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Abstract. Let k be an algebraically closed field of characteristic
p > 0. We characterize the finite groups G for which the Drinfeld
double D(kG) of the group algebra kG has the Chevalley property.

We also show that this is the case if and only if the tensor
product of every simple D(kG)-module with its dual is semisimple.
The analogous result for the group algebra kG is also true, but its
proof requires the classification of the finite simple groups.

A further result concerns the largest Hopf ideal contained in the
Jacobson radical of D(kG)). We prove that this generated by the
augmentation ideal of kOp(Z(G)), where Z(G) is the center of G
and Op(Z(G)) the largest p-subgroup of this center.

1. Introduction

A Hopf algebra H is said to have the Chevalley property, if the ten-
sor product of any two simple H-modules is semisimple. This notion
was introduced by Andruskiewitsch, Etingof, and Gelaki in [2], and is
motivated by a famous theorem of Chevalley which states that a group
algebra kG does have this property if k is a field of characteristic 0.

In [12] Lorenz gives various characterizations of the Chevalley prop-
erty for finite dimensional Hopf algebras H. Here, we add yet another
such characterization in case H = kG or H = D(kG) for a finite
group G and a field k of positive characteristic p. (As usual, D(H)
denotes the Drinfeld double of the finite dimensional Hopf algebra H.)
Namely, we show that such a Hopf algebra has the Chevalley prop-
erty if and only if V ⊗ V ∗ is semisimple for every simple H-module V .
The proof of this result for group algebras requires the classification of
the finite simple groups (except if p = 2), whereas the result for the
Drinfeld double of a group algebra is elementary.

We also give a group theoretic characterization of the groups G such
that D(kG) has the Chevalley property. This is the case if and only if
G = S × K where S is an abelian Sylow p-subgroup. The analogous
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characterization for a group algebra is due to Molnar [15]: The group
algebra kG has the Chevalley property if and only if a Sylow p-subgroup
of G is normal.

Let us write J(A) for the Jacobson radical of an algebra A. Suppose
that H is a finite dimensional Hopf algebra. It is well known that H
has the Chevalley property if and only if J(H) is a Hopf ideal of H.
In general, there is a largest Hopf ideal Jw(H) contained in J(H) (see
[5]). It is the annihilator of (H/J(H))⊗n for all sufficiently large n.
Suppose that G is a finite group and k is a field of characteristic p. It
is well known that Jw(kG) is generated by the augmentation ideal of
kOp(G), where Op(G) denotes the largest normal p-subgroup of G. We
give an analogous description for Jw(D(kG)): This is generated by the
augmentation ideal of kOp(Z(G)).

The smallest n such that the annihilator of (H/J(H))⊗n equals
Jw(H) is denoted by lw(H). There are results indicating that lw(kG)
is small if G is a finite group and k a field as above (see [5, Section 4]).
We show that in contrast to this, lw(D(kG)) can be arbitraily large
if G runs through the class of finite p-groups. In fact we also give a
purely group theoretical description of the number lw(D(kG)) for such
groups.

Our results indicate that in many respects the Drinfeld double of a
group algebra behaves more smoothly than the group algebra itself.

2. The Chevalley property of the Drinfeld double of a
group algebra

Let k be a field and H be a finite-dimensional Hopf algebra over k.
The Drinfeld double of H, denoted by D(H) as usual, is also a Hopf
algebra, which is defined as follows (see [11, IX.4]). As a coalgebra,
D(H) = H∗cop ⊗ H. (We always write ⊗ for ⊗k.) Here, H∗ is the
dual Hopf algebra of H, and the comultiplication of H∗cop is opposite
to that of H∗. Denote f ⊗ h by f ./ h in D(H) for all f ∈ H∗cop = H∗

and h ∈ H. Then the multiplication of D(H) is given by

(f ./ x)(g ./ y) =
∑

f(x2 ⇀ g ↼ S−1(x3)) ./ x2y ,

where f, g ∈ H∗cop = H∗, x, y ∈ H, S is the antipode of H, and
x ⇀ g, g ↼ x ∈ H∗ are defined by

〈x ⇀ g, y〉 = 〈g, yx〉, 〈g ↼ x, y〉 = 〈g, xy〉.
Recall that a Hopf ideal of a Hopf algebra H is an ideal I of H which
is also a coideal of H (i.e., ∆(I) ⊆ H ⊗ I + I ⊗ H, ε(I) = 0) such
that S(I) ⊆ I. In this case, H/I is a Hopf algebra with the structure
inherited from H.
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We begin with two preliminary results.

Lemma 2.1. Let K and L be two finite dimensional Hopf algebras.
Then we have a Hopf algebra isomorphism

D(K ⊗ L) ∼= D(K)⊗D(L).

Proof. Since K and L are finite dimensional Hopf algebras, there is
a canonical Hopf algebra isomorphism K∗⊗L∗ ∼= (K⊗L)∗. Regarding
K∗ ⊗ L∗ = (K ⊗ L)∗, one can get a coalgebra isomorphism φ from
D(K)⊗D(L) to D(K ⊗ L) as follows

φ : (K∗cop ./ K)⊗ (L∗cop ./ L) → (K ⊗ L)∗cop ./ (K ⊗ L)
(f ./ x)⊗ (g ./ a) 7→ (f ⊗ g) ./ (x⊗ a)

where f ∈ K∗cop, x ∈ K, g ∈ L∗cop and a ∈ L. It is straightforward
to check that φ is also an algebra homomorphism. Therefore, φ is a
Hopf algebra isomorphism since a bialgebra homomorphism between
two Hopf algebras must be a Hopf algebra homomorphism. �

Now suppose that G is a finite group and that k is algebraically
closed and of characteristic p > 0. Put H := kG. Recall that Op(G)
denotes the largest normal p-subgroup of G.

Lemma 2.2. If G is abelian, then J(D(H)) is a Hopf ideal of D(H),
and D(H)/J(D(H)) is isomorphic, as an algebra, to kn , where n =
|G|[G : Op(G)].

Proof. Suppose that G is abelian. Then it is easy to see that D(H)
is exactly the tensor product H∗ ⊗ H as a Hopf algebra. Since G is
abelian, Op(G) is a Sylow p-subgroup. It follows from [5, Theorem 4.4
and Corollary 4.2] that J(H) = Jw(H) = H(kOp(G))+ and H/J(H) ∼=
k(G/Op(G)).

Note that H∗ ∼= k|G| = k × k × · · · × k as algebras. Hence (H∗ ⊗
H)/(H∗ ⊗ J(H)) ∼= H∗ ⊗ (H/J(H)) ∼= (H/J(H))|G| as algebras. Thus
J(D(H)) = J(H∗ ⊗ H) = H∗ ⊗ J(H) is a Hopf ideal of D(H) since
H∗ ⊗ J(H) is a nilpotent Hopf ideal of H∗ ⊗ H and (H/J(H))|G| is
semisimple.

Now since G/Op(G) is an abelian group and p - |G/Op(G)|, we have
H/J(H) ∼= k(G/Op(G)) ∼= km as algebras, where m = |G/Op(G)| =
[G : Op(G)]. Therefore, D(H) ∼= kn as algebras, where n = |G|[G :
Op(G)]. �

We now come to the main result of this section, characterizing the
Chevalley property for D(H) in different ways. Recall that a finite-
dimensional Hopf algebra has the Chevalley property, if the tensor
product of any two of its simple modules is semisimple. It is clear (see
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e.g., [12]) that this is the case if and only if its Jacobson radical is a
Hopf ideal.

Theorem 2.3. The following statements are equivalent.
(1) J(D(H)) is a Hopf ideal.
(2) V ⊗ V ∗ is semisimple for all simple D(H)-modules V .
(3) P (k)⊗ V ∼= P (V ) for all simple D(H)-modules V .
(4) The trivial module is a direct summand of V ⊗ V ∗ for all simple

D(H)-modules V .
(5) The dimension of each simple D(H)-module is not divisible by p.
(6) G = S ×K with S an abelian Sylow p-subgroup of G.

Proof. We show (1) ⇒ (2) ⇒ (4) and (1) ⇒ (3) ⇒ (4) ⇒ (5) ⇒
(6) ⇒ (1).

(1) ⇒ (2) and (1) ⇒ (3): See [12, Section 3.3].
(2) ⇒ (4): It follows from

HomD(H)(V ⊗ V ∗, k) ∼= HomD(H)(V, V )

that k is a composition factor of V ⊗ V ∗. Since the latter module is
semisimple, it follows that k is a direct summand of V ⊗ V ∗.

(3) ⇒ (4): We deduce from

k ∼= HomD(H)(P (V ), V )
∼= HomD(H)(P (k)⊗ V, V )
∼= HomD(H)(P (k), V ⊗ V ∗),

that the multiplicity of k as a composition factor of V ⊗ V ∗ equals 1.
By the arguments used in the proof (2) ⇒ (4), the head of V ⊗ V ∗

contains k as a composition factor. But V ⊗ V ∗ ∼= (V ∗)∗ ⊗ V ∗ ∼=
(V ⊗V ∗)∗, and so k is a composition factor of the socle and of the head
of V ⊗ V ∗. It follows that k is a direct summand of V ⊗ V ∗.

(4) ⇒ (5): See [3, Theorem 3.1.9].
(5) ⇒ (6): By the description of the simple D(H)-modules (see [7, 8,

13, 18] or Section 4 below), our assumptions imply that p - |C| for every
conjugacy class C of G. It is well known (see, e.g. [6, Proposition 4])
that this forces a Sylow p-subgroup of G, say S, to be contained in the
center of G. In particular S is a normal, abelian subgroup of G. By the
Schur-Zassenhaus theorem S has a complement K, say, in G. Since S
is central, K is also a normal subgroup of G. Thus G = S ×K.

(6) ⇒ (1): Suppose that G = S × K with S abelian and p - |K|.
Then H = kG ∼= kS ⊗ kK as Hopf algebras. Thus it follows from
Lemma 2.1 that

D(H) ∼= D(kS ⊗ kK) ∼= D(kS)⊗D(kK)
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By Lemma 2.2, J(D(kS)) is a Hopf ideal of D(kS) and, as algebras,
D(kS)/J(D(kS)) ∼= kn with n = |S|[S : Op(S)]. Hence J(D(kS)) ⊗
D(kK) is a nilpotent Hopf ideal of D(kS)⊗D(kK), and

(D(kS)⊗D(kK))/(J(D(kS))⊗D(kK))
∼= (D(kS)/J(D(kS)))⊗D(kK)
∼= D(kK)n

as algebras. Since p - |K|, kK is a semisimple and cosemisimple Hopf
algebra. It follows from [17, Proposition 7] that D(kK) is a semisim-
ple Hopf algebra. Hence (D(kS) ⊗ D(kK))/(J(D(kS)) ⊗ D(kK)) is
semisimple, and so J(D(kS) ⊗ D(kK)) = J(D(kS)) ⊗ D(kK). This
implies that J(D(H)) is a Hopf ideal of D(H). �

3. The Chevalley property of a group algebra

The characterizations of the Chevalley property in Theorem 2.3 also
hold for group algebras. The equivalences given in Theorem 3.1 below,
except (2) and (7), are long known and have been published before
(see [15] and [12, Section 3.3]). The implication (3) ⇒ (1) is due to
Brockhaus [4]; its proof requires the classification of the finite simple
groups. We repeat these results just to emphasize the analogy with the
Drinfeld double of a group algebra.

The essential ingredient of the implication (2) ⇒ (1) is a theorem of
Michler [14, Theorem 2.4], which states that a group without a normal
Sylow p-subgroup has a simple module in characteristic p, whose di-
mension is divisble by p. The theorem of Michler uses the classification
of the finite simple groups. For p = 2, a result of Okuyama can be ap-
plied which does not require the classification and which furthermore
proves that Statement (7) implies the Chevalley property.

The investigations in this section were inspired by a question of
Külshammer, who asked, whether the fact that the tensor square of any
two simple modules is semisimple would imply the Chaevalley property.
This is not the case. We give an example of a group algebra not hav-
ing the Chevalley property, for which the tensor square of every simple
module is semisimple.

Theorem 3.1. Let G be a finite group and let k be an algebraically
closed field of characteristic p > 0. Then the following statements are
equivalent:

(1) J(kG) is a Hopf ideal.
(2) V ⊗ V ∗ is semisimple for all simple kG-modules V .
(3) P (k)⊗ V ∼= P (V ) for all simple kG-modules V .
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(4) The trivial module is a direct summand of V ⊗ V ∗ for all simple
kG-modules V .

(5) The dimension of each simple kG-module is not divisible by p.
(6) G has a normal Sylow p-subgroup.
Furthermore, if p = 2, then these statements are equivalent to
(7) V ⊗ V is semisimple for every simple kG-module V .

Proof.
(1) ⇒ (2), (1) ⇒ (3) and (1) ⇒ (7): See [12, Section 3.3].
(3) ⇒ (4): Similar to (3) ⇒ (4) of Theorem 2.3.
(4) ⇒ (5): See [3, Theorem 3.1.9].
(2) ⇒ (6), (5) ⇒ (6) and (7) ⇒ (6): Suppose that G does not have

a normal Sylow p-subgroup. If p = 2, a result of Okuyama (see [16,
Theorem 2.33]) shows that there is a non-trivial, self-dual simple kG-
module V . By Fong’s Lemma (see [10, Theorem VII.8.13]), V has even
dimension.

Now let p be odd. By a result of Michler [14, Theorem 2.4], which
uses the classification of the finite simple groups, there is a simple kG-
module V with p | dimk(V ).

Now V ⊗V ∗ is not semisimple if the dimension of V is divisible by p
(see [3, Theorem 3.1.9]).

(6) ⇒ (1): This follows from [12, 15]. �

The following example was found with the help of GAP (see [9]). It
shows that Statement (7) of the above theorem does not imply the
other statements if p is odd.

Example 3.2. Let G be the non-abelian group of order 21, and let k be
an algebraically closed field of characteristic 3. Then kG has three sim-
ple modules (up to isomorphism). Apart from the trivial kG-module,
there is a pair S, S∗ of dual simple kG-modules of dimension 3. The
Brauer character ϕ of S has the following three values:

3,
−1 +

√
−7

2
,

−1−
√
−7

2
.

The Brauer character of S∗ equals ϕ̄, the complex conjugate of ϕ. We
have ϕ · ϕ = ϕ + 2ϕ̄. Since S and S∗ are projective, this implies
S ⊗ S ∼= S ⊕ S∗ ⊕ S∗. Dually, S∗ ⊗ S∗ ∼= S ⊕ S ⊕ S∗. Hence V ⊗ V is
semisimple for every simple kG-module V . However, G does not have
a normal Sylow 3-subgroup.

4. The ideal Jw(D(H))

Let G be a finite group, k be an algebraically closed field of charac-
teristic p > 0, and put H = kG as in Section 2.
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Since H → D(H), h 7→ ε ./ h and H∗cop → D(H), f 7→ f ./ 1 are
Hopf algebra monomorphisms, we may regard H and H∗cop as Hopf
subalgebras of D(H). In this case, D(H) = H∗copH and f ./ h = fh
for any f ∈ H∗cop and h ∈ H. Let pg ∈ H∗cop be given by

pg(h) := δg,h, g, h ∈ G.

Then {pgh | g, h ∈ G} is a k-basis of D(H). Moreover, hpg = phgh−1h
for all g, h ∈ G. The comultiplication of D(H) is given by

∆(pgh) =
∑
x∈G

pxh⊗ pgx−1h,

for g, h ∈ G (see [11, IX.4.3]).
Recall that Jw(D(H)) denotes the largest Hopf ideal contained in

J(D(H)).

Lemma 4.1. We have

Jw(D(H)) ⊇ D(H)(kOp(Z(G)))+ = H∗copH(kOp(Z(G)))+.

Proof. Note that H(kOp(Z(G)))+ = (kOp(Z(G)))+H is a nilpotent
Hopf ideal of H. Since HH∗cop = H∗copH and H∗cop(kOp(Z(G)))+ =
(kOp(Z(G)))+H∗cop, H∗copH(kOp(Z(G)))+ is a nilpotent Hopf ideal of
D(H). Since Jw(D(H)) is the largest nilpotent Hopf ideal of D(H),
the result follows. �

Let K be a subgroup of Z(G), where Z(G) denotes the center of G.
Then K is a normal subgroup of G, and hf = fh in D(H) for all h ∈ K
and f ∈ H∗cop. It follows that D(H)(kK)+ = H∗copH(kK)+ is a Hopf
ideal of D(H). Let G be the quotient group G/K and π : G → G
be the natural epimorphism. Denote π(g) by g for all g ∈ G. Then
the quotient Hopf algebra D(H)/(D(H)(kK)+) can be described as
follows.

Now H∗cop and kG are two Hopf subalgebras of D(H)/(D(H)(kK)+),
and
D(H)/(D(H)(kK)+) = H∗cop(kG). Moreover, {pgh | g ∈ G, h ∈ G} is
a basis of D(H)/(D(H)(kK)+) over k with multiplication given by

hpg = phgh−1h, g, h ∈ G.

For any module M over D(H)/(D(H)(kK)+) and g ∈ G, let Mg =

pg · M . Then M =
⊕

g∈G Mg and h · Mg = Mhgh−1 for all g, h ∈ G.

Hence for any g ∈ G, Mg is a kCG(g)-module, where CG(g) = CG(g)/K
is a subgroup of G. Thus Mg is a kCG(g)-module. Moreover, for any
conjugacy C of G,

⊕
g∈C Mg is a submodule of M .
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On the other hand, let g ∈ G and N be any kCG(g)-module. Then
the induced kG-module

IndG
CG(g)

(N) := kG⊗kCG(g) N

becomes a D(H)/(D(H)(kK)+)-module with the H∗cop-action given
by

px · (h⊗ n) = δx,hgh−1(h⊗ n), x, h ∈ G, n ∈ N.

That is, h⊗kCG(g) N = (IndG
CG(g)

(N))hgh−1 .

With the above notations, for any D(H)/(D(H)(kK)+)-module M ,
an argument similar to [18] shows that there is a D(H)/(D(H)(kK)+)-

module isomorphism
⊕

h∈C Mh
∼= IndG

CG(g)
(Mg), where C is a conju-

gacy class of G and g ∈ C.
Let O denote the set of conjugacy classes of G. For any C ∈ O,

choose an element gC ∈ C. Then by an argument similar to [18, The-
orem 2.2], one can get the following theorem.

Theorem 4.2. Let K be a subgroup of Z(G). Then there is an equiv-

alence between the category D(H)M of D(H)-modules and the Carte-
sian product category ΠC∈O kCG(gC)M of the categories kCG(gC)M of

kCG(gC)-modules, where D(H) = D(H)/(D(H)(kK)+) and CG(gC) =
CG(gC)/K.

Putting K = Op(Z(G)) in the above theorem, one gets the following
corollary.

Corollary 4.3. Up to isomorphism, the indecomposable (respectively,
simple) D(H)/(D(H)(kOp(Z(G)))+)-modules are parametrized by pairs
(N, g), where g is a representative of a conjugacy class of G, and N is
an indecomposable (respectively, simple) k(CG(g)/Op(Z(G)))-module.

Putting K = {1} in Theorem 4.2, one recovers a known result of [18]
as follows.

Corollary 4.4. Up to isomorphism, the indecomposable (respectively,
simple) D(H)-modules are parametrized by pairs (N, g), where g is a
representative of a conjugacy class of G, and N is an indecomposable
(respectively, simple) kCG(g)-module.

Remark 4.5. (1) D(H) has a projective, simple module if and only if
there exists g ∈ G such that kCG(g) has a projective, simple module.

In fact, Putting K = {1} in Theorem 4.2, one knows that the cat-
egory D(H)M of D(H)-modules is equivalent to the Cartesian prod-
uct category ΠC∈O kCG(gC)M of the categories kCG(gC)M of kCG(gC)-
modules. Then the result follows immediately.
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(2) If p - |CG(g)| for some g ∈ G, then D(H) has a projective, simple
module.

(3) If p | |Z(G)|, then D(H) does not have a projective, simple
module. (Indeed, by [5, Proposition 2.6(3)], the existence of such a
module would imply Jw(D(H)) = {0}, contradicting Lemma 4.1.)

Theorem 4.6. Suppose G is a non-abelian finite simple group. Then
D(H) has a projective, simple module. In particular, if p | |G|, then
lw(D(H)) = 2.

Proof. By [6, Proposition 3], there is g ∈ G such that p - |CG(g)|.
(Note that this result is based on a theorem of Michler using the clas-
sification of the finite simple groups.) The first claim thus follows from
Remark 4.5. The second claim follows from [5, Corollary 3.10]. �

Remark 4.7. Let G be a non-abelian finite simple group. Then by [5,
Corollary 4.5] and its proof, it follows that kG has a projective, simple
module if p ≥ 5. In particular, if p | |G| and p ≥ 5, then lw(kG) = 2.
We do not know whether a global bound for lw(kG) exists for simple
groups G and p = 2 or 3. If G is the alternating group on 7 letters
and p = 2 or 3, then lw(kG) = 3. We do not know any example with
lw(kG) = 4.

We now aim at proving that in fact equality holds in Lemma 4.1, i.e.,
Jw(D(H)) = D(H)(kOp(Z(G)))+. For a subgroup U of G we write 1U

for the trivial representation of U . We begin with a lemma.

Lemma 4.8. Let g1, . . . , gn be elements of G such that CG(g1, . . . , gn) =
Z(G) and gn · · · g1 = 1. Furthermore, let Vi denote the simple D(H)-
module corresponding to the pair (1CG(gi), gi) (notation of [18, Corol-
lary 2.3]). Then

(1) IndG
Z(G)(1Z(G)) | Res

D(H)
kG (V1 ⊗ · · · ⊗ Vn).

Proof. Using the remarks in [13, Section 3], in particular For-
mula (3.4) (or the arguments in the proof of [18, Lemma 3.2]) and
Mackey’s theorem, we find that V1 ⊗ V2 contains a direct summand of
the form (

Ind
CG(g2g1)
CG(g1,g2)(1CG(g1,g2)), g2g1

)
.

Using induction on n and Mackey’s theorem once more, we find that

Ind
CG(gn···g1)
CG(g1,...,gn)(1CG(g1,...,gn))

is a direct summand of

Res
D(H)
kCG(gn···g1)(V1 ⊗ · · · ⊗ Vn),
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from which the claim follows. �

Proposition 4.9. We have Jw(D(H)) = D(H)(kOp(Z(G)))+.

Proof. Let us write D(H) := D(H)/(D(H)(kOp(Z(G)))+). By
Lemma 4.1 we have

Jw(D(H)) = Jw(D(H))/(D(H)(kOp(Z(G)))+).

Thus it suffices to prove

(2) Jw(D(H)) = 0.

It follows from [5, Proposition 2.4] and the proof of [5, Proposition 2.6(2)],
that (2) is implied by

(3) P (kε) |
(
(D(H))/J(D(H))

)⊗n

for some n.

Here, kε is the 1-dimensional module of D(H) corresponding to the

counit ε of D(H), and P (kε) its projective cover.
According to Theorem 4.3, the projective module P (kε) corresponds

to the pair (P (1G), 1), the first component denoting the projective cover

of the trivial kG-module. Now Z(G) is a group whose order is not di-

visible by p. Hence 1Z(G) is a projective kZ(G)-module, and hence so

is IndG
Z(G)

(1Z(G)). Since the latter maps onto the trivial kG-module

by Frobenius reciprocity, it contains P (1G) as a direct summand. The
result now follows from Lemma 4.8 and the discussion preceding The-
orem 4.2. �

We can apply similar ideas to determine the invariant lw(D(H)) if
H = kG is the group algebra of a finite p-group G.

Proposition 4.10. Let G be a finite p-group. Define z(G) to be the
smallest positive integer n such that there exist g1, . . . , gn in G with
gn · · · g1 = 1 and CG(g1, . . . , gn) = Z(G). (Note that z(G) = 1 if and
only if G is abelian.) Then lw(D(kG)) = z(G).

Proof. By Proposition 4.9, we have Jw(D(H)) = D(H)(kZ(G))+.

By definition, lw(D(H)) = lw(D(H)) with D(H) = D(H)/Jw(D(H)).
Thus lw(D(H)) is the smallest positive integer m such that P (1kG/Z(G))

is a direct summand of Res
D(H)
kG/Z(G)(V1⊗· · ·⊗Vm) for some simple D(H)-

modules V1, . . . , Vm. Using the fact that G is a p-group and the con-
siderations preceding Theorem 4.2, we see that lw(D(H)) is the small-
est integer m such that V1 ⊗ · · · ⊗ Vm contains the direct summand
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parametrized by (IndG
Z(G)(1Z(G)), 1), for some simple D(H)-modules

V1, . . . , Vm.
It follows from Lemma 4.8 and [5, Corollary 3.11] that lw(D(H)) ≤

z(G).
To show the reverse inequality, put m := lw(D(H)) and let h1, . . . , hm

be elements of G such that V1 ⊗ · · · ⊗ Vm contains a direct sum-
mand P corresponding to (IndG

Z(G)(1Z(G)), 1), where Vi denotes the
simple D(H)-module corresponding to hi. (Since G is a p-group, there
is just one simple D(H)-module for each conjugacy class of G.)

Then there is an indecomposable direct summand V of V2⊗· · ·⊗Vm

such that P is a direct summand of V1⊗V . Since V is indecomposable,
there is some g ∈ G such that V corresponds to (W, g) for an indecom-
posable CG(g)-module W . Since V1 ⊗ V has a non-zero component
beloning to the conjugacy class of the 1-element of G, we conclude
that g is conjugate to h−1

1 . Replacing g by a conjugate, we may assume
that gh1 = 1.

Since V is a component of V2⊗· · ·⊗Vm, the element g is of the form
gm · · · g2 with elements gi conjugate to hi for 2 ≤ i ≤ m. Moreoever,

W ∼= Ind
CG(g)
CG(g2,...,gm)(1CG(g2,...,gm)). Now if CG(g2, . . . , gm) 6= Z(G), then

the 1-component of V1 ⊗ V does not contain P as a direct summand.
It follows that z(G) ≤ m = lw(D(H)). �

Corollary 4.11. The invariant lw(D(kG)) can become arbitrarily large
as G varies through the finite p-groups.

Proof. Let G be an extraspecial p group of order p2m+1 (see [1,
Section 23]). We claim that z(G) = 2m + 1. On the one hand, if U is
a proper subgroup of G, then CG(U) properly contains Z(G). To see
this, we may assume that U is a maximal subgroup of G. Then, with
respect to the commutator form, U/Z(G) is a symplectic vector space
of dimension 2m − 1 (cf. [1, 23.10]). But then U/Z(G) is degenerate
which means that there is an element of U \ Z(G) centralizing U .

On the other hand, any set of less then 2m elements generates a
proper subgroup of G. This is the case since G/Φ(G) is elementary
abelian of order p2m, where Φ(G) denotes the Frattini subgroup of G.

�
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