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Abstract We introduce a conjecture of Dekimpe, De Rock and Penninckx and sketch
some major steps in its proof. This text presents an extended account of the talk of
the first author given at the conference.

1 Introduction

The purpose of this note is to outline the proof, recently obtained by the authors
in [7], of a conjecture of Dekimpe, De Rock and Penninckx. This yields a sufficient
condition for a flat manifold to be an 𝑅∞-manifold. Here, we will sketch the main
steps of our proof, giving details for some of the more elementary arguments. We
show how to reduce the conjecture to the finite simple groups. Then, using extensive,
detailed knowledge about the automorphism groups, the subgroup structure and the
character theory of the non-abelian finite simple groups, these can be ruled out as
minimal counterexamples to the conjecture. For the necessary information we rely
largely on [6]. Our arguments work for the majority of these groups, but they may
fail for particular small instances. These are treated with computational methods,
using the systems Chevie [4, 13] and GAP [3].

With respect to groups and characters we use standard notation. In particular,
Irr(𝐺) denotes the set of irreducible complex characters of the finite group 𝐺.
Characters of R𝐺-modules are tacitly viewed as complex characters.

2 Motivation

Let 𝑀 be a real closed manifold with fundamental group 𝜋1 (𝑀) and let 𝑓 : 𝑀 → 𝑀

be a homeomorphism. Several invariants can be attached to 𝑓 . For example, the
Reidemeister number 𝑅( 𝑓 ) of 𝑓 is the number of 𝑓#-conjugacy classes on 𝜋1 (𝑀),
where 𝑓# is the induced map on 𝜋1 (𝑀). By definition, 𝑅( 𝑓 ) is a positive integer or
infinity. Other invariants are the Lefshetz number 𝐿 ( 𝑓 ), defined as an alternating
sum of traces of the maps induced by 𝑓 on the homology groups of 𝑀 , or the
Nielsen number 𝑁 ( 𝑓 ), the number of fixed point classes of 𝑓 on 𝑀 under a certain
equivalence relation. In particular, 𝑓 has at least 𝑁 ( 𝑓 ) fixed points.

The manifold 𝑀 is called an 𝑅∞-manifold, if 𝑅( 𝑓 ) = ∞ for every homeomor-
phism 𝑓 of 𝑀 .

Let us consider the special case where 𝑀 is an infra-nilmanifold, i.e., 𝑀 = Γ\𝐿,
where 𝐿 is a connected, simply connected, nilpotent Lie group, and Γ ≤ 𝐿 ⋊ 𝐶

is discrete, cocompact and torsion-free for some maximal compact subgroup 𝐶 ≤
Aut(𝐿). Then 𝜋1 (𝑀) � Γ. In the case when Γ ≤ 𝐿, i.e. 𝑀 is a nilmanifold, 𝑅( 𝑓 ) = ∞
implies that 𝐿 ( 𝑓 ) = 𝑁 ( 𝑓 ) = 0; see the introduction of [2].

Let us even further specialize an infra-nilmanifold to the case when 𝐿 = R𝑚.
Then 𝑀 is a flat manifold. Here,𝐶 = 𝑂 (𝑚), Γ∩R𝑚 � Z𝑚, and there is a finite group
𝐺 such that
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1 −→ Z𝑚 −→ Γ −→ 𝐺 −→ 1

is a short exact sequence. Conjugation of Γ onZ𝑚 induces a homomorphism 𝜌 : 𝐺 →
GL𝑚 (Z), the corresponding holonomy representation.

Let 𝑀 be a flat manifold, and 𝜌 the corresponding holonomy representation. A
Z-subrepresentation of 𝜌 is a representation 𝜌′ : 𝐺 → GL𝑑 (Z) arising from a 𝜌(𝐺)-
invariant, pure sublattice 𝑌 ≤ Z𝑚 of rank 𝑑; here, 𝑌 is called pure, if some Z-basis
of𝑌 extends to aZ-basis ofZ𝑚. We may optionally view 𝜌 or 𝜌′ as aQ-representation
or an R-representation of 𝐺 in a natural way.

Theorem 1 (Dekimpe, De Rock, Penninckx, 2009, [2]) Suppose there is a Z-
subrepresentation 𝜌′ : 𝐺 → GL𝑑 (Z), which is an irreducible component of 𝜌 of
multiplicity one as aQ-subrepresentation, and such that the following two conditions
are satisfied:

(i) If 𝜌′′ is a Q-subrepresentation of 𝜌 of degree 𝑑 such that 𝜌′ (𝐺) and 𝜌′′ (𝐺) are
conjugate in GL𝑑 (Q), then 𝜌′ and 𝜌′′ are equivalent.

(ii) For all 𝐷 ∈ 𝑁GL𝑑 (Z) (𝜌′ (𝐺)) there is 𝑔 ∈ 𝐺 such that 𝜌′ (𝑔)𝐷 has eigenvalue 1.

Then 𝑀 is an 𝑅∞ manifold. 2

Condition (ii) on 𝜌′ in Theorem 1 implies:

• The Q-representation 𝜌′ is R-irreducible.
• The normalizer 𝑁GL𝑑 (Z) (𝜌′ (𝐺)) has finite order.

These observations follow, e.g., from the proof of [14, Theorem A].

3 The eigenvalue one condition

Motivated by Theorem 1, its authors formulated a conjecture which we are now going
to introduce. Before doing so, we fix some notation which will be kept throughout
this article.

Let 𝐺 be a finite group, 𝑉 a finite-dimensional R𝐺-module and 𝜌 : 𝐺 → GL(𝑉)
the representation afforded by 𝑉 . Moreover, 𝑛 ∈ GL(𝑉) is an element of finite order
normalizing 𝜌(𝐺).

Definition 1 Let the notation be as introduced above. We then say that:

1) The triple (𝐺,𝑉, 𝑛) has the 𝐸1-property, if there is 𝑔 ∈ 𝐺 such that 𝜌(𝑔)𝑛 has
eigenvalue 1.

2) The pair (𝐺,𝑉) has the 𝐸1-property, if (𝐺,𝑉, 𝑛′) has the 𝐸1-property for all
𝑛′ ∈ GL(𝑉) of finite order normalizing 𝜌(𝐺).

3) The group 𝐺 has the 𝐸1-property, if (𝐺,𝑉 ′) has the 𝐸1-property for all irre-
ducible, non-trivial R𝐺-modules 𝑉 ′ of odd dimension.

Let us give some examples.



6 Gerhard Hiss and Rafał Lutowski

Example 1 If 𝑉 = R with trivial action of 𝐺, i.e. 𝑉 is the trivial R𝐺-module, then 𝑉

does not have the 𝐸1-property. Indeed, 𝜌(𝐺) = {1} in this case, and 𝑛 = −1 violates
the eigenvalue one condition.

Example 2 If 𝐺 is an elementary abelian 𝑝-group, then 𝐺 has the 𝐸1-property.
Indeed, if 𝑝 is odd, then𝐺 does not have any non-trivial, irreducible, odd-dimensional
module over R. If 𝑝 = 2 and 𝑉 is non-trivial and irreducible, then dim(𝑉) = 1 and
𝜌(𝐺) = {±1}, which proves our claim, as the only elements of finite order in
R∗ = GL(𝑉) are ±1.

Example 3 (Dekimpe, De Rock, Penninckx, 2009, [2]) Let 𝐺 be the extraspecial 2
group 21+4

+ of order 32, and let 𝑉 be the irreducible R𝐺-module of dimension 4.
Then (𝐺,𝑉) does not have the 𝐸1-property.

With these examples in mind, we can now formulate the following conjecture,
which is a slight generalization of the original conjecture in [2, Conjecture 4.8].

Conjecture 1 (Dekimpe, De Rock, Penninckx, 2009, [2]) Every finite group has the
𝐸1-property. 2

4 The main theorem

The purpose of this article is to announce the proof of Conjecture 1.

Theorem 2 ([7]) Every finite group has the 𝐸1-property. 2

In view of Theorem 1, this has the following consequence.

Corollary 1 Let 𝑀 be a flat manifold with holonomy representation 𝜌 : 𝐺 →
GL𝑛 (Z). Suppose there is a non-trivial Z-subrepresentation 𝜌′ : 𝐺 → GL𝑑 (Z) of
odd degree 𝑑, which is irreducible and of multiplicity one as an R-subrepresentation
of 𝜌. Suppose further that 𝜌′ satisfies Condition (i) of Theorem 1.

Then 𝑀 is an 𝑅∞-manifold. 2

Corollary 1 for solvable groups 𝐺 has been proved by Lutowski and Szczepański
in [10, Theorem 1.4].

The proof of Theorem 2 uses the classification of the finite simple groups. We
are now going to sketch the main steps, mostly without proofs.

4.1 The restriction method

Let us begin to set up our notation, which will be valid throughout this subsection.
Let 𝐺 be a finite group and 𝑉 a non-trivial, odd-dimensional R𝐺-module. Write
𝜌 : 𝐺 → GL(𝑉) for the representation afforded by𝑉 . The assertion of the conjecture
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only concerns the image 𝜌(𝐺), so we may and will, for the rest of this subsection,
assume that 𝜌 is faithful. We identify 𝐺 with 𝜌(𝐺) ≤ GL(𝑉). Also, 𝑛 ∈ 𝑁GL(𝑉 ) (𝐺)
is an element of finite order.

Remark 1 If 𝑉 is irreducible, it is absolutely irreducible. 2

It is natural to search for elements 𝑔 ∈ 𝐺 such that 𝑔𝑛 has eigenvalue 1 in suitable
subgroups of 𝐺, to which we can apply an inductive hypothesis.

Lemma 1 Let 𝐻 ≤ 𝐺. Suppose that the following conditions are satisfied.

• The group 𝐻 is 𝑛-invariant.
• There is 𝑉1 ≤ 𝑉 , 𝐻-invariant and 𝑛-invariant.
• The triple (𝐻,𝑉1, 𝑛) has the 𝐸1-property.

Then (𝐺,𝑉, 𝑛) has the 𝐸1-property.

Proof. Choosing a basis of 𝑉 through 𝑉1, the elements of 𝐻 and 𝑛 are represented
by matrices of the following shape:

𝐻 =

{(
∗ ∗
0 ∗

)}
, 𝑛 =

(
𝑛1 ∗
0 ∗

)
.

Since (𝐻,𝑉1, 𝑛1) has the 𝐸1-property, there is

ℎ =

(
ℎ1 ∗
0 ∗

)
∈ 𝐻,

such that ℎ1𝑛1 has eigenvalue 1. Thus ℎ𝑛 has eigenvalue 1. ⊓⊔

In the following two lemmas, we present two important applications of the re-
striction method.

Lemma 2 Let 𝑆 ≤ 𝑉 be an irreducible R𝐺-submodule such that the following
conditions hold.

• The module 𝑉 is 𝑆-homogeneous.
• The pair (𝐺, 𝑆) has the 𝐸1-property.

Then (𝐺,𝑉) has the 𝐸1-property.

Proof. Recall that 𝑛 ∈ GL(𝑉) is an arbitrary element of finite order normalizing 𝐺.
Put 𝐴 := ⟨𝐺, 𝑛⟩ ≤ GL(𝑉). Let 𝑉 ′

1 ≤ 𝑉 be an irreducible R𝐴-submodule of 𝑉 of odd
dimension and let 𝑉1 ≤ 𝑉 ′

1 be an irreducible R𝐺-submodule of 𝑉 ′
1. Then 𝑉1 and 𝑉 ′

1
are absolutely irreducible by Remark 1.

By hypothesis, 𝑉1 � 𝑆 � 𝑛𝑉1 as R𝐺-modules. As 𝐴/𝐺 is cyclic and 𝑉1 is
absolutely irreducible, the character of 𝑉1 extends to 𝐴. Then, by Clifford theory,
every absolutely irreducible R𝐴-submodule of Ind𝐴

𝐺
(𝑉1) has dimension dim(𝑉1).

Hence𝑉1 = 𝑉 ′
1, and thus𝑉1 is 𝑛-invariant. The claim follows from Lemma 1, applied

with 𝐻 = 𝐺. ⊓⊔
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Lemma 3 Let 𝐻 � 𝐺 be characteristic in 𝐺. Suppose that 𝑉 is irreducible and let
𝑆 be an irreducible R𝐻-submodule of 𝑉 .

If (𝐻, 𝑆) has the 𝐸1-property, so does (𝐺,𝑉).

Proof. The group 𝐺 permutes the homogeneous components of Res𝐺𝐻 (𝑉) transi-
tively. Hence the 𝑆-homogeneous component 𝑉1 of Res𝐺𝐻 (𝑉) has odd dimension,
and there exists 𝑔 ∈ 𝐺 such that 𝑔𝑛𝑉1 = 𝑉1.

Thus 𝑔𝑛 ∈ GL(𝑉1) has finite order and normalizes 𝐻. By Lemma 2, the triple
(𝐻,𝑉1, 𝑔𝑛) has the 𝐸1-property. In turn, (𝐺,𝑉, 𝑔𝑛) has the 𝐸1-property by Lemma 1.
As 𝑛 was arbitrary, this proves our assertion. ⊓⊔

4.2 Reduction to the finite simple groups

We indicate how the following proposition, whose proof we omit, and the restriction
method yield a reduction of the main theorem to the finite simple groups.

Proposition 1 Let 𝐺 = 𝐿 × · · · × 𝐿, where 𝐿 is a non-abelian finite simple group,
i.e. 𝐺 is non-abelian and characteristically simple.

If 𝐿 has the 𝐸1-property, then 𝐺 has. 2

Corollary 2 A minimal counterexample to Conjecture 1 is a non-abelian finite
simple group.

Proof. Let 𝐺 be a minimal counterexample. If 𝐻 ⪇ 𝐺 is characteristic, 𝐻 has the
𝐸1-property by hypothesis. Then 𝐺 has the 𝐸1-property by Lemma 3.

Thus 𝐺 is characteristically simple. But 𝐺 is non-abelian by Example 2. Hence 𝐺
is simple by Proposition 1. ⊓⊔

Corollary 3 A solvable group has the 𝐸1-property.

4.3 On the structure of the problem

Here, we will present some elementary observations which help to identify the
structure of the problem, and which prepare for a further method to be introduced
below.

We return to the hypotheses of Subsection 4.1. Thus 𝐺 ≤ GL(𝑉) is a finite group,
where𝑉 is a non-trivial R𝐺-module of odd dimension. Moreover, 𝑛 ∈ 𝑁GL(𝑉 ) (𝐺) is
an element of finite order. In addition, we assume that 𝑉 is irreducible. Recall from
Remark 1 that 𝑉 is absolutely irreducible.

With these notations, we note the following easy facts.

Lemma 4 The following statements hold.

• We have 𝐶GL(𝑉 ) (𝐺) = {𝑥 · id𝑉 | 𝑥 ∈ R}, and 𝑁SL(𝑉 ) (𝐺) embeds into Aut(𝐺).
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• The set of elements of finite order in 𝑁GL(𝑉 ) (𝐺) equals 𝑁SL(𝑉 ) (𝐺) × ⟨−id𝑉 ⟩.
• If det(𝑛) = 1, then 𝑛 has eigenvalue 1. 2

The first item of this lemma implies that 𝑍 (𝐺) ≤ ⟨±id𝑉 ⟩. With respect to the last
item of this lemma, we emphasize that−𝑛 is an element of finite order normalizing𝐺,
and det(−𝑛) = −1, as dim(𝑉) is odd. In particular, if −id𝑉 ∈ 𝐺, then (𝐺,𝑉, 𝑛) has
the 𝐸1-property. So let us assume that −id𝑉 ∉ 𝐺 in the following. Then 𝑍 (𝐺) is
trivial.

Let us introduce further notation. For 𝑔 ∈ 𝑁GL(𝑉 ) (𝐺), we write ad𝑔 ∈ Aut(𝐺)
for the automorphism induced by conjugation with 𝑔, and put 𝜈 := ad𝑛. Notice that
𝜈 = ad−𝑛. As in the proof of Lemma 2, set 𝐴 := ⟨𝐺, 𝑛⟩ ≤ GL(𝑉). Finally, let
𝐴1 := 𝐴 ∩ SL(𝑉). We distinguish two cases:

Case 1: We have −id𝑉 ∉ 𝐴.
Case 2: We have −id𝑉 ∈ 𝐴.

Notice that 𝐴 = 𝐴1 × ⟨−id𝑉 ⟩ in Case 2. It is helpful to take a more abstract point of
view. Put

𝐴′ :=

{
𝐴, in Case 1,
𝐴1, in Case 2,

and
𝐺′ := ⟨Inn(𝐺), 𝜈⟩ ≤ Aut(𝐺).

Remark 2 There is a surjective homomorphism

𝜌′ : 𝐴 → 𝐺′

with
𝑔𝑛𝑖 ↦→ ad𝑔 ◦ 𝜈𝑖 for 𝑔 ∈ 𝐺 and 𝑖 ∈ Z.

Moreover, 𝜌′ restricts to an isomorphism 𝐴′ → 𝐺′. 2

Let 𝜒 ∈ Irr(𝐺) and 𝜒′ ∈ Irr(𝐴) denote the irreducible characters of 𝐺, re-
spectively 𝐴, afforded by 𝑉 . We also write 𝜒′ for the restriction of 𝜒′ to 𝐴′. The
isomorphism (𝜌′ |𝐴′ )−1 : 𝐺′ → 𝐴′ from Remark 2 makes 𝑉 into an R𝐺′-module,
and, by a slight abuse of notation, we also let 𝜒′ denote the character of 𝐺′ afforded
by 𝑉 . Thus 𝜒′ (𝜌′ (𝑎′)) = 𝜒′ (𝑎′) for all 𝑎′ ∈ 𝐴′.

4.4 The large degree method

Keep the hypotheses and notation of Subsection 4.3. Notice that a cyclic group of
even order contains exactly two real absolutely irreducible characters.

Proposition 2 Suppose there is 𝑔 ∈ 𝐺 such that 𝛼 := ad𝑔 ◦ 𝜈 has even order and
(Res𝐺

′

⟨𝛼⟩ (𝜒
′), 𝜆) > 0 for every real 𝜆 ∈ Irr(⟨𝛼⟩). Then (𝐺,𝑉, 𝑛) has the 𝐸1-property.
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Proof. Let 𝜌′ denote the homomorphism from Remark 2.
Suppose that we are in Case 1. Then 𝜌′ (𝑔𝑛) = 𝛼. By hypothesis, Res𝐴

′

⟨𝑔𝑛⟩ (𝜒
′)

contains the trivial character of ⟨𝑔𝑛⟩, and thus 𝑔𝑛 has eigenvalue 1.
Suppose that we are in Case 2. Let 𝑛1 ∈ {±𝑛} such that 𝑔𝑛1 ∈ 𝐴′. Then 𝜌′ (𝑔𝑛1) =

𝛼. By hypothesis, Res𝐴
′

⟨𝑔𝑛1 ⟩ (𝜒
′) contains each of the two real irreducible characters

of ⟨𝑔𝑛1⟩, and thus 𝑔𝑛1 has eigenvalue 1 and −1. Hence 𝑔𝑛 ∈ {𝑔𝑛1,−𝑔𝑛1} has
eigenvalue 1. ⊓⊔

Corollary 4 Suppose there is 𝑔 ∈ 𝐺 such that ad𝑔 ◦ 𝜈 has order 2. Then (𝐺,𝑉, 𝑛)
has the 𝐸1-property. 2

These observations lead to the Large Degree Method, which is formulated in the
following proposition.

Proposition 3 Suppose there is 𝑔 ∈ 𝐺 such that 𝛼 := ad𝑔 ◦ 𝜈 has even order and

dim(𝑉) > ( |𝛼 | − 1) |𝐶𝐺 (𝛼′) |1/2

for every 𝛼′ ∈ ⟨𝛼⟩ of prime order. Then (𝐺,𝑉, 𝑛) has the 𝐸1-property.

Proof. The second orthogonality relation implies |𝜒′ (𝛼′) | ≤ |𝐶𝐺 (𝛼′) |1/2 for every
nontrivial 𝛼′ ∈ ⟨𝛼⟩. Our hypothesis implies (Res𝐺

′

⟨𝛼⟩ (𝜒
′), 𝜆) > 0 for every 𝜆 ∈

Irr(⟨𝛼⟩). Now use Proposition 2. ⊓⊔

Corollary 5 Let 𝐺 b one of the following simple groups:

• the Tits group;
• a sporadic simple group;
• an alternating group 𝐴𝑛 with 𝑛 ≥ 5 and 𝑛 ≠ 6.

Then 𝐺 has the 𝐸1-property.

Proof. In these cases, Aut(𝐺) = Inn(𝐺) ⋊Φ with |Φ| ≤ 2. The claim follows from
Corollary 4. ⊓⊔

The group 𝐴6 omitted here will be treated as the Chevalley group PSL2 (9).

Example 4 Let 𝐺 = 𝐺2 (𝑞), the simple Chevalley group type 𝐺2 with 𝑞 = 3 𝑓 , and
let 𝑉 be the the Steinberg module of 𝐺 over R.

Then |𝐺 | = 𝑞6 (𝑞2 − 1) (𝑞6 − 1) and dim(𝑉) = 𝑞6. It is known that Aut(𝐺) =

Inn(𝐺) ⋊ Φ, where Φ is cyclic of order 2 𝑓 . (This is the reason for taking 𝑞 to be
a 3-power, as otherwise Φ is cyclic of order 𝑓 and the arguments become easier.)
There is ℎ ∈ 𝐺 such that adℎ ◦ 𝜈 = 𝜇 ∈ Φ.

If |𝜇 | is even, put 𝛼 := 𝜇. Otherwise, let 𝑢 ∈ 𝐺 be a 𝜇-stable involution, and
put 𝛼 := ad𝑢 ◦ 𝜇 = ad𝑢ℎ ◦ 𝜈. Such a 𝜇-stable involution exists, as the set of 𝜇-fixed
points in 𝐺 is a Chevalley group of type 𝐺2 or a twisted group 3𝐺2 (32𝑚+1) for some
non-negative integer 𝑚; see [6, Proposition 4.9.1(a)].
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Then |𝛼 | is even, |𝛼 | ≤ 2 𝑓 , and |𝐶𝐺 (𝛼′) | ≤ 𝑞7 for every 𝛼′ ∈ ⟨𝛼⟩ of prime
order. This follows from the known fixed point groups of elements of Aut(𝐺); see
[6, Propositions 4.9.1, 4.9.2]. Since

dim(𝑉) = 𝑞6 > ( |𝛼 | − 1)𝑞7/2,

(𝐺,𝑉) has the 𝐸1-property.

4.5 The simple groups of Lie type

By Corollary 5 and the classification of the finite simple groups, we have to rule out
the simple groups of Lie type as minimal counterexamples to Conjecture 1. Here is
a list of these groups, omitting the conditions on simplicity:

• classical groups: PSL𝑑 (𝑞), PSU𝑑 (𝑞), 𝑃Ω2𝑑+1 (𝑞), PSp2𝑑 (𝑞), 𝑃Ω+
2𝑑 (𝑞), 𝑃Ω

−
2𝑑 (𝑞);

• exceptional Chevalley groups: 𝐺2 (𝑞), 𝐹4 (𝑞), 𝐸6 (𝑞), 𝐸7 (𝑞), 𝐸8 (𝑞);
• twisted groups: 3𝐷4 (𝑞), 2𝐸6 (𝑞).

In all these cases, 𝑞 is a power of a prime 𝑟 , the characteristic of 𝐺. We further
have the following series of groups:

• Ree groups: 2𝐺2 (32𝑚+1), 2𝐹4 (22𝑚+1);
• Suzuki groups: 2𝐵2 (22𝑚+1).

4.6 Groups of Lie type of odd characteristic

Let 𝐺 be a finite group of Lie type, of odd characteristic, i.e. 𝑟 is odd in the notation
of Subsection 4.5, or 𝐺 is a Ree group 2𝐺2 (32𝑚+1). Let 𝑟 = 3 in the latter case.
Then 𝐺 is a group with a split 𝐵𝑁-pair of characteristic 𝑟; see, e.g., [1, Subsection
2.5].

In particular, there are distinguished subgroups 𝐵,𝑈 and𝑇 , with 𝐵 = 𝑈⋊𝑇 , where
𝑈 = 𝑂𝑟 (𝐵). The groups 𝐵 and 𝑇 are the standard Borel subgroup, respectively the
standard maximal torus of 𝐺. In classical groups, 𝐵 arises from the group of upper
triangular matrices, and 𝑇 from the group of diagonal matrices. More generally, a
group 𝑃 with 𝐵 ≤ 𝑃 is a standard parabolic subgroup. This has a Levi decomposition
𝑃 = 𝑂𝑟 (𝑃)⋊𝐿, where 𝐿 is a standard Levi subgroup of𝐺, and𝑂𝑟 (𝑃) is the unipotent
radical of 𝑃. The following lemma is the main tool to deal with the groups of Lie type
of odd characteristic. It will be applied to the character 𝜒 := 𝜒𝑉 of the R𝐺-module𝑉
under consideration; see the introduction to Subsection 4.1. Notice that 𝜒 is real
valued, non-trivial and of odd degree.

Lemma 5 Let 𝑃 = 𝑂𝑟 (𝑃) ⋊ 𝐿 be a standard parabolic subgroup of 𝐺 with standard
Levi subgroup 𝐿. Let 𝜒 ∈ Irr(𝐺) with 𝜒 real and 𝜒(1) odd. Then there exists
𝜆 ∈ Irr(𝑃) such that the following conditions hold.
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• The unipotent radical 𝑂𝑟 (𝑃) is in the kernel of 𝜆 (i.e. 𝜆 ∈ Irr(𝐿)).
• The scalar product (𝜆,Res𝐺𝑃 (𝜒)) is odd.
• If 𝑃 = 𝐵, i.e. 𝐿 = 𝑇 , then 𝜆2 = 1𝑇 (in the character group of 𝑇).

Proof. Let 𝑉 be an R𝐺-module with character 𝜒. Let 𝑉1 ≤ Res𝐺𝑃 (𝑉) be a homoge-
neous component of odd dimension. Let 𝑆 ≤ 𝑉 be a simple R𝑃-submodule of 𝑉1.
Then dim(𝑆) is odd, hence 𝑆 is absolutely irreducible by Remark 1. Let 𝜆 be the
character of 𝑆. Then the scalar product (𝜆,Res𝐺𝑃 (𝜒)) divides the dimension of 𝑉1,
hence is odd.

Now consider the restriction of 𝑆 to 𝑂𝑟 (𝑃). Let 𝑆′ denote a simple R𝑂𝑟 (𝑃)-
submodule of Res𝑃

𝑂𝑟 (𝑃) (𝑆). Then dim(𝑆′) is odd, 𝑆′ is absolutely irreducible, and
its character is real. Hence 𝑆′ is the trivial module and 𝑂𝑟 (𝑃) is in the kernel of 𝜆.

If 𝐿 = 𝑇 , which is abelian, then 𝜆(1) = 1 and 𝜆2 = 1𝑇 . ⊓⊔

The proof uses the fact that 𝑟 is odd, i.e. that |𝑂𝑟 (𝑃) | is odd, in an essential way.
Namely, the only irreducible R𝐻-module of odd dimension of a group 𝐻 of odd
order is the trivial module.

We now sketch how Lemma 5 is applied. Assume first that 𝑃 = 𝐵, hence 𝐿 = 𝑇

and 𝑂𝑟 (𝑃) = 𝑈, and let 𝜒 and 𝜆 be as in this lemma. Then (𝜆,Res𝐺𝐵 (𝜒)) is odd, in
particular non-zero. By Frobenius reciprocity, (Ind𝐺𝐵 (𝜆), 𝜒) > 0. Moreover, 𝑈 is in
the kernel of 𝜆, so that 𝜆 may be thought of as the inflation Infl𝐵

𝑇 (𝜆), where 𝜆 now
stands for the restriction of 𝜆 to 𝑇 . Thus 𝜒 is a constituent of

𝑅𝐺
𝑇 (𝜆) := Ind𝐺𝐵 (Infl𝐵

𝑇 (𝜆)).

The map 𝑅𝐺
𝑇

defined in the above equation is called Harish-Chandra induction. The
constituents of 𝑅𝐺

𝑇
(𝜆) for 𝜆 ∈ Irr(𝑇) are classified by Harish-Chandra theory; see [1,

Section 9, 10]. Those arising for 𝜆 ∈ Irr(𝑇) with 𝜆2 = 1𝑇 are rare. For example,
if 𝐺 = 𝐸6 (𝑞) with 𝑞 odd, there are 8 irreducible, real characters of odd degree,
whereas |Irr(𝐺) | = 𝑞6 + 𝑞5 + (lower terms in 𝑞). The constituents of 𝑅𝐺

𝑇
(1𝑇 ), i.e.

for 𝜆 = 1𝑇 , are called principal series characters. These are, in particular, unipotent
characters of 𝐺. Unipotent characters of odd degree are known in each case. The
Steinberg character is one of these. Thus a first application of Lemma 5 reduces the
number of R𝐺-modules 𝑉 to be investigated drastically.

We aim to apply the restriction method of Lemma 1 with 𝐻 = 𝑃, a standard
parabolic subgroup of 𝐺. If possible, we choose 𝑃 in such a way that for every
𝛼 ∈ Aut(𝐺), the pair (𝛼(𝑃), 𝛼(𝐿)), where 𝐿 is the standard Levi subgroup of 𝑃, is
conjugate to (𝑃, 𝐿) in 𝐺. This condition, which is always satisfied for 𝑃 = 𝐵 and
𝐿 = 𝑇 , can be verified by using the description of Aut(𝐺) (see [6, Theorem 2.5.12])
and the construction of the standard 𝐵𝑁-pair of 𝐺 (see [6, Subsections 1.11, 2.3]).

To continue, assume that 𝐺 ≤ GL(𝑉), where 𝑉 is a non-trivial irreducible R𝐺-
module of odd dimension. Let 𝑛 ∈ GL(𝑉) be of finite order normalizing 𝐺. Let
𝜒 = 𝜒𝑉 be the character of 𝐺 afforded by 𝑉 . Suppose that 𝑃 and 𝐿 are chosen as
above. Then, by replacing 𝑛 with 𝑔𝑛 for a suitable 𝑔 ∈ 𝐺, we may assume that 𝑛
fixes 𝑃 and 𝐿.
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Assume first that 𝜒 is not a principal series character. In this case, choose 𝑃 = 𝐵

and 𝐿 = 𝑇 , and let 𝜆 be as in Lemma 5. Let 𝑉1 ≤ 𝑉 denote the 𝜆-homogeneous
component of Res𝐺𝐵 (𝑉). Then 𝜆 ≠ 1𝑇 and dim(𝑉1) is odd. Hence 𝑉1 has the 𝐸1-
property by Lemma 2 and Corollary 3, as 𝐵 is solvable. However, 𝑉1 is not, a
priori, invariant under 𝑛. In this case, we can usually replace 𝑉1 by an 𝑛-invariant
𝑁-conjugate 𝑉 ′

1 in 𝑉 , where 𝑁 ≤ 𝑁𝐺 (𝑇) is the group 𝑁 from the (𝐵, 𝑁)-pair of 𝐺.
Then the restriction method applies with 𝐻 = 𝐵 and 𝑉 ′

1. The few instances, where
there is no 𝑛-invariant 𝑁-conjugate of 𝑉1 only occur for 𝐺 = PSL𝑑 (𝑞), and are
treated by replacing 𝐵 by a slightly larger parabolic subgroup.

Assume now that 𝜒 is a principal series character. Here, we cannot use the ap-
proach from the previous paragraph, as then𝑉1, being a direct sum of trivial modules,
does not have the 𝐸1-property. Instead, we choose a parabolic subgroup 𝑃 as above,
such that Ind𝐺𝑃 (R) contains 𝑉 with even multiplicity (including 0), where R denotes
the trivialR𝑃-module. Then Res𝐺𝑃 (𝑉) contains a homogeneous component𝑉1 of odd
dimension, which is not a direct sum of trivial modules. A simple R𝑃-submodule
𝑆 ≤ 𝑉 has 𝑂𝑟 (𝑃) in its kernel by Lemma 5, and, viewed as an R𝐿-module, 𝑆 is in
the principal series of 𝐿. The 𝑛-invariance of 𝑉1 is satisfied, since, for the chosen
groups 𝑃, the principal series R𝐿-modules are invariant under automorphisms of 𝐿;
see [12, Theorem 2.5].

This approach fails for groups of small rank and 𝑉 the Steinberg module. The
worst case is 𝐺 = PSL2 (𝑞), which has to be treated in an ad hoc manner. In other
cases, the large degree method as in Example 4 can be applied.

This way we can rule out the simple groups of Lie type of odd characteristic as
minimal counterexamples to Conjecture 1.

4.7 Groups of Lie type of even characteristic

Now let 𝐺 be a finite simple group of Lie type of even characteristic, i.e. 𝑞 is
even in the notation of Subsection 4.5 or 𝐺 is a Ree group 2𝐹4 (22𝑚+1) or a Suzuki
group 2𝐵2 (22𝑚+1). In this case, most of the irreducible characters of 𝐺 have odd
degree. For example, if 𝐺 = 𝐸6 (𝑞), with 𝑞 even, there are 𝑞6 + 8𝑞2 of them.

One of the issues in this case is to parametrize the odd degree irreducible char-
acters and to find the reals among them. This is achieved with Lusztig’s generalized
Jordan decomposition of characters. Before we discuss this in more detail, we con-
sider a special situation which simplifies the problem.

As always, assume that 𝐺 ≤ GL(𝑉) for some non-trivial irreducible R𝐺-
module 𝑉 of odd dimension. Let 𝑛 ∈ GL(𝑉) be of finite order normalizing 𝐺.
Let 𝜈 denote the automorphism of 𝐺 induced by conjugation with 𝑛. Let 𝜒 = 𝜒𝑉 be
the character of 𝐺 afforded by 𝑉 . Again, let 𝐵 denote the standard Borel subgroup
of 𝐺 and 𝑇 its standard maximal torus. Then 𝐵 = 𝑈 ⋊ 𝑇 with 𝑈 = 𝑂2 (𝐵). As in
Subsection 4.6, we may assume that 𝜈 fixes 𝑈 and 𝑇 .

Put Lin(𝑈) := Irr(𝑈/[𝑈,𝑈]), the set of linear characters of 𝑈.
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Proposition 4 Suppose that 𝜈2 fixes every 𝑇-orbit on Lin(𝑈). Then (𝐺,𝑉, 𝑛) has
the 𝐸1-property.

Proof. Since 𝜒(1) is odd, there is a 𝑇-orbit O on Lin(𝑈) such that |O|(𝜆,Res𝐺𝑈 (𝜒))
is odd for every 𝜆 ∈ O. Moreover, the number of such orbits is odd.

By hypothesis, there is a 𝜈-stable such orbit O. Let 𝜆 ∈ O. Suppose that 𝜆 = 1𝑈 .
Then the set𝑉𝑈 of𝑈-fixed point on𝑉 has odd dimension (𝜆,Res𝐺𝑈 (𝜒)). As𝑉𝑈 is an
R𝐵-module, some irreducible R𝐵-constituent 𝑆 of Res𝐺𝐵 (𝑉) with𝑈 in its kernel has
odd dimension. As |𝑇 | is odd, 𝑆 must be the trivial module. Thus Res𝐺𝐵 (𝜒) contains
a trivial constituent. In turn, 𝜒 is a principal series character. However, the only
principal series character of odd degree is the trivial character by [11, Theorem 6.8].
But 𝜒 ≠ 1𝐺 by hypothesis. Thus 𝜆 ≠ 1𝑈 .

Since 𝑈/[𝑈,𝑈] is an elementary abelian 2-group, 𝜆 is the character of an ir-
reducible R𝑈-module. Let 𝑉1 denote the 𝜆-homogeneous component of Res𝐺𝑈 (𝑉).
Then 𝑉1 has odd dimension (𝜆,Res𝐺𝑈 (𝜒)). Let 𝑆 be a simple R𝑈-submodule of 𝑉1.
The character of 𝑛𝑆 is the 𝜈-conjugate of 𝜆. Since the 𝑇-orbit of 𝜆 is 𝜈-invariant,
there is 𝑡 ∈ 𝑇 such that 𝑡𝑛𝑆 � 𝑆 as R𝑈-modules. It follows that 𝑡𝑛𝑉1 = 𝑉1. As 𝑈 is
solvable, it has the 𝐸1-property by Corollary 3. Lemma 1 applied with 𝐻 = 𝑈 and
𝑛 replaced by 𝑡𝑛 yields our assertion. ⊓⊔

4.8 The remaining groups

Using Proposition 4, one can rule out the simple groups of Lie type of even charac-
teristic as minimal counterexamples to Conjecture 1, except those in the following
list (where 𝑞 is even in each case):

(i) 𝐺 = PSL𝑑 (𝑞) with 𝑑 ≥ 3 and gcd(𝑑, 𝑞 − 1) > 1;
(ii) 𝐺 = PSU𝑑 (𝑞) with 𝑑 ≥ 3 and gcd(𝑑, 𝑞 + 1) > 1;
(iii) 𝐺 = 𝐸6 (𝑞) with 3 | 𝑞 − 1;
(iv) 𝐺 = 2𝐸6 (𝑞) with 3 | 𝑞 + 1;
(v) 𝐺 = 𝑃Ω+

8 (𝑞).

For these groups, there exist non-trivial, non-involutary, inner-diagonal, respectively
graph automorphisms, that do not satisfy the hypothesis of Proposition 4 in general.
To rule out these remaining groups, is more than half of the entire work. Let us give
a very rough sketch of the main ideas, concentrating on the groups 𝐺 in the first four
of the cases. The group 𝑃Ω+

8 (𝑞) is treated in a similar way.
Choose a 𝜎-setup for 𝐺 according to [6, Definition 2.2.1]. That is, let 𝐺 be a

simple algebraic group, of adjoint type, over the algebraic closure F of the field with 2
elements. Let 𝜎 be a Steinberg morphism of 𝐺 such that𝑂2′ (𝐺𝜎) = 𝐺. (Contrary to
the usage in [6], we write 𝐺

𝜎
for the set of 𝜎-fixed points of 𝐺, rather than 𝐶

𝐺
(𝜎).)

In cases (i) and (ii), take 𝐺 = PGL𝑑 (F), in cases (iii) and (iv), take 𝐺 = 𝐸6 (F)ad.
Then, with a suitable choice of 𝜎, we obtain𝐺

𝜎
= PGL𝑑 (𝑞), PGU𝑑 (𝑞), 𝐸6 (𝑞)ad and
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2𝐸6 (𝑞)ad, respectively. These groups are not simple under the restrictions on 𝑞 given
above. In fact, 𝐺 �𝐺

𝜎
with cyclic factor of order gcd(𝑑, 𝑞 − 1), gcd(𝑑, 𝑞 + 1), 3, 3,

respectively. With this setup it is easy to describe the automorphism group of 𝐺.
Namely,

Aut(𝐺) � 𝐺
𝜎
⋊ (Φ𝐺 × Γ𝐺),

where 𝐺
𝜎

acts on 𝐺 by conjugation, and Φ𝐺 and Γ𝐺 are the groups of field,
respectively graph automorphisms of 𝐺; see [6, Theorem 2.5.12]. Suppose that
𝑞 = 2 𝑓 . In cases (i) and (iii) the group Γ𝐺 has order 2 and Φ𝐺 is cyclic of order 𝑓 ;
in cases (ii) and (iv), the group Γ𝐺 is trivial by convention, and Φ𝐺 is cyclic of
order 2 𝑓 .

We will also need to consider the groups dual to 𝐺. To describe the irreducible
characters of 𝐺 it is more convenient to realize 𝐺 as a central quotient of a covering
group of 𝐺. If 𝐺 = PGL𝑑 (F), respectively 𝐸6 (F)ad, let 𝐺

∗
= SL𝑑 (F), respectively

𝐸6 (F)sc. Then there is a Steinberg morphism 𝜎 of 𝐺
∗

dual to 𝜎; see [5, Defini-
tion 1.5.17]. In our cases we have 𝐺

∗𝜎
= SL𝑑 (𝑞), SU𝑑 (𝑞), 𝐸6 (𝑞)sc and 2𝐸6 (𝑞)sc,

respectively, and 𝐺 � 𝐺
∗𝜎/𝑍 (𝐺∗𝜎). (Up to finitely many exceptions, 𝐺

∗𝜎
is the

universal covering group of 𝐺.) We may view the irreducible characters of 𝐺 as
characters of 𝐺

∗𝜎
via inflation. Starting with Irr(𝐺∗𝜎) right away does not intro-

duce additional aspects to be investigated, as a real irreducible character of 𝐺
∗𝜎

has
𝑍 (𝐺∗𝜎) in its kernel.

The set Irr(𝐺∗𝜎) is partitioned into Lusztig series E(𝐺∗𝜎
, 𝑠), where 𝑠 runs

through the 𝐺
𝜎

-conjugacy classes of semisimple elements of 𝐺
𝜎

; see [5, Defini-
tion 2.6.1]. The following lemma, whose proof can be extracted from the literature,
is used to parametrize the real characters of 𝐺 of odd degree. Recall that an element
of a group is called real, if it is conjugate to its inverse.

Lemma 6 Let 𝜒 ∈ Irr(𝐺∗𝜎) be of odd degree and let 𝑠 ∈ 𝐺
𝜎

be semisimple such
that 𝜒 ∈ E(𝐺∗𝜎

, 𝑠). Then the following statements hold.

(a) We have 𝜒(1) = [𝐺𝜎
:𝐶

𝐺
𝜎 (𝑠)]2′ .

(b) The characters in E(𝐺∗𝜎
, 𝑠) of odd degree correspond, via Lusztig’s gener-

alized Jordan decomposition of characters, to the irreducible characters of
(𝐶

𝐺
(𝑠)/𝐶◦

𝐺
(𝑠))𝜎 , and they all have the same degree. (Here, 𝐶◦

𝐺
(𝑠) denotes

the connected component of𝐶
𝐺
(𝑠).) In particular, if𝐶

𝐺
(𝑠) is connected, then 𝜒

is the unique character in E(𝐺∗𝜎
, 𝑠) of odd degree.

(c) If 𝜒 is real, then 𝑠 is real in 𝐺
𝜎

. If 𝑠 is real in 𝐺
𝜎

and 𝐶
𝐺
(𝑠) is connected,

then 𝜒 is real.

Taking 𝑠 = 1, the lemma shows that the trivial character is the unique character of
odd degree in E(𝐺∗𝜎

, 1), the set of unipotent characters of𝐺
∗𝜎

. There are analogous
compatibility properties as in Lemma 6(c) for the action of certain automorphisms
of 𝐺, but these are too technical to state here. By Lemma 6, in order to classify
the real irreducible characters of odd degree in 𝐺

∗𝜎
, it is necessary to describe the
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conjugacy classes of real elements and their centralizers in 𝐺
𝜎

. If 𝐺
𝜎

is one of
PGL𝑑 (𝑞) or PGU𝑑 (𝑞), this task is achieved with methods of linear algebra. If 𝐺

𝜎

equals 𝐸6 (𝑞)ad or 2𝐸6 (𝑞)ad, we make use of the tables of Frank Lübeck on the
website [8].

When the large degree method fails, we will use the restriction method. This is
based on the following result. Here,𝑉 is an irreducibleR𝐺-module of odd dimension,
𝜌 : 𝐺 → GL(𝑉) is the representation afforded by𝑉 , and 𝑛 ∈ GL(𝑉) is an element of
finite order normalizing 𝜌(𝐺). Moreover, 𝜈 is the automorphism of 𝐺 induced by 𝑛.
The character 𝜒 = 𝜒𝑉 of 𝐺 is viewed as a character of 𝐺

∗𝜎
via inflation.

Lemma 7 Suppose that every proper subgroup of 𝐺 has the 𝐸1-property. Let 𝜄
denote the standard graph automorphism of 𝐺 of order 2. Let 𝑠 ∈ 𝐺

𝜎
be such that

𝜒 ∈ E(𝐺∗𝜎
, 𝑠). Then (𝐺,𝑉, 𝑛) has the 𝐸1-property under the following hypotheses.

There is a 𝜄-stable, proper standard Levi subgroup 𝐿 of 𝐺 and a 𝐺
𝜎

-conjugate
𝑠′ ∈ 𝐿

𝜎 of 𝑠, such that the following three conditions hold.

(i) The element 𝑠′ is real in 𝐿
𝜎 .

(ii) The centralizer 𝐶
𝐿
(𝑠′) is connected.

(iii) For every 𝛼 ∈ Aut(𝐺𝜎) stabilizing 𝐿
𝜎 , the following holds: If 𝛼(𝑠) and 𝑠 are

conjugate in 𝐺
𝜎

, then 𝛼(𝑠′) and 𝑠′ are conjugate in 𝐿
𝜎 .

Proof. (Rough sketch) There is a standard parabolic subgroup 𝑃
∗

of 𝐺
∗

containing
the standard Levi subgroup 𝐿

∗
as a Levi complement, such that 𝐿

∗
is dual to 𝐿.

The finite group 𝐿
𝜎

is a standard Levi subgroup of 𝐺
𝜎

, contained in the standard
parabolic subgroup 𝑃

𝜎
as a Levi complement. The fact that 𝐿 is 𝜄-stable implies

that there is 𝑔 ∈ 𝐺 such that 𝐿
𝜎

and 𝑃
𝜎

are stable under 𝛼 := ad𝑔 ◦ 𝜈 (where 𝛼 is
extended to an automorphism of 𝐺

𝜎
via [6, Theorem 2.5.14(a)]). Moreover, with a

suitable choice of 𝑔, the automorphism 𝛼 of 𝐺 lifts to an automorphism 𝛼∗ of 𝐺
∗𝜎

,
such that 𝐿

∗𝜎
and 𝑃

∗𝜎
are stable under 𝛼∗.

We may assume that 𝑠 = 𝑠′ ∈ 𝐿
𝜎

. In view of Lemma 6(b–c), the compatibility of
Harish-Chandra restriction and the Jordan decomposition of characters implies that
the restriction of 𝑉 to 𝑃

∗𝜎
contains an irreducible submodule 𝑉1 of odd dimension,

of multiplicity one, and with 𝑂2 (𝑃
∗𝜎) in its kernel. The analogue of Lemma 6(c)

for the automorphisms 𝛼 and 𝛼∗ implies that 𝑉1 is stable under 𝛼∗, hence under 𝛼.
The claim follows from Lemma 1, applied to (𝑃∗𝜎

, 𝑉1). ⊓⊔

To apply the large degree method based on Proposition 1, we need to estimate
the orders |𝐶𝐺 (𝛼′) | for every 𝛼′ ∈ ⟨𝛼⟩ of prime order, for suitable 𝛼 ∈ Aut(𝐺).
The fixed point groups 𝐶𝐺 (𝛽) for certain non-inner automorphisms 𝛽 ∈ Aut(𝐺) are
described in [6, Propositions 4.9.1, 4.9.2]. This leads to the following results.

Proposition 5 Let𝑉 be a non-trivial irreducible R𝐺-module of odd dimension with
character 𝜒. Then the following hold.

(a) Suppose that 𝐺 = PSL𝑑 (𝑞) or PGU𝑑 (𝑞) with 𝑑 ≥ 5 and 𝑞 > 4. If
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𝜒(1) > 𝑞2 · 𝑞𝑑 (𝑑+1)/4,

then (𝐺,𝑉) has the 𝐸1-property.
(b) Suppose that 𝐺 = 𝐸6 (𝑞) or 2𝐸6 (𝑞) with 𝑞 > 16. If

𝜒(1) > 𝑞 · 𝑞26,

then (𝐺,𝑉) has the 𝐸1-property.

Proof. (Rough sketch) Recall that 𝑞 = 2 𝑓 . Let 𝛽 ∈ Aut(𝐺). Then there is 𝑔 ∈ 𝐺

such that 𝛼 := ad𝑔 ◦ 𝛽 has even order and the following properties hold.
If𝐺 is as in (a), then |𝛼 | ≤ 2 𝑓 (𝑞+1) and |𝐶𝐺 (𝛼′) | ≤ 𝑞𝑑 (𝑑+1)/2 for every 𝛼′ ∈ ⟨𝛼⟩

of prime order. Observe that 𝑞2 = 22 𝑓 > 2 𝑓 (2 𝑓 + 1) for 𝑓 > 2.
If 𝐺 is as in (b), then |𝛼 | ≤ 6 𝑓 and |𝐶𝐺 (𝛼′) | ≤ 𝑞52 for every 𝛼′ ∈ ⟨𝛼⟩ of prime

order. Observe that 𝑞 = 2 𝑓 > 6 𝑓 for 𝑓 > 4.
The assertions now follow from Proposition 3. ⊓⊔

For small values of 𝑞 and for 𝑑 = 3 in (a) above, we derive more precise estimates
for the orders of the automorphisms 𝛼, to deal with more cases.

For the characters 𝜒, which do not meet the degree estimates of Proposition 5 and
their refinements, we usually can apply Lemma 7. If 𝐺 = PGL𝑑 (𝑞), let 𝑠 ∈ GL𝑑 (𝑞)
be a real lift of an element 𝑠 ∈ 𝐺

𝜎
parametrizing 𝜒 as in Lemma 6. The fact that 𝜒(1)

is smaller than the estimate required in Proposition 5 implies strong restrictions on 𝑠,
acting on its natural vector space. Namely, either the fixed point space of 𝑠 has
dimension at least 𝑑/3, or 𝑠 has at most three distinct eigenvalues 1, 𝜁 , 𝜁−1. It is then
not difficult to construct the Levi subgroup 𝐿 as required in Lemma 7. A similar
approach works for the group 𝐺 = PGU𝑑 (𝑞). For the exceptional groups of type 𝐸6,
we use the lists of explicit character degrees computed by Lübeck and given in [9],
as well as the Chevie system [4, 13] for extensive computations in the Weyl group of
type 𝐸6. Still, there are numerous small cases, which cannot be handled either way.
These are treated with computational methods using GAP [3].
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