A note on the Chevalley property of finite group algebras

Gerhard Hiss

Lehrstuhl D für Mathematik, RWTH-Aachen 52056 Aachen, Germany E-mail: gerhard.hiss@math.rwth-aachen.de

A Hopf algebra H is said to have the *Chevalley property*, if the tensor product of any two simple H-modules is semisimple. This notion was introduced by Andruskiewitsch, Etingof, and Gelaki in [1], and is motivated by a famous theorem of Chevalley which states that a group algebra kG does have this property if k is a field of characteristic 0.

Suppose that G is a finite group and that k is a field of characteristic p > 0. It was shown by R. K. Molnar in [7], that under these assumptions kG has the Chevalley property if and only if G has a normal Sylow p-subgroup.

In this note we prove that if the tensor product of every simple kG-module with its dual is semisimple, then the group algebra kG has the Chevalley property. The proof uses the classification of the finite simple groups in case p is odd. For p = 2, a result of Okuyama can be applied which does not require the classification.

We also give an example of a group algebra not having the Chevalley property, for which the tensor square of every simple module is semisimple.

The investigations were motivated by a question of Külshammer.

Proposition. Let G be a finite group and let k be an algebraically closed field of characteristic p. Then the following holds:

(1) If $V \otimes_k V^*$ is semisimple for every simple kG-module V, then G has a normal Sylow p-subgroup (and thus kG has the Chevalley property).

(2) If p = 2 and $V \otimes_k V$ is semisimple for every simple kG-module V, then G has a normal Sylow 2-subgroup (and thus kG has the Chevalley property).

Proof. Suppose that G does not have a normal Sylow p-subgroup. If p = 2, a result of Okuyama (see [8, Theorem 2.33]) shows that there is a non-trivial, self-dual simple kG-module V. By Fong's Lemma (see [5, Theorem VII.8.13]), V has even dimension.

Now let p be odd. By a result of Michler [6, Theorem 2.4], which uses the classification of the finite simple groups, there is a simple kG-module Vwith $p \mid \dim_k(V)$.

It is well known that $V \otimes_k V^*$ is not semisimple if V is absolutely simple and of dimension divisible by p (see, e.g., [2, Theorem 3.1.9]). This implies both parts of the theorem.

The following example was found with the help of GAP (see [4]). It shows that Part (2) of the above theorem does not hold for odd p.

Example. Let G be the non-abelian group of order 21, and let k be an algebraically closed field of characteristic 3. Then kG has three simple modules (up to isomorphism). Apart from the trivial kG-module, there is a pair S, S^* of dual simple kG-modules of dimension 3. The Brauer character φ of S has the following three values:

3,
$$\frac{-1+\sqrt{-7}}{2}$$
, $\frac{-1-\sqrt{-7}}{2}$.

The Brauer character of S^* equals $\bar{\varphi}$, the complex conjugate of φ . We have $\varphi \cdot \varphi = \varphi + 2\bar{\varphi}$. Since S and S^* are projective, this implies $S \otimes_k S \cong S \oplus S^* \oplus S^*$. Dually, $S^* \otimes_k S^* \cong S \oplus S \oplus S^*$. Hence $V \otimes_k V$ is semisimple for every simple kG-module V. However, G does not have a normal Sylow 3-subgroup.

Acknowledgement

I should like to thank Wolfgang Willems for bringing to my attention the results of Okuyama and Michler.

References

 N. ANDRUSKIEWITSCH, P. ETINGOF, AND S. GELAKI, Triangular Hopf algebras with the Chevalley property, *Michigan Math. J.* 49 (2001), 277–298.

- [2] D. J. BENSON, Representations and cohomology, Vol. 1, Cambridge University Press, Cambridge, 1991.
- [3] H.-X. CHEN AND G. HISS, Projective summands in tensor products of simple modules of finite dimensional Hopf algebras, *Comm. Algebra*, to appear.
- [4] THE GAP GROUP, GAP Groups, Algorithms, and Programming, Version 4.4; 2004, (http://www.gap-system.org).
- [5] B. HUPPERT AND N. BLACKBURN, Finite groups II, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
- [6] G. O. MICHLER, Brauer's conjectures and the classification of finite simple groups, in: *Representation theory*, II (Ottawa, Ont., 1984), Lecture Notes in Math., 1178, Springer, Berlin, 1986, pp. 129–142.
- [7] R. K. MOLNAR, Tensor products and semisimple modular representations of finite groups and restricted Lie algebras, *Rocky Mountain J. Math.* **11** (1981), 581–591.
- [8] G. NAVARRO, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, 250, Cambridge University Press, Cambridge, 1998.