Lattices and modular forms.

Gabriele Nebe

Lehrstuhl D für Mathematik

Third deBrun workshop, Galway, December 2009

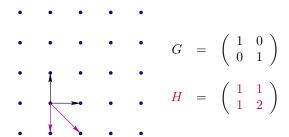
Lattices

Definition.

A lattice L in Euclidean n-space $(\mathbb{R}^n,(,))$ is the \mathbb{Z} -span of an \mathbb{R} -basis $B=(b_1,\ldots,b_n)$ of \mathbb{R}^n

$$L = \langle b_1, \dots, b_n \rangle_{\mathbb{Z}} = \{ \sum_{i=1}^n a_i b_i \mid a_i \in \mathbb{Z} \}.$$

 $\mathcal{L}_n := \{ L \leq \mathbb{R}^n \mid L \text{ is lattice } \} \text{ the set of all lattices in } \mathbb{R}^n.$



Invariants of lattices.

Gram matrix.

 $\operatorname{Gram}(L) = \{g \operatorname{Gram}(B)g^{tr} \mid g \in \operatorname{GL}_n(\mathbb{Z})\}$ where

$$Gram(B) = ((b_i, b_j)) = BB^{tr} \in \mathbb{R}_{sym}^{n \times n}$$

is the Gram matrix of B.

Invariants from Gram matrix.

- ▶ $det(L) = det(Gram(B)) = det(BB^{tr})$ the determinant of L is the square of the volume of the fundamental parallelotope of B.
- $ightharpoonup \min(L) = \min\{(\ell, \ell) \mid 0 \neq \ell \in L\}$ the minimum of L.
- ▶ $Min(L) = \{\ell \in L \mid (\ell, \ell) = min(L)\}$ the shortest vectors of L.
- ▶ $|\operatorname{Min}(L)|$ the kissing number of L.

Properties of lattices.

Dual lattice.

Let $L = \langle b_1, \dots, b_n \rangle_{\mathbb{Z}} \leq \mathbb{R}^n$ be a lattice. Then the dual lattice

$$L^{\#} := \{ x \in \mathbb{R}^n \mid (x, \ell) \in \mathbb{Z} \forall \ell \in L \}$$

is again a lattice in \mathbb{R}^n and the dual basis $B^* = (b_1^*, \dots, b_n^*)$ with $(b_i^*, b_j) = \delta_{ij}$ is a lattice basis for $L^\#$. Gram $(B^*) = \operatorname{Gram}(B)^{-1}$.

Integral lattices.

- ▶ L is called integral, if $L \subset L^{\#}$ or equivalently $Gram(B) \in \mathbb{Z}^{n \times n}$.
- ▶ L is called even, if $Q(\ell) := \frac{1}{2}(\ell, \ell) \in \mathbb{Z}$ for all $\ell \in L$.
- ▶ Even lattices are integral and an integral lattice is even if $(b_i,b_i)\in 2\mathbb{Z}$ for all $i=1,\ldots,n$.
- ▶ L is called unimodular if $L = L^{\#}$.

Orthogonal decomposition.

Definition.

Let $L_1 \leq \mathbb{R}^{n_1}$ and $L_2 \leq \mathbb{R}^{n_2}$ be lattices. Then $L_1 \perp L_2 \leq \mathbb{R}^{n_1} \perp \mathbb{R}^{n_2}$ is called the orthogonal sum of L_1 and L_2 . A lattice is orthogonally indecomposable if it cannot be written as orthogonal sum of proper sublattices.

If $G_i \in \operatorname{Gram}(L_i)$ are Gram matrices of L_i , then the block diagonal matrix $\operatorname{diag}(G_1,G_2)$ is a Gram matrix of $L_1 \perp L_2$, but not all Gram matrices of $L_1 \perp L_2$ are block diagonal.

Theorem (M. Kneser).

Every lattice L has a unique orthogonal decomposition $L = L_1 \perp \ldots \perp L_s$ with indecomposable lattices L_i .

Construction of orthogonal decomposition.

Proof.

- ▶ Call $x \in L$ indecomposable, if $x \neq y + z$ for $y, z \in L \{0\}$, (y, z) = 0.
- ▶ Then any $0 \neq x \in L$ is sum of indecomposables,
- because if x is not itself indecomposable then x=y+z with (y,z)=0 and hence $0<(y,y)<(x,x),\,0<(z,z)<(x,x).$
- So this decomposition process terminates.
- ▶ In particular L is generated by indecomposable vectors.
- ▶ Two indecomposable vectors $y, z \in L$ are called connected, if there are indecomposable vectors $x_0 = y, x_1, \ldots, x_t = z$ in L, such that $(x_i, x_{i+1}) \neq 0$ for all i.
- ▶ This yields an equivalence relation on the set of indecomposable vectors in L with finitely many classes K_1, \ldots, K_s .
- ▶ If $L_i := \langle K_i \rangle_{\mathbb{Z}}$ then $L = L_1 \perp \ldots \perp L_s$ is the unique orthogonal decomposition of L in indecomposable sublattices.

Equivalence and automorphism groups.

Equivalence.

The orthogonal group

 $O_n(\mathbb{R})=\{g\in \mathrm{GL}_n(\mathbb{R})\mid (vg,wg)=(v,w) \text{ for all } v,w\in\mathbb{R}^n\}$ acts on \mathcal{L}_n preserving all invariants that can be deduced from the Gram matrices like integrality, minimum, determinant, density etc..

Lattices in the same $O_n(\mathbb{R})$ -orbit are called isometric.

Automorphism group.

The automorphism group of L is

$$\operatorname{Aut}(L) = \{ \sigma \in O_n(\mathbb{R}) \mid \sigma(L) = L \}$$

$$\cong \{ g \in \operatorname{GL}_n(\mathbb{Z}) \mid g \operatorname{Gram}(B) g^{tr} = \operatorname{Gram}(B) \}$$

 $\operatorname{Aut}(L)$ is a finite group and can be calculated efficiently, if the finite set of vectors $\{\ell \in L \mid Q(\ell) \leq \max_{i=1}^n Q(b_i)\}$ can be stored. (Bernd Souvignier, Wilhelm Plesken)

Reflections and automorphisms.

For a vector $0 \neq v \in \mathbb{R}^n$ the reflection along v is

$$\sigma_v: x \mapsto x - 2\frac{(x,v)}{(v,v)}v = x - \frac{(x,v)}{Q(v)}v.$$

- $\quad \bullet \quad \sigma_v \in O_n(\mathbb{R}).$
- ▶ If $L \subset L^{\#}$ is an integral lattice and $v \in L$ satisfies $(v, v) \in \{1, 2\}$ then $\sigma_v \in \operatorname{Aut}(L)$.
- If L is even then define

$$S(L) := \langle \sigma_v \mid v \in L, Q(v) = 1 \rangle$$

the reflection subgroup of Aut(L)

Root lattices.

Definition.

- ▶ An even lattice L is called a root lattice, if $L = \langle \ell \in L \mid Q(\ell) = 1 \rangle$. Then $R(L) := \{ \ell \in L \mid Q(\ell) = 1 \}$ is called the set of roots of L.
- ▶ A root lattice L is called decomposable if $L = M \perp N$ for proper root lattices M and N and indecomposable otherwise.

Theorem.

Let L be an indecomposable root lattice. Then S(L) acts irreducibly on \mathbb{R}^n .

Proof. Let $0 \neq U < \mathbb{R}^n$ be an S(L)-invariant subspace and $a \in R(L) - U$ Then $\sigma_a(u) = u - (u,a)a \in U$ for all $u \in U$ implies that (u,a) = 0 for all $u \in U$ and hence $a \in U^\perp$. So $R(L) \subset U \cup U^\perp$ and L is decomposable.

Indecomposable root lattices.

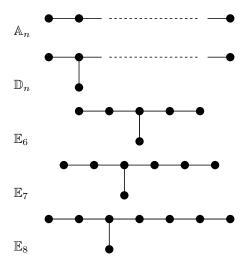
Theorem.

- ▶ Let $L = \langle R(L) \rangle$ be a root lattice.
- ▶ Then L has a basis $B \in R(L)^n$ such that $(b_i, b_j) \in \{0, -1\}$ for all $i \neq j$.
- ▶ The Gram matrix of this basis is visualised by a Dynkin diagram, a graph with n vertices corresponding to the n basis elements and with an edge (i,j) if $(b_i,b_j)=-1$.
- ▶ The Dynkin diagram is connected, if *L* is indecomposable.

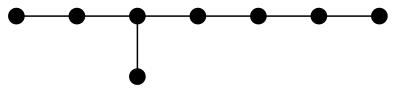
Theorem.

Let $L \in \mathcal{L}_n$ be an indecomposable root lattice. Then L is isometric to one of \mathbb{A}_n , \mathbb{D}_n , if $n \geq 4$, \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 if n = 6, 7, 8 respectively.

Dynkin diagrams of indecomposable root lattices.



Gram matrix for \mathbb{E}_8 .



yields the following Gram matrix

The indecomposable root lattices.

- Let $r, s \in R(\mathbb{E}_8)$ with (r, s) = -1. Then $\mathbb{E}_7 = r^{\perp} \cap \mathbb{E}_8$ and $\mathbb{E}_6 = \langle r, s \rangle^{\perp} \cap \mathbb{E}_8$.
- ▶ If $(e_1, ..., e_n)$ is an orthonormal basis of \mathbb{R}^n then $\mathbb{D}_n = \langle e_1 e_2, e_2 e_3, ..., e_{n-1} e_n, e_{n-1} + e_n \rangle_{\mathbb{Z}}$.
- $\mathbb{A}_{n-1} \leq (e_1 + \ldots + e_n)^{\perp} \cong \mathbb{R}^{n-1}$ has basis $(e_1 e_2, e_2 e_3, \ldots, e_{n-1} e_n)$.
- ▶ $h := |R(L)|/n \in \mathbb{Z}$ is called the Coxeter number of an indecomposable root lattice L.

L	R(L)	h	$\det(L)$	S(L)	$\operatorname{Aut}(L)$
\mathbb{A}_n	n(n+1)	n+1	n+1	S_{n+1}	$\pm S_{n+1}$
\mathbb{D}_n	2n(n-1)	2(n-1)	4	$C_2^{n-1}:S_n$	$C_2 \wr S_n$
\mathbb{E}_6	72	12	3	$PSp_{4}(3).2$	$C_2 \times PSp_4(3).2$
\mathbb{E}_7	126	18	2	$2.Sp_6(2)$	$2.Sp_6(2)$
\mathbb{E}_8	240	30	1	$2.O_8^+(2).2$	$2.O_8^+(2).2$

The Leech lattice.

The Leech lattice.

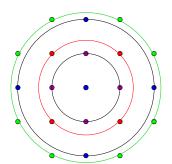
There is a unique even unimodular lattice Λ_{24} of dimension 24 without vectors of norm 2. $\operatorname{Aut}(\Lambda_{24})=2.Co_1$ is the sporadic quasisimple Conway group.

A construction of the Leech lattice.

- ▶ \mathbb{E}_8 has a hermitian structure over $\mathbb{Z}[\alpha]$ where $\alpha^2 \alpha + 2 = 0$.
- The 3-dimensional $\mathbb{Z}[\alpha]$ -lattice P_6 with hermitian Grammatrix $E = \left(\begin{array}{ccc} 2 & \alpha & -1 \\ \overline{\alpha} & 2 & \alpha \\ -1 & \overline{\alpha} & 2 \end{array} \right) \text{ is known as the Barnes-lattice.}$
- ▶ Then the Leech lattice Λ_{24} is $\mathbb{E}_8 \otimes_{\mathbb{Z}[\alpha]} P_6$ with euclidean inner product (x,y) = Tr(h(x,y)).

Theta-series of lattices.

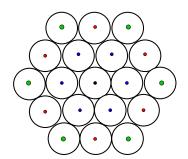
- ▶ The theta series $\theta_L = \sum_{\ell \in L} q^{Q(\ell)}$.
- Assume that L is an even lattice and let $L_a := \{\ell \in L \mid Q(\ell) = a\}$. Then L_a is a finite $\operatorname{Aut}(L)$ -set and $\theta_L = \sum_{a=0}^{\infty} |L_a| q^a$.
- ▶ $L=\sqrt{2}\mathbb{Z}^2$ the square lattice with Gram matrix $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$: $\theta_L=1+4q^1+4q^2+4q^4+8q^5+4q^8+4q^9+8q^{10}+\dots$ $\operatorname{Aut}(L)\cong D_8$ (the symmetry group of a square)



Example: the hexagonal lattice.

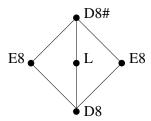
The hexagonal lattice.

Basis
$$B = ((1,1), (\frac{1+\sqrt{3}}{2}, \frac{1-\sqrt{3}}{2}))$$
, $Gram(B) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ $\det(L) = 3$, $\min(L) = 2$, $\gamma(L) = \frac{2}{\sqrt{3}} \sim 1.1547$ (density .91) $\theta_L = 1 + 6q + 6q^3 + 6q^4 + 12q^7 + 6q^9 + 6q^{12} + 12q^{13} + 6q^{16} + \dots$ $\operatorname{Aut}(L) \cong D_{12}$ (the symmetry group of a regular hexagon)



Example: the \mathbb{E}_8 -lattice.

- Let (e_1, \ldots, e_8) be an orthonormal basis of \mathbb{R}^8 and consider $L := \mathbb{Z}^8 = \langle e_1, \ldots, e_8 \rangle_{\mathbb{Z}} = L^\#$.
- ▶ Let $\mathbb{D}_8 := \{\ell \in L \mid (\ell, \ell) \in 2\mathbb{Z}\}$ be the even sublattice of L.
- $\theta_{\mathbb{D}_8} = 1 + 112q + 1136q^2 + 3136q^3 + 9328q^4 + 14112q^5 + \dots$
- ▶ Then $\mathbb{D}_8^\#/\mathbb{D}_8 = \langle e_1 + \mathbb{D}_8, v + \mathbb{D}_8 \rangle \cong C_2 \times C_2$, where $v = \frac{1}{2} \sum_{i=1}^8 e_i$.
- $lackbox{}(v,v)=rac{8}{4}=2$ and $\mathbb{E}_8=\langle\mathbb{D}_8,v
 angle$ is an even unimodular lattice.
- $\theta_{\mathbb{E}_8} = \theta_{\mathbb{D}_8} + \theta_{v+\mathbb{D}_8} = 1 + 240q + 2160q^2 + 6720q^3 + 17520q^4 + 30240q^5 + \ldots = 1 + 240(q + 9q^2 + 28q^3 + 73q^4 + 126q^5 + \ldots)$



Theta series as holomorphic functions.

In the following we will consider even lattices L and the associated integral quadratic form $Q: L \to \mathbb{Z}, \ell \mapsto \frac{1}{2}(\ell,\ell) = \frac{1}{2}\sum_{j=1}^n \ell_j^2$.

Theorem.

Define $q(z):=\exp(2\pi iz)$ and $\mathbb{H}:=\{z\in\mathbb{C}\mid\Im(z)>0\}$ the upper half plane. The function

$$\theta_L : \mathbb{H} \to \mathbb{C}, \ z \mapsto \theta_L(z) = \sum_{\ell \in L} \exp(2\pi i z)^{Q(\ell)} = \sum_{a=0}^{\infty} |L_a| q(z)^a$$

is a holomorphic function on the upper half plane \mathbb{H} . It satisfies $\theta_L(z) = \theta_L(z+1)$.

The theta series of the dual lattice.

Poisson summation formula.

For any well behaved function $f:\mathbb{R}^n \to \mathbb{C}$ and any lattice $L \in \mathcal{L}_n$

$$\det(L)^{1/2} \sum_{x \in L} f(x) = \sum_{y \in L^{\#}} \hat{f}(y)$$

where $\hat{f}(y) = \int_{\mathbb{R}^n} f(x) \exp(-2\pi i (x,y)) dx$ is the Fourier transform of f.

Theorem.

Let
$$L \in \mathcal{L}_n$$
. Then $\theta_L(\frac{-1}{z}) = \left(\frac{z}{i}\right)^{n/2} \det(L)^{-1/2} \theta_{L^\#}(z)$.

Proof.

Proof of
$$\theta_L(\frac{-1}{z}) = \left(\frac{z}{i}\right)^{n/2} \det(L)^{-1/2} \theta_{L^{\#}}(z)$$
.

Both sides are holomorphic functions on \mathbb{H} , so it suffices to prove the identity for z = it and $t \in \mathbb{R}_{>0}$.

The Fourier transform of

$$f(x) = \exp(\frac{-2\pi}{t}Q(x)) \text{ is } \hat{f}(y) = \sqrt{t}^n \exp(-2\pi t Q(y)).$$

Hence Poisson summation yields

$$\theta_L(\frac{-1}{it}) = \sum_{x \in L} f(x) = \det(L)^{-1/2} \sum_{y \in L^\#} \hat{f}(y) = \det(L)^{-1/2} t^{n/2} \theta_{L^\#}(it).$$

Poisson summation:

$$\det(L)^{1/2} \sum_{x \in L} f(x) = \sum_{y \in L^{\#}} \hat{f}(y)$$

The space of modular forms.

The group of biholomorphic mappings of the upper half plane $\mathbb{H}:=\{z\in\mathbb{C}\mid\Im(z)>0\}$ is the group of Möbius transformations

$$z \mapsto A(z) := \frac{az+b}{cz+d}, \ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R}).$$

For all $k\in\mathbb{Z}$ this yields an action \mid_k of $\mathrm{SL}_2(\mathbb{R})$ on the space of meromorphic functions $f:\mathbb{H}\to\mathbb{C}$ defined by

$$f|_{k}A(z) := (cz+d)^{-k}f(\frac{az+b}{cz+d}).$$

Definition.

A holomorphic function $f : \mathbb{H} \to \mathbb{C}$ is called modular form of weight k, $f \in M_k$, if

$$f|_k A = f \text{ for all } A \in \mathrm{SL}_2(\mathbb{Z})$$

and f is holomorphic at $i\infty$.

f is called cuspform, $f \in M_k^0$, if additionally $\lim_{t\to\infty} f(it) = 0$.

Fourier expansion.

Remember: $f|_k A(z) := (cz+d)^{-k} f(\frac{az+b}{cz+d}).$

$$\operatorname{SL}_2(\mathbb{Z}) = \langle T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, S := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \rangle$$

where S acts on $\mathbb H$ by $z\mapsto -\frac{1}{z}$ and T by $z\mapsto z+1$.

Theorem.

A holomorphic function $f:\mathbb{H}\to\mathbb{C}$ is a modular form of weight k, if f(z)=f(z+1) and $f(\frac{-1}{z})=(-z)^kf(z)$ and f is holomorphic at $i\infty$.

Theorem.

Let $f\in M_k$ for some k. Then $f(z)=f\big|_k T(z)=f(z+1)$ and hence f has a Fourier expansion

$$f(z) = \sum_{n=0}^{\infty} c_n \exp(2\pi i z)^n = \sum_{n=0}^{\infty} c_n q(z)^n$$

The form f is a cuspform, if $c_0 = 0$.

Even unimodular lattices have dimension 8d.

Theorem.

Let $L = L^{\#} \in \mathcal{L}_n$ be even. Then $n \in 8\mathbb{Z}$.

Proof. Assume not. Replacing L by $L\perp L$ or $L\perp L\perp L\perp L$, if necessary, we may assume that n=4+8m. Then by Poisson summation

$$\theta_L(Sz) = \theta_L(\frac{-1}{z}) = (\frac{z}{i})^{n/2}\theta_L(z) = -z^{n/2}\theta_L(z)$$

and since θ_L is invariant under T, we hence get

$$\theta_L((TS)(z)) = -z^{n/2}\theta_L(z)$$

where $(TS)(z) = \frac{-1}{z} + 1 = \frac{z-1}{z}$. $(TS)^2(z) = \frac{-z}{z-1} + 1 = \frac{-1}{z-1}$. Since $(TS)^3 = 1$ we calculate

$$\begin{array}{l} \theta_L(z) = \theta_L((TS)^3z) = \theta_L((TS)(TS)^2z) = -(\frac{1}{z-1})^{n/2}\theta_L((TS)^2z) \\ = (\frac{1}{z-1})^{n/2}(\frac{z-1}{z})^{n/2}\theta_L((TS)z) = (\frac{1}{z})^{n/2}\theta_L((TS)z) = -\theta_L(z) \end{array}$$

a contradiction.

Theta series of even unimodular lattices are modular forms

Theorem.

If $L=L^\#\in\mathcal{L}_n$ is even, then $\theta_L(z)\in M_k$ with $k=\frac{n}{2}$. In particular the weight of θ_L is half of the dimension of L and hence a multiple of 4.

Proof. $\theta_L(z) = \theta_L(z+1)$ because L is even. From the Poisson summation formula we get

$$\theta_L(\frac{-1}{z}) = (\frac{z}{i})^{n/2} \det L^{-1/2} \theta_{L^{\#}}(z) = z^{n/2} \theta_{L^{\#}}(z)$$

since n is a multiple of 8 and det(L) = 1.

The graded ring of modular forms.

Remember: $f|_k A(z) := (cz+d)^{-k} f(\frac{az+b}{cz+d})$. Since $|_k$ is multiplicative

$$\left. (f|_k A) (g|_m A) = (fg)|_{k+m} A$$

for all $A \in \mathrm{SL}_2(\mathbb{R})$ the space of all modular forms is a graded ring

$$\mathcal{M} := \bigoplus_{k=0}^{\infty} M_k.$$

Theorem.

 $M_k = \{0\}$ if k is odd.

Proof: Let $A=-I_2\in \mathrm{SL}_2(\mathbb{Z})$ and $f\in M_k$. Then $f|_kA(z)=(-1)^kf(z)=f(z)$ for all $z\in \mathbb{H}$ and hence f=0 if k is odd.

The ring of theta-series.

If L is an even unimodular lattice of dimension n, then n is a multiple of 8 and hence $\theta_L \in M_{n/2}$ is a modular of weight $k = n/2 \in 4\mathbb{Z}$.

$$\theta_L \in \mathcal{M}' := \bigoplus_{k=0}^{\infty} M_{4k}.$$

 $E_4:=\theta_{E_8}\in M_4$ is the normalized Eisenstein series of weight 4. Put

$$\Delta := \frac{1}{720} (\theta_{E_8}^3 - \theta_{\Lambda_{24}}) = q - 24q^2 + 252q^3 - 1472q^4 + \dots \in M_{12}$$

Theorem.

$$\mathfrak{M}' = \mathbb{C}[E_4, \Delta].$$

Theta series of certain lattices.

$$\mathfrak{M}'=\mathbb{C}[E_4,\Delta].$$

Corollary.

Let L be an even unimodular lattice of dimension n.

- ▶ If n = 8 then $\theta_L = \theta_{\mathbb{E}_8} = E_4 = 1 + 240 \sum_{m=1}^{\infty} \sigma_3(m) q^m$.
- ▶ If n=16 then $\theta_L=\theta_{\mathbb{E}_8\perp\mathbb{E}_8}=E_4^2=1+480q+61920q^2+1050240q^3+\dots$
- For n=24 let $c_1=|L_1|$ be the number of roots in L. Then $\theta_L=1+c_1q+(196560-c_1)q^2+\ldots$.
- Let L be an even unimodular lattice of dimension 80 with minimum 8. Then $|\operatorname{Min}(L)| = 1$ 250 172 000.

Extremal modular forms.

$$\mathcal{M}'=\bigoplus_{k=0}^\infty M_{4k}=\mathbb{C}[E_4,\Delta]$$

$$E_4=\theta_{\mathbb{E}_8}=1+240q+\ldots\in M_4, \qquad \Delta=0+q+\ldots\in M_{12}.$$
 Basis of M_{4k} :
$$E_4^k=\qquad \qquad 1+\quad 240kq+\quad *q^2+\quad \ldots$$

$$E_4^k = 1 + 240kq + *q^2 + \dots$$

$$E_4^{k-3}\Delta = q + *q^2 + \dots$$

$$E_4^{k-6}\Delta^2 = q^2 + \dots$$

$$\vdots$$

$$E_4^{k-3a}\Delta^a = \dots \qquad q^a + \dots$$

where $a = |\frac{n}{24}| = |\frac{k}{2}|$.

Definition.

Basis of M_{4k} :

This space contains a unique form

$$f^{(k)} := 1 + 0q + 0q^2 + \ldots + 0q^a + f_{a+1}^{(k)}q^{a+1} + f_{a+2}^{(k)}q^{a+2} + \ldots$$

 $f^{(k)}$ is called the extremal modular form of weight 4k.

Extremal even unimodular lattices.

Theorem (Siegel).

 $f_{a+1}^{(k)}>0$ for all k and $f_{a+2}^{(k)}<0$ for large k ($k\geq 5200$).

Corollary.

Let L be an n-dimensional even unimodular lattice. Then

$$\min(L) \le 2 + 2\lfloor \frac{n}{24} \rfloor.$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices $L \leq \mathbb{R}^n$

n	8	16	24	32	48	56	72	80
min(L)	2	2	4	4	6	6	8	8
number of extremal lattices	1	2	1	$\geq 10^{6}$	≥ 3	many	?	≥ 2