Lattices and modular forms.

Gabriele Nebe

Lehrstuhl D für Mathematik

Third deBrun workshop, Galway, December 2009

Lattices

Definition.

A lattice L in Euclidean n-space $\left(\mathbb{R}^{n},(),\right)$ is the \mathbb{Z}-span of an \mathbb{R}-basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{R}^{n}

$$
L=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{\mathbb{Z}}=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}\right\} .
$$

$\mathcal{L}_{n}:=\left\{L \leq \mathbb{R}^{n} \mid L\right.$ is lattice $\}$ the set of all lattices in \mathbb{R}^{n}.

$$
\begin{aligned}
& \text { ••••• } \\
& \text { - • • • • } G=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \stackrel{i}{\bullet} \quad \bullet \quad \cdot \quad \cdot \\
& H=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
\end{aligned}
$$

Invariants of lattices.

Gram matrix.

$$
\begin{aligned}
& \operatorname{Gram}(L)=\left\{g \operatorname{Gram}(B) g^{t r} \mid g \in \mathrm{GL}_{n}(\mathbb{Z})\right\} \text { where } \\
& \qquad \operatorname{Gram}(B)=\left(\left(b_{i}, b_{j}\right)\right)=B B^{t r} \in \mathbb{R}_{s y m}^{n \times n}
\end{aligned}
$$

is the Gram matrix of B.
Invariants from Gram matrix.

- $\operatorname{det}(L)=\operatorname{det}(\operatorname{Gram}(B))=\operatorname{det}\left(B B^{\text {tr }}\right)$ the determinant of L is the square of the volume of the fundamental parallelotope of B.
- $\min (L)=\min \{(\ell, \ell) \mid 0 \neq \ell \in L\}$ the minimum of L.
- $\operatorname{Min}(L)=\{\ell \in L \mid(\ell, \ell)=\min (L)\}$ the shortest vectors of L.
- $|\operatorname{Min}(L)|$ the kissing number of L.

Properties of lattices.

Dual lattice.

Let $L=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{\mathbb{Z}} \leq \mathbb{R}^{n}$ be a lattice. Then the dual lattice

$$
L^{\#}:=\left\{x \in \mathbb{R}^{n} \mid(x, \ell) \in \mathbb{Z} \forall \ell \in L\right\}
$$

is again a lattice in \mathbb{R}^{n} and the dual basis $B^{*}=\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$ with $\left(b_{i}^{*}, b_{j}\right)=\delta_{i j}$ is a lattice basis for $L^{\#}$.
$\operatorname{Gram}\left(B^{*}\right)=\operatorname{Gram}(B)^{-1}$.

Integral lattices.

- L is called integral, if $L \subset L^{\#}$ or equivalently $\operatorname{Gram}(B) \in \mathbb{Z}^{n \times n}$.
- L is called even, if $Q(\ell):=\frac{1}{2}(\ell, \ell) \in \mathbb{Z}$ for all $\ell \in L$.
- Even lattices are integral and an integral lattice is even if $\left(b_{i}, b_{i}\right) \in 2 \mathbb{Z}$ for all $i=1, \ldots, n$.
- L is called unimodular if $L=L^{\#}$.

Orthogonal decomposition.

Definition.

Let $L_{1} \leq \mathbb{R}^{n_{1}}$ and $L_{2} \leq \mathbb{R}^{n_{2}}$ be lattices. Then $L_{1} \perp L_{2} \leq \mathbb{R}^{n_{1}} \perp \mathbb{R}^{n_{2}}$ is called the orthogonal sum of L_{1} and L_{2}. A lattice is orthogonally indecomposable if it cannot be written as orthogonal sum of proper sublattices.

If $G_{i} \in \operatorname{Gram}\left(L_{i}\right)$ are Gram matrices of L_{i}, then the block diagonal matrix $\operatorname{diag}\left(G_{1}, G_{2}\right)$ is a Gram matrix of $L_{1} \perp L_{2}$, but not all Gram matrices of $L_{1} \perp L_{2}$ are block diagonal.

Theorem (M. Kneser).

Every lattice L has a unique orthogonal decomposition $L=L_{1} \perp \ldots \perp L_{s}$ with indecomposable lattices L_{i}.

Construction of orthogonal decomposition.

Proof.

- Call $x \in L$ indecomposable, if $x \neq y+z$ for $y, z \in L-\{0\}$, $(y, z)=0$.
- Then any $0 \neq x \in L$ is sum of indecomposables,
- because if x is not itself indecomposable then $x=y+z$ with $(y, z)=0$ and hence $0<(y, y)<(x, x), 0<(z, z)<(x, x)$.
- So this decomposition process terminates.
- In particular L is generated by indecomposable vectors.
- Two indecomposable vectors $y, z \in L$ are called connected, if there are indecomposable vectors $x_{0}=y, x_{1}, \ldots, x_{t}=z$ in L, such that $\left(x_{i}, x_{i+1}\right) \neq 0$ for all i.
- This yields an equivalence relation on the set of indecomposable vectors in L with finitely many classes K_{1}, \ldots, K_{s}.
- If $L_{i}:=\left\langle K_{i}\right\rangle_{\mathbb{Z}}$ then $L=L_{1} \perp \ldots \perp L_{s}$ is the unique orthogonal decomposition of L in indecomposable sublattices.

Equivalence and automorphism groups.

Equivalence.

The orthogonal group
$O_{n}(\mathbb{R})=\left\{g \in \mathrm{GL}_{n}(\mathbb{R}) \mid(v g, w g)=(v, w)\right.$ for all $\left.v, w \in \mathbb{R}^{n}\right\}$ acts on \mathcal{L}_{n} preserving all invariants that can be deduced from the Gram matrices like integrality, minimum, determinant, density etc..
Lattices in the same $O_{n}(\mathbb{R})$-orbit are called isometric.

Automorphism group.

The automorphism group of L is

$$
\begin{aligned}
& \operatorname{Aut}(L)=\left\{\sigma \in O_{n}(\mathbb{R}) \mid \sigma(L)=L\right\} \\
& \cong\left\{g \in \operatorname{GL}_{n}(\mathbb{Z}) \mid g \operatorname{Gram}(B) g^{t r}=\operatorname{Gram}(B)\right\}
\end{aligned}
$$

$\operatorname{Aut}(L)$ is a finite group and can be calculated efficiently, if the finite set of vectors $\left\{\ell \in L \mid Q(\ell) \leq \max _{i=1}^{n} Q\left(b_{i}\right)\right\}$ can be stored. (Bernd Souvignier, Wilhelm Plesken)

Reflections and automorphisms.

- For a vector $0 \neq v \in \mathbb{R}^{n}$ the reflection along v is

$$
\sigma_{v}: x \mapsto x-2 \frac{(x, v)}{(v, v)} v=x-\frac{(x, v)}{Q(v)} v .
$$

- $\sigma_{v} \in O_{n}(\mathbb{R})$.
- If $L \subset L^{\#}$ is an integral lattice and $v \in L$ satisfies $(v, v) \in\{1,2\}$ then $\sigma_{v} \in \operatorname{Aut}(L)$.
- If L is even then define

$$
S(L):=\left\langle\sigma_{v} \mid v \in L, Q(v)=1\right\rangle
$$

the reflection subgroup of $\operatorname{Aut}(L)$

Root lattices.

Definition.

- An even lattice L is called a root lattice, if $L=\langle\ell \in L \mid Q(\ell)=1\rangle$. Then $R(L):=\{\ell \in L \mid Q(\ell)=1\}$ is called the set of roots of L.
- A root lattice L is called decomposable if $L=M \perp N$ for proper root lattices M and N and indecomposable otherwise.

Theorem.

Let L be an indecomposable root lattice. Then $S(L)$ acts irreducibly on \mathbb{R}^{n}.

Proof. Let $0 \neq U<\mathbb{R}^{n}$ be an $S(L)$-invariant subspace and $a \in R(L)-U$ Then $\sigma_{a}(u)=u-(u, a) a \in U$ for all $u \in U$ implies that $(u, a)=0$ for all $u \in U$ and hence $a \in U^{\perp}$. So $R(L) \subset U \cup U^{\perp}$ and L is decomposable.

Indecomposable root lattices.

Theorem.

- Let $L=\langle R(L)\rangle$ be a root lattice.
- Then L has a basis $B \in R(L)^{n}$ such that $\left(b_{i}, b_{j}\right) \in\{0,-1\}$ for all $i \neq j$.
- The Gram matrix of this basis is visualised by a Dynkin diagram, a graph with n vertices corresponding to the n basis elements and with an edge (i, j) if $\left(b_{i}, b_{j}\right)=-1$.
- The Dynkin diagram is connected, if L is indecomposable.

Theorem.

Let $L \in \mathcal{L}_{n}$ be an indecomposable root lattice. Then L is isometric to one of $\mathbb{A}_{n}, \mathbb{D}_{n}$, if $n \geq 4, \mathbb{E}_{6}, \mathbb{E}_{7}, \mathbb{E}_{8}$ if $n=6,7,8$ respectively.

Dynkin diagrams of indecomposable root lattices.

\mathbb{A}_{n}

Gram matrix for \mathbb{E}_{8}.

yields the following Gram matrix

$$
\operatorname{Gram}\left(\mathbb{E}_{8}\right)=\left(\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

The indecomposable root lattices.

- Let $r, s \in R\left(\mathbb{E}_{8}\right)$ with $(r, s)=-1$. Then $\mathbb{E}_{7}=r^{\perp} \cap \mathbb{E}_{8}$ and $\mathbb{E}_{6}=\langle r, s\rangle^{\perp} \cap \mathbb{E}_{8}$.
- If $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis of \mathbb{R}^{n} then $\mathbb{D}_{n}=\left\langle e_{1}-e_{2}, e_{2}-e_{3}, \ldots, e_{n-1}-e_{n}, e_{n-1}+e_{n}\right\rangle_{\mathbb{Z}}$.
- $\mathbb{A}_{n-1} \leq\left(e_{1}+\ldots+e_{n}\right)^{\perp} \cong \mathbb{R}^{n-1}$ has basis $\left(e_{1}-e_{2}, e_{2}-e_{3}, \ldots, e_{n-1}-e_{n}\right)$.
- $h:=|R(L)| / n \in \mathbb{Z}$ is called the Coxeter number of an indecomposable root lattice L.

L	$\|R(L)\|$	h	$\operatorname{det}(L)$	$S(L)$	$\operatorname{Aut}(L)$
\mathbb{A}_{n}	$n(n+1)$	$n+1$	$n+1$	S_{n+1}	$\pm S_{n+1}$
\mathbb{D}_{n}	$2 n(n-1)$	$2(n-1)$	4	$C_{2}^{n-1}: S_{n}$	$C_{2} 2 S_{n}$
\mathbb{E}_{6}	72	12	3	$P S p_{4}(3) .2$	$C_{2} \times P S p_{4}(3) .2$
\mathbb{E}_{7}	126	18	2	$2 . S p_{6}(2)$	$2 . S p_{6}(2)$
\mathbb{E}_{8}	240	30	1	$2 . O_{8}^{+}(2) .2$	$2 . O_{8}^{+}(2) .2$

The Leech lattice.

The Leech lattice.

There is a unique even unimodular lattice Λ_{24} of dimension 24 without vectors of norm 2. $\operatorname{Aut}\left(\Lambda_{24}\right)=2 . C o_{1}$ is the sporadic quasisimple Conway group.

A construction of the Leech lattice.

- \mathbb{E}_{8} has a hermitian structure over $\mathbb{Z}[\alpha]$ where $\alpha^{2}-\alpha+2=0$.
- The 3-dimensional $\mathbb{Z}[\alpha]$-lattice P_{6} with hermitian Grammatrix

$$
E=\left(\begin{array}{ccc}
2 & \alpha & -1 \\
\bar{\alpha} & 2 & \alpha \\
-1 & \bar{\alpha} & 2
\end{array}\right) \text { is known as the Barnes-lattice. }
$$

- Then the Leech lattice Λ_{24} is $\mathbb{E}_{8} \otimes_{\mathbb{Z}[\alpha]} P_{6}$ with euclidean inner product $(x, y)=\operatorname{Tr}(h(x, y))$.

Theta-series of lattices.

- The theta series $\theta_{L}=\sum_{\ell \in L} q^{Q(\ell)}$.
- Assume that L is an even lattice and let $L_{a}:=\{\ell \in L \mid Q(\ell)=a\}$. Then L_{a} is a finite $\operatorname{Aut}(L)$-set and $\theta_{L}=\sum_{a=0}^{\infty}\left|L_{a}\right| q^{a}$.
- $L=\sqrt{2} \mathbb{Z}^{2}$ the square lattice with Gram matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$: $\theta_{L}=1+4 q^{1}+4 q^{2}+4 q^{4}+8 q^{5}+4 q^{8}+4 q^{9}+8 q^{10}+\ldots$ $\operatorname{Aut}(L) \cong D_{8}$ (the symmetry group of a square)

Example: the hexagonal lattice.

The hexagonal lattice.

Basis $B=\left((1,1),\left(\frac{1+\sqrt{3}}{2}, \frac{1-\sqrt{3}}{2}\right)\right)$, $\operatorname{Gram}(B)=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ $\operatorname{det}(L)=3, \min (L)=2, \gamma(L)=\frac{2}{\sqrt{3}} \sim 1.1547$ (density .91) $\theta_{L}=1+6 q+6 q^{3}+6 q^{4}+12 q^{7}+6 q^{9}+6 q^{12}+12 q^{13}+6 q^{16}+\ldots$ $\operatorname{Aut}(L) \cong D_{12}$ (the symmetry group of a regular hexagon)

Example: the \mathbb{E}_{8}-lattice.

- Let $\left(e_{1}, \ldots, e_{8}\right)$ be an orthonormal basis of \mathbb{R}^{8} and consider $L:=\mathbb{Z}^{8}=\left\langle e_{1}, \ldots, e_{8}\right\rangle_{\mathbb{Z}}=L^{\#}$.
- Let $\mathbb{D}_{8}:=\{\ell \in L \mid(\ell, \ell) \in 2 \mathbb{Z}\}$ be the even sublattice of L.
- $\theta_{\mathbb{D}_{8}}=1+112 q+1136 q^{2}+3136 q^{3}+9328 q^{4}+14112 q^{5}+\ldots$
- Then $\mathbb{D}_{8}^{\#} / \mathbb{D}_{8}=\left\langle e_{1}+\mathbb{D}_{8}, v+\mathbb{D}_{8}\right\rangle \cong C_{2} \times C_{2}$, where $v=\frac{1}{2} \sum_{i=1}^{8} e_{i}$.
- $(v, v)=\frac{8}{4}=2$ and $\mathbb{E}_{8}=\left\langle\mathbb{D}_{8}, v\right\rangle$ is an even unimodular lattice.
- $\theta_{\mathbb{E}_{8}}=\theta_{\mathbb{D}_{8}}+\theta_{v+\mathbb{D}_{8}}=1+240 q+2160 q^{2}+6720 q^{3}+17520 q^{4}+$ $30240 q^{5}+\ldots=1+240\left(q+9 q^{2}+28 q^{3}+73 q^{4}+126 q^{5}+\ldots\right)$
- D8\#

E8

Theta series as holomorphic functions.

In the following we will consider even lattices L and the associated integral quadratic form $Q: L \rightarrow \mathbb{Z}, \ell \mapsto \frac{1}{2}(\ell, \ell)=\frac{1}{2} \sum_{j=1}^{n} \ell_{j}^{2}$.

Theorem.

Define $q(z):=\exp (2 \pi i z)$ and $\mathbb{H}:=\{z \in \mathbb{C} \mid \Im(z)>0\}$ the upper half plane. The function

$$
\theta_{L}: \mathbb{H} \rightarrow \mathbb{C}, z \mapsto \theta_{L}(z)=\sum_{\ell \in L} \exp (2 \pi i z)^{Q(\ell)}=\sum_{a=0}^{\infty}\left|L_{a}\right| q(z)^{a}
$$

is a holomorphic function on the upper half plane \mathbb{H}.
It satisfies $\theta_{L}(z)=\theta_{L}(z+1)$.

The theta series of the dual lattice.

Poisson summation formula.

For any well behaved function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ and any lattice $L \in \mathcal{L}_{n}$

$$
\operatorname{det}(L)^{1 / 2} \sum_{x \in L} f(x)=\sum_{y \in L^{\#}} \hat{f}(y)
$$

where $\hat{f}(y)=\int_{\mathbb{R}^{n}} f(x) \exp (-2 \pi i(x, y)) d x$ is the Fourier transform of f.
Theorem.
Let $L \in \mathcal{L}_{n}$. Then $\theta_{L}\left(\frac{-1}{z}\right)=\left(\frac{z}{i}\right)^{n / 2} \operatorname{det}(L)^{-1 / 2} \theta_{L^{\#}}(z)$.
Proof.

$$
\text { Proof of } \theta_{L}\left(\frac{-1}{z}\right)=\left(\frac{z}{i}\right)^{n / 2} \operatorname{det}(L)^{-1 / 2} \theta_{L^{\#}}(z) .
$$

Both sides are holomorphic functions on \mathbb{H}, so it suffices to prove the identity for $z=i t$ and $t \in \mathbb{R}_{>0}$.
The Fourier transform of

$$
f(x)=\exp \left(\frac{-2 \pi}{t} Q(x)\right) \text { is } \hat{f}(y)=\sqrt{t}^{n} \exp (-2 \pi t Q(y)) .
$$

Hence Poisson summation yields

$$
\theta_{L}\left(\frac{-1}{i t}\right)=\sum_{x \in L} f(x)=\operatorname{det}(L)^{-1 / 2} \sum_{y \in L^{\#}} \hat{f}(y)=\operatorname{det}(L)^{-1 / 2} t^{n / 2} \theta_{L^{\#}}(i t) .
$$

Poisson summation:

$$
\operatorname{det}(L)^{1 / 2} \sum_{x \in L} f(x)=\sum_{y \in L^{\#}} \hat{f}(y)
$$

The space of modular forms.

The group of biholomorphic mappings of the upper half plane $\mathbb{H}:=\{z \in \mathbb{C} \mid \Im(z)>0\}$ is the group of Möbius transformations

$$
z \mapsto A(z):=\frac{a z+b}{c z+d}, \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R}) .
$$

For all $k \in \mathbb{Z}$ this yields an action $\left.\right|_{k}$ of $\mathrm{SL}_{2}(\mathbb{R})$ on the space of meromorphic functions $f: \mathbb{H} \rightarrow \mathbb{C}$ defined by

$$
\left.f\right|_{k} A(z):=(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right) .
$$

Definition.

A holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called modular form of weight k, $f \in M_{k}$, if

$$
\left.f\right|_{k} A=f \text { for all } A \in \mathrm{SL}_{2}(\mathbb{Z})
$$

and f is holomorphic at $i \infty$.
f is called cuspform, $f \in M_{k}^{0}$, if additionally $\lim _{t \rightarrow \infty} f(i t)=0$.

Fourier expansion.

Remember: $\left.f\right|_{k} A(z):=(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)$.

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\langle T:=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), S:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle
$$

where S acts on \mathbb{H} by $z \mapsto-\frac{1}{z}$ and T by $z \mapsto z+1$.

Theorem.

A holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is a modular form of weight k, if $f(z)=f(z+1)$ and $f\left(\frac{-1}{z}\right)=(-z)^{k} f(z)$ and f is holomorphic at $i \infty$.

Theorem.

Let $f \in M_{k}$ for some k. Then $f(z)=\left.f\right|_{k} T(z)=f(z+1)$ and hence f has a Fourier expansion

$$
f(z)=\sum_{n=0}^{\infty} c_{n} \exp (2 \pi i z)^{n}=\sum_{n=0}^{\infty} c_{n} q(z)^{n}
$$

The form f is a cuspform, if $c_{0}=0$.

Even unimodular lattices have dimension 8d.

Theorem.

Let $L=L^{\#} \in \mathcal{L}_{n}$ be even. Then $n \in 8 \mathbb{Z}$.
Proof. Assume not. Replacing L by $L \perp L$ or $L \perp L \perp L \perp L$, if necessary, we may assume that $n=4+8 \mathrm{~m}$. Then by Poisson summation

$$
\theta_{L}(S z)=\theta_{L}\left(\frac{-1}{z}\right)=\left(\frac{z}{i}\right)^{n / 2} \theta_{L}(z)=-z^{n / 2} \theta_{L}(z)
$$

and since θ_{L} is invariant under T, we hence get

$$
\theta_{L}((T S)(z))=-z^{n / 2} \theta_{L}(z)
$$

where $(T S)(z)=\frac{-1}{z}+1=\frac{z-1}{z} .(T S)^{2}(z)=\frac{-z}{z-1}+1=\frac{-1}{z-1}$. Since $(T S)^{3}=1$ we calculate

$$
\begin{aligned}
& \theta_{L}(z)=\theta_{L}\left((T S)^{3} z\right)=\theta_{L}\left((T S)(T S)^{2} z\right)=-\left(\frac{1}{z-1}\right)^{n / 2} \theta_{L}\left((T S)^{2} z\right) \\
& =\left(\frac{1}{z-1}\right)^{n / 2}\left(\frac{z-1}{z}\right)^{n / 2} \theta_{L}((T S) z)=\left(\frac{1}{z}\right)^{n / 2} \theta_{L}((T S) z)=-\theta_{L}(z)
\end{aligned}
$$

a contradiction.

Theta series of even unimodular lattices are modular forms

Theorem.

If $L=L^{\#} \in \mathcal{L}_{n}$ is even, then $\theta_{L}(z) \in M_{k}$ with $k=\frac{n}{2}$.
In particular the weight of θ_{L} is half of the dimension of L and hence a multiple of 4.

Proof. $\theta_{L}(z)=\theta_{L}(z+1)$ because L is even. From the Poisson summation formula we get

$$
\theta_{L}\left(\frac{-1}{z}\right)=\left(\frac{z}{i}\right)^{n / 2} \operatorname{det} L^{-1 / 2} \theta_{L^{\#}}(z)=z^{n / 2} \theta_{L^{\#}}(z)
$$

since n is a multiple of 8 and $\operatorname{det}(L)=1$.

The graded ring of modular forms.

Remember: $\left.f\right|_{k} A(z):=(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)$.
Since $\left.\right|_{k}$ is multiplicative

$$
\left(\left.f\right|_{k} A\right)\left(\left.g\right|_{m} A\right)=\left.(f g)\right|_{k+m} A
$$

for all $A \in \mathrm{SL}_{2}(\mathbb{R})$ the space of all modular forms is a graded ring

$$
\mathcal{M}:=\bigoplus_{k=0}^{\infty} M_{k} .
$$

Theorem.

$M_{k}=\{0\}$ if k is odd.
Proof: Let $A=-I_{2} \in \mathrm{SL}_{2}(\mathbb{Z})$ and $f \in M_{k}$. Then $\left.f\right|_{k} A(z)=(-1)^{k} f(z)=f(z)$ for all $z \in \mathbb{H}$ and hence $f=0$ if k is odd.

The ring of theta-series.

If L is an even unimodular lattice of dimension n, then n is a multiple of 8 and hence $\theta_{L} \in M_{n / 2}$ is a modular of weight $k=n / 2 \in 4 \mathbb{Z}$.

$$
\theta_{L} \in \mathcal{M}^{\prime}:=\bigoplus_{k=0}^{\infty} M_{4 k} .
$$

$E_{4}:=\theta_{E_{8}} \in M_{4}$ is the normalized Eisenstein series of weight 4. Put

$$
\Delta:=\frac{1}{720}\left(\theta_{E_{8}}^{3}-\theta_{\Lambda_{24}}\right)=q-24 q^{2}+252 q^{3}-1472 q^{4}+\ldots \in M_{12}
$$

Theorem.

$\mathcal{M}^{\prime}=\mathbb{C}\left[E_{4}, \Delta\right]$.

Theta series of certain lattices.

$$
\mathcal{M}^{\prime}=\mathbb{C}\left[E_{4}, \Delta\right] .
$$

Corollary.

Let L be an even unimodular lattice of dimension n.

- If $n=8$ then $\theta_{L}=\theta_{\mathbb{E}_{8}}=E_{4}=1+240 \sum_{m=1}^{\infty} \sigma_{3}(m) q^{m}$.
- If $n=16$ then

$$
\theta_{L}=\theta_{\mathbb{E}_{8} \perp \mathbb{E}_{8}}=E_{4}^{2}=1+480 q+61920 q^{2}+1050240 q^{3}+\ldots .
$$

- For $n=24$ let $c_{1}=\left|L_{1}\right|$ be the number of roots in L. Then $\theta_{L}=1+c_{1} q+\left(196560-c_{1}\right) q^{2}+\ldots$.
- Let L be an even unimodular lattice of dimension 80 with minimum 8. Then $|\operatorname{Min}(L)|=1250172000$.

Extremal modular forms.

$$
\begin{gathered}
\mathcal{M}^{\prime}=\bigoplus_{k=0}^{\infty} M_{4 k}=\mathbb{C}\left[E_{4}, \Delta\right] \\
E_{4}=\theta_{\mathbb{E}_{8}}=1+240 q+\ldots \in M_{4}, \quad \Delta=0+q+\ldots \in M_{12} .
\end{gathered}
$$

Basis of $M_{4 k}$:

$$
\begin{array}{lcccc}
E_{4}^{k}= & 1+ & 240 k q+ & * q^{2}+ & \ldots \\
E_{4}^{k-3} \Delta= & q+ & * q^{2}+ & \ldots \\
E_{4}^{k-6} \Delta^{2}= & & & q^{2}+ & \ldots
\end{array}
$$

where $a=\left\lfloor\frac{n}{24}\right\rfloor=\left\lfloor\frac{k}{3}\right\rfloor$.

Definition.

This space contains a unique form

$$
f^{(k)}:=1+0 q+0 q^{2}+\ldots+0 q^{a}+f_{a+1}^{(k)} q^{a+1}+f_{a+2}^{(k)} q^{a+2}+\ldots
$$

$f^{(k)}$ is called the extremal modular form of weight $4 k$.

Extremal even unimodular lattices.

Theorem (Siegel).
$f_{a+1}^{(k)}>0$ for all k and $f_{a+2}^{(k)}<0$ for large $k(k \geq 5200)$.

Corollary.

Let L be an n-dimensional even unimodular lattice. Then

$$
\min (L) \leq 2+2\left\lfloor\frac{n}{24}\right\rfloor
$$

Lattices achieving this bound are called extremal.
Extremal even unimodular lattices $\mathrm{L} \leq \mathbb{R}^{n}$

n	8	16	24	32	48	56	72	80
min(L)	2	2	4	4	6	6	8	8
number of extremal lattices	1	2	1	$\geq 10^{6}$	≥ 3	many	$?$	≥ 2

