups of Us(3) in [CCNPW 85]. This group does not
embed into o 3[S3]? so the list of maximal simplices in Mi™ (Q,, 3) is complete.
O

7Z(Q) real quadratic.

Theorem 13.3 Let Q be a definite quaternion algebra with center K, such
that [K : Q] = 2 and G be a primitive a.i.m.f. subgroup of GL3(Q). Then G is
conjugate to one of the groups in the following table, which is built up as table
12.7.

List of the primitive a.i.m.f. subgroups of GL3(Q).
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lattice L |Aut(L)| r.i.m.f. supergroups
ﬁ,oo[SLg('Y)]g 2437 [SL2(7) o 54]24
202 ;
Vol SLa(5). 23 21:35 [SLa(5) C'SLa(3)]3y, [SLa(59, 217 Alts)sy
2 bl
V.00l (£U3(3))-2]3 27.3%.7 |[6.U4(3).2%)%,, [6.U4(3).g/7§f3 SLy(3)]oa

2(3
[2.Co1Jas, [(Ci © SLa(3)).85 Us(3)]as
2(2
VilCHE 3142 SLy(3))y 20-3¢ |B#, [3142 SLQ(EHjéz; SLa(3)12
F, ® E, [Sp;;(?)?% 31421 Sy (3)]a

\/5,00[2.J2]3 2833527[2J2 I%SLQ(5)]24, [2.001]24

2 .
\/g,oo[Alt:@g SL2(5)]3 25'32'52 [(SL2(5) o SL;(5)) . g/% Alt5]24,z’ (7, = 1, 2)
Vol OB La(T)] 29-3-7 (AP, [Lo(TBD,, (6.U4(3).2%%,

2.Co1la, [6.U4(3).%:§_3 SLy(3)]as

[Ly (73%4]24, AP © Fy,
[(Ca 0 SLa(3))85) Us(3)]2

VBoal S L2(13)]3 23.3.7-13 [SL2(13D:2§’L2(3)]24, [2.C01]24
2
Voi,00[FCP Lo (7)]3 25327 (A ® AS))?, [6.U4(3).2%)%,

[2.C01]o4, [Lo (7[)25&@4]24

Proof: Let G be a primitive a.i.m.f. subgroup of GL3(Q). Assume that 1 #
N < G is a quasi-semi-simple normal subgroup of G. With [CCNPW 85| one
finds that N is one of Alts, SLy(5) (2 groups), Lo(7), SLy(7), 3.Alts, SLo(13),
Us(3), or 2.Jy. If N is isomorphic to SLy(7), SLy(13), or 2.J5, one computes
that G = N is an a.i.m.f. group.

If N is Us(3) or SLy(5) (where the restriction of the natural character of G
to NV is 2xs), the centralizer Cq(N) embeds into Cgsxs(N) = Z(Q) = K. Since
K is a (totally) real field, one concludes that Cg(N) = +1 and G/+N = C, is
isomorphic to the outer automorphism group of N. Using [CCNPW 85| one
finds that G = 5 [SL2(5).2]3 resp. G = 3 [(xUs(3))-2]3.

If N = SLy(5), where the restriction of the natural character x of G to N
contains Xa,, one has Q@ = Q &  and x|xv = 3x2.- The centralizer Cq(N),
embedding into Cgsxs(N) = Q[v/5]**3, is either 1 or Alts. Since 3 does not
divide the order of the outer automorphism group of N, the first possibility
contradicts the irreducibility of G. In the second case one computes G =
NCg(N) = \/g,oo[Alt5@g SLy(5)]s.

Now assume that G' contains a simple normal subgroup N isomorphic to
Alts. Since the maximal real subfield of Q is the center K = Z(Q), one finds
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that K = Q[v/5] and the restriction of the natural character of G to N is
(w.l.g.) 2x3qa. The centralizer C' := Cg(N) embeds into GLi(Q). Therefore
it is isomorphic to a subgroup of SL,(5). Since the outer automorphism of N
induces the Galois automorphism on the center of the enveloping algebra QN
one concludes that G = CN = \/E,oo[Alt5@g SLs(5)]s-

Now let N = Ly(7) be a normal subgroup of G. The centralizer Cg (V)
embeds into K[v/-7] and therefore is one of 1, Cy, or +C5. Since G contains
NCg(N) of index 2, one concludes, that in the first case G' can not be abso-
lutely irreducible, because that character field is only Q. In the remaining two
cases one constructs G to be ﬁyoo[ClLIZ? Ly(7)]5 resp. \/2—1700[ng}2? Ly(7)]3-

In the last case N = 3.Altg and Cg(N) = +C3. Using [CCNPW 85] one
finds that G = +3.PGL,(9) is not maximal finite but contained in sz , [2.J2]3.

Assume for the rest of the proof, that G does not contain a quasi-semi-
simple normal subgroup. By Corollary 2.4 O,(G) = 1 for p ¢ {2,3,5,7,13}.
and by Lemma 11.2 O13(G) = 1.

If O;(G) # 1 then O;(G) = C;. Because K = Z(Q) is a real quadratic
number field, one has that C := Cg(O7(G)) embeds into K[(7], hence is one of
+('7, Cyg or #Cy; and G contains C of index 6. In the first case, the character
field of the natural character of G is Q contradicting the absolute irreducibility
of G. In the other two cases one has a unique possibility for G < GL3(Q).

Both groups are not maximal finite but contained in ﬁ,oo[CB? Lo(7)]3 resp.

o1 0ol 2B L (7).

Next assume that O3(G) # 1. Then O5(G) = Cs5 and K = Z(Q) is
isomorphic to Q[v/5]. The centralizer C(O5(G)) embeds into Cgsxs(05(G)) =
Q[¢5]3*3. Since G does not contain a quasi-semi-simple normal subgroup and 3
does not divide the order of the automorphism group of O5(G), this contradicts
the irreducibility of G.

Assume now, that O3(G) > 1. Then Os(G) is one of Cs, Cy, or 3112
In the first case Cz(O3(G)) embeds into K[(3]**3. Since G does not contain
a quasi-semi-simple normal subgroup and 3 does not divide the order of the
automorphism group of Os(G), this contradicts the irreducibility of G. In the
second case, C' := Cg(0O3(G)) embeds into K[(] hence is one of £Cy or Cse.
The assumption that O3(G) = Cy implies in both cases that the index of C in
G is not divisible by 3, which contradicts the irreducibility of G. In the last
case, the group G contains a the normal subgroup B := B°(03(G)) = +31*:
SLy(3). The centralizer Cz(B) embeds into K[(3] hence is one of +C3 or Cis.
The first possibility contradicts the absolutely irreducibility of G, and in the
second case, G = \/5,00[04122 3512 SLy(3)]s.

If O,(G) =1 for all odd primes p, O2(G) is self centralizing in G contra-
dicting Proposition 8.9. O
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Theorem 13.4 Let Q be a definite quaternion algebra with real quadratic cen-
ter K and G be an a.i.m.f. subgroup of GL3(Q). Then Q is one of Q s .,

Q 5.00r Lo Qioer QuiBioor 07 QT Lhe simplicial complezes MiT(Q)
are as follows:

. V2,005 L2(7)]s .
V2,009 L2(5).2]s V3ol Sali

ValCH 312 1 SLy(3)]s
V.00l (2U3(3))-2]3 V3o C12-Cal?

V5,00 [2"]2]3

olSLaGN el Alts®, SLa(5)]s

¢ rolCB Lo(7)]s

¢ \/E,OO[SLQ(ls)]S

o ool ECH Lo(7)]s

List of maximal simplices in M§"(Q, 5 ,):

simplex a common subgroup
2

( 3.0l (2U3(3))-2]3, \/5,00[204121 £311% 1 SLy(3)]s) (i3;r2 : Cy).Cy

( V3.00[C12-Col?, 5.0 [CB 23112 1 SLy(3)]3) O 31

List of maximal simplices in M3 (Q, /5 . ):

simplex a common subgroup
( VBool2-J2l3, \/g,oo[AltE)@g SLy(5)]3) Alts ® Qs

( vB0olSL2(5)]7, \/g,oo[Alts@g SLy(5)]3) | Qa0 ® Alty
( V5.00l2-2l3 500l SL2(5)F) (+C5 x C5).Dyy
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Proof: Theorems 13.3 and 6.1 prove the completeness of the list of quaternion
algebras Q and of a.i.m.f. subgroups of GL3(Q). The completeness of the list
of maximal simplices in Mi"(Q) for the respective quaternion algebras Q can
be seen as follows:

M3 (Q,/3 o) consists of three 0-simplices, because the groups 5 .o [SL2(7)]s
and 5 [SLa(5).2]3 are minimal absolutely irreducible groups.

The unique minimal absolutely irreducible subgroup of sz [(*U3(3)).2]3
is (+31%% : C3).2 as one sees from the list of maximal subgroups of Us(3) in
[CCNPW 85]. Therefore, there is no common absolutely irreducible subgroup
of 5.0[(2Us(3))-2]s and 5 ,[C12.Co] and one sees that the list of maximal
simplices in M3 (Q, /5, is complete.

From the list of maximal subgroups in [CCNPW 85] one finds that the abso-
lutely irreducible maximal subgroups of 5 [2.J]3 are £3.PGLy(9), SL2(3)®
Alts, and (xC5 x Cs).D1o. The first group has no absolutely irreducible sub-
group of which the only non abelian composition factors are isomorphic to
Alts, the unique minimal absolutely irreducible subgroup of the second group is
Qs®Alts, and the two minimal absolutely irreducible subgroups ((Cs x C5).Cg
and (£C5 x C5).Ss) of the third group do not embed into \/g,oo[Alt5@5 SLy(5)]3.
O

Z(Q) real cubic.

Theorem 13.5 Let Q be a definite quaternion algebra with center K of de-
gree 3 over Q and G a primitive a.i.m.f. subgroup of GL3(Q). Then G is

. 2 2
conjugate to one of 99,00,;.;[ﬂ:0§/§%3 31;L2 : SLy(3)]s, 97,00,7[i0\7/ﬁ%7 Ly(7)]3, or

wi9,00,19[2C19.C)3.

List of the primitive a.i.m.f. subgroups of GL3(Q).

lattice L |Aut(L)| | some r.i.m.f. supergroups
oo FOPE 3L SLy(3))y | 258 | [+311: Spa(3).203, E§

2 2
07,007 FCBL Lo (7))l 2°-3-72 [ﬁEL2(7\)/'%—g Ly(7)]is
w19,00,19[*C19-C]3 2°-3-19 | A}, (Ags;))2

Proof: Let Q be a definite quaternion algebra with center K of degree 3 over
Q and G a primitive a.i.m.f. subgroup of GL3(Q). Then K is contained
in a cyclotomic field of degree < 18, hence K = Q[f;], Q[fy], Qw:s], or
Q[w1g], where the 6; are generators of the maximal totally real subfield of
the corresponding cyclotomic field Q[(;] and the w; generators of the subfield
of degree 3 over Q of the corresponding cyclotomic field Q[¢;] (cf. notation 4.2).
By Table 9.1 the only possibility for a quasi-semi-simple normal subgroup N
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of Gis N = Ly(7). If Ly(7) 4 G, then clearly K = Q[b;], Ca(La(7)) = +C4,
and G = 97700,7[i0\7/liii7 Ly(7)]5. Tt is also obvious, that K # Qw;s], for then
13 divides |G| and one concludes that O13(G) = Cy3. To get the character
field K, 4 has to divide the degree of the natural character of GG, which is a
contradiction. If K = Q[wig], one similarly gets that G = 5 00,19[*C19-Cs]s.
Now assume that K = Q[f#;]. Then 7 divides the order of G. Since the
possible normal 2- and 3-subgroups have no automorphism of order 7, one
has either Ly(7) < G (which is dealt with above) or O;(G) = C7. In the last
case Q[(7] is a maximal subfield of Q and the centralizer C¢(C?) is a centrally
irreducible subgroup of GL3(Q[¢7]). Since O7;(G) # C7; x C%, this implies
Ly(7) < G. Completely analogous one finds G = gg,w,3[i0§% 3112 0 SLy(3)]s,
if K = Q[fs]. O

Corollary 13.6 Let Q be a definite quaternion algebra with center K of degree

3 over Q and G a a.i.m.f. subgroup of GL3(Q). Then Q is one of Qg, 03,

Q70075 0T Quproco19- The simplicial complezes ME™(Q) are as follows:
09,00,3[i0§/if—3 314—2 : SL2(3)]3 99,00,3[i09-02]‘;’

0r.00,7[EC . Lo(7)]5

" 67,00,7(2C7.Cal}

wlg,oo,19[i019-06]3 .

simplex a common subgroup
) y,

( 09,00,3[:‘:0% 3172 SLy(3)]3, 6g,00,3[xC9.Col3) i(jg/% 3yt
2 2

( 07,00,7[:‘:0\/7@—7 Ly (73 07,00,7[£C7.Co]}) i0\7/|j§—7 C7:Cs

Proof. Theorems 6.1 and 13.5 give the list of quaternion algebras Q and
the a.i.m.f. subgroups of GL3(Q). Since all simplicial complexes M (Q) for
the respective quaternion algebras Q consist of one simplex it is clear that the
list of maximal simplices in M¥"(Q) is complete. O

14 The a.i.m.f. subgroups of GL,(Q).

Z(Q)=Q

Theorem 14.1 Let Q be a totally definite quaternion algebra with center Q
and G be a mazimal finite primitive absolutely irreducible subgroup of GL4(Q).
Then Q is one of Qo 2, Loo3, Dooss 07 Doo7. The primitive a.i.m.f. subgroups
G of GL4(Q are given in the following table:
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List of the primitive a.i.m.f. subgroups of GL4(Q).

lattice L |Aut(L)| | ri.m.f. supergroups
w,2[2£+4Alt5]2 X A2 28'32'5 A2 ® Eg
002[SL2(3)]1 ® A4 26.3%.5 | A, ® F,
002[2576.05 (2)]4 213.31.5 | F,QF,
o2 ST (556Ds) 29:3-5 | [SLy(5E5) 2+ Alts]g
00,3[‘5:3]1 ® Ay 25.32.5 | (Ay ® Ay)?
.3[93]1 @ Fy 28.33 (Ay ® Fy)?
oo,g[Sp4(3) %03]4 28'35'5 E82
2(3 2
o.a[S Lo (560514 25.32.5 | [(SLa(5) BISLa(5)) : 212
2(3)5
os[SLa(7)]s 20.3.7 | [SLa(7) 5]
005 SL2(5).2]; ® Ay | 2°-3%-5 | A, ® Ey
2
oo,5[SL2(5) : 2]2 ® A2 25'32'5 A2 ® [(SL2(5) DSL2(5)) . 2]8
2 2
00,5[SL2(5\)/% D10]4 25'3'52 [(SL2(5) O SL2(5)) . ?/% D10]16
00,718 L2 (7).2]4 25.3-7 | (Bisg)
00,712.57]4 25.3%2.5-7 | E2

The proof of this Theorem is split up into eight lemmata For the rest of
this paragraph let Q be a definite quaternion algebra with center Q and G a
primitive a.i.m.f. subgroup of GLs(Q). Then G has a complex representation
of degree 8 of which the character values lie in Q. By [Schu 05] this implies
that the prime divisors of the order of G and hence the finite primes, at which
Q ramifies, lie in {2,3,5,7}.

Lemma 14.2 If the order of G is divisible by 7, then G is one of « 3[SLa(7)]4,
00,7[SL2(7).2]4, or 00,7[2.57]4.

Proof: Assume that 7 divides |G|. Since O7;(G) = 1 and the possible normal
p-subgroups of G have no automorphism of order 7 (cf. Chapter 8), G contains
a quasi-semi-simple normal subgroup N of order divisible by 7. According to
[CCNPW 85] N is one of SLy(7) (2 representations) or 2.Alt; (cf. Table 9.1).

If N is conjugate to SLy(7), where the enveloping Q-algebra of N is Q‘é;i%,
the group N is already an absolutely irreducible subgroup of GL4(Qx 3). One
computes that G = N = 4 3[SLa(7)]a.

Next assume that N is conjugate to SLy(7), where the enveloping Q-algebra
of N is Q[v/-7]***. Then the centralizer Cg(N) embeds into Cgixa(N) =
Q[V/-7] hence is +1. Therefore G is isomorphic to SLy(7).2. Since there is an
element z of order 7 in G, such that x(z) € Q for all irreducible characters
x of G and x,(x) = —1 for the natural character x, (of degree 8) of G,
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Theorem A of [Fei 83] implies that Q can only be ramified at co and 7. Let
M denote the maximal order in Q 7, which is unique up to conjugacy. Then
N fixes up to isomorphism 5 IM-lattices, three of which form a set of normal
critical lattices (in the sense of Definition 2.7), and a one dimensional space of
Hermitian forms. The automorphism group on the 3 normal critical lattices
IS 00,7[SL2(7).2]4 whereas the automorphism groups of the two 9N-lattices,
which are not invariant under the outer automorphism of N are conjugate to
%,7/2.57]4. One concludes that G is conjugate t0 o 7[SL2(7).2]4 in this case.
If N is isomorphic to 2.Alt7, one concludes as above that G = N.2 and Q
is isomorphic to Q7. Since N contains the subgroup SL,(7) of the last case,
one gets that G is conjugate to o 7[2.57]4 in this case. O

We now may assume that seven does not divide the order of G. Hence the
only finite primes on which Q ramifies lie in {2,3,5}.

Lemma 14.3 If G contains a quasisimple normal subgroup N isomorphic to
2
Spa(3), then G is o 3[Spa(3) OCs]4.

Proof: Then G contains the normal subgroup B°(N) = Sp(3)oC3 = NCg(N)
of index 2. Since there is an element z of order 3 in G, such that x(z) € Q
for all irreducible characters x of G and x,(z) = —1 for the natural character
Xo (of degree 8) of G, Theorem A of [Fei 83] implies that Q@ = Q3. Let
M denote the maximal order in Q 3, which is unique up to conjugacy. N
fixes only one isomorphism class of 91-lattices and a one dimensional space of
Hermitian forms and therefore at most one a.i.m.f. supergroup. One computes

that G i oo3[Spa(3) OICs)a. 0
Imediately from Corollary 7.6 one gets:

Lemma 14.4 If G contains a normal subgroup N isomorphic to Alts, then G
1S 002[SL2(3)]1 @ Ay or o0 3[Ss)1 @ As.

Lemma 14.5 G does not contain a normal subgroup SLy(9).

Proof: Assume that SLy(9) =2 N < G. Then the restriction of the natural
character of G to N is 44, (or 4x4) and the centralizer C' := Cg(N) embeds
into Cgaxa(NN) which is an indefinite quaternion algebra C with center Q. Since
the two outer automorphisms of N, not contained in Sg < Aut(N) interchange
the two characters x4, and x4, the group G contains CN of index < 2. Since
BO(Cg o) SLQ(Q)) = 03 @) Sp4(3) one has 03(0) =1 If G = CN, then C
is an a.i.m.f. subgroup of GL;(C). Hence by Corollary 6.2 C = Q?*%, Q
Qws, C = Dg and G = 3[SL2(9)]2 ® Dg is imprimitive and contained in
00.3[9L2(9)]3. Hence G contains CN of index 2. Since O3(C) = 1, one finds

05(C) = Oy and G = CEV, is contained in o,0[21+5.05 (2))a. 0
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Lemma 14.6 If G contains a normal subgroup N isomorphic to SLs(5) then

] 2 % 2§3% _
G is one Of OO,Q[SLQ(5D:§> 28]4; 00,3[5[42( 3]4, 00’5[SL2(5).2]2®A2, 0075[SL2(5) .
2]2 X Ag, or 00’5[SL2(5\)/:§ D10]4.

Proof: By Table 9.1 the restriction of the natural character of G to N is
4(X24 +x2v). The centralizer C' := C(N) embeds into C := Cgaxa(N) which is
a indefinite quaternion algebra with center Q[v/5]. Moreover, the center of the
enveloping algebra QC'N is Q[v/5] and G contains C'N of index 2. With Lemma

2.14 this implies that dimg(QCN) = 32. Therefore dimg,/5(Q[vV5]C) = 4.
One concludes that C is isomorphic to Q[v/5]2*? and C' is one of Dig, S3, or
Dg. Let a be an element of G — CN. In the first case, o does not centralize
C. Computing the two possible extensions C'N.2 = G one finds that they are
isomorphic and G is conjugate to 00,5[SL2(5\)/E5£2 Digl4 in this case. In the other
two cases one has two possibilities: Either a centralizes C or it induces the
unique non trivial outer automorphism of C. If « centralizes C' one concludes
that G is one of 5[SLa(5).2]a @ Ag or o0 5[SLa(5) : 2] ® As, since the two
groups oo5[SL2(5).2]2 ® Dg resp.  oo5[SL2(5) : 2] ® Dg are imprimitive and
contained in o 5[SLa(5).2]3 resp. 0 5[SLa(5) : 2]5.

If o does not centralize C, one finds in each case two non isomorphic
extensions: 00,3[SL2(5Q2§.)’§'3]4 and a proper subgroup of o 3[Sp4(3) %153]4 resp.
OO,Q[SLQ(Btfgbgh and a proper subgroup of 2[217%.05(2)];. Hence G is

conjugate to oo’g[SLQ(5D%:g‘3]4 resp. OO,Q[SLQ(5[)%?)8]4 in these cases. O

Lemma 14.7 If G does not contain a quasi-semi-simple normal subgroup then

05(G) = 1.

Proof: Assume that O5(G) > 1. Then Os5(G) = Cs. Since Q[(5] splits all
possible quaternion algebras Q (which are Qu 2, Qoo,3; Qoo5, a0d Qoo 23,5 Since
by Lemma 14.2 ramification at 7 is excluded) the centralizer C' := Cg(O5(G))
embeds into Cgaxa(05(Q)) = Q[¢5]**%. Moreover G contains C of index 4.
Applying Lemma 2.14 two times, one sees that the enveloping algebra QC is
isomorphic to Q[¢5]**2.

If O3(C) # 1 then C is one of +C5® S5 or Cs®S;. Since the outer automor-
phism groups of S; resp. £S5 are 22 C, and Q is totally definite one concludes
that G contains one of the groups Qs ® S5 or Dy ® S5 of index 2. Computing
the possible extensions one finds that G is not maximal finite but contained

in o 5[SL2(5).2]a @ A2 and o 5[SL2(5) : 2|2 ® Ag resp. o« ,3[SP4(3) |23C3:|4 and
2(3 ~ 2
o[ SLa(3395)4 0r a0 3 Ss1 @ Ay resp. x5S L2(5) Diols.

If O3(G) = 1 then C is either Dg or SLy(3) and as above one finds
that G is a proper subgroup of o 5[SL2(5).2]3 and o 5[SL2(5) : 2]3 resp.
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2(2 2
e2[2175.05 (2)]4 and oo [ SLa (D)4 oF w02 SLa(3)]:®As resp. e[S a5 Diola.
O

Lemma 14.8 If G does not contain a quasi-semi-simple normal subgroup,
O5(G) = 1, and O3(G) # 1, then G is conjugate to o[22 Alts]o ® Ay or

00,3193]1 ® Fy.

Proof: Assume that O3(G) > 1. Then O3(G) = Cs. Since Q[(3] splits all
possible quaternion algebras Q (which are Qu 2, Quo,3; Qoo5, and Qo 2,3 5 Since
by Lemma 14.2 ramification at 7 is excluded) the centralizer C' := C(O3(G))
embeds into Cgixs(O3(G)) = Q[¢(3]**2. Moreover G contains C' of index 2.
Lemma 2.14 implies that the enveloping algebra QC is isomorphic to Q[¢3]**%.

With Theorem 8.1 one finds that Oy(G) is one of Qg, Qs © Qs, or Qs & Ds.
and C is one of C3 ® GLy(3), Cs0 Sy, C3® Fy or Cy 0214 Alts. Constructing
the possible extensions one gets that G is either one of the two groups in the

lemma or a proper subgroup of ,2[2:7%.04 (2)]s or « 3[SP4(3) |2303]4. a
Proposition 8.9 yields the following:

Lemma 14.9 If G does not contain a quasi-semi-simple normal subgroup and
O,(G) =1 for all odd primes p, then G is conjugate to 2[2275.0g (2)]4.

Proof of Theorem 14.1 Assume first that G contains a quasi-semi-simple
normal subgroup N. According to Table 9.1 N is one of Alts, SLy(5), SL2(9),
SLy(7) (2 representations), 2.Alt;, or Sps(3). These cases are dealt with in
Lemma 14.4, 14.6, 14.5, 14.2, respectively 14.3. The remaining three lemmata
treat the case, that G does not contain a quasi-semi-simple normal subgroup.
O

Theorem 14.10 M} (Qu2) is as follows.
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o022 Alts)3

00,2[2£+4.Alt5]2 X AQ

00,2[SLa(3)]1

w2[2540.05 (2)]4 (202[SL2(3)]1 ® 45)°

¢ 502[SL2(3)]1 ® A4

¢ 00,2[5L2(5D%%8]4

List of the maximal simplices in M (Quo2)

simplex a common subgroup

((co2[25 1 Alts]5, co2[SLa(3)]1,

22170.0g (2)]) Ds ® Dy ® Qs
2 2(2

02254905 (D4, 002 SL(53Ds)a) QiDs

( 02[SL2(3)]1 ® A2)?, ,2[217.04 (2)]4) ((S3 x S3) ® SLy(3)).2

(002[SLa(3)]1 ® As)?, o027 Alts]o ® As) | Ao ® Dg ® Qs

o022 Alts)3, so2[21*. Alts] ® As) (C5 02[%’%8

—~ |||

Proof: The list of a.i.m.f. subgroups of GL4(Qw 2) is obtained from Theorems
14.1, 12.1, and 6.1. The vertex «2[SL2(3)]; ® A4 forms a component by its
own, as it may be seen from the proof of Theorem (VI.13) in [NeP 95]: There
it is shown that for every absolutely irreducible subgroup U < GL15(Q) of
Aut(F; ® Ay) the degrees of the 5-modular constituents of the natural repre-
sentation of U are divisible by 4. Assume that there is a common absolutely
irreducible subgroup V' < GL4(Quo2) of 2[SL2(3)]1 ® A4 and one of the
other a.i.m.f. subgroups of GL4(Qw2). Let H = SLy(3) be the unit group of
the endomorphism ring 90t of the V-lattice o 2[SL2(3)]1 ® As. Then the group
HoV < GL6(Q) is an absolutely irreducible subgroup of Aut(F; ® A4) acting
on the Z-lattices of the r.i.m.f. supergroups one obtains from the 9-lattices
of the a.i.m.f. supergroups of V. Hence H oV fixes a 5-unimodular Z-lattice
or a Z-lattice with elementary divisors 2%-5° contradicting Theorem (VI.13) of
[NeP 95].
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Now consider the vertex G := OO,Q[SLQ(Btfgbg]LL. The minimal absolutely

irreducible subgroup of this group is easily been seen to be Qi%%g. Since the
only other a.i.m.f. supergroup of this group is o 2[27%.04 (2)]s, the list of
maximal simplices in M}"(Qy,2) with vertex G is complete.

To finish the proof it remains to show that there are no other simplices
with one vertex G := ( OO,Q[SLQ(3)]1 X A2)2 or H = 00,2[21_+4.Alt5]2 X A2
and one vertex in { o o[21T* Alt5]2, 02[SL2(3)]], 002(2570.05(2)]4}. Assume
that there is such an additional simplex and let U be an absolutely irreducible
common subgroup of the groups belonging to the vertices of the simplex. First
assume that one of the vertices of the simplex is H. Let 9 be the maximal
order in Q9 and L € Zgp(H) be a natural M-lattice of U. For p = 2 and
3 let L, be the full preimage of the Sylow p-subgroup of the finite abelian
group L# /L. Then for both primes p = 2 and 3, the 9t/pMU-module L,/L
is not simple, hence U fixes a M-lattice M, with L C M, C L,. Computing
the stabilizers in H of all the possible lattices one finds no such absolutely
irreducible group U. In an analogous way, one checks the completeness of
the list of maximal simplices in M} (Qw2) With vertex G. Since the unique
G-orbit of lattices M, having an absolutely irreducible stabilizer Stabg (M)
satisfies My ~ oo 2[217* Alt5]; ® Ay one concludes that every simplex with
vertex G not listed in the Theorem also contains a vertex H. Therefore the
list of maximal simplices in M7 (Q2) with vertex G is complete. a

Theorem 14.11 M| (Qu3) is as follows.

2
0.319P4(3) OC 2(3

315ps o[ Lo (558 )
* 50,3531 ® Ay

%
woalSL(9)2 + oslSsl ® F

0073[SL2(3D:2£‘;]§ 00,3[93]1

List of the maximal simplices in M (Qy, 3)
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simplex a common subgroup

2(2) 19 G 14 .
(sl SLo(BFLR woalSlly CLy(3) ® &
00,3[93]1 @ Fi, 00,3[SPa(3) OCs]4, )

(s03SL2(9)2, cos[SLa(3 KR wos[Spa(3)BCs)) | Ds® 8,
((00,3[55)1, 00,3SL2(9)]3) ((2C5 x C3).Cy) 1 Cy

(o051SPs(3) E1C314, ool SL(5585]) Qe

Proof: The list of a.i.m.f. subgroups of G'Ls(Qx 3) is obtained from Theorems
14.1, 12.1, and 6.1. The group o 3[SL2(7)]s forms a simplex on its own, be-
cause it is minimal absolutely irreducible. The minimal absolutely irreducible
subgroups U of 00,3[5’3]1 ® Ay either satisfy U = Alts or U = S3® Cs : Cy.
In both cases U is no subgroup of one of the other a.i.m.f. groups. The

minimal absolutely irreducible subgroup of oo,s[S'Lg(!é[%;3 3]s is Qg&%g and

its only other a.i.m.f. supergroup is o 3[SP4(3) I2HC3]4. To prove the Theo-
rem it remains to show that the list of maximal simplices in M} (Q,3) with
vertex G := 3[SL(9)]3 is complete. Assume that there is an absolutely
irreducible subgroup U < G such that the a.i.m.f. supergroups of U lie not in
one of the two maximal simplices in M (Qy 3) with vertex G listed in the
Theorem. Then U embeds into one of 00,3[5’3]‘11 or 0073[5’3]1 ® F, and hence
the order of U is not divisible by 5. Moreover U contains a normal subgroup
N <U of index 2, such that the restriction of the natural representation A of
UtoNis Ay = Ay + Ay with Aj(N) < 43[SL2(9)]2 absolutely irreducible
(1 =1,2). Therefore A;(N) is one of the two absolutely irreducible subgroups
of .3[SL(9)]2 of order not divisible by 5, which are Sy and (+C3 x C3).Cy. By
Lemma 2.14 one also finds that the enveloping algebra QN of N is Q356 Q273.
Hence A; and A, are inequivalent. Let 9 be the maximal order in Q4 3 and
L € Zon(A1(N)).

If Aj(N) = (xC3 x C5).Cy, then 2L is a maximal 9MA;(N) sublattice

of L. Hence U can not embed into one of 00,3[5L2(3D:28‘)3]§ O 003[S3]1 ® Fy.

Therefore U is a subgroup of  3[Spa(3) %03]4 in this case. Since this primitive
a.i.m.f. group has a normal subgroup = Cj, there is a normal subgroup N
of U of index 2 such that QN; = Q[v/-3]*** Therefore Ny NN =: N, is a
normal subgroup of index 2 in N such that the enveloping algebra QA (Ns) is
Q[v-3]>*2. But A;(N) has only one subgroup of index 2 and the enveloping
algebra of this subgroup is isomorphic to Qs 3® Quo,3 Which is a contradiction.

Hence A;(N) = Sy. If p3 denotes the maximal ideal of 9 containing 3,
then L/pL is a simple FgA;(N)-module. Since A; and A, are inequivalent,
one concludes that U can not fix one of the 9i-lattices of 00,3[5'3]1 ® F, or

00,3[513]11- O

Theorem 14.12 M (Qw5) is as follows.
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00,5[SL2(5) : 2]% 00,5[SL2(5) : 2]2 Q A,
o05[SL2(5).2]3

2
00,55 Lo (5\)/% D)4 00,55 L2(5).2]s ® As

List of the maximal simplices in M (Quo 5)

simplex a common subgroup
) 2

( 00,5[SL2(5).2]3, 00,5[SL2(5) : 23, oo,5[SL2(5\)/% Dio)s) Q@% Dy

( 00,5[SL2(5) : 2]2 & AQ, 00,5[SL2(5)2]2 (024 AQ) (iC5.C4) X AQ

Proof: The list of a.im.f. subgroups of GLs(Q5) may be obtained from
Theorems 14.1, 12.1, and 6.1. To see that the list of maximal simplices in
M} (Qy.5) is complete, one has to note, that the minimal uniform subgroup
of both groups 0075[SL2(5) : 2]2 ®A2 and 00,5[5112(5)2]2@142 is (i05.04)®A2.
Since this group does not embed into one of the other 3 a.i.m.f. groups one
easily deduces the Theorem. O

Theorem 14.13 M/ (Qu7) is as follows.

2.5 wor[SLa(7).2]4

Proof: By Theorems 14.1, 12.1, and 6.1. M}"(Q 7) has 2 vertices. These two
a.i.m.f. groups have no common absolutely irreducible subgroup since both
groups are minimal absolutely irreducible as one sees from the list of maximal
subgroups of the two groups given in [CCNPW 85]. O

Z(Q) real quadratic.

Theorem 14.14 Let Q be a definite quaternion algebra with center K, such
that [K : Q] = 2 and G be a primitive a.i.m.f. subgroup of GL4(Q). Then G
1s conjugate to one of the a.i.m.f. groups given in the following table:

List of the primitive a.i.m.f. subgroups of GL;(Q), where Q is a definite
quaternion algebra over a real quadratic field. The table is built up as the
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one in Theorem 12.17 except that the different conjugacy classes of maximal
orders in @ are not separated by dashed lines but enumerated as Oy, O, ...
if there is more than one class.



V.ol Sali ® Aq (27-32-5)
(Fr® Ay)?, Es @ Ay

\/5,00[21:“4.55]2 ® Ay (2°-32%-5)
(Es ® A2)2; (Fy® A2)4

~3[SLa(9]: ® g[Digls (27-37-5)
(SPu(3)8,, Spa(3)) : 28Cs]sa, [SLo(9).85) 21+ Al

005[SL2( ) 2 ® s3Diel2 (27-3-5)
[SLo(555) 2149.05 (2, [SLa(555) 2. At

205 @) 2], (255)
[21+10 O+( )]32’ (F4®F4)2

2(24v2)
V3,002,303 =) 4@ Digla (28-3%)
Ega (F4®F4)

2(2+v2
\/_0023[03 05, 0 Q1els (2°-37)

(A2 ® Eg)?, (A2 ® Fy)*

2+f
V02,59 L2(5) %1641 27-3-5)
(ED)

2+f
Ve alSLa(5) oD1sles (27-3-5)

([(SL(5 )DSLa( ) : 2ls)

202+
V3,00,2,5D10 EX>8216 Ja (2°-5)
(A3)

Vool @2a1 ® Ay (2°-3%-5)
(A1 ® A2)*, (A4 ® Fy)?
F, Ay ® As, B3 ® Ay

O,
O,

olSLa(7) : 20 (Z-37)
1SLo(7) EB s, [SLo(M8) | (SL2(3) BCy)

[(SLa(3) 0 Ca).B) SLy(T o, [SLa( (7)), SL:O))ke

O,
O,

V3ol SPi (B8, Ol (2°:37-5)
EY, [(Spa(3) o o, SLa(3)s
Fi® B, [(Spa(3 )@r Sps(3)) : 20C]s,

O,
O,

005[SL2( )2l ® 5[Dadl (26'?;23;)5) )
[(SL2(5) S Ly (5)) - 214, [5L2(5Q§>3 (SL2(3) OCs)]5s
]

[(SLy(5) '%]SL2(5)) 28 @ Fiy, [SLZ(E‘@ (Spa(3) I%|03)]32
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Vol Ds ® Ds ® Ca.S Gl (211-3%-5)
(Fi®F4)?, (A; ® Ey)?
(Fi®F) ® Ay, [217°.05,(2)]s

VoolSLa(5) 57 By, (26.32.5)
2
[SL2(5[I§>) 216 07 (2)]39, [SLQ(Bnga) 21+ Alts]is ® Ay

S, (5o>:%) 2+ ALty 2y, (((SLa(5) DSL(5)) - 20s ® Ay

V0ol D16%Qaal (2°-3-5)

[(SLa(5) © SLa(5)) : B Diol3g, [Dzo-(Ca x Ca)

2 2
[Cus : O, [274 Alts® SLa(5) Dol

foo[SLz( )h ® Fy (2°-3%-5)
(SL(5) BSLa(5)) : 21 ® Fi, Fi ® By

Vool SL2(5 )\/ng0]2 ® Ay (2°-32.5%)
[(SLa(5) 0 SLy(5)) : 2\%21710]16 ® A

foo[SL2( )]a (2%-3%-5)
[SLa(9 )DSLz( )32, ([4-L3(4).2%]32,1, [4.L3(4)-2%]52,0)

00,3[SL2(9)]2 ® V5[t D1ol2 (2°-3%-5%)
[SLy(9) ® D1g DSLQ( )]32

V5ol (SL2(5) 0 SLy(5)& SL(5)) : Sala (2%-3%-5%)
[((SL2(5) 0 SLy(5 ))E (SL2( )0 SLy(5))) : Salsas (1 =1,2)

):
w03[SLa(3) 603]2@9 Js[=Digly (2°-32-5)
(SL2(5)8, DioBs, (SLa(3) BCy) sy

w227 Altsl, ® s[*Diolz (25-3-57)
2(2)
(21 Alts® | 51,2(5)@3 Diolss

oolSL2(B)18, 55088, SLa(3)] (2°32-5%)
[(SLa(5) © SLa(5)) : 2 Duolis

Vool SL2O, y5a5[CEEDs]s (2°-3-57)
Eg, [(SLa(5 )DSLQ( ) : 23

Vo5 Ry (28-32.5)
(A4 ® F4)2

ViooslCER) 2174 Alts], (25-32:5)
(R&F)?, [SL2(5E)§>) 21+ At 2,

7



2
Vo025 CEBDsls ® A, (2°-3-5)
(42 ® Ay)*

Voco2slC88) SLa(3)] ® Ay (2°-3:5)
(Ay ® Ey)?, (As ® [(SLo(5) B1SLy(5)) : 2]s)?

VooaslCER (CBSDy)]sy (2°-3:5)

[D130.(Cy x 02)]%6

Voe2slC88) (SLo(3) OCy)s (2°:37-5)
[(Sps(3) © CaJi. SLa(3)]Rs, [SL2(555, (SL(3) Gy,

O,
0,

Vooss| BB Lo(9)]s (2°-32-52)
[SLo(9)6 SLa(9) : 212, [SLa(5)8 SLa(9)]

[(Sp1(3)8; Spa(3)) : 28C3]in, [SLa(5385p4(3) 13

O,
O,

206) =
\/5,oo[SL2(5)]1@g \/5,5,3[613%, S3la (2°-3%-5%)

[(SLa(5) 0 SLa(5)) : B Duolfs

[(SLa(5) 0 SLy(5)) : B Dol

O,
O,

ool SLa B, a5l (C5585], (2°-32-52)
(A2 ® Eg)?, (A2 ® [(SLa(5 )ESLz( )) : 2]s)?
(Ay ® Eg)?, (A ® [(SLa(5)OSLy(5)) : 2]5)?

\/5,00,5,3[053? (5152—%’2278)]32 (2°-3-5)

[D120 (04 X 02) %6 [015 Cﬁé% 32
[D120 (04 X 02 %6

O,
0,

fw53[c‘~g\él CE%’% )32 ( 2 -3-5)
(SLy(55) 2+ Altss, (FAGF,)?
[SLy (5[1;%) 21+ Al 2, (Fu&FL)?

O,
0,

fm[agéz (SLa(3) OCy)]a (2°-37-5)
[(Spa(3) © CoJ SLa(3)s, [SLa(38, (SLo(3) BCy)[Es
[(Spa(3) 0 CJ. SLo(3)fEs, [SLo(558, (SLx(3) ECs) s

3

Kt

Vo053l OB S La(3) OCy) (25-32-5)
(A4 ® F4)2
(A4 ® F4)2
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foozs[agél (S5 ® Dy)]sa (2°-3-5)
(EY), ((SLy(5) BSLy(5)) : 2J4)

\/5,00,2,3[053&’ S3 ® Dg)]sz (2°-3-5)
((A2 ® Ag)Y)

foozz-;[ag%?) C&’Qb )32 (2°-3-5)
Do (Ca x o)l [((SL(5) o SLa(5)) : B (G0

xfoo23[a‘5§% C@’% )32 ( 2 -3-5)
(SLa(55, 2. AltsJ3y)

fom[c@ S5® SLy(3))]s (2°-32:5)
(42 ® Fy)?), (42 ® [(SLo(5) OSLy(5)) : 2ls)?)

xfoo23[a«5%1 S3® SL2 3)4 25 3%:5 )
[((SL2(5) 0 SLy(5 ))Z (5L2(5)°5L2( ))) : Salaza

foo23[a§§’ SL? 03 (25 3%-5 )
(AL ® Fy)?)

Voo2alCB8) (SLa(3) BCy)); (2°-37-5)
(SLa(555, (SL2(3) BCy)3)

\/é,oo[(SLZ(g) ® Dg).2]4 (27-32-5) ,
[21710.07,(2)]s2, [(Sp4(3 )® Spa(3)) : 20Cs]3,

[(Sp4(3)% Spa(3)) : 2I:‘03]32 Eg

(Fs@F,)2, [SL(9 )2_%) 91+4 Alts]a

\/6,00[(53 ® 214, Alt5) 2], (2°-32-5)
(A2 ® Eg)?, [21110.0/,(2)]32

(4 @ Ey)?, [SLZ(a)z%) 21+ Alt:]2
(Fu®F,)?, Ay ® Fy®F, [SL2(5D§’2) 21+6 Og (2)]32

Vool (53 ® Fy).2]4 (2°-3%)
(F@F)?, Ay ® Fi®Fy, [SL2(5[)§) 216,05 (2)]52

(A ® Fy)*, (F4®F),)?
(A2 ® Eg)?, [2171°.01,(2)]52
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O,

0,
Os

Vo2 Al Cy)y (2°-32.5.7)
Eél: (F4®F4)25 [2"4“&\2%}3—) 513]2

2 2(3)
(2. Altgd 2.Altr) : 2]y, [2. Amq—%&
F,; ® E, [2£L+10-O+ (2)]32

(SLs(3) B1Cs)]s

Voo SLo(TE Culu (25-3-7)

(FA®F)2, [SLo(T5) Salls

[SLo (TP, 2. Al [SLo(1) (STa(3) BC)Lss
[21+10 O+( )]

\/—OO[SLQ(5)X Digls (27-3- 5)
EY, [(SLa(5) BSLs(5)) - 2J3, Fy ® [(SLs(5 ) Ly(5)) : 2Js,
Fi ® Ey, [(SLa(5) 0 SLy(5) Q\éz (CDg)]30.4(i = 1,2)

[SLa (559, 214505 (2)]s, [(Sp4( )&, Spa(3) s 2E1C]ss
(F4®F4)2 [5L2(5D§’ (5pa(3) BCs)az, (27005522,
[SLy Qz%? 21+ Al ], [SLQ(sgg%) 21+ At ]2

~J
~J

Vio00 D1 54]24 (2°-3-5) ,
[SLy(9) ® D1gOSLy(5)]s2, [(SLa(5) o SLa(5)) : 2 Diolis,

(2144, Alt5®), SLa(5 5)p Diolsz, [(SL> ()@ Dmgié? (SLa(3) B1C3)]2
(A4 @ Fy)?, A4 ® Es, [C15 - C1Z_§>’fl“4]32

~Y
~J

U500 SLa(5) Dol (2°-32-5)

(42 ® Eg)?, [(SLa(5) 0 SLs(5)) : 8 (Co3Ds)lsn
Ay ® (F4QFy), [SL2(5'1§’ (Sp4(3 )[2:'03)]32

B2, [SLy(3) 2+ Alt 2,

E, [SL (5@2;@2 Vot A2,

(Ao ® Eo 2, [SLo() (CBSLa(8)]

(Fa®Fy)%, [(SLs2(5 )DSL2(5)) : 23
[21410.085(2)]32, Fi ® [(SL2(5) BSLa(5)) : 2Js
[SLa(55) 249,05 (Do, 1 ® By
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U0l SLa(5) Dol (2°-32.5)

O1 (A2 [(SLo(5) OSLa(5)) : 2%, [(SLa(5) 0 SLa(5)) : B (CaDi) s

0, [SL (5[)3% 25 Alts]ig ® A, [(Spa(3)8; Spa(3)) : 2 603]32

Os (FOR), [(SLa(5)BSLa(5)) : 24

O, (Fi®Fy)?, [(SLz( )DSL2( ) : 2lg

05 (4> ®[(SL>(5) BSLa(5 )) b [SLa (555, (Sps(3) BCs)Lss

Os [SL 2(5g§> 21+ Alts)2,

0. ISL <so§> 215005 s 6 F

Os [2110, 01 (2 )z, F1 ® [(SLo(5) BSLy(5)) : 2s

5,00[SL2(5)Z Dyylsz (28-3%-5)

0. Fy® Es, [(SLa(5) 0 SL(5) z% (CsDs) 321

O [257°.05(ls2, Fi ® [(SL2< 5) 1S Ly (5)) - 2)g

O (A2 ® [(SLa(5) ISLs(5)) - 2]s)?, [(Spa(3 )003)‘2' SLy(3)]is

Or (A2 ® [(SLo(5)DISLa(5)) - 20s)?, [(Spa(3 >o03>g SLy(3))%

Os (Fi®F))?, [(SLa(5) S La(5)) - 204

O (A>® Ey)?, [SLa(538, (SLa(3) B1Cs) s

Or 4 ® F@E, [SL5, (Sp4(3) 505 s

Os  [SLy(5f8) 2+ Alts)io ® A, [(Spu(3)8; Spi(3)) : 28Cs,
VIB.00 [SL2(5)Z Doylas (26-32-5)

01 Fi® [(SLy(5)BSL(5) : 2, [(SLa(5) 0 SLo(5)) : 85 (CuDs)faaa

O [SL2(5§’2) 2!1%6.05 (2)]2, Fu ® Eg

Os (As ® Ey)?, 5[)_%?’ (SLy(3) ch

O (420 By’ [SLz(sggé (LB,

Os EZ, [SL, (5@52?) 21+ Alt]2

Os (4 ® [(SLx(5) BSLa(5)) = 20s)?, [(Spa(3) o Cd SLx(3)]3,

O7; A® [SL2(5D§> 214 Alts)is, [(Spa(3 )®3 Spa(3)) : 212]03]32

Os Ay ® F1®F,, SL25[)_§3 (Spa(3) B1C3)]30




\/—500[D1d2 Qaala (25 3-5)

O, [2' Alt5® 5'112(5)Z D132, [(SLa(5) 0 SLa(5)) : ZJE;DIO]%S
O, [21H4. Alt5® SL2(5)IZ Dypl32, A4 ® Eg
Oy [Diso-(Cs X Co)l2s, (A2 ® Ay)*
Oy [Digp.(Cy x Co)lis, (A2 ® Ay
05 [21H.Alts® SL2(5)IZ Digls2, (A4 ® Fy)?
O [D120.(Cy % C2)]1sa (A2 ® Ayt
Or A ®A®F,, [Cs: 614__2%)2}'4]32
O A2®A® F4, [C5 : Cngh]w
\/goo[Dle Q24]42 (25 3 5)
O, [21+ Alt5® 5142(5)X D1gls2, [(SLa(5) 0 SLy(5)) : 2\/%21)10]%6
Oy A @AL® F4, [C5 : CTZ_%}}' J32
Os  (Fi® Ax)?, [(SLa(5) 0 SLu(5)) : B Duolis
O1 (Ac® Fy)?, [(SLo(5) @ SLu(5)) : 24 Duolls
O5  [Dia.(Ca x Co)lis, [(SLa(5) 0 SLa(5)) : 3¢ Duolis
Os  (Fi® Au)?, [(SLa(5) 0 SLa(5)) : 24 Diolis
O; [2t+ Alt5® SL2(5)2 D1g)32, A4 ® Eg
Os [21+ Alt5® SL2(5)IZ Diolss, A4 ® F
OO[SLQ(17)]4 (25 32.17)
[SL2(17D:2§:)’,]32,1'(¢ =1, 2)
Va1.oo[2- Al Cyly (2°-3%-5.7)
01 (A ® By, [2.Altls, [2AUED, 537
0 [2171°.05(2)]s [(Q.A%mf_? 2.Alt7) : 23
[ SL(T Cala (2-3%1)
O [SL(Tig, Sif
0y [SLy(TfE 2. Altr]s
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In this table, the symbol ~ means that the r.i.m.f. supergroups acting on
the O3G- and O4G-lattices are the same as the ones for O,.
The proof is split into 12 lemmata which are organized according to the
different candidates for quasi-semi-simple normal subgroups and normal p-

subgroups.
bra with center K and G be a primitive a.i.m.f. subgroup of GL4(Q).

For the rest of this section let Q be a definite quaternion alge-
As-
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sume that 1 # N < @ is a quasi-semi-simple normal subgroup of G. By
table 9.1 and Lemma 7.2 N is one of Alts, SLy(5), SLs(5) 0 SLy(5), SLs(5) o
SL2(5)(\87g SLy(5), SLa(7) (2 groups), SLy(9) (2 groups), SLy(17), 2.Alt7, or
Sp4(3) = 2.U4(2).

The first lemma deals with the absolutely irreducible candidates for normal
subgroups NV:

Lemma 14.15 If G contains a normal subgroup N isomorphic to SLs(9) with
character xs, (or Xsp) resp. SLo(17) with character xsa (or Xsv), then G is
conjugate to sz . [SLa(9)]a resp. /77 0o[SL2(17)]a-

If G contains a normal subgroup N conjugate to SLo(5) o SLQ(E'))@5 SLy(5)

then G = \/g,oo[(SLQ(E)) e} SLQ(E))% SL2(5)) . 53]4.

Proof: In both cases N is already absolutely irreducible. One computes that
G = B°(N) is maximal finite. O

The next two lemmata deal with primitively saturated groups:

Lemma 14.16 If G contains a normal subgroup N = Alts with character x4
then G is one of j5.,[S4]1 ® Ay or 5 [Q24]1 ® Au.

Proof: By Proposition 7.5 G is of the form Ay ® H, where H < GL,(Q)
is a primitive a.i.m.f. group. Hence by Theorem 6.1 H is one of \/5,00[5'4]1,
Vool @2a]1, 01 5 [SLy(5)]1. The lemma follows because G = 5  [SL2(5)[:®
Ay is contained in 5 [(SLy(5) o SL2(5)@5 SLy(5)) & Ssa- O

Lemma 14.17 N is not conjugate to SLy(5) o SLy(5).

Proof: Assume that G' contains a normal subgroup N = SLy(5) 0 SLy(5). The
enveloping algebra of N is Q[v/5]***. Hence K = Q[v/5]. Since B := B°(N) =
SLy(5)0SLy(5) : 2 is primitively saturated over K, the group G = BC, where
C := Cg(N) is a centrally irreducible maximal finite subgroup of GL;(Q).
Hence Q@ = Q 5, = K ® Qx2 = K ® Q3 and C = SLy(5). But this
contradicts Lemma 14.15. a

Now we come to the centrally irreducible groups NV:

Lemma 14.18 IfG contains a normal subgroup N isomorphic to SLy(7) with
character xs then G is conjugate to sz [SL2(7).2]s.

Proof: The group N is a centrally irreducible subgroup of GL4(Q). Therefore
Cg(N) C K is +1. Since G is absolutely irreducible, it contains N of index 2.
With [CCNPW 85] one gets G = 5  [SLa(T7).2]4. O

There are three candidates N, for which the centralizer Cz(N) is contained
in the character field K[x (V)] of a constituent of the natural character of N:
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Lemma 14.19 If G contains a normal subgroup N isomorphic to SLs(7),
2.Alt7, resp. Spa(3), with character Xaq + Xa» then G is conjugate to one of

2 2 2 2
\/?,OO[SLQ(’?)Z 04]4 or \/ﬁ,OO[SLQ(,Y)Z 03]4, ﬁ,oo[Q.AltﬂZ 04]4 or \/ﬁ’oo[Q.Altﬂz 03]4,
2
resp. \/5’00[Sp4(3\)/§%3 Cials-

Proof: In all cases Cg(NN) =: C is contained in the extension of K by the
character values of the natural character of N. Hence in the first two cases
C < K[V/-T]* and C < K[y/=3]* in the last case. In all cases G contains the
normal subgroup B°(N)C of index 2. Since the dimension of the enveloping
Q-algebra of N is 32, Lemma 2.14 implies that C' is not contained in /N. Hence
in the first two cases C is one of Cy or C3 and K = Q[V/7] or Qv/21]. By
Lemma 2.17 there is a unique extension G = (N ® Cy).2 or G = (N ® C5).2
with real Schur index 2. The maximality of these four groups is checked with
Remark 2.6. In the last case, B°(N) = Sp4(3) o C5 has a nontrivial normal 3-
subgroup. The primitivity of G implies that C' = Ci5 and K = Q[v/3]. Again

2 . .
G= \/5700[5'])4(S\E_3 C12]4 is unique. O

In the next case KN is a proper central simple K-subalgebra of Q***:

Lemma 14.20 If G contains a normal subgroup N = SLy(9) with character
X4 then G is conjugate to one of 3[SLa(9)]2 ® 5[Di6l2, 00,3[SL2(9)]2 ®

valD10)2s 50085 CERSLa ()]s, 0r g ol(SL(9) ® Ds) 2.

Proof: Since KN is central simple, by [Rei 75, 7.11] the algebra QG = Q***
is a tensor product Q** = W@ A, where A is the commuting algebra of N,
an indefinite quaternion algebra over K. Let B := B} (N) and C := Cg(N).
Then O3(C) = 1, because B°(N o C3) = Sp4(3) o Cs. Distinguish 2 cases:

a) K = Q[v3]. Then B = 2.S; is primitively saturated. By Lemma 7.5,
G = B% C for some centrally irreducible maximal finite subgroup C < A.
Using the classification of finite subgroups of GLo(C) in [Bli 17], one finds
that C' = Dy, (which contains +S3 and Dg) contradicting O3(C') = 1.

b) Now let K # Q[v/3]. Then B = N = SL,(9) and G contains the normal
subgroup BC of index < 2. Assume first, that C' is a centrally irreducible
subgroup of A. Then A = K?*? by Remark 6.2 and C' < GLy(K) is a dihedral
group with O3(C) = 1. Hence C = +Dsg, D1g, or Dg. In the first two cases C
is an absolutely irreducible subgroup of G Ly(K) for K = Q[v/5] resp. Q[v/2].
Computing the automorphism groups of the NC-lattices one finds that G is
00,3[9L2(9)]2® /5[D1ol2 resp. 00,35 L2(9)]2® 5[Dig)2- In the third case NC =
SLy(9)® Dg is not absolutely irreducible. Since Out(NC') = Cy x Cs, the group
G = NC2isoneof 5. [2.S]o® [Ds]o (and imprimitive), o 3[SL2(9)] ®
v3lDie]2 (leading to a bigger C), or the a.i.m.f. group 5 [(SL2(9) ® Ds).2]4,
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because in each case there is a unique extension with real character field. If C
is not centrally irreducible, then C' is cyclic. The conditions G = NC.2 and

. . 2 |C2
O3(C) =1 imply that C is one of Cg or C5 and G = CEg‘)LQ(9) = Dis ¢ 2.5

or G = CBLy(9). Since 3 is a norm in Q[¢s]/Q[v/2] but not in Q[¢s]/Q[v/3],
the algebra Q is Q 5 in the first case and Q 5, 35 in the second case.
Whereas the second group is maximal finite, the first one is a subgroup of
\/5,00[21_%.0(;(2).2]4. O

The last and most fruitful case is the one where G has a normal subgroup
N = SLy(5). This case is split up into two lemmata according to whether N
is primitively saturated over K or not.

Lemma 14.21 If K = Q[v/5] and G contains a normal subgroup N = SL,(5)
with character xo, (0T X2), then G is \/g,oo[SLg(5)]1% C, where C is one of

2 2 2 2
Fy, 5[D10]2®A,, \/5,3,5[CE§§%]27 ¢5,3,5[CE§%)3]27 \/5,2,5[%538]2, or ﬁ,z,s[CE%)L2(3)]2-

Proof: N is primitively saturated over K = Q[v/5]. Hence by Lemma 7.5
G = NC(C, for some primitive centrally irreducible maximal finite subgroup
C := Cg(N) < D*, where D := Cgax4(N). By the formula in [Schu 05] (cf.
Proposition 2.16), the only primes dividing the order of G are 2, 3, and 5. If
C is not absolutely irreducible in D*, then C' is a maximal finite subgroup of
GL4(Q), because Q[v/5] splits the possible p-adic Schur indices at p = 2, 3,
and 5. Using Lemma 14.16 and the classification of maximal finite subgroups
of GLy(Q) (cf. e.g. [BBNWZ 78]), one gets that G = 5  [SLa(5)]y ® Fi.
Now assume that C' is absolutely irreducible. Then the character field of the
natural character of C is K = Q[v/5]. By Lemma 14.17 and 14.15 C has no
normal subgroup SLs(5) or SLy(5) o SLy(5). With [CCNPW 85] one finds
that C is soluble. An inspection of the possible normal p-subgroups yields
Os(C) = Cs. The centralizer D := C¢(O5(C)) embeds into Cp(C) which
is a quaternion algebra over Q[(5] and C contains D of index 2. Since C is
absolutely irreducible, [Bli 17] yields the possibilities D = +CsE, where E is
one of SLy(3), Ds, S3, or Ss. )
If Cc(E) > +Cj, then C'is one OfiC5.CQ@jl SLy(3), £D1py®Dg, iC%.C’g% Ss,
or =Dy ® S3. Now the first and third groups are not maximal finite, but con-
tained in SL2(5)@7_1 SLy(3) resp. SL2(5)@7_1 S; and the second group is

imprimitive. So G = \/g,oo[SLQ(5)]1@5 5[ED10 ® Ss)y in this case.
If Cc(E) = +Cs, then G = iC&?, for some square free p € Ny;. Since
|Glide(E)| = 2 and the enveloping algebra of F is central simple, the outer

automorphism and p are unique. By Lemma 2.17 there is a unique extension
G in GL4(R), in each of the four cases. O
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Lemma 14.22 If K # Q[v/5] and G contains a normal subgroup N = SLy(5)
with character X2,+x2 then G is conjugate to one of «5[SL2(5).22® 5[Diel2,

2(2+ 2(2+
Vo259 L2(5) §D16 Ja,15 foo25[SL2 ng J42; 00,515 L2(5).2]2® 5[ Dadl2,

2(2+V/3,
V3009 L2(5) 1 b24]4; \/E,OO[SLQ(5)Z Digls, or \/ﬁ,oo[SLz(Eﬂz Doyla; (1 <
i< 4).

Proof: Let A := Cgaxs(IN) be the commuting algebra of N. Then A is an
indefinite quaternion algebra with center K [v/5]. The centralizer C' := Cg(N)

embeds into A with Q[v/5]C = A. By [Bli 17] this implies that C is one of
Dyg or Dyy. In both cases, the outer automorphism group of C' is isomorphic
to 02 X 02.

Assume first that C = Dis. Let Dig = (z,y | 2% 4% (zy)?). Then
Out(D1g) = {a, B), with a(z) = 271, aly) = 23y and B(z) = 23, 8(y) = v (cf.
Lemma 8.5). Then o® = 3? = id, but (a/3)? is the conjugation by z. Since a3
does not fix x, this implies that there is no extension D;¢.2, where a3 is an inner
automorphism. Note that the action of o on the epimorphic image C' is induced
by conjugation with 7(1—z) and hence by an inner automorphism of QC. If y
denotes the outer automorphism of SLy(5), then G/NC induces one of 7, ya,
or v/ on the central product NC. In all cases there are 2 = |H?*(Cy, Z(NC) &
Cy)| extensions NC.2. Only in the last case, they lead to isomorphic groups,
because there is an element of norm -1 in Q[v/2]. Since the group o 5[SLa(5) :
22 ® 5[Digle is contained in 5 [211°.05 (2).2]s the group G is one of

2(2+
the a.im.f. groups o5[SL2(5).2]2 ® f[Dm]g, foo”[SLQ §D16]4 1,

22+
V2,002,519 L2(5) ngG J4,2, or \ﬁoo[SLQ(S)X D1y
The case C = Do, is similar. Here all the groups C.2 exist and one has
8 different groups NC.2, Since o 5[SL2(5) : 2]» ® 5[Daul2 is contained in

\/5700[51’4(3\)/.% C12]4 and one extension SL2(5)2(2+‘/§2)

24 @ proper subgroup of

\foo[Dg ® Dg ® 04.542? (3]s the group G is one of the six a.i.m.f. groups
2(2+\/§ 2

wos[SL2(5):2 ® [ Datls, gl SLa(8)" T8Daals, or g5 oo [SLa(5)8 Dadluy

(1<i<4). O

For the rest of this section we assume that GG does not contain a quasi-semi-

simple normal subgroup. By Lemma 11.2 and Corollary 2.4 one has O,(G) = 1
for p > 5 and O,(G) < C, for p = 3,5.

Lemma 14.23 If G does not contain a quasi-semi-simple normal subgroup
and O,(G) =1 for all odd primes p, then O2(G) = 2% = Dy ® Dg ® Qg and
G= \/5700[21;'—6.05(2).2]4.

Proof: By Proposition 8.9 Oy(G) is one of 217 or Qg 0 Qs ® Q6. In the first
case G = 5 ,.[217°.05 (2).2]4 is maximal finite. In the other case N is already
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irreducible. The Bravais group on a normal critical N-lattice (cf. Definition
2.7) is /5 ,4,[211*.55]5 contradicting the primitivity of G. O

Lemma 14.24 If G does not contain a quasi-semi-simple normal subgroup,
O5(G) =1, and O3(G) = Cs then G is one of 5 [27.55]1 ® Ay,

(2+v2 2(24+v2) ~
V2,00,2 3[03 E§2§4® D16)]4; V2,00,2 3[03 ?54 ° Q16 ]4;
\/g,oo[DS ® Dg ® 045@ 03]4, \/é,oo[(S:” ® 21_+4.Alt5).2]4, or \/é,oo[(S:” ® F4)2]4

Proof: The centralizer C' := Cg(O3(G)) is an absolutely irreducible subgroup
of (Q[¢3] ® 92*2?)* and G/C = Cs,. Table 8.7 gives that Oy(G) = O5(C) is one
of Qs 0 Qs ® Cy, Dg @ Qg, Qg 0 Qg, Qs @ D, Qs% @D, or Qg o Q6.

In the first case K = Q[v/3] and G contains B := B°(0) = 03 ® (O, ® Qg o

Qs)-S¢ of index 2. Hence G is conjugate to \/§7OO[D8 ® Dg ® C4.SGIE? Cs)s in
this case.

If O5(C) = Qs ® Dg, then G contains B = Cj3 o 2 Alts of index 22.
Hence Cg(02(C)) = Ca(B°(02(G)) = £S3, and G is one of the two groups
VEool(S3® 214 Alts).2]4 or \/5,00[21_“.85]1 ® As. Note that in both cases there
is a unique extension with real character field.

In the case O3(G) = Qs o Qs one similarly finds that G contains S; ® Fj of
index 2. Since the group F,.2 ® S5 is contained in V3.00[2110.05 (2) 2]4, G is
conjugate to g [(S3 ® Fy).2]4 in this case.

If 05(C) = Qs ® Dig, then K = Q[v/2] and G contains B = 5’4@5 Dig o

C5 of index 2. If the elements in G — B induce an outer automorphism of

B°(0O4(G)), then G is conjugate to /3, 5 3[C3 2&{ 19, Dyg)]a. If they don’t,

then Cg(02(G)) = +S3 and G is contained in 5 [211%.55], ® As.

Assume now that O5(G) = @s® QD1s. Then K = Q[v/6] and G/B = C,.
Hence there is a unique group G' = B.2 with real Schur index 2. This group is
not maximal finite but contained in 5 [(Ss ® 2'**. Alt5).2],.

In the last case 02( ) = Qg o Q. Now K = Q[v/2] and G = B.2 is

2(2+v2) ~,
conjugate to 5 o 5[Cs +|‘_X> S0 Q16)]1, because Sy 0 Q16 ® S5 is contained in

ValFu2i® o03[S3)1 O

The last and most complicated case is the case O5(G) > 1. In this case
O5(G) = Cs. Recall that we assume for the rest of this chapter, that G is
a primitive a.i.m.f. group of GL4(Q), K = Z(Q) a real quadratic field and
that G does not contain a quasi-semi-simple normal subgroup. As for the case
SLy(5) < G, there are two essentially different situations: K = Q[v/5] and
K # Q[v/5] which are treated separately.
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Lemma 14.25 If K = Q[v/5] and Os(G) = Cs then G is one of \/5100,2,5[61525}1"4]4,

2(2) 2
\/5,0052,5[6@51, 20 Altsls,  wo2[2M1 Alts] ®  [#Dioles 00,3l SLa(3) OCs), @
v5lEDol2,

2 2(6,
Ay ® \/5,00,2,5[0522’22)8]27 \/5,00,2,3[CE§>§3 ® Ds]sz,
26) ~
\/5,00,2,3[615%/ S5 ® Dglsz,

\/5,00,2,5[61%? (CE%%S)]?% \/5,00,5,3[(/15\2%3) (C‘gé’zbs)]?m
ﬁ,m,2,3[61§§)(6§2§i)8)]32,
\/5,00,5,3[515%) (CE2D5)]ss, \/5,00,2,3[05%? (CE2Dg) 5o,

2(3) 2 2(6) 2
\/5,00,5,3[6@’(5[/2(3) OCs)]4, \/5,00,2,3[6@’(5%(3) OCs)ls,

2(2) 2 2(3) 2
VoozslOB8) (SL2(3)BC)t, 5050lC88) (SL>(3)BCH)],

2(6) 2 2(6) ~
\/5,00,2,3[05\%/ (SLy(3) OC3)]4, \/5,00,2,3[05% 538 SLa(3)]a,
2(2 2(6
428 0025088 STy 07 5 00alCER) S5 ® STa(3)s.

Proof: The centralizer C' := C(O5(G)) is an absolutely irreducible subgroup
of (Q[¢s] ®x Q**%)* and G/C =2 C,.

Assume first that O3(C') = 1. Using Table 8.7 one finds that O5(G) =
05(C) is one of Qg o Qs or Qs ® Dg and G contains C of index 2. Since

Q20 ® Fy is a subgroup of ﬁ,w[SL2(5)]1 ® Fy, G is \/5,0072,5[Clg2§>?’4]4 in the first
case. The second case leads to the two a.i.m.f. groups \/5700,275[61%2,) 214 Alts)y
and \/5[D10]2 ® 0072[21_+4.Alt5]2.

Now assume that O3(C) # 1. Then O3(C) = C3 and C = C5 x H. Since
Os(H) =1 and H does not contain a quasi-semi-simple normal subgroup and

5 does not divide the order of the automorphism groups of the possible normal
2-subgroups, QH is a central simple Q-algebra of dimension 16. Table 10.4

yields that H is one of S; ® Dg, S5 ® Ds, 65%8 (2 groups), S; ® SLy(3),
5'3% SLy(3), or CE%)LQ(B) (2 groups). In all cases Glide(H) is isomorphic
to Cy x Cy. If G = Cg(H)H then Cg(H) one of £Djy or Qg according to
the real Schur index of an absolutely irreducible constituent of the natural

character of H. In the second case GG is not maximal finite but contained in
SLy(5)H. In the first case H is a maximal finite subgroup of its enveloping

algebra. Therefore the only possibility fo H is H =  3[SL2(3) 603]2. One
checks that G = 4 3[SL2(3) I22|C'3]2 ® 5[*D1o2 is maximal finite.

If Cq(H) = =C5, then one has for each group H 3 possible automorphisms.
By Lemma 2.17 there is at most one extension G = (.2 in each case. Con-
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structing the 24 groups G = H.2 one finds that G is one of the groups in the
Lemma.

More precisely, the 3 nontrivial ”outer” elements in Ngz~ (H) may be dis-
tinguished via their norms, which are 2, 3, respectively 6. If one considers of
the isoclinic pairs the group H with real Schur index 1 first, one finds from
Table 10.4 that in the first and second case, the automorphism with norm
3 yields imprimitive groups. In the fourth and fifth case the normalizer el-

2(2
ement of norm 2 yields a proper subgroup of \/5700,2’5[(3[%%) 214 Alts]y resp.

\/5,00,2,5[615%%4]4'

In some cases, G is not maximal finite due to the fact, that an outer
element normalizes SLy(5) < (Q[v/5] ® QH)*. These can not be read off
directly from Table 10.4 and are the following: In the second case, addi-
tionally the automorphism with norm 2 gives rise to a group contained in

N olSLa(5 1® VB2 5[CE§>b . In the seventh case, the automorphisms of
prime norm 2 resp. 3 yield proper subgroups of _z ol SL2(5 B VB2 5[05%? SLy(3

TeSP. /5 00l S L2 (5 )]1@ \/5’5’3[6157% Ss]s. Finally the group SLQ( )® CE%, S3
. . 3)
is not maximal finite but contained in 5 [SLa(5 )]1@5 \/5,375[(3[5%, Ssls. O

Lemma 14.26 If K # Q[vV/5] and Os(G) = Cs then G is one of \/5,00,2,5[D102(2+§§)Qm]4
) 2 ~ 2 2
V3,00 D1868224]4 /15 0o [D10¥ Sals /15,00 [D10¥ Qoalay 15 00l D16¥ Q24]a2

Proof: The centralizer C' := Cg(O5(G)) is an absolutely irreducible subgroup
of (Q[¢5] ® Q) & GLy(K|[(s5]) and G/C = C4. From the classification of
finite subgroups of PG Ly(C) one concludes that C = C5 x H, where H is one
of Dig, Qi6, Si, Qas, or Dyy. In all cases the exponent of Qut(H) is 2. So
Cg(H) > +Cj5 contains one of £Djy or @9, according to the real Schur index
of an absolutely irreducible constituent of the natural character of H. Since
Glide(H) does not contain an element of norm 5, one concludes that G is
not maximal in the second case, but an additional quasi-semi-simple normal
subgroup SLy(5) arises. This excludes the first and last case. In the other three
cases, G is clearly not of the form HCg(H), since otherwise G = C5: C, ® H
is contained in Ay ® H. Hence HCs(H) = DigH and G = HCg(H).2. Fixing
the outer automorphism one has two possible extension in each case. They
lead to isomorphic groups G.

If H= Q16, then Out(H) = Cy x Cy. Since one outer automorphism gives
not rise to an extension H.2 (cf. proof of Lemma 14.22), two groups G need

2 2 ~
to be considered. The group Dig¥ Q1 is contained in m,oo[Dle Syla so G
2
is conjugate to V2,00,2 5[D10 2 +I£Q16]4 in this case.
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If H=_S, and K = Q[v/2] then H is primitively saturated over K. Hence

G = Cg(H)H is not maximal finite. One finds that G is \/ﬁ,oo[Dldz? 5’4]4 in
this case.

Finally, if H = Qg4 then Out(H) = Cy x Cy. Here three different au-
tomorphisms have to be considered. They yield the three a.i.m.f. groups

2 2 2
V.00l D182Q241, /15,00 [D108 Qasla1, and g5 o [ D109 Q24]a2- O

15 The a.i.m.f. subgroups of GL;(Q).
Z(Q)=Q

Theorem 15.1 Let Q be a definite quaternion algebra with center Q and G
be a primitive a.i.m.f. subgroup of GL5(Q). Then G is conjugate to one of the
groups in the following table.

List of the primitive a.i.m.f. subgroups of GL;5(Q).

lattice L |Aut(L)| | ri.m.f. supergroups
o 2[+U5(2)]5 911.35.5.11 | [Us(2) S S La(3)]20
w02l SLa(11)]5 23.3.5-11 | [SLa(11) 85 Lo (3)]20

As® w0a[SLa(3)1 | 27335 | As®F,
s 0C)s | 2835 | [U.(2) DGJ2,
so11[*L2(11).2]5 24.3.5-11 | (41D)2

2(3
0, (Lo (1159D15]a0

Proof. Let Q be a definite quaternion algebra with center Q and G be a
primitive a.i.m.f. subgroup of GL5(Q). Assume that 1 # N < G is a quasi-
semi-simple normal subgroup of G. By Table 9.1 N is one of Altg, Lo(11),
SLy(11), Uys(2), or Us(2). The centralizer C' := Cg(N) in G of N embeds into
the commuting algebra Cgsxs(N), which is isomorphic to Q, Q, Q[v/-11], Q,
Q[v/-3], resp. Q in the respective cases. In the first case G = B°(NN)C is one of
A5® 502[SL2(3)]1 or As® o0.3[S3]1 by Corollary 7.6 and Theorem 6.1. Whereas
the first group is a maximal finite subgroup of GL5(Qw2), the second group

is a proper subgroup of  3[=U4(2) 603]5.

In case three and five, N is already absolutely irreducible and lattice sparse.
Its unique a.i.m.f. supergroup is o 2[*Us(2)]s5, resp. o0,2[SLa(11)]s.

In the other two cases, C' is contained in B°(N), which is a normal subgroup
of index 2 = |Out(N)| in G. Since the commuting algebra Cgsxs(NN) is an
imaginary quadratic field, there is in both cases only one absolutely irreducible
subgroup G = B°(N).2 < GL5(Q).
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One computes G = o 11[*L2(11).2]5 resp. G =  3[*Us(2) 12](]3]5.

Now assume that G has no quasi-semi-simple normal subgroup. Since the
possible normal p-subgroups of G, which embed into GL;(Q) do not admit an
automorphism of order 5, one has Oy;(G) = Cy;, contradicting Lemma 11.2.
O

Theorem 15.2 Let Q be a definite quaternion algebra with center Q and G

be an a.i.m.f. subgroup of GL5(Q). Then Q is one of Qo 2, Qoo3, 07 Qoo,11-
The simplicial complezes MY (Q) are as follows:

wa[STa(1D)]s A3 ® woolSLaB)i  woalSToB) son*Us(2)s

oo,3[iU4E2) %103]5 oo,3[g3]i)
o oo11[(¥L2(11)).2]5

List of maximal simplices in M¥"(Q2):

simplex a common subgroup
(002[EUs(2)l5: 002[SLa(3)]3) | 2% 1 (Alts x Cy)

List of maximal simplices in M¥"(Q,3):

simplex a common subgroup

(oostU4(2) OCs)s, o0slSs]3) | 24+ Al

Proof. Theorems 15.1 and 6.1 prove the completeness of the list of quater-
nion algebras Q and of a.i.m.f. subgroups of GL5(Q). One has only to show
the completeness of the list of maximal simplices in M{"(Q2), because for
the other two quaternion algebras Q, the simplicial complex M (Q) consists
of a single simplex: Let 9, denote a maximal order of Q. ». Since the group
00,2[SLo(11)]5 fixes a lattice of determinant divisible by 11, the minimal abso-
lutely irreducible subgroups of the group o 2[SL2(11)]5 are of order divisible by
11 (cf. Lemma 2.13). Going through the list of maximal subgroups of Ly(11)
in [CCNPW 85] one sees that o 2[SL2(11)]5 is minimal absolutely irreducible.
Hence o2[SL2(11)]5 forms a 0-simplex in M¥"(Q2). The minimal absolutely

irreducible subgroups of A; ® «2[SL2(3)]; are Alts ® Qs and C’I;Z%Altg,. Both

groups do not embed into any other a.i.m.f. subgroup of GL5(Qwz2), since
they do not fix any 3-unimodular 9,-lattice. Therefore the list of maximal
simplices in M"(Q4, o) is complete. 0



92

7Z(Q) real quadratic.

Theorem 15.3 Let G be a primitive absolutely irreducible maximal finite sub-
group of GL5(Q), where Q is a totally definite quaternion algebra with center
K and [K : Q] = 2. Then Q is isomorphic to Q 5 o, Q5,000 3,000 L/iT,007
or Q. /33 o, and G is conjugate to one of the groups given in the following table,
which s built up as table 12.7:

List of the primitive a.i.m.f. subgroups of GL;(Q) where Q is a totally
definite quaternion algebra over a real quadratic number field Z(Q).

lattice L |Aut(L)| | some r.i.m.f. supergroups
Vool SL2(5)1 ® As 27.3%.52 | Ay ® Fg, As ® H,
VioolEBL 21 SLo(5).2]s | 2°-3:5% | [:5172 : SLy(5).205 Ly (5)]o
VaoolSLa(11).2]s 924.3.5-11 | [SLo(11) S La(3)]3,
[5@(11)?%1’2 214 Alts]o
Vol 2Us(2).2] 2285511 | [+05(2)"S SLao(3) o,
Us(28 | 2+ Alts)ag
20015 L2(9)]5 235 | 2.0:(2) DSLo(3)]
ﬁ,oo[54]1 ® As 28.33.5 As ® Fg, (A5 ® Fy)?
Vool SLa(11)]s 93.3.5-11 | [SLo(11) % 12.Coluo
[S Lo (15T (3)]ag
vael O U ()] 285 | [0 00, Q)ff, U5(2) S SL(3)[

[i03 I%|U4(2)]10 ® Fy,
22 14s
[Us(2)e | 21+ Alts]ag
3 ! 202
Vitoo[Ca OLo(11)]5 25.3.5-11 | (AD)* [+U;5(2) é§2§2<3>]%0
AQ @ Fy, [Us(2), 2+ Alts)ag
Vil ECs (1)) | 24-32.5.11 | (AD) @ 4502, [+U5(2) S Ly(3)12,

[Lz(llﬂ)g’bm]go

[(L2(11)% SLy(3) ® S3).2]a0

Proof: Let Q be a definite quaternion algebra with center K := Z(Q) a
real quadratic field. Let G be a primitive absolutely irreducible subgroup
of GL5(Q), and p be a prime such that O,(G) # 1. Then either O,(G) is
a subgroup of GL(Q) or p = 5 and O5(G@) = Cys or 512 or p = 11 and
On(G) = Cu.

If O5(G) = Cys, then C(05(G)) = +05(G). But 5 divides the index of
the abelian normal subgroup Os(G) in G, because G is absolutely irreducible.
This contradicts the assumption O5(G) = Cys (and also the primitivity of G).
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Now let O5(G) = 572, Then K = Q[v/5]. The inclusion 5> < B :=
5112+ SLy(5) < GL5(Q[¢s]) together with Out(511?) = GLs(5), shows that
then G contains a normal subgroup B of index 2. There is a unique extension
B.2 with real Schur index 2. Hence G =z [+517? 1 SLy(5).2]5 in this case.

If O11(G) = Cy; then Cg(011(G)) is isomorphic to one of Cayg, Cyy, or Ceg.
In the first case, G is not absolutely irreducible and in the other 2 cases, G is
a proper subgroup of 7 [C4 I%ng(ll)]g, TeSP. /33 00 [*C3 I%!LQ(H)]g,.

Assume now, that for all primes p, O,(G) is a subgroup of GL(Q). Then
the automorphism group of O,(G) is soluble and its order is not divisible by 5.
Since G is absolutely irreducible, the last term of the derived series of G(* is
a quasi-semi-simple group. Table 9.1 implies that G(*) is one of Alt, SLy(9),
Ly(11), SLy(11) (2 matrix groups), Us(2), or Us(2).

The two groups /5 ,,[SL2(9)]s and 5 ,[SLa(11)]5 are a.i.m.f. groups.

In the first case, B°(Altg) = +Sg = As is a primitively saturated absolutely
irreducible subgroup of G L5(Q). Therefore Corollary 7.6 says that G is a tensor
product +Se®U, where U is a maximal finite subgroup of GL;(Q). By Theorem
6.1U isoneof 5 [SLy(5)]s, \/5’00[5'4]1, or 3 .,[Ci2.Coli. Whereas in the first
two cases, G is maximal finite, the last group 5, [C12.Co]i ® A5 is contained
in the maximal finite group \/5,00[01\21/7% Us(2)]5- (Note that +C3 o Uy(2) =
B°(Altg ® C3).)

Now assume that G(®) = L,(11). Then the centralizer C := Cg(G)
embeds into GL;(K[v-11]), and G : G®)C = 2. If C' = #1, then the center of
the enveloping algebra of G is Q and therefore GG is not absolutely irreducible
in GLs(Q). Hence the biquadratic field K[v/~-11] contains a root of unity.
Therefore K = Q[v/11] and C = C, or K = Q[v/33] and C 2 +C3. By Lemma
2.17 in both cases, there is a unique extension G = G(*)C.C, with real Schur
index. Hence G is one of \/ﬁ,oo[04lﬁ/2(11)]5 or m,oo[iCﬁg(ll)]g,.

Next let G(*) be SLy(11), where the restriction of the natural character of
G to G is x1g. Then the centralizer C' := Cg(G(*) embeds into GL,(K),
hence is trivial, and G : G(®) = 2. There is a unique extension G = SLy(11).2
with real character field. Therefore G = 5 [SL2(11).2]5.

The case G(*) = Us(2) is completely analogous.

The remaining case is G(*) = U,(2). Then G contains the normal sub-
group B := B°(G(®) = +C5 o0 Uy(2). Moreover C := Cg(B) = Cg(G™®) <
G L, (K[v-3]) and G contains BC of index 2. If C' < B then the character field
of the natural character of GG is Q, contradicting the fact that G is absolutely
irreducible in GL5(Q). Hence C = C5 and K = Q[v/3]. The unique extension

. . 2
G =BC.2in GL5(Q) 1S \/5,00[01\2/.% U4(2)]5 O

Theorem 15.4 M (Q 5 ) is as follows.
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VaoolSals « V300l SL2(9)]s ]

* \/5,00[54]1 & A5
V3,001 2Us(2).2]5 ¢« Va.oolSL2(11).2]5

List of the mazimal stmplices in MgTT(Q\/ﬁ,oo)

simplex a common subgroup
(V5.002U5(2)-2]5, y5,00[Sal7) | (227%.(C5 x Alts)).2

Proof. The completeness of the list of a.i.m.f. subgroups in GL5(Q. s )
follows from Theorems 6.1 and 15.3. So we only have to show that the list
of maximal simplices in M7 (Q./5,.) is complete. The two a.im.f. groups
Va9 L2(9)]s and 5  [SLa(11).2]5 are minimal absolutely irreducible.

So we only have to deal with G := \/5700[5'4]1 ® As. The minimal absolutely
irreducible subgroups V of G contain a normal subgroup N of index < 2 of
the form N := U ® Alts, where U is of index < 2 in one of the 2 absolutely
irreducible subgroups Qi or Si of S;. The minimality of V implies that U is
of order 8 or 16. Hence the 3-modular defect of V' is one. Let 97t be a maximal
order of Qﬂ,oo,oo' Then the 9tV -lattices are fix under the group H := Q50V/,
where Q16 is the Sylow 2-subgroup of the unit group of 9%. The group H is
an absolutely irreducible subgroup of GLy(Q[v/2]). Since 3 is inert in Q[v/2],
one concludes that the 3-modular constituents of H are of degree 8 and 32.
Therefore V' does not fix a 3-unimodular lattice. O

Theorem 15.5 M (Q,3,,) is as follows.

V3,00[C12.Co]}
, . \/g,oo[SLQ(ll)]E’)
V3,00 C188 Us(2)]s

List of the mazimal simplices in Mg”(Q\/g,oo)

simplex a common subgroup
2 2
(\/5,00[01\21/%_3 Us(2)]5, \/g,oo[012.02]?) Cl% 24 Alts
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Proof. The completeness of the list of a.i.m.f. subgroups in GL5(Q\/§’OO)
follows from the Theorems 6.1 and 15.3. The list of maximal simplices in
M} (Q,/3,4) is complete, because 5 [SLy(11)]5 is minimal absolutely irre-
ducible. O

Theorem 15.6 M (Q,s5.,,) is as follows.

VaolS L2 (O]}
o VioclSLa(5)li ® As
VB0l (#5577 : SL2(5))-2]5

List of the mazimal simplices in MY"(Q /)

simplex a common subgroup
(5l (D7 ST2(5))- 28,5 ST (O] [ (5177).2

Proof. To see the completeness of the list of maximal simplices in M¥™(Q VB.00)
it suffices to show that there is no common absolutely irreducible subgroup of
G = 5005L2(5)]1 ® A5 and one of the other two maximal finite subgroups
of GLs5(Q54)- The minimal absolutely irreducible subgroups U of G are

+C5.Cy ® Alts and iC’gXZ>Alt5. If 99t is a maximal order of Qﬁ’oo, then the

3-modular constituents of the natural representation of U are of degree 8
and 32. So both groups U do not embed into 5 [(5}7? : SLy(5)).2]5 or

\/E,OO[SLQ(E))]? O

irr

Theorem 15.7 The two simplicial complezes M5(Q. /17 o0)"" and M5(Q. /5. ,)
consists of one 0-simplex each.

16 The a.i.m.f. subgroups of GL4(Q).

Theorem 16.1 Let Q be a definite quaternion algebra with center Q and G
be a primitive a.i.m.f. subgroup of GLg(Q). Then G is conjugate to one of the
groups in the following table:
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List of the primitive a.i.m.f. subgroups of GLg(Q).

lattice L |Aut(L)| r.i.m.f. supergroups
00,2[2.G2(4)]6 213'33'52'7'13 [2.001]24
w02l (+3). PGLy(9)]s 95.33.5 [(£3).PG Ly(9) 55 Lo (3)]os
2 2
w02[3L7 : SLy(3F5Ds)s o731 [Spa(3p, (31 + SLo(3))as
wos[SLa(5)8 Dyls 26.3.5 [SL2(5[):§2) 2144 Alts]o
2(2 2(2)’
oL (T8 S La(3)]s 27.32.7 | [Lo(T)& Filos
2(2 2
soa[ Lo (TS Lo (3)]s 97.32.7 | [Lo(ToFulas |
2 2(3
w2 CERA(3)]s 237 | ((SLa(3) 0 Cile) Us(3)has
02[SLa(5)]s ® Ay 20.32.5 | Ay® [SLy(5)°0 S Lo(3)]1o
02SLa(3)], ® Eg 20.3.5 | B ® F,
02 SLa(3)]: ® Ag 97.33.5.7 | Ag® F,
s02[SL2(3)] ® AP 97.32.7 AP @ F,
00,2/9L2(3)]1 ® Mg 26.3%.5 Mo ® Fy
0316.02(3).2%5 910.37.5-7 | [6.U4(3)-27]%,
sl CESLa (5] 24.32.5 | [SLa(5) S5 Lo(3)]2,
2(2 2(2
woa352  SLy(ARSLo(3))s | 2730 | (3521 SLo(ARSLo(3),
003[93]1 ® Ag 26.33.5.7 | (A ® Ag)?
003 S3]1 @ A 26.32.7 | (AP ® Ay)?
003[S3]1 ® Mo 2°.32.5 (Mg ® Ay)?
00,5[SL2(25)]6 2435213 [2.001]24
00,5[2.J2.2]6 29'33'52'7 [2.001]24
osl2.5 ¢ 2 29.33.52.7 | [2.0, 1S Ly (5)]ae
oo s AU SLa(5)]s, 23252 | [(SLa(5) 0 SLa(5)) : B Altshau,
00,5[14”%/%2 SL2(5)]6’2 26'32'52 [(SL2(5) o] SL2(5)) . 2\/25314”5]24,2
2 2
o[ Lo (TDs]e 27.3.7 | [Lo(WBDsJ2,
2(3 6 o2 212
ot Lo (75856 26.32.7 | [6.U4(3).27%
oo 7[*L2(7).2]3 ® Ay 26.32.7 (4, @ AP
o1 [SL2(11).2] 913511 | (Baa)
[2.001]24
oo,lg[SL2(13).2]6 243713 [2.001]24
2
o1alSLa(13) - 20s 20.3.7.13 | [SLo(13)8Ls(3)]s

The proof is split into 17 lemmata. For the rest of this section let Q
be a definite quaternion algebra with center Q and G' be a primitive a.i.m.f.
subgroup of GLg(Q).
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Lemma 16.2 The last term G of the derived series is either 1 or a quasi-
semi-simple groups. If G is soluble then G is one of o 2[311?: SLQ(SDQZng]G

2(2
OF 0312 S Ly (380 Ly (3)]s.

Proof: Since the possible normal p-subgroups of G embed into GL15(Q) and
GLg(Q), Theorem 8.1 together with Lemma 2.18 leave the following possi-
bilities for Op(G) 013, 07, 03, Cg, 3}:_2, CQ, 04, Dg, Qg, Cg, or QDIG- The
automorphism groups of these groups are soluble, so the first part of the lemma
follows.

The first case is excluded by Lemma 11.2 and the case O7(G) = C; is
excluded with the help of Lemma 8.12.

If O3(G) = Cy, then C := C;(03(G)) embeds into GLy(Q[(]), because
Q| (o] splits all possible quaternion algebras. With [Bli 17] one finds that C' is
one of Cy ® Dg or Cg% B°(Qs) = C’g@__3 SLy(3), and G contains C' of index
6. In both cases 3 does not divide the order of the outer automorphism group
of C/O3(G), so one concludes that O3(G) > Cq which is a contradiction.

Now assume that O3(G) = 31™. Then G contains a normal subgroup
B = B°(03(@Q)) = +311? : SL,(3). Similar as above one has C := C(03(G))
is one of C3 ® Dg or C3 o SLy(3). Moreover G contains BC' of index 2. Let
a € G — BC. In each case one has 2 possibilities, either a induces a non
trivial outer automorphism on B°(O3(G)) or not. For each possibility there
is a unique group G with real Schur index 2. For the first possibility one

computes that G is o« 2[3512 : SL2(3j2zg>2bg]6 Or oo 3[341% SL2(3[)2£.§L2(3)]6.
For the second possibility, one computes that G is either a proper subgroup
of the imprimitive a.im.f. group o 3(3172.GLy(3)]3 or a proper subgroup of
Es® o02[SLa(3)]1-

In the other cases, B°(O,(G)) does not admit an outer automorphism of
order 3. One concludes that G' being absolutely irreducible, has to contain a
quasi-semi-simple normal subgroup (cf. Lemma 8.11). O

Lemma 16.3 If G contains a subgroup U conjugate to 3.Alts, where the re-
striction of the natural character of G to U is xs + X, then G is one of
00,2[2-G2(4)]6; 00’2[(i3).PGL2(9)]6, or 00,3[6.U4(3).22]6.

Proof: The last term of the derived series G(*) has to contain 3.Altg, hence is
one of 3.Altg, 6.L3(4), 6.Us(3), or 2.G(4).

First we prove that Q is either Q3 or Qu .

If G(*) = 2.G4(4) then G(*) is already an absolutely irreducible subgroup
of GL(Qw2), hence in this case it is clear that Q = Q2. In the other 3
cases, one has O3(G) = C; and the enveloping algebra of U coincides with
the one of C(03(G)) =: C. The discriminant of the enveloping Z-order of U
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is 218.311436  Therefore, 2 and 3 are the only primes, which may divide the
discriminant of the enveloping Z-order of C. Since C' is a normal subgroup of
G of index 2, Lemma 2.15 together with the fact that the number of ramified
primes is even and Q is ramified at oo, implies that Q is either Q2 or Q 3.

Let 9, (resp. M) denote a maximal order of Qo (resp. Qoo 3)-

The group U is a uniform subgroup of GLg(Q) and fixes up to isomorphism
6-6 = 36 My-lattices. Computing the automorphism groups of the relevant
lattices one finds that o 2[2.G2(4)]s and «2[(*3).PGL4(9)]s are the only
primitive a.i.m.f. supergroups of U in GLg(Qx2)-

Similarly U fixes up to isomorphism 2-6 = 12 9)13-lattices and one finds
0,3[6.U1(3).2%]6 as the only primitive a.i.m.f. supergroups of U in GLg(Qw 3)-
O

The next lemma follows also from Theorem 11.2.

Lemma 16.4 If G is SLy(13) then G is one of 13[SL2(13).2]6 07 w.13[SL2(13) :
2]6.

Proof: The centralizer Cq(G(*)) embeds into Q[v/13], and is therefore *1.
Hence G contains G(*) of index 2 = |Out(G™)|. One computes that both
groups G are a.i.m.f. groups in GLg(Qo,13)- O

Similarly one finds
Lemma 16.5 If G(®) is 2.J, then G is one of «5[2-J2-2]6 0T 00 5[2.J2 1 2g-
Lemma 16.6 If G is SLy(11), then G is conjugate to o011[SLa(11).2]6.

Proof: The centralizer Cg(G(*) embeds into Q[v/-11], and is therefore *1.
Hence G contains G(*) of index 2 = |Out(G*™)|. By Lemma 2.17 there is
at most one extension G(*).2 which is an a.i.m.f. group of GLg(Q). One
computes that G is conjugate t0 o 11[SL2(11).2]g. )

Lemma 16.7 G(®) is not isomorphic to SLy(7).

Proof: Assume that G(*) is isomorphic to SLy(7). Then the restriction of the
natural character of G to G is 2(xss+Xes)- The centralizer C(G(*)) embeds
into Q[v/2] hence is =1 and G = G(* or G = G{*).2. The lemma follows, since
the second group is no subgroup of GLg(Q), because the character field is of
degree 4 over Q, and G(* is not absolutely irreducible. a

Lemma 16.8 IfG(™®) is SLy(25), then G = G*) is conjugate to o 5[SL2(25)]s.



99

Proof: The group SLy(25) has two characters of degree 12. The corresponding
representations lead to conjugate groups in GLg(Qx5), since the characters are
interchanged by an outer automorphism of G(>). The absolutely irreducible
subgroup of GLg(Qw ) fixes up to isomorphism 1 lattice. Since it is the full
automorphism group of this lattice, the lemma follows. O

Lemma 16.9 If G is U,(2), then G is conjugate to Es ® o0 2[SL2(3)]:.

Proof: By Corollary 7.6 G = B ® Cg(B) is a tensor product and Cg(B) is an
a.i.m.f. subgroup of GL;(Q). From Proposition 6.1 one gets that G is one of
E6® 00,2[SLa(3)]1 or Es® 0073[5’3]1. In the last case, G is not maximal finite, but
a proper subgroup of « 3[6.U1(3).2%]s. (Note that B°(C3®U4(2)) = 6.U4(3).2.)
O

Similarly one finds

Lemma 16.10 If G is Alt,, then G is conjugate to one of As® oo o[SLa(3)]1
or Ag ® 0,3[53]1-

Lemma 16.11 G is not isomorphic to SLy(9).

Proof: Assume that G(®) = SLy(9). Lemma 2.18 implies that Q = Qwo,3- The
centralizer C(G(*)) embeds into GL3(Q). The primitivity of G implies that
C = 1. But then G is not irreducible, because 3 f|Out(SL2(9))|. O

Lemma 16.12 IfG contains a normal subgroup N conjugate to SLy(5), where
the restriction of the natural character of G to G is 3(x2q + X2b), then G is

one of the two isoclinic groups 00,5[Alt(5/7§ SLy(5)]s,1 or 00,5[Alt;51/§§ SLs(5)]6,2-

Proof: The centralizer C := Cg(N) is a centrally irreducible subgroup of
GL3(Q[v/5]) hence C = Alts. Moreover G contains CN of index 2. Com-
puting the two possible extensions one finds that G is one of the two groups
in the lemma. O

Lemma 16.13 If G contains a normal subgroup N isomorphic to Alts, then
i ~ 2
G is one of Meo @ wo2[SL2(3)]1, Ms2 ® o0,3[55]1, 00,5[14“% SLy(5)]6,1, or

2
00,5[Alt?/l% SLy(5)]6,2-

Proof: The centralizer C := Cg(N) is a centrally irreducible subgroup of
GL.(Q[V5] ® Q) and G contains CN of index 2. Assume first that C(C) >
+N. Then Cg(C) = +N.2 and G is a tensor product G = Cg(C) ® C, where
C is an a.i.m.f. subgroup of GL;(Q). Since the non-split extension Sy /{04 is
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a monomial subgroup of GLg(Q) (cf. [PIN 95, (V.3)]), one finds that G is one
of MG,Z ® oo,Q[SLQ(B)]l or M672 X 00,3[513]1. Now let C(;(C) ==N. Using the
classification of a.i.m.f. subgroups of GL,(Q’) for definite quaternion algebras
Q' with center Q or Q[v/5], one finds that C' = B°(C) is one of SLy(3), S5, Qao,
or SLy(5). In the last case, the lemma follows from Lemma 16.12, whereas in
the first three cases both extensions G = NCg(N).2 are proper subgroups of
one of the two groups of Lemma 16.12. O

Lemma 16.14 If N := G(®) = Us(3), then G is conjugate to 00,2[011:21%}?),(3)]6.

Proof: The centralizer C' := C;(N) embeds into an indefinite quaternion alge-
bra with center Q. Since B°(N o C3) = 6.Uy(3).2, one concludes that O3(C) =
1. One has the following possibilities for Oy(G) = O5(C): 1, Cy, or Dg. The
first possibility yields immediately a contradiction, since then G contains N of
index 2 and Lemma 2.14 implies that dim(QG) < 2dim(QN) = 2-36 < 144.
Therefore G is not absolutely irreducible in this case. In the other two cases
G contains a normal subgroup N o C;. The discriminant of the enveloping
Z-order of N o C, is 3'2.236. Therefore Lemma 2.15 implies that Q is one
of Qw o or Qu 3, if G contains N o Cy of index two. If [G : (N o Cy)] > 2,
then Oy(C) = Dg and NO,(C) is already an absolutely irreducible subgroup
of GLg(Qwo,3)- So in this case Q = Qo 3.

Let 9, (resp. M) denote a maximal order of Qo (resp. Qoo 3)-

Then N o C} fixes only one 9Ms-lattice. The automorphism group of this

lattice is oo,ﬂCﬁ%(:%)k. Hence G is conjugate to this a.i.m.f. group, if @ =
Q2. If Q= O3, then NV o C, fixes up to isomorphism 6 9Ms-lattices. The
automorphism group of the normalized lattices is conjugate to o 3[*Us(3)]3
contradicting the primitivity of G. a

Lemma 16.15 If G is conjugate to SLo(5), where the restriction of the

natural character of G to G(®) is 2xg, then G is one of OO,Q[SLQ(E))%S)Dg]G,
2

A8 walSLa(5)]s, o7 s0alCESLa(5)].

Proof: Let G(*) be conjugate to SLo(5) as described in the lemma. Then
the centralizer C' := Cq(G(*)) embeds into GL,(Q'), where Q' is a indefinite
quaternion algebra with center Q. Hence C' is soluble. Moreover G contains
CG®™) of index < 2 = |Out(G™)|. By Lemma 2.14 this implies that C # =1.
Therefore one either has O3(C') = C3 or O3(C) = 1 and C = C; or Dg. The
discriminant of the enveloping Z-order of G(*) is (5%.259)2, Using Lemma
2.15 one excludes in all cases that Q is ramified at 5. Hence Q is one of
Qo2 OF Qoo 3, Where the latter possibility only occurs if O3(G) = Cs. Let 9,
(resp. 93) denote a maximal order of Qo (resp. Qw3). In the first case
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N := SLy(5) o C5 is a normal subgroup of G. The Bravais group of a normal
critical 9, N-lattice (cf. Definition 2.7) is conjugate to As® 2[SLa(5)]5. So G
is conjugate to this group, if Q@ = Q9. If Q = Q. 3, then every M3 N-lattice
is normal critical. One concludes that G is conjugate to oo,g[Cig)Ilg(5)]6 in
this case. If O3(C) = 1, then G contains a normal subgroup N := SLy(5) o Cy.
Moreover Q@ = Q5. The automorphism group of a normal critical 9y N-

lattice is conjugate to OO,Q[SLQ(S)%%)Z)DB](;. Therefore G = OO,Q[SLQ(5)%§%‘>2)D8]6.
O

Similarly one finds

Lemma 16.16 If G(®) is conjugate to Ly(7), where the restriction of the natu-
ral character of G to G contains x, then G is conjugate to 00,2[L2(7)%é>2)SL2(3)]6.

Lemma 16.17 If G is conjugate to Ly(7), with character xsq + X35, then G

. . 2(2 2(3

is conjugate to one of 0072[L2(7[)§>.§'L2(3)]6, 00’2[SL2(3)]1®A§32), 00,3[L2(7D:§)§3]6,
N 2 2

w3lS51 ® AL, sorlLo(TEDsls, sorlLa(WEEsls, or sor[=La(7)-2]; ® As.

Proof: The centralizer C' := Cg(G(*)) embeds into a quaternion algebra Q'
with center Q[v/-7], more precisely @' = Q[v/-7]>*? if 2 is not ramified in Q
and @ = Q /z,,, if 2 ramifies in Q. Because G is absolutely irreducible,
G contains CG(™ of index 2 and C is a centrally irreducible subgroup of
GL,(Q'). The classification of finite subgroup of PG Ly(C) in [Bli 17] implies
that C is one of SLy(3), Ds, Ss, or Ss. Since the enveloping algebra of C
is central simple, one has 2=|Ngg-(C)/Cgg- (C)| possible automorphisms. By
Lemma 2.17 there is for each automorphism a unique extension with real Schur
index 2. Since Dg ® o 7[+L2(7).2]3 is imprimitive, G is one of the seven groups
in the Lemma. O

Lemma 16.18 G(®) is not conjugate to 3.Alts, where the restriction of the
natural representation of G to G is Y34 + X5a + X36 + Xsp-

Proof: Assume that G(*) is conjugate to 3.Alts. Then Cg(G(>®)) = +Cj is
contained in *G(*®) and G contains +G(*) of index 22 = |Out(G)|. Since
Q is positive definite, G contains the unique extension N := +3.PGLy(9) with
real Schur index 2 (cf. Lemma 2.17) of index 2. The Bravais group of a normal
critical Z N-lattice is 2.J, contradicting the assumption that G =3 Altg. O

Theorem 16.19 Let Q be a definite quaternion algebra with center Q and G

be an a.i.m.f. subgroup of GLg(Q). Then Q is one of Qw.2, L3, Looss Loo7s
Qo,i1, 07 Qoo 13. The simplicial complezes Mé”(Q) are as follows:



102

o2 2.Go(4)] ¢ 2l 3)PCL )]s = o3,
o210 Alt]3 o[ SLa(3)]8 o w02[SLa(5)]s ® Ay
00’2[3}+_+2 . SLQ(&%S]G d 00,2[5L2(3)]1 X M6,2
o2l Lo (T Ly (3)]s (wo2[SL2(3)]: ® 4y)?
02| La(T)E S Ly (3)]s w2[SLa(3)]1 ® Ee
002[SL2(3))1 ® A oo,2[SL2(5)%§g)D8]6
02[SLa(3)] ® A s0,2[SL2(5)]3
0,3[U3(3)]3
Py
00,3[6.U1(3)-2%]6 co3[#317.G Ly (3)]3 o oalC8L(5))
>/
m,s[ga]?' 7/ .
* 50,3[53]1 ® Mso
¥ 003[SL2(9)]3
? w03[SLa(3) BCs] o3[ Ss]1 ® AL
¢ o 3[312.S Lo (3B Lo(3)]s es[Sa] ® A
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00’5[2.J2.2]6

© o3[ SLa(5)-213 ol AL S5
woslSL2(25)]o — )
o05[SL2(5) : 23 °°’5[Alt{"/.% SLy(5)]6,2

00’5[2.J2 . 2]6
woilLo(7)2 ot La(D23® Ay (Lo(TFs  cor[Lo(TDss

ot [SLa(11).2]

00.13[5L2(13).2]6  o0.13[SL2(13) : 2]

List of maximal simplices in MZ"(Q2):

simplex a common subgroup
00,2[2.G2(4)]6, 00,2[21_+4.Alt5]g, OO,Q[SLQ(?))]?) Alt4 ® Dg ® Qs

w2357 1 SLo(355Dsls, sop2 4 Alts)) | 31+E5Dg

(

(

(502lSLa(5)® Dils, w0alSLa(5)12) SLy(5) ® Ds
((A2® 52[SLa(3)1)°, E6 ® s02[SLa(3)]1) 377 :2® Qs
(
(
(

w2l Lo (TS Lo ()]s, 02l La(7)8 SLa(B)]s) | Cr : CROLs(3)
A5 ® woolSLa@)1, walla(T)8 SLa@)s) | Lo(7) ® Qs
A5 ® o02[SLaB3)]1; AP ® 02[SL(3)]1) Cy: Cs ® SLy(3)

List of maximal simplices in MZ"(Q3):

simplex a common subgroup
(003lUs(3)]3, o0,3[6.Us(3).2%]6, oo,3[i3}|_+2-Glj2(3)]§) 372 C3® Sy
(50,3[6.U4(3)-2%l6, 00,3[*3112.GL(3)]3, o0,3[55]%) +3172.05, ® S5
(50,3558, °°§3[i3i+2-GL2(3)]§a 00,3[SL2(9)]3) (+C3).Cia
( 00,3[SL2(3) DC3B’ 00,3[SL2(9)]%) 54 X Alt4

142 . 2(2 2~ 13 1+E2§%b
(003[35™ : SLa(3JX5 La(3)]s; o0,8[SLa(3) OC5]5) 3, TX0s
(A6 @ 0,351, AéZ) ® 0,3153]1) C7:Cs® S35
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List of maximal simplices in M (Qu 5):

simplex a common subgroup
( 005[SL2(5)2]35 ooS[SL2(5) : 2]%) 4
’ ’ C5 x Cs).C
00,5[2'J2'2]67 00’5[2.J2 : 2]67 00’5[SL2(25)]6) ( 5 X 5) 12
( 00,5[SL2(5)2]3, 00,5[SL2(5) : 2]%5

2
2 2 o Alt
sl AU ST s ol Al S 12Ol Q: A
( 005[2-J2-2]s, oo,5[Alt\/5l% SLy(5)]s,1) Alts6)s
2 2
( 00,5[2.J2 : 2]6; 00,5[14[15% SL2(5)]672) Alﬂ,g__Qg
List of maximal simplices in M¥"(Qy 13):
simplex a common subgroup

( 00713[SL2(13) : 2]61 oo,lsl:SL2(13)2]6) i013.012

Theorems 16.1, 13.1, 12.1, and 6.1 prove the completeness of the list of
quaternion algebras Q and of a.i.m.f. subgroups of GLg(Q). So it remains
to prove the completeness of the list of maximal simplices in M (Q). That
the simplices listed do exist, can be easily seen computing the automorphism
groups of the invariant lattices of the groups listed in the column ”a common
subgroup”.

To make the formulations of the proofs not so lengthy, we introduce some
notation for imprimitive groups.

Notation 16.20 Let G = H1S; = (Hy; x ... x Hy) : Sy be an imprimitive
subgroup of GL,(D) and A its natural representation.

For a subgroup U < G the restriction of A to the stabilizer Sy(U) :=
{u € U | hyu € H, for all hy € Hi} of the first component has a summand
Ay : $1(U) — Hy. Define

7Tl(U) = Al(Sl(U)) S Hl.

Then Ay is induced up from Aq, hence Frobenius reciprocity implies that if
U is absolutely irreducible then m(U) is an absolutely irreducible subgroup of
GL%(D).

The base group of U 1is defined as the intersection of U with Hy X ... X
H,; < G. Clearly this is a normal subgroup of U.

The proof is split up into several lemmata according to the different quater-
nion algebras Q. ,. Since M (Quo 13) and M (Quo 1) consist of one simplex,
it suffices to consider p < 7.
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Lemma 16.21 M (Q..7) consists of four 0-simplices.

Proof. The minimal absolutely irreducible subgroups of the three primitive

. 2(2 2(3
a.i.m.f. groups 00,7[L2(7[1§>b8]6, 00,7[L2(7[i§g'3]6, and Ay ® oo 7[+L2(7).2]5 are
the normalizers in these groups of the Sylow 7-subgroups. The lemma follows
by computing the invariant lattices of these three groups. O

Lemma 16.22 The list of mazimal simplices in MY (Qu5) given in Theorem
16.19 is complete.

Proof. Since the other 5 a.i.m.f. groups in GLg(Qx5) form a 4-simplex, it
suffices to consider the minimal absolutely irreducible subgroups U of one of
the two groups G 00,5[Alt?l/§§ SLy(5)]s,1 and 0075[Alt§%2 SLy(5)]6. Let N<U be
the intersection of U with the normal subgroup Alts <G and M := UNSLy(5).
Then the restriction of the natural representation A of U to N is of degree
1 or 3. If it is of degree 1, the index of NM in U is divisible by 3. Since 5
divides the order of U and subgroups of Alts and SLy(5), of which the order
is a multiple of 5 have no nontrivial factor group of order divisible by 3, one
concludes that U = SLy(5).2 is a full subdirect product. But this contradicts
the fact that U is absolutely irreducible. Hence Ay is of degree 3, and N is
one of Alty or Alts. In the first case, 5 divides the order of the centralizer
C := Cy(N) and the minimality of U implies that U = Q.50Alt,.

In the second case, C' < SLs(5) is a centrally irreducible subgroup of Q N
This leaves the possibilities C' = Qq, Qs, SL2(3), and Ss. Moreover U contains
NC of index two. In the first case U contains Q2522>Alt4 from above and the
third possibility C' = SLs(3) gives groups containing NQs.2. An inspection of
the lattices of the remaining groups yields the lemma. O

Proposition 16.23 The list of mazimal simplices in M (Qw3) given in
Theorem 16.19 is complete.

The proof is divided into seven lemmata, which are organized according to
the largest primes dividing the determinant of an invariant primitive lattice of
the a.i.m.f. group.

Let S denote a maximal simplex of M¥™(Q, 3) not listed in Theorem 16.19.

Lemma 16.24 S contains no vertex Ag ® C><>,?,[53]1 or Ag) ® 00,3[5'3]1.

Proof. Let U be a minimal absolutely irreducible subgroup of one of the
two a.i.m.f. groups of the lemma. Then by Lemma 2.13 7 divides the order of
U. If U contains a normal subgroup of order 7, then U = C7 : C6® ,3[S3]1 is a
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common subgroup of the 2 groups. If the Sylow 7-subgroup of U is not normal
in U, then the minimality of U implies that U(®) = L,(7), where the restriction
of the natural character of U to U™ is 4y, where yg + 1 is a permutation
character of Ly(7). Since the corresponding permutation representation does
not extend to Ly(7).2, one concludes that U = Ly(7) ® o3[Ss]:, which has
only 0073[5’3]1 ® Ag as a.i.m.f. supergroup. O

Lemma 16.25 S contains no vertex Oo,g[cﬁ%i2(5)]6 or Mgo ® 0073[5'3]1.

Proof: Let U be a minimal absolutely irreducible subgroup of one of the two
groups G. Then by Lemma 2.13 5 divides |U|. Since for both groups, the
normalizer of a Sylow 5-subgroup is reducible, one concludes that U(*®) = G(*).
In both cases one finds that U = G is minimal absolutely irreducible. a

Lemma 16.26 The irreducible subgroups V < B°(3ﬁ_+2) = 3ﬁ_+2 : SLy(3) <
GL3(Q[G]) satisfy 33+ or 312 < Os(V).

Proof: Let V' be an irreducible subgroup of G := 31" : SLy(3). If N :=
V' N O3(G) = 1 then V is isomorphic to a subgroup of SLy(3) and reducible.
Therefore N, being nontrivial, contains the center of G' and is one of O3(G),
C3; x C3 or C3. In the first case, 31t? < O3(V). In the second case V/N
stabilizes a flag in 5 = O3(G)/Z(G), hence is an abelian subgroup of SL;(3).
Since the degree of the natural character of V is 3 and NNV is an abelian normal
subgroup of V, one has O3(V) = 32 in this case. The last case contradicts
again the irreducibility of V, being contained in C3 x SLy(3). O

Lemma 16.27 S contains no verter G := 3317 : SLQ(SI%%LQ(B)]G.

Proof: Let 9 be a maximal order in Q. 3. Let U be a minimal absolutely
irreducible subgroup of G. The natural representation of U is of the form
A1 ®A,y, where A;(U) has a subgroup V of index 2 such that V' < 3172 .SLy(3)
is an irreducible subgroup of GL3(Q[(3]). By Lemma 16.26 O3(V') contains an
extraspecial 3-group. In particular the 2-modular constituents of the natural
representation of V9N are of degree 12. Comparing the determinants of the
invariant integral lattices one sees that the only other a.i.m.f. group, in which

U might embed is o 3[SL2(3) %103]3. O

Lemma 16.28 S contains no vertex G := 4 3[SL2(3) %103]3.
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Proof: Let 9 be a maximal order in Q3. Let U be a minimal absolutely
irreducible subgroup of G. With the notation introduced in 16.20 the group
m(U) < 50,3[SL2(3) I%IC3]2 is an absolutely irreducible subgroup of G Ly (Qw 3)-
Hence m; (U) contains one of the two minimal absolutely irreducible subgroups

Qs %‘Cg or Sy of o 3[SLa(3) 12303]2 (cf. proof of Theorem 12.3). In particular
the 3-modular constituents of 9 (U) are of degree 4.

The intersection N of U with the base group of GG is a normal subgroup
N < U with U/N = C3 or Ss. In the first case, m(U) = m1(N) and Clifford
theory implies that the degrees of the 3-modular constituents of U are divisible
by 4. With Lemma 16.27 one sees that U does not define a new simplex. In
the second case, m; (V) is a normal subgroup of index 2 in 71 (U). Assuming
that the 3-modular constituents of 9t (N) are not all of degree 4, one only
finds the possibility m (V) = C12.Cy = S3 /LCZCS. But then the 2-modular
constituents of My (N) are of degree 4 which implies that U does not define
a new simplex. |

Lemma 16.29 There is no_common absolutely irreducible subgroup of G :=
00’3[U3(3)]§ and one Of 00,3[53]? or 00’3[5_[/2(9)]%

Proof: Let U be an absolutely irreducible subgroup of G. Then U contains a
normal subgroup N < U of index 2, such that the restriction of the natural
representation A of U to N is the sum of two inequivalent absolutely irreducible
representations Ay = Ay + Ay, The groups A;(N) =2 Ay(N) are absolutely
irreducible subgroups of « 3[Us(3)]3. Hence A;(N) is either 2 Us(3) or 3} :
Cs. Both groups have no subgroup of index 3 or 6. Therefore U is not a
subgroup of oo,s[gs](f or o0,3[SLa(9)5- O

Proposition 16.23 now follows from the next lemma:

Lemma 16.30 There is no common absolutely irreducible subgroup of G :=
Oo’g[SLQ(g)]g and H := 00’3[6.U4(3).22]6.

Proof: Let U be an absolutely irreducible subgroup of G. Then 7 (U) is one
of the 4 absolutely irreducible subgroups +32.Cy, Sy, SLs(5), or SLy(9) of
m(G) = o03[SL2(9)]2-

If 7 (U) = Sy, then 7 (U) is a subgroup of o 3[SLy(3) I2303]2 and the
lemma follows from the previous one.

Since U is a subgroup of H the centralizer N := Cy(O3(H)) <U in U of

Os(H) is a subgroup of U of index 2 with commuting algebra Cg6xg(N) =
Q[¢s]. Since N is normal, m(N) < my(U) is a subgroup of index 2 with

Cgiﬁ (m1(N)) = Q[¢3].
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Since in the first case the unique subgroup S of index 2 in 7;(U) has
commuting algebra Cgx (S) = Q @ Q and the last two groups m;(U) are
perfect, this is a contradiction. O

Proposition 16.31 The list of mazimal simplices in M (Qw2) given in
Theorem 16.19 is complete.

This proposition is proved in the rest of this Chapter which concludes the
proof of Theorem 16.19.
The first lemma is easily checked with help of Lemma 2.13 and [CCNPW 85].

Lemma 16.32 (i) The minimal absolutely irreducible subgroup of 0 2[SL2(3)1®
M6,2 ’L.S 85 ® Qg.

(i) The minimal absolutely irreducible subgroups of «2[SL2(3)]1 ® Ag are
07 : 06 ® QS, 07 : C(; /LCSSLQ(3), and L2(7) X Qg.

(1it) The minimal absolutely irreducible subgroups of o 2[SL2(3)]1 ® Ag) em-
bed into OO,Q[SL2(3)]1 ® AG-

(v) The group o02[SLa(5)]3 @ As is minimal absolutely irreducible.

(v) The group o 2[(¥3).PGL2(9)]s is minimal absolutely irreducible.

(vi) The minimal absolutely irreducible subgroup of 00,2[011:2%}2’,(3)]6 is the
normalizer of the Sylow 3-subgroup 011:2“3?” : Cy.

Corollary 16.33 The restriction of M (Qw2) to the set { 0072[L2(7)2@é?)SL2(3)]6,
2(2
w02 Lo (TS Ly (3)]6, A ® 0olSLo(3)1, A6 ® s02[SLa(3)]1, so02lSLa(3)]1 ®

2(3)

Meg, A2 ® wo2[SLa(5)]3, co2[(+3).PGLa(9)]s, m,2[0ﬁ3(3)]6 } consists of
full simplices and is as given in Theorem 16.19.

Proof: After computing the a.i.m.f. supergroups of the minimal absolutely
irreducible subgroups given in Lemma 16.32, it suffices to show, that there
is no common absolutely irreducible group of one of the first two groups and
one further a.i.m.f. group not mentioned in the corollary. Let U be such an
absolutely irreducible group. Then by Lemma 2.13 the order of U is divis-
ible by 7. Hence the only other a.i.m.f. group into which U may embed is
0,2[2.G2(4)]s. Therefore Cy(C7) < #C3 and U is clearly not an absolutely
irreducible subgroup of one of the first two groups. a

Lemma 16.34 The restriction of M (Qw2) to the set { OO’Q[SL2(5)%S)D8]6,
00,2[SLo(5)]3 } consists of full simplices and is a one dimensional simplez.
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Proof: The absolutely irreducible subgroups U of one of these two groups G
satisfy U(®) = SLy(5) (or SLy(5) x SLo(5)), where the restriction of the
natural character of G to U is 2xs (or xs + X5). The second possibility is
clearly impossible, hence U(®) = SLy(5). The only other a.i.m.f. groups
into which U may embed are o2[2.G2(4)]s and 4 2[SL2(3)]¢. Since U is
absolutely irreducible, the centralizer of U(*) in U is a non trivial 2-group.
One concludes that the 5-modular constituents of the absolutely irreducible
group U o SLy(3) < GLy(Q) are of degree 8 and 16. So U o SLy(3) does not
fix a b-unimodular Z-lattice. O

Lemma 16.35 The only mazimal simplex in My (Qw0) with verter G :=
23572+ SLo(3Ds]s is (G, w0254 Alts]3).

Proof: Let U be an absolutely irreducible subgroup of G. Then U = ‘ggbg,
where V' < 312 : SL,(3) is an absolutely irreducible subgroup of GL3(Q[(3]).
By Lemma 16.26 O3(V) either contains O3(G) or is 312, Let 901 be a maxi-
mal order in Qu 2, and SL,(3) its unit group. The natural representation of
O;;(V)% SLy(3) has two different 2-modular constituents of degree 6. These

are interchanged by the outer automorphism of V' ® Dg inducing the Galois
automorphism on the center of O3(V'). Therefore the 2-modular constituents
of U o SLy(3) are of degree 12. So the only a.i.m.f. groups into which U may
embed are G, 22 Alt5]3, and o 2[2.G2(4)]6. Since the order of the latter
group is not divisible by 3* and the normalizer of its Sylow 3-subgroup is not
absolutely irreducible, the lemma follows. O

Lemma 16.36 There is no common absolutely irreducible subgroup of o« 2[SL2(3))1®
Eﬁ or ( OO,Q[SLQ(?))]l X A2)3 and one Of 00’2[2.G2(4)]6, 00’2[21_—1_4.14[155]3, or
002 SL2(3)]3-

Proof: Let V' be an absolutely irreducible subgroup of Fg ® o 2[SL2(3)]; or
(A3 ® ,2[SL2(3)]1)%, 9M a maximal order of Q2 and U = SLy(3) the unit
group of 9. Assume that V embeds into one of the last three groups of
the lemma. Then the degrees of the 3-modular constituents of the natural
representation of V o U are not all divisible by 4. We claim that

(x) (UoV)/(O3(U o V)) contains a normal 2-subgroup > Cjy o Qs.

Assume first that V' < Eg ® o2[SL2(3)];. Then the natural represen-
tation of V is a tensor product A; @ Ay with A¢(V) < Eg < GLg(Q) and
Ay(V) < SLy(3) < GL1(Qw2) absolutely irreducible. Clearly, A;(V) does
not contain Uy(2), hence is soluble and contained in one of the two absolutely
irreducible maximal subgroups +3'72.2.5, or 33 : (S, x Cy) ([CCNPW 85]) of
Es. Moreover Ay(V), being absolutely irreducible, contains the normal two
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subgroup Qg < SLy(3). One concludes that Os(V/O5(V)) contains a subgroup
Cj, hence ().

Assume now that V < ( «2[SL2(3)]1 ® A2)®. Then m; (V) is an absolutely
irreducible subgroup of o 2[SL2(3)]1 @ As, hence contains S5 ® Qs. The first
component of the base group of V' is a normal subgroup of index < 2 in 71 (U),
hence contains Cy. Again one sees that Oy(V/O3(V)) contains a subgroup Cy,
hence ().

Since Cy o Qg is an irreducible subgroup of GL4(F;) the 3-modular con-
stituents of V o U have degree divisible by 4, which gives a contradiction.
O

Since the first two and the last three groups of the lemma above form a
full simplex in M{"(Qy,2) one now gets Proposition 16.31

17 The a.i.m.f. subgroups of GL;(Q).

Theorem 17.1 Let Q be a definite quaternion algebra with center Q and G
be a primitive a.i.m.f. subgroup of GL7(Q). Then G is conjugate to one of the
groups in the following table.

List of the primitive a.i.m.f. subgroups of GL7(Q).

lattice L |Aut(L)| | ri.m.f. supergroups

2 2
00,2[*U3(3) OC4]7 28-3%.7 [U3(3\)/7f—1 (Qg 0 Cy).Ss]ag
wo2[SL2(13)]7 23.3.7-13 | [SLa(13) "S5 Ly(3)]as
wo2[2.a]7 98.33.52.7 | [2..15 "5 S Lo(3)]os
002l SLs(3)]s ® By | 212.35.5-7 | F, @ E;
003[S3]1 ® E7 211.35.5-7 | (A, ® Fy)?

Proof. Let Q be a definite quaternion algebra with center Q and G be a
primitive a.i.m.f. subgroup of GL7(Q). Assume that 1 # N <G is a quasi-semi-
simple normal subgroup of G. With Table 9.1 one finds that B := B°(N) is one
of SLy(13), Us(3) o Cy, £S6(2), or 2.Jo. The centralizer C := Cg(N) = Cg(B)
in G of N embeds into the commuting algebra Cgrx7(/N), which is isomorphic
to Q Q[v-1], Q, or Q in the respective cases. If B = SLy(13) or B = 2.Js,
the group B is already absolutely irreducible and one computes and concludes
that G = B is OO,Q[SLQ(]_?))]’? or 00’2[2.J2]7.

If B=Us(3)oCy, then C' = C} is contained in B and G contains B of index
2=|Out(N)|. Since the commuting algebra of B is isomorphic to an imaginary
quadratic field, one finds only one group G = B.2 in GL;(Q). Hence G is

00,2[*U3(3) %104]7 in this case.
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If N = S(2) then B = £54(2) = Aut(E7) is tensor decomposing. With
Theorem 6.1 one finds that G is conjugate to one of E; ® o 2[SLa(3)]; or
Er ® o03[53]1-

Now assume that G' does not contain a quasi-semi-simple normal subgroup.
Since there are no nilpotent groups having a character of degree 7 or 14, the
largest nilpotent normal subgroup of G' embeds into GL;(Q), hence is one of
+(C'3 or Q3. This leads to a contradiction, because both groups clearly have no
automorphism of order 7. |

Theorem 17.2 Let Q be a definite quaternion algebra with center Q and G
be an a.i.m.f. subgroup of GL7(Q). Then Q is one of Qw2 or Qus. The
simplicial complezes M¥™(Q) are as follows:

00.2[SL2(3)]: ® E7 . OO,Q[U?,(.?,) I%IC’4]7 .
00,2l SL2(3)]] 00.2[SL2(13)]7 00,2[2-Jo]7

00,3[5311 m,3[§3]1 ® Er

List of maximal simplices in M¥"(Q2):

simplex a common subgroup
( OO,Q[SL2(3)]1 ® Fr, 00,2[5L2(3)H) L2(7) ® SL2(3)

List of maximal simplices in M¥"(Q 3):

simplex a common subgroup

( 00,3[93]1 ® Ex, oo,3[S3H) Ly(7) ® Ss

Proof. Theorems 17.1 and 6.1 prove the completeness of the list of quater-
nion algebras Q and of a.i.m.f. subgroups of GL7(Q). One has only to show
the completeness of the list of maximal simplices in M¥7(Q,,2), because
the simplicial complex M¥T(Q,,3) consists of a single simplex: The group
00,2 SL2(13)]7 fixes a Z-lattice of determinant divisible by 13. So the minimal
absolutely irreducible subgroups of the group «2[SL2(13)]; are of order di-
visible by 13 (Lemma 2.13). Since the orders of the maximal subgroups of
Ly(13) are not divisible by 7-13, one concludes that o 2[SL2(13)]7 is minimal
absolutely irreducible. Hence o 2[SL2(13)]7 forms a 0-simplex in M¥"(Qy0).
By [CCNPW 85] the maximal subgroups of 2..J, of order divisible by 7 are
CyxU;(3) and (Cy x Ly(7)).2. Since the last group has no irreducible character
of degree 14, and the unique irreducible character of Us(3) of degree 14 belongs
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to an orthogonal representation, one sees that o 2[2..J5]7 is minimal absolutely
irreducible. Similarly, the restriction of the characters x7, and x7 of Us3(3)
to a maximal subgroup of Us(3) become reducible, because these characters
are constituents of the permutation character of U3(3) associated to its unique
subgroup of order divisible by 7. One concludes that (+Us(3)).2 is the unique

minimal absolutely irreducible subgroup of o 2[Us(3) I%IC4]7. Since this sub-

2
group does not embed into one of the other ai.m.f. groups, o 2[Us(3)0C4];
forms a component on its own in Mi"(Qw2). The remaining two a.i.m.f.
groups form a 1-simplex in M¥"(Qy2), so the proof is complete. a

18 The a.i.m.f. subgroups of GLs(Q).

Theorem 18.1 Let Q be a definite quaternion algebra with center Q and G
a primitive a.i.m.f. subgroup of GLg(Q). Then G is conjugate to one of the
groups listed in the following table:

List of the primitive a.i.m.f. subgroups of GLg(Q).
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lattice L |Aut(L)| Ir.i.m.f. supergroups
,2[2112.05 (2)]s 271.3%.5.7-172171°.0%,(2)]52

[21+4 Alt5]2 ® A4 210'32'52 A4 ® Eg
0,2[SL2(3)]1 ® Ay ® Ay 27335 Ay @A ®Fy
[21+6 O ( )]4 ® AQ 214'35'5 A2 ® F4®F4
sea[SLa 5[)&)8]4 ® A, 27.32.5 |4, ® [SL2(5¢§>) 21 Altlye
e2[SL(3): ® Eg 916.36.5%.7 |F, © E
2 2
002[SLa(3)]1 ® [(SL2(5)OSLy(5)) : 2]g 28-3%-52  |[Fy ® [(SL2(5)OSLa(5)) : 2]s
00,2[SLo(3 )]1®M83 27.32.7 Fy @ Mg s
2 2(3
. Q[le:g 2 26.3.7 [SL2(3) ] 04%) SL2(7)]32
o2[Spa(3) 0 Ciblss 219:35:5 [(Spa(3)8,, Spa(3)) : 261C3]5
. Q[SLQ(ajé%’ 20.3%-5  [SLy(5, 249.05 ()]s
IG5 (5 INI 27.32.5  [[SLy( 535%) (Spa(3) BIC5)]so
- 2[5L2(5)§)(D10 ® Dg)] 27.3:5  [2LAlts® | SLy(58 Dl
0,2 D1 @fb 0SLy(3 20.32.5 [[Cy5: 612_%%1]32
00.3(93]1 © Eg 215.36.52.7 [(A, ® Eg)?
2
3[~3]1 ® [(SL2(5) TS Ly(5)) : 2]s 27.3%-5% (A2 ® [(SL2(5) DS Ly(5)) : 2ls)?
00,3[93]1 ® Mg 3 26.32.7 (A ® Mg3)?
0,3[SL2(9)]2 ® Ay 27.33.52 |4, ® Ejg
00,35L2(9)]2 ® Fy 21.34.5 |F, ® Fyg
2
OO’3[SL2(3) DC3]2 () A4 27-33'5 (A4 & F4)2
2(2 2(2
wlSPi(3) 0 C@) SLa(3) 20355 [Spu(3) 0 Oy SL(3)]%
es[SLa (718851 96.32.7  [SLy(7 )2(353]
00,3[SL2(17)]8 253217 [SL2(].7) 0 53]16
03 S Lo (TEB)]s 2037 [SLy(TE, 53l
o2 AltEBY]s 26.33.5.7 [2.Am§? Sl2s
2(3) 2
s [S Lo (3PS Lo (3) B1C)]s 27355 [SLy(559 (SLa(3) BICH)s
oa[S Lo (53508, )]s 97.32.5 [5L2(5g_§2) 214 Alts]2,
es[CE 07 (2))s 214.35.5 (F,&F,)?
2(3 2
walSLa (R (Dio ® 53)]s 20325 [(SLa(5) 0 SLa(5)) : 3 Duofiy
00 3[D1§&§38)]8 26'3'5 [D120.(C4 X CZ)HG
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S Ly (556058 ]s .

SLy ( )OSL2( ))z SLy(5)) : Sslsn
SLy(5) 0 SLy(5 ))E SLy(5)) : Ssls2

26.32.52
29_34.53
2°.3%.5%
27.3%.5
27.32.5
29.3.52
26.32.5

Ay ® [(SLa(5) 0 SLy(5)
G4

Go

[(SLa(5) 0 SLy(5
[(SLy(5) 0 SLa(5
[(21+414lt569 SLo( 5)

lattice L |Aut(L)[r.i.m.f. supergroups
00,5268 2375 [SLy(9) OIS Ly (5)]32
00.519L2(5).2], @ Fy 210.33.5|F, ® Eg

oslSL2(5) : 2], ® Fy 910.33.5|F, @ [(SLy(5) 1S La(5)) : 2s
s D&%ﬂg)}s 96.32.52[SLo(9) ® Do 8IS Lo (5)]o

Y agﬁﬂs

6)

é@ﬁégﬁ

2(2)
D10]32

[e]]

(SL2(5)g >fD100é3 (SL>(3) BCs)]»

]
2
) : %/% D)6

321

322

[
[
[
5l
[
[
5l

005[SL2 (5050538, )]s.,2
5D
5D

0,515 Lo 5)-2]2% 00,3[53]1%
5l
5l
5l

5) :
5).28.. [CE%@S]Q
(5) :

E
W
&
Cﬂ
E
[\v]

®

5_

[SL2(5[)§§3 ® Ds)ls 1
00,2,3 5[SL2(5D%§3 ® Ds)]s
[
[

50,2,3,5 SL2(5D§§L2 I:‘03 )s.1
00,2,3,519 Lo 5D§§L2 E‘Cs )]s,2
3,5[*D16§%)3]4@_—3 02[SLa2(3)]1

22" 2
oo,2,3,5[D1ng3 OSLy(3))]s
22 N
2,5/ D1 8]4@_—3 00,3[93]1

o235 DIRCEDs )]s

2]2@53 c>o,3[5'3]1@j3

00,2[SLa(3)]1
002[SLa(3)]1

27.33.5
27.33.5
27.32.5
27.32.5
27.32.5
27.32.5
27.33.5
27.33.5
26.32.5
26.3%.5
26.3.5

12

(Fu®Fy)?
[SL2(5[)§>) 21+ Alfs]2
(A2 ® Es)

(A ® Fy)?
[(SL2(5) 0 SLy(5))
[Di120.(Ca % Co)3g

26.3.5

(A; ® Ay)?

[Spa(3) 0 O, SLo(3)F
[SLa(55) (SLa(3) BCH)s

[(SL(5) BSLy(5)) = 24

(4> ® [(SLs(5) OIS Ly (5)) : 2]s)?

2
4 DIO]%G

V5

Here for i = 1,2 Gy := [((SLa(5) o SL2(5)\)/B§ (SLy(5) 0 SLy(5))) : Salszs-
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lattice L |Aut(L)|r.i.m.f. supergroups
00,71SL2(7).2]s ® Ayl 2°-3%.7 |(A; @ Eg)?

SLy(Psls | 27-3-7 [(F&FL)?

[SLa(T8) Sl | 20327 [Sh(?@%i) Salts
007[2.57]a ® Ay [26-33.5.7(Ay, ® Eg)?

[

[

Alte®) B5ls [26-3%-5- 7[Azu§L Sl

Alts3g)s 07.32.5. (Fy @ Fy)?

onrlSLa(17).2ls  [26-32-17[[S Lo (1780520
05 [SLo(17 5350,
wei7[SLa(17) < 2]g | 26-32-17[[S Lo (1750305

0, [SLO7TE 500
The proof is split into several lemmata. For the rest of this section let Q
be a definite quaternion algebra with center Q and G' be a primitive a.i.m.f.
subgroup of GLg(Q).
By table 9.1 and Lemma 7.2 the possibilities for quasi-semi-simple normal
subgroups N of G are SLy(5), SLy(5) o SLy(5), SLo(5) o SL2(5)@5 SLy(5),

Alts, Ly(7), SLy(7) (2 matrix groups), SLy(9) (2 matrix groups), SL,(17) (2
matrix groups), 2.Altz, Spa(3) = 2.U4(2), and 2.07 (2).
First we treat the tensordecomposing normal subgroups N.

Lemma 18.2 If G contains a normal subgroup N =2 Alts then G is one of
2

002|251 Alts]e @ A4, 002[SL2(3))1 ® Ay @ Ay,  003[SL2(3)OCs], ® Ay, or

0073[SL2(9)]2 () A4.

Proof: By Corollary 7.6 G is of the form Ay ® H, where H < GLy(Q) is
a primitive a.i.m.f. group. Hence by Theorem 12.1 H is one of 2[(Ds ®

2
@s)-Altsla, 0o,2[SLa(3)]1® A2, 003[SLa(9)]2; 00,3[SLa(3) OC3]2, 00,5[SLa(5).2]2,
Or oo5[SLa(5) : 2]. In the last two cases G is a proper subgroup of « 5[((SL2(5)0

SL2(5)F§ SLy(5)) : Sss,1 resp.  oo5[((SLa(5) 0 SL2(5)\)/7§2 SLs(5)) : Sss,2 O

Similarly one gets the next two lemmata:

Lemma 18.3 If G contains a normal subgroup N = Ly(7) then G is one of
00,2SL2(3)]1 ® Mgz or 5,3[S3)1 @ Mss.

Lemma 18.4 If G contains a normal subgroup N = 2.05 (2) then G is one
Of Oo’2[SL2(3)]1 (024 Eg or 00,3[53]1 ® Eg.

The next lemma deals with the absolutely irreducible quasi-semi-simple
normal subgroups N:
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Lemma 18.5 If G contains a normal subgroup N isomorphic to SLo(17) with
character xi6, then G is conjugate to o 3[SL2(17)]s.

Proof: N is already absolutely irreducible. One finds G = B°(N). O

Next we treat those candidates for normal subgroups N in G, such that
Cs(N) has to be contained in B°(N).

Lemma 18.6 If G has a normal subgroup N isomorphic to one of SLs(9),
SLy(5) o SL2(5)@5 SLy(5), or SLy(17) with character Xss + Xsp, then G is

. 2
conjugate to one of 05(2.56], oos[((SLa(B) 0 SL2(5)\)/% SLy(5)) : Sslsa,

00,5[((SL2(5) O SL2(5)\’%2 SL2(5)) . 53]8,2; 00717[SL2(17).2]8, or 00,17[SL2(17) .
2s.

Proof: In all cases the centralizer Cz(N) embeds into the enveloping algebra
of N and hence is contained in B°(N). Assume first, that N is isomorphic
to SLy(9). Since the character field of the extension of the character xs,
to 2.PGLy(9) is of degree 4 over Q (cf. [CCNPW 85]), G is isomorphic to
2.S¢. (Note that the outer automorphism of Sg interchanges the two isoclinism
classes of groups 2.Sg, so there is only one group to be considered.) Hence
G = 00,5[2-56]-

If N=SLy(5)o0 SLQ(S)@E SLy(5), then B°(N) = N : S5 and one computes
that G is one of the two extensions (N : S3).2. In the last case, G = N.2 is
one of the two extensions of SLy(17) by Out(SLy(17)) = Cs. O

Lemma 18.7 If G contains a normal subgroup N = SLy(7) with character
Xs, then G is one of oo,g[SLQ('Y)%é)’)Sg]g or 00,2[041:2%)[/2(7)]8.

Proof: By table 9.1 the group N is nearly tensor decomposing over Q with
parameter 3. Since B°(N) = N by 10.1 G is either G = NC where C := C(N)
is an a.i.m.f. subgroup of GL;(D), where D is an indefinite quaternion algebra

with center Q such that (C, 3,D) is not a maximal tripel or of the form 325’ )C
or B! where (C,3,D) is a maximal tripel. Since the group SLy(7) ® Dy is
imprimitive using Table 10.2 one finds that G is one of oo,g[SLg(7)%}g))Sg]8 or

2| CES Lo (7)), O

Lemma 18.8 If G contains a normal subgroup N = SLy(9) with character
) 2
X4, then G is one of o0 3[SL2(9)]2® A4, 0,3[SL2(9)]2®F}, or 00,5[D1|5$)L2(9)]8.
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Proof: As in the last lemma N is nearly tensor decomposing over Q with
parameter 3. Hence G is either G = NC where C' := Cg(N) is an ai.m.f.
subgroup of GLy(D), where D is an indefinite quaternion algebra with center

Q such that (C, 3, D) is not a maximal tripel or of the form B%}%”C or B@ where
(C,3,D) is a maximal tripel. Moreover B°(SLy(9) o C3) = Spa(3) o C5 implies
that in both cases O3(C) = 1. Since the group o 2[(Cs OSLQ(B)).%%? SLy(9)]s
is contained in o 2[2278.05 (2)]s, table 10.4 implies that G is one of the three
a.i.m.f. groups in the Lemma. a

In the next three cases, the center of the enveloping algebra of N is an
imaginary quadratic field.

Lemma 18.9 If G has a normal subgroup N =2 SLy(7) with character x4, +

X, then G is conjugate to one of 00,3[5L2(7[)2§§‘)3]8, 00,719 La(7).2]s ® A,
2 2(3) =~

oo,7[SL2(7D§%8]8; or oo,7[SL2(7[\)?§_% 53]8-

Proof: The centralizer C := Cg(N) is a centrally irreducible subgroup of
GL,(D) where D is a quaternion algebra over Q[v/-7] and G contains NC
of index 2. Using the classification of finite subgroups of GLy(C) in [Bli 17],
one finds that C' is one of Dg, S5, SLy(3), or Ss. Distinguish 2 cases:

a) Cg(C) > £N. Then G = (N.2)C is one of  7[SLs(7).2]4 ® [Dsly or
00,719 La(7).2]4®As. In the first case, G is imprimitive contained in o, 7[SLa(7).2]3.
b) Cs(C) = =N. The groups C are nearly tensor decomposing over Q with
parameter 2, 3, 2, resp. 3. Since C = Cg(N) Lemma 10.1 implies that

)
) 2(2 22 23
G is one of oo,7[SL2(7D§)b8]8; OO,Q[SL2(7D§£VL2(3)]8, oo,g[SLQ('K)gzgg]g, or
00,718 La( 0 5’3]8. The second group fixes an 32-dimensional extremal uni-

modular lattice with maximal order as endomorphism ring. By [BaN 97] this
yields that the second group is contained in « [2172.05 (2)]s. O

Completely analogous one finds:

Lemma 18.10 If G has a normal subgroup N = 2.Alt; with character X, +
X4, then G is conjugate to one of oo,g[?.Altl%g‘)?,]g, 00,712.57]4®As, oo,ﬂQ.Alm%g]g,

or 00,7[2.Alt1%;>§) Ssls.

Lemma 18.11 If G has a normal subgroup N =2 2.U4(2) = Sp4(3) with char-
acter Xaa + X, then G is conjugate to o 2[Spa(3) CEE@B ls 07 c0,3[SPa(3) 0

c@% SLs(3)]s.

Proof: Let B := B°(N) = +C3 o N. The centralizer C' := Cg(N) is a centrally
irreducible subgroup of GL,(D) where D is a quaternion algebra over Q[v/-3]
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and G contains BC of index 2. Moreover O3(B) = Cj implies O3(C) = 1
Hence C' is either Dg or SL(3) and the lemma follows as above. O

Lemma 18.12 If N = SLy(5) 0 SLy(5) is a normal subgroup of G, then G is
2 ~ 2

one of 0o2[SL2(3)]1®[(SL2(5)TSLy(5)) : 2]s 07 00,3[S3]1®[(SLa(5) OSLy(5)) :

2]s.

Proof: G contains the normal subgroup B := B°(N) = N : 2. The centralizer
C := Cg(N) embeds into Q[v/5] ® Q. Since the primes dividing |G| are
< 5, Q[v/5] splits all possible Schur indices of Q at a finite prime. Moreover G
contains CB of index 2 = [Q[v/5] : Q] and C is a centrally irreducible subgroup
of GL1(Q,5,,)- Hence C is one of SLy(5), SLa(3), Ss, or Qg. The first
case contradicts Lemma 18.6. The lemma follows since the groups (SLy(5) o

SLy(5 QE%')LQ 2 (2 extensions), (SLy(5) o SLy(5)) : 225%)3 (2 extensions),

(SLy(5 ) 0 SLy(5)) : % ()20, are contained in one of the groups o 5[((SL2(5) 0
2 .

SL2(5)% SL2(5)) : Sg]g,i (Z = 1,2) |

Lemma 18.13 If N := SLy(5) is the only quasi-semi-simple normal subgroup
of G, then G is one of the following 21 a.i.m.f. groups o 5[SL2(5).2]2 ® Fy,

005l 9L2(5) : 22 ® Fu, 00,5[SLa(5)-2o8 oo,3[53]1% 00,2[SL2(3)]1,

00,519 La(5) : 2]2% w,3[§3]1% 00,2lSL2(3)]1, 005l SLa(d 2]2® 23[05%68]2,

00,59 La(5 )'2]2® 23[615%8]27 002[5L2(5D§%)]8, 00,2,3,5[9 La( 5D$%L2 DC?, 8,1

00,2,3,59 Lo 5ﬁ§%L2 Dcs V8,2, c02[SLa( 5D§%8]4®A2, 00,39 Lo 5358%1?2 DC?,

00,2,3,5[SL2(5D§§3®D8)]8,1; 002,359 L2 5[&6 35®Dsg)ls2; 00,3[SL2 50%@8 )8,
2(3) 2 2(6). 2 26). 2 2

o 2l S Lo (SHCEDN)s, e s[S Lo (508D 1, 5 S Lo (855552, e s[SLa(5)F Diols@

23 22
Ao, oo,3[SL2(5)%g)(D10 ® S3)]s, or 00,2[5L2(5)%5)(D10 ® Ds)s.

Proof: Let C := Cg(N). Then C embeds into Q[v/5]*** (again since Q[v/3]
splits all possible finite Schur indices) and G contains the group NC of index
2. By 2.14 C is a centrally irreducible subgroup of G L,(Q[v/5]). Distinguish
2 cases:

a) Cg(C) > N. Then Cg(C) = N.2 is one of the two extensions of N by
Out(N) and G = N.2 ® C, where C is an a.im.f. subgroup of Q.5 ® Q.
Hence C is either a r.i.m.f. subgroup of GL4(Q), thus C' = F; by Lemma 18.2
or a 3-parametric irreducible Bravais group in GLg(Q). By [Sou 94] C is one

of SLQ(ZS)@__3 Ss (By) or CE%B (Big ~ By). Hence G is one of the first 6
groups of the Lemma.
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b) Cq(C) = N. The groups C will be constructed according to their possible
normal p-subgroups:

(i) Assume first that O3(C) = O5(C) = 1. Then Table 8.7 together with the
central irreducibility of C' implies that O5(C) = Qso Qs and G contains N @ F)
of index 2. Moreover the elements in G — C' N induce an outer automorphism

of Fy. Since one of the two extensions SL2(5|12§$234 embeds into  2[2178.05 (2)]s
the group G is OO,Q[SLQ(5[)2§%%)4]8 in this case.

(ii) Now assume that O3(C) > 1 and O5(C) = 1. Then O3(C) = C5 and
Cc(03(C)) is a centrally irreducible subgroup of G' Ly (Q[v/5, (3]). Hence Oy(C)
is one of Qg or Dg and C is one of SL2(3)@__3 Ss, SLy(3) %103, Dg ® S3, or
CE%B& Note that by Lemma 2.17 in each case there is a unique extension
C = C¢(03(C)).2 with real Schur index 1. For all four candidates for C, the
outer automorphism group Out(C) is isomorphic to Cy x Cs, hence one has
to consider 3 nontrivial outer automorphisms which can be distinguished via
the determinants of the elements in QC inducing the automorphism by conju-
gation (cf. Corollary 7.12). In each case there are two extensions G = NC'.2.
Hence one has to construct 24 candidates for a.i.m.f. groups G. The groups

SLQ(%z) SLy(3) ® S3 (both extensions) and SM(S@? S3 ® SLy(3) (both ex-

tensions) clearly embed into 00,3[5'3]1 ® Exg, 00,3[5’3]1 ®[(SLy(5) |2:|SL2(5)) : 2]g,
2

2[S9 L2(3)]1 ® Ejg, respectively o 2[SL2(3)]1 ® [(SL2(5) OSLy(5)) : 2]s. Also

the two groups SLQ(BDg) (SLQ(?))% S3) are not maximal finite but contained

in the respective groups oo 5[((SL2(5) 0 SL2(5)E;)2 SLy(5)) : Ssls; (1=1,2).

The two groups SLQ(E)D%QSLQ({&) I%ng,) may be enlarged to the respective
2 21}, . 2(3) 2 . .
groups SL2(5[)§> 1. One of the extensions SL2(5[)§)(SL2(3) 0C3) is contained

. 2(2
in 53[Spa(3) 0 C%) SLy(3)]s-
2
The two groups o 3[S L2(5[i§§)3]4®D8 are imprimitive and one of the groups
SL2(5D:%8 X A2 is contained in 00,2[21;'—6.06_ (2)]4 X AQ.

One of the extensions S Ly ( 2_2) ( &) s) is contained in 00,3[0£2§23+6.O6_(2)]8

and one of the groups SL, (5[)%2 (CE%B) is a proper subgroup of o 2[Sps(3) 0

CE%B]S. Hence G is one of the 10 groups number 8 - 17 of the Lemma.

(iii) Now assume that Os5(C) > 1. Then Os5(C) = Cs and Cc(O5(C)) is a
centrally irreducible subgroup of GLy(Q[(s]) and hence of the form H & Cs,
where H is one of S3, S5, Dg, or SLy(3). Moreover C contains C¢(Os5(C))
of index 2. Since the outer automorphism group of H is C5 in all cases, C is

2 ~ 2(3) ~ 2
one of Dy ® Ss, iCEg‘)?n Q20 © Ss, a%%) Sz, D1o ® Dsg, CEﬁs, Q20 © SL2(3),
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or G%)?) SLy(3). In the four cases where Co(H) = +C5 the outer automor-
phism group of C' is cyclic of order 4 yielding no possibilities for primitive
groups G = NC.2 < GLg(Q). In the other four cases Outg,(C) = Cy and
one has two possible extensions G = NC.2. But now they lead to isomorphic
groups. In all cases where a normal subgroup ()9 is involved, one may enlarge

NC'.2 by replacing Q29 by SLo(5). Since the group 0075[SL2(5\)/E§ D;0]4 ® Dg
is imprimitive, GG is one of the last three groups of the Lemma. O

For the rest of this chapter we assume that G does not contain a quasi-
semi-simple normal subgroup. By Lemma 11.2 O17(G) = 1.
Immediately from Proposition 8.9 one finds

Lemma 18.14 If 03(G) = O5(G) =1, then G = 4 2[218.04 (2)]s.

Lemma 18.15 IfO5(G) =1 and O3(G) > 1 then G is one of 2[2175.05 (2)]1®
Ay oF oo a[CEF45.05 (2))s.

Proof: Then O3(G) = C3 and C := Cg(03(G)) is a normal subgroup of index 2
in G. Moreover C is a centrally irreducible normal subgroup of G L, (Q®Q|(3]),
whence O5(C) = 217 or 2176 Let B := B°(02(G)). Then G contains the
normal subgroup O3(G)B of index two. The enveloping algebra of B is a
central simple Q-algebra and B fixes up to isomorphism 2 lattices. With
Corollary 7.12 one finds that Glide(B) is (at most) Cs. The group 216 Altz ®

S is contained in 00,3[5’3]1 ® Fg and CE%%%.AHB has the a.i.m.f. supergroup
00,2[278.05 (2)]s. So G is one of the 2 groups in the Lemma. O

Lemma 18.16 IfO5(G) > 1 and O3(G) = 1 then G is conjugate to 00,5[D152E§22_+4.Alt5]8.

Proof: Then O3(G) = C5 and C := Cg(05(@)) is a centrally irreducible sub-
group of GL4(Q[¢5]). Moreover G/C = Cy =2 Out(Cs). Let B := B°(02(G)).
Table 8.7 gives that C = C5B. Since the where B is one of F, or 2% Alts.
In both cases Glide(B) = C5, hence G contains the normal subgroup Q2 ® F}
resp. Dy ® 214 Alts of index 2. The first possibility leads to groups con-

tained in o 5[SL2(5).2]s @ Fy or OO,Q[SLQ(E)D%Q]& In the second case G is
the a.i.m.f. group of the Lemma, since (Cs : Cy) ® 2174 Alt5 is contained in
00’2[21_+4.Alt5]2 X A4. |

Lemma 18.17 If O5(G) > 1 and O3(G) > 1 then G is conjugate to one of

25[D1525%8]4(\8% 003[53]1, 3,5[% 16§%)3]4<?% 00,2[SL2(3)]1, 00235[D16£b OSLy(3))]s,
5[D Egb OS Ly (3))ls, ooz[Dlﬁng 0SLy(3))]ss oo2,35[D Eg&liﬁs Vs> 07 o3[ D Egbgﬁjs
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Proof: As in the previous lemma O3(G) = C5 and C := Cg(0s5(G)) is a
centrally irreducible subgroup of GL4(Q[(5]). One finds that C is of the form
C5 x H where H does not admit an outer automorphism of order 4. Hence GG
contains a normal subgroup QQo0H or DigH of index 2. In the first case, one
has the same candidates for H as in the proof of the Lemma 18.13 b) (ii). In all
four cases the enveloping Q-algebra of H is central simple and Glide(H) does
not contain an element of norm 5. One concludes that G is not maximal but
contained in one of the groups of Lemma 18.13. In the second case H is one of
SLy(3)®Ss, SLy(3) BiCs, Dy® S, or CiJs. As in part b) (ii) of Lemma 18.13
Out(H) = Cy x Cy in all cases. Since the groups Cs : Cy ® H are contained in
the corresponding groups A, ® H, one has to consider three automorphisms
in each case. But now the two possible extensions DqH.2 lead to isomorphic

groups. The group DlﬁLQ(B) ® A, is contained in 00’5[D1@%5 SLy(5)]s ® Ay
and D1§§L2(3) ® S3) is contained in o 3[(Di1o ® 53)2%?5L2(5)]8.
2 .. e el 2 .
Clearly (D15§g)3 ® Dg is imprimitive and Dlﬁggg ® Dg) is a subgroup of
2(2)
o02[(D10 ® Ds)% SLy(5)]s-

With Corollary 7.12 one gets that Dﬁ%&ﬁéﬁg) is contained in DIBQE&Z%H.AZQ—,.
Since the other groups are a.i.m.f. groups, one gets the Lemma. O

19 The a.i.m.f. subgroups of GLy(Q).

Theorem 19.1 Let Q be a definite quaternion algebra with center Q and G
a primitive a.i.m.f. subgroup of GLyg(Q). Then G is conjugate to one of the
groups inf the following table.

List of the primitive a.i.m.f. subgroups of GLg(Q).

lattice L |Aut(L)| | r.i.m.f. supergroups
w0 2lSL2(19)] 23.33.5.19 | [SL(19) 6 S Ls(3)]s6

002lSLa(3)1 ® Ay 23.3-10! | Fy ® Ag
o3 =3ESps(3) 2 | 2°-37-5 | [+317E.5pa(3)21%

00,3 [+3. Altg.2%]g 26.33.5 | [+3.Alt5.22]%
wos[S3]1 ® Ag 92.3.10! | (A ® Ag)?
2 2
oo,7[=La (TS Lo(T)]g 2°.3%.7° (L2 (7] Ly(7))3s
wono[+L2(19).2ly | 243%5:19 | ((4)?)
(A(5))2
18

Proof. Let Q be a definite quaternion algebra with center Q and G be a
primitive a.i.m.f. subgroup of GLy(Q). Assume that 1 # N < G is a quasi-
semi-simple normal subgroup of G. With Table 9.1 one finds that B := B°(N)
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is one of SLy(5), +Lo(7), +3.Altg, +L5(19), SLy(19), =Us3(3), or +S1p. In the
last case, G is one of o [SL2(3)]1 ® Ag, 003[Ss]1 ® Ag, by Corollary 7.6. If
B = SLy(19) the group B is already absolutely irreducible and one computes
and concludes that G = B is  2[SL2(19)]s.

If B=+U;3(3) or B = SLy(5) then Q@ = Qy 3 resp. Qu 2 and the centralizer
Cs(B) is an absolutely irreducible subgroup of GL3(Q). One concludes that
G is imprimitive in these two cases.

If B = £L5(19) the centralizer C(B) is 1 and G = B.2 = 4 19[L2(19).2].

If B =+3.Altg, then Q = Q3. If 9 denotes a maximal order in Q, then
Zgn(B) contains only one isomorphism class of lattices. For L € Zgn(B) one
calculates that the Hermitian automorphism group of Lis G = , 3[3.Alts.2%]s.

In the last case, B = +L4(7). The centralizer C' := Cg(B) is an absolutely
irreducible subgroup of G L3(Q[v/-7]). One concludes that either G is imprimi-
tive or C'is one of +C7 : C3 or £Ly(7). One finds that G = 00,7[ﬂ:L2(7\)/§§i7 Ly(7)]o
in this case.

Now assume that G’ does not contain a quasi-semi-simple normal subgroup.
Then the Fitting subgroup of G is a self centralizing normal subgroup. By
Table 8.7 one has the following possibilities for Fit(G): +Cg, +C7, +372YC,
or +317 because 3 does not divide the order of Out(Fit(G))/B°(Fit(G)) and 9
does not divide the degree of the corresponding irreducible character of Fit(QG)
in the other cases. In the first case, G is a proper subgroup of  19[*L2(19).2]g
by Lemma 11.2. The second and third case lead to reducible groups and in the
last case, G contains B°(Fit(G)) = +317.5p4(3) of index 2. One concludes
that G = 00,3[5:3}:_4.8])4(3).2]9. O

20 The a.i.m.f. subgroups of GLy(Q).

Theorem 20.1 Let Q be a definite quaternion algebra with center Q and G
a primitive a.i.m.f. subgroup of GL1y(Q). Then G is one of the groups listed
in the following table:



List of the primitive a.i.m.f. subgroups of GL1¢(Q).

lattice L |Aut(L)| | r.i.m.f. supergroups
022.U4(2)]10 97.34.5 | [2.U,(2 )2é25L2( )]
002[SL2(11)]5 ® As 24.32.5.11 | Ay ® [SLa(11) S La(3)]20
OO,Q[SLQ(H 16 Delio 26.3.5-11 | [SLo(11)& 21+ Alts]uo
022U (2)]s ® Aq 212.36.5.11 | Ay ® [£Us(2) S S La(3)]20
woa[Us (28 Dg1o 914.35.5.11 | [+Us(2)& 21+ Alts]so
2(2) 2(2)
202569 S La(3)10 28.38.5 | F1& [+Ss)0
o2lSLa(3)]: ® [£U4(2) OCs]10 | 219-35-5 | Fy @ [2U4(2) BIC3]10
00,2[SL2(3)]1 ® Ao 23.3-11! | A ® Fy
002 SL2(3)]1 ® AY) 26.32.5.11 | AP @ F,
02| SLa(3)]1 ® A 26.32.5.11 | AY ® F,
00,2[27%. Alts]y ® As 27.3.5.6] | As ® By
03[ CE98 La (11)] 10 94.32.5.11 | [SLa(11)°C S La(3)]3,
wal(CroUi@B) SLa@)lio | 29305 | [U(2) TS L3,
ol OB (2)]10 212:35-5-11 | [+U5(2) 5 L,(3)L3,
o3 [#U4(2) BC3]10 25:3%.5 | [U4(2) BCy )3
wo3[2.U4(3)-4]10 210.36.5.7 | [2.U,(3).4°8 8]0
003[SL2(19)]10 23.32.5.19 [SL2(19) YA
o032 Alt7]100 24.32.5.7 | [2.Alt;°8 Sylso
00,3[2-Alt7]10p 24.32.5.7 | [2.Alt; 0 S3]ao
s La (1178 35)10 25.32.5.11 | [Lo(11)& Diol2
o3l Lo (115568510 95.32.5.11 | [Lo(1155D10]2,
00,3] 3]1®A10 22.3-111 | (A1 ® A)?
0o.3[93]1 ® A 25.32.5.11 | (AY ® A4,)?
sos[ S5 @ AY) 25.32.5.11 | (A% @ 4,)?
oslSLa(9)]: ® As 21.32.5.6! | As ® E
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lattice L |Aut(L)| | r.i.m.f. supergroups
00,5[iU3(5) : 3]10 25'33'53'7 [iU3(5) : 3603]40

oo 5[£512 1 SLy(5) 4]0 96.3.5¢ | [£512 1 SL,(5).2BS Ly(5)]0
w05[SL2(5).2]> ® As 91.3.5-6] | A5 ® Ey

w05[SLa(5) : 22 ® As 21.3.5.6! | As ® [(SLa(5) IS La(5)) : 2s
00,712-S7]10 25.32.5-7 | ((A3A4¢)?)

o0,712-L3(4).2%]19 29.32.5-7 | [2.L3(4).22]%,

2(2
cont[Lo(115 SLy(3) | 2°-3-5-11 | [Us(2) S5 La(3),

[(L2(11)% SLy(3) ® S3)-2]a0

23 23
0,11 L2 (110255]10 2°.3%.5-11 [L2(11[)§’b12]%0
(Ag?(’)) ® Ay)?
o011 [EL2(11).2]5 ® Ay 25.32.5.11 | (A ® A,)?

[Ls (115D 1]3,
so19]SL2(19)-2] 10 2%.32.5-19 | (Bao)
(Buo)

The proof is split into lemmata. For the rest of this section let Q be a def-
inite quaternion algebra with center Q and G be a primitive a.i.m.f. subgroup
of GL]_(](Q)

By table 9.1 and Lemma 7.2 the possibilities for quasi-semi-simple nor-
mal subgroups N of G are SLy(5), Alts (2 matrix groups), SLs(9) (2 matrix
groups), Lo(11) (3 matrix groups), SLy(11) (2 matrix groups), Alt;, 2.Alt;
(2 matrix groups), SL2(19) (2 matrix groups), M1, 2.L3(4), Us(2) (2 matrix
gI‘OUpS), 2U4(2), 2.M12, U3(5), 2.M22, 2U4(3), U5(2), and Altll. By COI‘OH&I‘y
7.7, N is not conjugate to one of My, 2. M5, or 2. Mos.

Lemma 20.2 G has no normal subgroup SLs(11) with character x10a + X10b-

Proof: Assume that G has a normal subgroup N conjugate to SLs(11), where
the restriction of the natural character of G to N is X104+ X10o- Then G contains
the normal subgroup NCg(N) of index < 2. Since the outer automorphism
of N does not interchange the two Galois conjugate characters xi19, and xiop,
the character field of the natural character of G is Q[v/3]. Therefore G is not
absolutely irreducible. O

Lemma 20.3 If G contains a normal subgroup N =2 Alts with character xs
then G is one of o 2[21 Alts]; ® As, 003[SL2(9)]2® A5, o05[SLa(5).2]2® As,
or oo,5[SL2(5) : 2]2 ® A5.

Proof: By Corollary 7.6 G is of the form A5 ® H, where H < GLy(Q) is
a primitive a.i.m.f. group. Hence by Theorem 12.1 H is one of 2[(Ds ®
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Qs)-Altsls, s02lSLa(3)i®As, 003lSLa(9)]2, 0s[SL2(3) OCs], os[SLa(5).2]a,
Or 05[SLa(5):2]o. If H = 2[SLy(3)]1 ® Az, then G = 2[SL2(3)1 @ (A2 ®
Ajs) is contained in o 2[SL2(3)]1 ® [xU4(2) I%IC3]10.

If H= 3[SLsy(3) I%IC;),]Q, one computes that G is a proper subgroup of
wal(Cs 0 Us()B8) SLa(3)]1o. 0

Similarly one gets the next two lemmata:

Lemma 20.4 If G contains a normal subgroup N = Alt, with character x10
then G is one of «2[SL2(3)]1 @ A1g 0 ,3[S5]1 ® Ajp.

Lemma 20.5 If G contains a normal subgroup N = Ls(11) with character
X10a then G is one of «2[SLa(3)]1 ® A%) 0T 00,3[S3)1 @ A%).

Lemma 20.6 If G contains a normal subgroup N =2 SLy(9) with character
X1, then G is conjugate to o 3[SL2(9)]2 @ As.

Proof: By 2.18 one has Q = Q.3 and C := Cg(N) embeds into GL5(Q).
Since G contains NC of index < 2, C is an absolutely irreducible subgroup
of GLs(Q). Therefore C() is one of Alts or Alts. Since in the first case
C AB°(C), one has C®) = Alts and the Lemma follows from 20.3. a

Similarly one gets

Lemma 20.7 If G contains a normal subgroup N = SLy(5) with character
X2a+X2b, then G is conjugate to one of «5[SLa(5) : 2]o®As5 07 o0,5[SLa(5).2]o®
As.

Proof: Now C := Cg(N) is a centrally irreducible subgroup of GLs(Q[v/5]).
Again C(*) is one of Alt; or Altgs and the Lemma follows from 20.3. O

The next lemma deals with the absolutely irreducible candidates for normal
subgroups NV:

Lemma 20.8 If G contains a normal subgroup N isomorphic to 2.Alt; with
character Xaoq, 2.Alty with character a0, SL2(19) with character o0, 2.Us(2)
with character xa0, Us(5) with character o0, resp. 2.Uy(3) with character xso,
then G is conjugate to one of o 3[2.Alt7]10a, 00,3[2-Alt7]i0b,  00,3[SL2(19)]10,
00,2[2.U4(2)]10, 00,5[iU3(5) : 3]10, resp. 00,3[2.U4(3).4]10.

Proof: In all cases N is already absolutely irreducible. One finds G = B°(N).
O

Next we treat those candidates for normal subgroups N in G, such that
Cs(N) has to be contained in B°(N).
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Lemma 20.9 G has no normal subgroup N isomorphic to SLs(9) with char-
acter Xi0a + Xi0p- If G contains a normal subgroup N isomorphic to Alt;
with character X10a + X10s, SL2(19) with character X104 + X106, 2-L3(4) with
character xi10a + Xi0v, resp. Us(2) with character xi0a + Xi0v, then G =
BO(N)2 18 conjugate to 00,7[2.57]10, w719[SL2(19).2]10, 0077[2.L3(4).22]10, resp.

00,3[xU4(2) I%103]10-

Proof: In all cases the centralizer Cz(N) embeds into the enveloping algebra
of N and hence is contained in B°(N). Assume first, that N is isomorphic
to SLy(9). Since the character field of the extension of the character xio,
to 2.PGLy(9) is of degree 4 over Q (cf. [CCNPW 85]), G is isomorphic to
2.56. (Note that the outer automorphism of Sg interchanges the two isoclinism
classes of groups 2.5, so there is only one group to be considered.) But then G
is not maximal finite, since it is contained in the a.i.m.f. group o 2[2.Us(2)]10-

In all the other cases Glide(N) = 1 and there is an automorphism of N
inducing the Galois automorphism of the character field Q[x]|. Since Q[x] is
a imaginary quadratic number field, Remark (I.13) of [Neb 96] implies that
there is a unique extension G' = B°(NN).2 with real Schur index 2. Computing
the automorphism groups of the G-invariant lattices, one finds that in all cases
G is a maximal finite subgroup of GL,(Q). O

Lemma 20.10 If G has a normal subgroup N = Altg with character x19, then
G is conjugate to 00,2[56%@2)5’L2(3)]10.

Proof: By table 9.1 the group N is nearly tensor decomposing over Q with
parameter 2. Let B := B°(N) = +Sg and C := Cg(N) = Cg(B). By 10.1 G is
either G = BC where C' is an a.i.m.f. subgroup of GL(Q) such that (C,2, Q)
is not a maximal tripel or of the form B%g)z)C or Bzé%) where (C,2,Q) is a
maximal tripel. Table 10.2 G is one of  3[+Se® 53]10 or oo,z[iSﬁ%g)SLg(ii)]N.
The first group is not maximal finite but contained in o 3[+Us(2) I%ICg]lo. a

Similarly one finds, because o 2[L2(11) ® SLy(3)]10 is contained in A;p @
00,2[SLa(3)]1.

Lemma 20.11 If G has a normal subgroup N = Lo(11) with character xio,
then G is conjugate to oo,g[LQ(]_].)%g)gy,]lo.

The next two lemmata deal with similar situations, where now the en-
veloping algebra of IV is a matrix ring over a definite quaternion algebra over

Q-
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Lemma 20.12 If G has a normal subgroup N =2 SLy(11) with character 2x1y,
then G is conjugate to one of o2[SL2(11)]5 @ As, oo’Q[SLQ(ll)%é?)Dg]lo, or

oo,3[552§%L2(11)]10-

Proof: By table 9.1 the group N is nearly tensor decomposing over Q with
parameter 2. By 10.1 G is either G = NC where C := Cg(N) is an ai.m.f.
subgroup of GL;(D) such that (C,2,D) is not a maximal tripel or of the form

]\?6%)2)0 or N3E where (C,2,D) is a maximal tripel and D is an indefinite
quaternion algebra over Q. By Table 10.2 G is one of the three groups in the
lemma. O

Completely analogously one gets

Lemma 20.13 If G has a normal subgroup N =2 Us(2) with character 2x1o,
then G is conjugate to one of o2[*Us(2)]5 @ Ao, 00,2[iU5(2)%§g>2) Dg)yg, or

o3[ C2U5 (2)]10-

In the last two cases, the center of the enveloping algebra of N is an imag-
inary quadratic field. Hence here the situation is not so tight.

Lemma 20.14 If G has a normal subgroup N =2 Lo(11) with character xs, +

Xsb, then G is conjugate to one of «2[SLa(3)1 @ A%), 00,3[L2(1123§3]10,
~ 2(2) 23
00,3[53]1®Ag?))7 oo,11[L2(11 - SLs(3)]105 00,11[L2(110XS3]10, 0F w0 11[*L2(11).2]5®

-1
As.

Proof: The centralizer C := Cg(N) is a centrally irreducible subgroup of
GL,(D) where D is a quaternion algebra over Q[y/-11] and G contains NC
of index 2. Using the classification of finite subgroups of GL,(C) in [Bli 17],
one finds that C' is one of Dg, S5, SLy(3), or Ss. Distinguish 2 cases:

a) Cg(C) > =£N. Then G = (¢N.2)C is one of 11[*L2(11).2]5 ® [Dg]s,
oo,ll[:tLZ(ll)-z]S ®A2, oo,Q[SLQ (3)]1 ®A§%), or 00,3[53]1 ®A§%) In the first case,
G is imprimitive contained in 11[*Lo(11).2]2.

b) Cs(C) = =N. The groups C are nearly tensor decomposing over Q with
parameter 2, 3, 2, resp. 3. Since C = Cg(N) Lemma 10.1 implies that G

) 2(2 2(2) 2(3
1S one Of 00,2[L2(11D:§b8]10: 00711[1—/2(]_]_[)%ﬁ SL2(3)]10, oo,ll[LQ(]-l[):ég%]lOa or
0073[L2(11[f§§3]10. Note that 3 is decomposed and 2 is inert in Q[v/-11]. The

2(2
first group is not maximal finite but contained in OO,Q[iU5(2)<}%>)D8]10. a

Lemma 20.15 If G has a normal subgroup N = Uy(2) with character xsq, +
Xsb, then G is conjugate to 2[SL2(3)]1®@[xUs(2) IZJC’3]10 or 00,3[(C3oU4(2)[)%>_2,; SLy(3)]10-
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Proof: Let B := B°(N) = +(C3 o N. The centralizer C' := Cg(N) is a cen-
trally irreducible subgroup of GL;(D) where D is a quaternion algebra over
Q[v-3] and G contains BC of index 2. As in the last lemma C is one of
Dy, £S5, SLy(3), or S3. But now Os(B) ¢ Cj and therefore all three groups
s03[S3]1 ® [*U4(2) I%'03]10, A2 @ 0,3[Us(2) I%'03]5, and Dg ®@ o0,3[*Us(2) I%'03]5
are imprimitive and one only finds one a.i.m.f. group in the case Cg(C) > B.
In the case Cz(C) = B one again uses 10.1 to deduce that G is one of

0, o[xU4(2 Cﬁéﬁbsho, 00 3[iU4 C@, SLy(3))]10, 00, 3[xU4(2 C@&s J10, OF

00,ko,[ﬂ:UAL(Q) o CE%_% Ss]io. The first group is not maximal finite but contained

in oo,z[iU5(2)2(§)2)D8]10 and the last two groups are imprimitive. a
For the rest of the proof of 20.1 we assume that G contains no quasi-semi-
simple normal subgroup. Then the Fitting subgroup Fit(G) := [l q Op(G)
is a self centralizing normal subgroup of GG, and hence an irreducible subgroup
of GL1p(Q) by Lemma 8.11. From Table 8.7 one gets that Fit(G) is one of
ing,, i5l++2, of iCH.
The first possibility immediately leads to a contradiction.

Lemma 20.16 [f O5(G) = 5}|_+2 then G = 00,5[i5}|_+2 : SL2(5)4]10

Proof: Then G contains the group B := B°(05(G)) = #5172 : SLy(5) with
G/B = Cy(= Gal(Q[¢5]/Q))). Since the split extension B : Cy has real Schur
index 1 one concludes G = o 5[+5172 : SLy(5).4]10. O

Lemma 20.17 Oll(G) 7£ 011.

Proof: The centralizer C' := C(011(G)) is a centrally irreducible subgroup of
GL(D) where D is a quaternion algebra over Q[¢;1]. As in 20.14 C is one of
the groups Dg, £S3, SLs(3), or Ss. Since these groups have no automorphism
of order 5, G contains the group =C}; : C5C of index 2. In all cases, G is a
proper subgroup of one of the groups of 20.14. O



21 Appendix

129

Some invariants of the occurring primitive r.i.m.f. subgroups of GL3»(Q), that

are not tensor products:

lattice L det(L)min(L)| |Lpn| |Aut(L)| lattice
sparse
251005, (2)]ss 1 4 [ 146880 R%1-35.52.7-17-31] p #2
2
[((SLQ( ) © SL2(5)\/5 516 8 21600 213_35_54 +
(SL2(5) o SLa(5))) 254]321
(SLa(5) 0 SLy(5))) : Salsaz 103680 B
[4.L3(4).2%]39, 5% |8 | 115204 | 21.3%5.7  Q[V-5], +
10080 +
[4.L3(4).2?]39.0 1 4 | 8064+ 210.32.5.7 | Q[V-5]
20160+ +
223040+
32256+
40320
1S Lo (1780301 1 4 |3-4806+| 27-33.17  |p#£3,17
4-14688
[SLs 17p:2§ ]322 176 | 12 | 1632 27.33.17 p#3
[(2. Alt?& 2.Alt;) 716 8 5040 29.3%.52.72 +
[2.Alt" (SLy( )13(13)]32 216.716 12 6720 28.34.5-7 +
[(Sp4( )® Sp4( )) . 2503]32 316 6 9600 215'39'52 +
[SL2(511§>2) 2116, 0=, | 5 | 8 | 21600 | 29.35.52 | p£2
[SLy(9) 22;%2 21t Altsls, 21631 8 | 7200 912.33.52 +
[SLs( 5[)5%3) (Sps(3)BC)]s 13551 12 | 4800 911.36.52 +
[SLy(17) °$55]5 17 | 6 |233376%|  27.33.17 p#3
2
[SL2(7)X 2. Alt7]30 28.7161 12 | 47040 28.3%.5.72 +
[SLy(9 ) ® Dig DSLQ( )]sz |3%6-58) 8 3600 98.33.53 p#5
[SLs( (SLQ( YBC)]s 2.7 10 | 1344 98.33.7 p#£2
[SLy(7) é‘? (SLy(3)BiCy)]e |216-78] 6 | 1344 98.33.7 p#3
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lattice L det(L) min(L)| | Loin| ||Aut(L)| ;t;;;f
[(SLy(3) 004).%? SLo(T)se  |26-3'6.78| 12 | 672+ | 2°-3%-7 n
1344
SLy(T)& . SLy(9)]s 78 6 |6720+[28-33-5-7 p#£3
00,3
20160
[SLy(9 )IQHSL )k 28.58 4800 [27-33.52|  p#£5
[((SLa(5) 0 SLa(5)) : cggb Vaoa 26-316 1440+ [20-33.52  p#£5
2880
[((SLa(5) 0 SLy(5 Q\éz (C5D5)]32.0216-316.51 16 | 1440 [20-33.52  +
(Cis - a;z%%]w 316.58 | 8 [14404|219-33.5| p£25
2160
(2 Alts® | SLo(5)E Diglse | 2'65% | 8 |9600+ 213259 p#5
’ 12000+
14400
[(SL(5), Dy (SLy(3)01Cy)]a [216-3'0-5% 12 |4800+|2%-3%52|  p#5
’ 5760
[SLa(5) o (C55Das)]as 118 | 6 [3-1440|26-32.52| Q[V/3,V/3|
+2400 p#5
1S L (3) S Csp0) 30 118 6 |5-720|27-3%5 | QIV3, V5]
+960 p#5
[SLy(5) ngg Q24)]32 58.118 8 | 1440 |26.3%2.5%2Q[vV/3,V/5], +
[SL2(3) S(C8, Quulsn 5.1 | 8 | 720 |27-32:5 QIV3,v5), H

The tables are organised as follows: First a name of the rational irreducible

maximal finite (r.i.m.f.) subgroup G of GL35(Q) resp. of a invariant lattice L
of minimal determinant is given (cf. Section 16.20). The next columns indicate
the abelian invariants of the discriminant group L¥ /L of L, the minimum of
the square lengths of the non zero vectors in L and the number of these minimal
vectors decomposed into orbitlengths under G. The fourth column gives the
order of G and the last column allows to deduce some information on the
lattice of G-invariant lattices. A + in this column indicates that G is lattice
sparse, that is that all invariant lattices are obtained from L by multiplying
with invertible elements in the commuting algebra of G (which is Q except
for the groups 4 and 5 and the last four groups), taking duals with respect
to positive definite invariant quadratic forms (which are unique up to scalar
multiples except for the last four groups), and taking intersections and sums.
If G is not lattice sparse the primes p are indicated such that all G-sublattices
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of L of p-power index can be obtained by a combinations of the four operations
above.
The next two tables are built up similarly.

Theorem 21.1 The groups in this table are maximal finite subgroups of GL33(Q).

Proof: For all groups but the last four groups G the Theorem follows easily by
showing that G is the automorphism group of all its invariant lattices. Only the
last four groups are not uniform. Let H be a r.i.m.f. supergroup of one of these
groups G. As for the other groups one easily shows that the space of invariant
quadratic forms of H is a proper subspace of F(G). Therefore Cgszxs2 (H) is
isomorphic to one of the proper subfields of Q[v/3, /5] and either H is uniform
or dim(F(H)) = 2 and H satisfies the conditions of [NeP 95, Theorem (II.4)].
Thus there is (F, L) € Fso(H) x Z(H) such that F is integral on L and the
prime divisors of the determinant det(F, L) of a Gram matrix of F' on L divide
the group order |H|. By the formula in [Schu 05] the largest prime which may
divide the order of H is 31. Since the determinants of the integral positive
definite lattices (F,L) € F-o(G) x Z(G) which involve only prime divisors
< 31 are divisible by 11 one concludes that 11 divides |H|. Moreover H is
primitive, because G is primitive. Since the possible normal p-subgroups of
H do not admit an automorphism of order 11 it follows that H has a quasi
semi simple normal subgroup. Let (F, L) € Fso(H) x Z(H) be an H-invariant
integral lattice of minimal determinant. The 11-modular representation 9§ :
G — GLg(11) obtained from the action of G on L# /L is faithful because 11
does not divide the order of G and extends to a representation of H. So H has
an image H with G < H < GLg(11). Then the determination of the minimal
degrees of a projective representation of a finite Chevalley group in non defining
characteristic in [LaS 74] resp. [SeZ 93] show that the simple composition
factors of H are contained in [CCNPW 85]. One now gets the result from the
classification of the non abelian finite simple groups and [CCNPW 85]. O

Only one primitive r.i.m.f. group of GL3(Q) whose lattices are not tensor
products turns up:

lattice L det(L) | min(L) | |Lmin| | |Aut(L)]

lattice
sparse

1SL,(19) S5 Lo(3)]3s | 218-19¢ | 10 | 4104 | 26.33.5.190| +
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Some invariants of the occurring primitive r.i.m.f. groups of dimension 40,
that are not tensor products:

lattice L det(L)min(L)| |Lumn| |Aut(L)| lattice
sparse
[£Us(5) : 3610310 520 | 8 | 10500 |26-3%.53-7| p#3
(55442 1 SL,(5).208Ly(5)lug | 5* | 4 3600 | 28-32.5° | p£5
SL(1E 24 Alts)yg | 11% | 6 | 13200 R-3%5%11 p#2
Us(2)8 | 2+ Alts]ag 1 | 4 | 39600 [2!8-35.5%.11 p£2
960+
o 11520+
[2.U4(2) 0 S Ls(3)]40 28.3%| 6 12960+ | 210.35.5 | p#£2
17280+
25920
[SLo(111%75.Colig [115-2%9 8 1320 | 26-32.5:11| p # 11
2-1320
2(2) . 43960 | 6 0o o
(S Lo (118 L (3)] 0 18| 6 | Tooey |203%5-11p#2,11
+7920
[SL5(19) 58]0 320,198 10 | 4104 |25-3%.5.19] +
2030 5040
[2. Alt; 85,10 BT 6| e | 2008057 | p#3
- 3-1680
12 98 5.33.5.
[2.Alt; 0 Ssa0 212.38] 6 10080 | 2735 7Ip#2,3
[2.U4(3).4°6 B30 32 | ¢ 3360 | 212.37.5.7| +
2(2) 960
F, [iS(;]lO 216.316 6 11440 212.3%.5 p 75 2
22640
(L2(11)®._; SLx(3) ® S3)-2)ao 2%0 6 | +15840 |27-3%.5-11jp# 3,11
+2-31680
21120 —
20 11 34 &, -
[2.M15.28; GLy(3)]ao 2 6 Lgsae0 |23 Q[v-2]
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