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A Hopf algebra H is said to have the Chevalley property, if the tensor product
of any two simple H-modules is semisimple. This notion was introduced by
Andruskiewitsch, Etingof, and Gelaki in [1], and is motivated by a famous
theorem of Chevalley which states that a group algebra kG does have this
property if k is a field of characteristic 0.

Suppose that G is a finite group and that k is a field of characteristic p > 0.
It was shown by R. K. Molnar in [7], that under these assumptions kG has
the Chevalley property if and only if G has a normal Sylow p-subgroup.

In this note we prove that if the tensor product of every simple kG-module
with its dual is semisimple, then the group algebra kG has the Chevalley
property. The proof uses the classification of the finite simple groups in case
p is odd. For p = 2, a result of Okuyama can be applied which does not
require the classification.

We also give an example of a group algebra not having the Chevalley
property, for which the tensor square of every simple module is semisimple.

The investigations were motivated by a question of Külshammer.

Proposition. Let G be a finite group and let k be an algebraically closed
field of characteristic p. Then the following holds:

(1) If V ⊗k V ∗ is semisimple for every simple kG-module V , then G has
a normal Sylow p-subgroup (and thus kG has the Chevalley property).

(2) If p = 2 and V ⊗k V is semisimple for every simple kG-module V ,
then G has a normal Sylow 2-subgroup (and thus kG has the Chevalley prop-
erty).
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Proof. Suppose that G does not have a normal Sylow p-subgroup. If p = 2,
a result of Okuyama (see [8, Theorem 2.33]) shows that there is a non-
trivial, self-dual simple kG-module V . By Fong’s Lemma (see [5, Theorem
VII.8.13]), V has even dimension.

Now let p be odd. By a result of Michler [6, Theorem 2.4], which uses
the classification of the finite simple groups, there is a simple kG-module V

with p | dimk(V ).
It is well known that V ⊗k V ∗ is not semisimple if V is absolutely simple

and of dimension divisible by p (see, e.g., [2, Theorem 3.1.9]). This implies
both parts of the theorem.

The following example was found with the help of GAP (see [4]). It shows
that Part (2) of the above theorem does not hold for odd p.

Example. Let G be the non-abelian group of order 21, and let k be an alge-
braically closed field of characteristic 3. Then kG has three simple modules
(up to isomorphism). Apart from the trivial kG-module, there is a pair S,
S∗ of dual simple kG-modules of dimension 3. The Brauer character ϕ of S

has the following three values:

3,
−1 +

√
−7

2
,

−1 −
√
−7

2
.

The Brauer character of S∗ equals ϕ̄, the complex conjugate of ϕ. We have
ϕ·ϕ = ϕ+2ϕ̄. Since S and S∗ are projective, this implies S⊗kS ∼= S⊕S∗⊕S∗.
Dually, S∗⊗k S∗ ∼= S ⊕S ⊕S∗. Hence V ⊗k V is semisimple for every simple
kG-module V . However, G does not have a normal Sylow 3-subgroup.
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