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2.8 Algorithms of Representation Theory

Soon after the first applications of computers in group theory—to coset enu-
meration—algorithmic methods have been introduced in representation theory,
beginning with the character theory of finite groups.

2.8.1 Ordinary Representation Theory

Characters. Early implementations, by S. Comet, of algorithms for the compu-
tation of characters of symmetric groups, date back to the late fifties [7]. Ques-
tions arising during the classification project of the finite simple groups lead to
the demand for computing character tables of specific finite groups from incom-
plete knowledge of some of its characters. For this purpose interactive methods
were implemented at various places (B. Fischer and T. Gabrysch (Bielefeld),
D. Livingstone (Birmingham), J. H. Conway (Cambridge)). In the late seventies
these methods were collected, extended and enhanced by an arithmetic for cyclo-
tomic fields in the Aachen CAS system [26]. This included routines to compute
tensor products, inner products, and symmetrizations of characters, induced
characters and fusions of subgroups. The CAS system as well as its new imple-
mentation in GAP (see also [12] and 4.2.18) have lead to the computation of
numerous character tables, some of them included in the Atlas of Finite Groups

[9]. This contains the character tables of the sporadic groups, their covering
groups and automorphism groups (in compound form). All of these tables, and
many more, are now also available in GAP. It contains, for example, the character
tables of most of the maximal subgroups of the sporadic simple groups.

In the sixties J. D. Dixon suggested an algorithm for computing the character
table of a finite group from its class multiplication coefficients. A substantially
improved version of Dixon’s algorithm, due to G. Schneider, is included in GAP

and MAGMA [4]. These implementations are capable of calculating the character
tables of groups with up to several hundreds of conjugacy classes, provided the
degrees of the irreducible characters are not too large.

More powerful algorithms exist for computing character tables of groups of
special types, e.g., p-groups (Conlon [8]). For other classes of groups e.g., the
symmetric groups, the rows and columns of the character table have natural la-
belings in terms of certain combinatorial objects, e.g., partitions. Moreover, there
are algorithms, the Murnaghan-Nakayama rules and generalizations thereof, for
computing the entries of the character tables in terms of the labels for the rows
and columns. Such algorithms are known for all Weyl groups of classical types
and have been implemented in GAP.

Representations. The irreducible matrix representations of a finite group over
a field of characteristic 0 are considerably more difficult to construct than the
corresponding characters. Nevertheless, some methods have emerged over the
past few years.

Baum and Clausen [3] have described an algorithm to compute the irreducible
matrix representations of a supersolvable group from a power commutator pre-
sentation.
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Labonté [20] and Linton [21] (independently) described a method—analogous
to the Todd-Coxeter coset enumeration discussed in Sims’ article 2.7—to con-
struct representations for finitely presented algebras. While this Vector Enu-

merator, as it came to be called, works most efficiently over finite fields, it is in
principle applicable to algebras over fields of characteristic 0. One major appli-
cation has been the construction of representations of Iwahori-Hecke algebras.

Methods for constructing rational irreducible representations of finite groups
have been introduced by Plesken. One such method, for soluble groups, is used
in the Soluble Quotient Algorithm of Plesken [30], implemented by Brückner [5].
Another method, based on liftings of representations, has recently been applied
by Plesken and Souvignier to prove the infiniteness of certain finitely presented
groups. A survey of these ideas and their applications is given in [32, Section 2].

Richard Parker has suggested an integral version of his Meat-Axe (see also
2.8.2 below) [29]. Rational and integral representations of finite groups play an
essential role in the investigation of integral lattices and their automorphism
groups. This information is used in the study of finite subgroups of the general
linear groups over the integers or the rational numbers (see [31] for a survey).
The monumental work of Plesken and Nebe [25] has lead to the classification of
all finite subgroups of the groups GLn(Q) for n ≤ 31.

Since crystallographic groups are constructed from integral representations
of finite groups, these are of great importance in crystallography. The CARAT

package (see [27] and 4.2.7) contains tables and implementations of various al-
gorithms, including the Zassenhaus algorithm for computing extension groups,
for handling enumeration and recognition problems for crystallographic groups.

The GAP share package AREP by Egner and Püschel (see [11] and 4.3.2) com-
putes, symbolically, with structured representations of finite groups. Examples
for structured representations are induced representations or tensor products of
representations. Applications of AREP include the automatic construction of fast
algorithms for discrete linear signal transforms.

2.8.2 Modular Representation Theory

The computation of Brauer character tables of finite groups was begun in the
seventies with the work of Gordon James on the Mathieu groups. While James
was still working by hand, Richard Parker soon applied his Meat-Axe [28] (see
also 4.2.10), originally designed to construct the largest Janko group, to this
kind of problems.

Since the Meat-Axe is of fundamental importance in computational represen-
tation theory, I shall sketch its main ideas. Given d×d-matrices a1, . . . , an over a
field F , let A denote the (unitary) F -algebra generated by a1, . . . , an. The Meat-

Axe aims to find a composition series of the natural left A-module F d := F d×1.
Inductively, it suffices to find a non-trivial A-invariant subspace of F d or to
prove that A acts irreducibly on F d. Let v ∈ F d. By using a variation of the
orbit algorithm for permutation groups (see 2.7), and the Gauß algorithm, the
Meat-Axe computes the smallest A-invariant subspace Av of F d containing v,
and matrices for the actions of a1, . . . , an on the subspace Av and the quotient
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F d/Av. The search for vectors lying in proper A-invariant subspaces of F d (if
there are any) is guided by the following result of S. Norton. (We denote the
transpose of a matrix b by bt and by At the F -algebra generated by at

1
, . . . , at

n
.)

Proposition. (Norton’s irreducibility criterion) Let b ∈ A. Then at least one of

the following occurs.

(1) b is invertible.

(2) Av is a proper subspace of F d for at least one non-zero v in the nullspace

of b.
(3) Atv is a proper subspace of F d for all non-zero v in the nullspace of bt.

(4) A acts irreducibly on F d.

Thus one has to find a non-invertible element b ∈ A with nullspace of small
dimension (preferably 1). If F is a (small) finite field a random choice of elements
of A is a reasonable strategy to find such a b. For larger fields more sophisticated
methods, suggested by Holt and Rees [16], have to be applied. If all non-zero
vectors of the nullspace of b fail to lie in a proper A-invariant subspace, chose
a non-zero vector v in the nullspace of bt and compute Atv. If this is all of F d,
then F d is an irreducible A-module. On the other hand, if F d is a reducible
A-module, one finds a proper invariant subspace this way.

A large number of Brauer character tables of sporadic groups have been
computed by Parker and others with the help of the Meat-Axe. This method came
to its limits with the degrees of the representations to be considered growing
larger and larger.

The applicability of the Meat-Axe is greatly extended by condensation tech-
niques, where the original algebra is replaced by a Morita equivalent one of con-
siderably smaller dimension. Additional support for the Meat-Axe is provided by
the MOC system, developed by Parker, Lux, Jansen and Hiss (see also 4.2.28).
This system works with Brauer characters, rather than representations, so that
there are no degree constraints. Computations with these systems lead to the
construction of the Brauer character tables of all the Atlas groups of order at
most 109 which were published in the [17]. Many more tables are now known
(see http://www.math.rwth-aachen.de/~MOC/). The modular character tables
for the symmetric groups Sn can also be computed with SPECHT, a GAP share
package written by Andrew Mathas. They are known completely for n ≤ 16.

The Meat-Axe is also used, of course, in the investigation of module struc-
tures, e.g., submodule lattices or Loewy series, and also for computing endo-
morphism rings of modules, direct decompositions of modules and Green cor-
respondents. The matrix group recognition project provides a further field of
applications for the Meat-Axe. Moreover, it is still used according to its original
design, namely to construct specific finite groups via some of their linear repre-
sentations. A spectacular example is provided by the matrix representation of
the Monster sporadic group, constructed by Linton, Parker, Walsh, and Wilson,
[22]. Robert A. Wilson has initiated and maintains a data base of representations
of finite groups (http://www.mat.bham.ac.uk/atlas/index.html).

Explicit modular representations of finite groups were used in a substantial
way in the work of Holt and Plesken in the construction of perfect groups [15].



4 2 Topics of Computer Algebra

In addition, this work also used the algorithms and implementations by Derek
Holt [14] for computing first and second cohomology groups of finite groups. For
example, there are programs to determine the Schur multiplier of a given finite
group, or to find the extension classes of a finite group with a finite module.

New directions of algorithmic research aim to compute projective resolutions
of modules and cohomology rings of finite groups (Adem, Milgram, Jon Carl-
son, David Green, Ed Green, Schneider, see, e.g., [1, 6]). A recent approach uses
non-commutative Gröbner bases. These are also used in the Virginia Tech Hopf
project for the algorithmic investigation of finite dimensional algebras, in par-
ticular Hopf algebras. Finite dimensional algebras and their representations are
conveniently studied via a directed graph, a so-called quiver, which is a purely
combinatorial object. The Bielefeld CREP system (see also 4.2.12) provides algo-
rithms for using the quiver approach to finite dimensional algebras for research
and teaching.

We close by pointing out the various recent applications of computer algebra
in invariant theory, mainly due to Kemper (see [18] for a survey).

2.8.3 Generic Character Tables

It is often possible to encode the character tables of an infinite series of groups in
a single table or in a program. Such a table or program is then called a Generic

Character Table. The first example of a generic character table was computed by
Frobenius in 1897: the generic table for the series of Chevalley groups SL(2, 2n),
n a positive integer. This example already has all the features common to a
generic character table for a series of Chevalley groups. The conjugacy classes
and the irreducible characters of the groups in the series are parameterized in a
suitable way, and the character values of the generic table are given as functions
of these parameters. Here, a series is a set of groups arising from one particular
Dynkin diagram with a fixed symmetry, when the underlying field is allowed to
vary. Usually, there are a finite number of tables for a fixed Dynkin diagram
with symmetry. For example, there are two generic tables for the series SL2(q),
one for even and one for odd q.

Many computations with characters can be performed symbolically on such
a generic table. One can compute scalar products of character types, calculate
tensor products of characters or compute class multiplication coefficients. Such
computations are valid for all groups in the series. The CHEVIE system (see also
[13] and 4.2.9) contains a library of generic tables for Chevalley groups and a
collection of MAPLE routines to perform such computations. As an application
the 6-dimensional symplectic groups were shown to be Galois groups over abelian
number fields [23].

Generic tables in form of programs have been implemented for Weyl groups
of type An (i.e., the symmetric groups), Bn and Dn and are available in CHEVIE.
The tables for the symmetric groups are also available in ACE, a MAPLE share
package written by Sebastian Veigneau and in SYMMETRICA [19]. We are not
aware of any implementation of generic character tables for the covering groups
of the symmetric groups.
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Related to the generic character tables of the Weyl groups are the generic
character tables of the corresponding Iwahori-Hecke algebras, also available in
CHEVIE, and, for type A, in ACE.

2.8.4 Summary of Systems

In this section I summarize the various systems presented above as well as some
other packages not mentioned there. The most comprehensive systems for com-
putational group and representation theory are GAP [12] and MAGMA [4].

Special purpose systems are AREP (Eindhoven, Pittsburgh) for computing
symbolically with structured representations, CARAT (Aachen), for working with
crystallographic groups, CHEVIE (Aachen, Kassel, Paris) for computing with
generic character tables of Chevalley groups, Iwahori-Hecke algebras and Weyl
groups, CREP (Bielefeld, see also 4.2.12) for the investigation of finite dimen-
sional algebras, LIE (Eindhoven, see also 4.2.23) for computations with Lie al-
gebras, Coxeter groups, and their representations, QUOTPIC (Warwick, see also
4.2.32), for the construction of quotients of finitely presented groups, SISYPHOS

(Stuttgart), for computing in modular group algebras of finite p-groups, and
SYMMETRICA (Bayreuth, see also 4.2.41), for combinatorics related to, and
applications of the symmetric groups.

Combinatorics related to Lie algebras, Weyl groups, and symmetric func-
tions are also contained in the two MAPLE share packages ACE by Sebastian
Veigneau (see also 4.2.1) and SF by John Stembridge. Another MAPLE package,
INVAR by Gregor Kemper, computes invariant rings of finite groups. The GAP

share package SPECHT by Andrew Mathas contains algorithms for computing
decomposition numbers of symmetric groups and Iwahori-Hecke algebras.

Finally, there is a large collection of stand alone programs related to the Meat-

Axe, its Condensation enhancements, the Vector-Enumerator or MOC. Particular
versions of these are available in GAP and MAGMA, as system commands as well
as external packages.

Gerhard Hiss (Aachen)
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