
Projective Summands in Tensor Products of

Simple Modules of Finite Dimensional Hopf

Algebras

Hui-Xiang Chen
Department of Mathematics, Yangzhou University

Yangzhou 225002, China

Lehrstuhl D für Mathematik, RWTH-Aachen

52056 Aachen, Germany

E-mail: yzchenhx@yahoo.com

Present: chen@math.rwth-aachen.de

Gerhard Hiss
Lehrstuhl D für Mathematik, RWTH-Aachen

52056 Aachen, Germany

E-mail: gerhard.hiss@math.rwth-aachen.de

1 Introduction

A classical theorem of Burnside states that, if V is a module for the complex
group algebra CG, faithful for the finite group G, then each irreducible CG-
module is isomorphic to a composition factor of some tensor power V ⊗n. Some
fifty years later, Rieffel proved a Hopf algebra version of Burnsides theorem [17].
More recently, Passman and Quinn simplified and amplified the work of Rieffel
in [16]. The starting point of our paper is a special case of these results: We
study the tensor powers of the semisimple quotient of a finite dimensional Hopf
algebra.

Let H be a finite dimensional Hopf algebra over a field k. We show that H
contains a unique maximal nilpotent Hopf ideal Jw(H) contained in J(H), the
Jacobson radical of H. We give various characterizations of Jw(H), for example
Jw(H) = AnnH((H/J(H))⊗n) for all large enough n. The smallest positive
integer n with this property is denoted by lw(H). This also equals the small-
est number n such that (H/J(H))⊗n contains every projective indecomposable
H/Jw(H)-module as a direct summand.

Let l′w(H) denote the minimal n such that the tensor product of n suitably
chosen simple H-modules contains the projective cover of the trivial H/Jw(H)-
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module as a direct summand. Then obviously l′w(H) ≤ lw(H). We show that
these two numbers are in fact equal.

In Section 2 we introduce Jw(H) and derive some of its properties. In Sec-
tion 3 we define projective homomorphisms between H-modules, using a trace
map. The fact that l′w(H) equals lw(H) is proved with the help of projective
homomorphisms. These are also used to obtain various reciprocity laws for ten-
sor products of simple H-modules and their projective indecomposable direct
summands. In Section 4 we discuss some consequences of our general results
in case H = kG is a group algebra of a finite group G and k is a field of char-
acteristic p. Here, Jw(H) = H(kOp(G))+ = (kOp(G))+H, where (kOp(G))+

is the augmentation ideal of the group algebra kOp(G). We obtain reduction
theorems relating lw(kG) to lw(kN) for normal subgroups N of G. Using a
consequence of the classification of the finite simple groups, it is easy to show
that lw(kG) ≤ 2 if G is simple and char(k) > 3. We also give an example of a
solvable group G with lw(kG) = 3.

Throughout this paper we work over a field k. Unless otherwise stated, all
algebras, coalgebras and Hopf algebras are defined over k. Hom means Homk,
and ⊗ means ⊗k. All modules over algebras are left modules. For any k-vector
space V , we write V ⊗n for the n-fold tensor power V ⊗ V ⊗ · · · ⊗ V . We will
use [15] and [19] as basic references for Hopf algebras.

2 The Wedge of the Jacobson Radical of Finite
Dimensional Hopf Algebras

The exposition in this section is inspired by [16] and [17]. Let C be a coalgebra
over k with comultiplication ∆. The wedge of two subspaces X and Y of C is
defined by

X ∧ Y = Ker(C ∆−→ C ⊗ C πX⊗πY−→ C/X ⊗ C/Y ),

where πX and πY are the canonical quotient maps. It has the following proper-
ties (see [15] or [19]):

X ∧ Y = ∆−1(X ⊗ C + C ⊗ Y ),

(X ∧ Y ) ∧ Z = X ∧ (Y ∧ Z).

One defines ∧1X = X, and ∧n+1X = (∧nX) ∧X, for all n ≥ 1.
Suppose now that H is a finite dimensional Hopf algebra over k with comul-

tiplication ∆, counit ε and antipode S. Let M and N be H-modules. Then
Hom(M,N) is an H-module with action given by

(h · f)(m) := Σ h1 · (f(S(h2) ·m)),

where h ∈ H, f ∈ Hom(M,N) and m ∈M . Let kε denote the trivial H-module
k. Then for any H-module M , the dual vector space M∗ := Hom(M,kε) is
an H-module. The above formula for the action of H on M∗ simplifies to
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(h · f)(m) := f(S(h)m) for h ∈ H, f ∈M∗ and m ∈M . Let P (M) denote the
projective cover of a finite dimensional H-module M throughout this section.

Let J = Jac(H) be the Jacobson radical of H. Since J ⊆ Ker(ε), we have
J = ∧1J ⊇ ∧2J ⊇ ∧3J ⊇ · · ·. Hence there is a positive integer n such that
∧nJ = ∧n+1J . Put

lw(H) := min{n > 0 | ∧nJ = ∧n+1J},

and
Jw(H) :=

⋂
n>0

∧nJ = ∧lw(H)J.

Lemma 2.1 The following statements hold for any integer n ≥ 1:
(1) ∧nJ is an ideal of H and ∧nJ = AnnH((H/J)⊗n).
(2) S(∧nJ) = ∧nJ .
(3) I ⊆ ∧nJ for all coideals I of H with I ⊆ J .

Proof. (1) If I1 and I2 are ideals of H, then for any h ∈ H we have

h · (H/I1 ⊗H/I2) = {0} ⇔ ∆(h) ∈ I1 ⊗H +H ⊗ I2
⇔ h ∈ I1 ∧ I2.

Hence I1 ∧ I2 is an ideal of H and equal to AnnH(H/I1 ⊗ H/I2). Then (1)
follows by induction on n.

(2) Since S is an antimorphism of the algebra H, one gets S(J) = J . On
the other hand, S is also a coalgebra antimorphism of H. Hence for any h ∈ H,
h · ((H/J)⊗n) = 0 if and only if S(h) · ((H/J)⊗n) = {0}. This shows that
S(∧nJ) = ∧nJ .

(3) Let I be a coideal of H with I ⊆ J . Then ∆(I) ⊆ H ⊗ I + I ⊗H and
hence I ⊆ I ∧ I, which implies that I = ∧1I ⊆ ∧2I ⊆ ∧3I ⊆ · · ·. It follows that
I ⊆ ∧nI ⊆ ∧nJ . Q.E.D.

Corollary 2.2 Let n ≥ 1. Then the following statements are equivalent:
(1) ∧nJ is a Hopf ideal of H.
(2) ∧nJ is a coideal of H.
(3) ∧nJ ⊆ (∧nJ) ∧ (∧nJ).
(4) ∧nJ = ∧n+1J .

Proof. This follows from Lemma 2.1. Q.E.D.

Corollary 2.3 The following statements hold:
(1) Jw(H) is the maximal nilpotent Hopf ideal, which is also the maximal

coideal of H contained in J .
(2) lw(H/Jw(H)) = lw(H) and Jw(H/Jw(H)) = {0}.
(3) lw(H) = 1 if and only if Jw(H) = J .
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Proof. This follows from Lemma 2.1. Q.E.D.

Corollary 2.4 The following statements are equivalent:
(1) Jw(H) = {0}.
(2) J contains no nonzero Hopf ideal.
(3) (H/J)⊗lw(H) is faithful as an H-module.
(4) (H/J)⊗n is faithful as an H-module for any n ≥ lw(H).
(5) There exists an n such that (H/J)⊗n is faithful as an H-module. In this

case, n ≥ lw(H).
(6) Every projective indecomposable H-module is isomorphic to a direct sum-

mand of (H/J)⊗lw(H).
(7) Every projective indecomposable H-module is isomorphic to a direct sum-

mand of (H/J)⊗n for any n ≥ lw(H).
(8) There exists an n such that every projective indecomposable H-module is

isomorphic to a direct summand of (H/J)⊗n. In this case, n ≥ lw(H).

Proof. This follows from Lemma 2.1, Corollary 2.3, and [6, Proposition 1.3].
Q.E.D.

We next introduce certain invariants closely related to lw(H) and collect some
of their properties.

Definition 2.5 (1) If Jw(H) = {0}, let

l′w(H) := min{n > 0 | (H/J)⊗n contains P (kε) as a direct summand}

and

l′′w(H) := min{n > 0 | (H/J)⊗n has a nonzero projective direct summand}.

(2) In general, let l′w(H) := l′w(H/Jw(H)) and l′′w(H) := l′′w(H/Jw(H)).

Proposition 2.6 (1) We have lw(H) = 1 if and only if l′w(H) = 1.
(2) We have l′w(H) ≤ lw(H) ≤ l′w(H) + 1 and l′′w(H) ≤ l′w(H) ≤ l′′w(H) + 1.
(3) If H has a simple, projective module, then l′w(H) ≤ 2 and Jw(H) = {0}.

Proof. (1) We may assume that Jw(H) = {0}. If lw(H) = 1 then H is
semisimple by Corollary 2.3(3). Hence l′w(H) = 1, too. Now suppose that
l′w(H) = 1. By Definition 2.5, P (kε) is a direct summand of H/J . It follows
that kε is a projective H-module. Hence ε : H → kε is split as an H-module
epimorphism, and consequently, H =

∫ l
H
⊕Ker(ε) as H-modules, where

∫ l
H

is
the space of left integrals of H. It follows that ε(

∫ l
H

) 6= {0}, which is equivalent
to the statement that H is semisimple (see [15] or [19]). Corollary 2.3(3) implies
that lw(H) = 1.
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(2) Let V be a projective H-module. Then V ∗ ⊗ V is also projective by
the Fundamental Theorem of Hopf modules (see [15, Theorem 1.9.4]). Since the
evaluation map V ∗⊗V → kε, f⊗v 7→ 〈f, v〉 is anH-module epimorphism, V ∗⊗V
contains P (kε) as a direct summand. Hence l′w(H) ≤ l′′w(H) + 1. Furthermore,
for any simple H-module M , P (kε)⊗M contains P (M) as a direct summand.
Thus lw(H) ≤ l′w(H) + 1.

(3) The hypothesis says l′′w(H) = 1, so that the first assertion follows from (2).
Corollary 2.4 implies that Jw(H) = {0}. Q.E.D.

Note that by Corollary 2.3(3), lw(H) = 1 if and only if H/Jw(H) is semisim-
ple. We shall show in the next section that if H is not semisimple, then
lw(H) = l′w(H) and l′′w(H) = l′w(H) − 1. We shall also prove a converse to
Part (3) of the above proposition.

3 Trace

Throughout this section we assume that H is a finite dimensional Hopf algebra
over the field k with comultiplication ∆, counit ε and antipode S. Let J denote
the Jacobson radical Jac(H) of H. Throughout this and the next section, let kε
denote the trivial H-module k, and let P (M) and I(M) denote the projective
cover and injective envelope of a finite dimensional H-module M , respectively.
Suppose that Λ is a left integral of H, i.e., Λ ∈ H with hΛ = ε(h)Λ for all
h ∈ H. Moreover, let λ be a right integral of the dual Hopf algebra H∗, i.e.,
λ ∈ H∗ with λf = f(1)λ for all f ∈ H∗. In addition, assume that λ(Λ) = 1.
Note that such a pair (Λ, λ) always exist (see [19]).

Note that H∗ is a left H-module under the action ⇀ given by

〈h ⇀ f, x〉 := (h ⇀ f)(x) := f(xh), h, x ∈ H, f ∈ H∗,

and that H∗ is isomorphic to the regular module H via

θλ : H → H∗, h 7→ (h ⇀ λ).

The following lemma, which goes back to [12], is fundamental. We prove it
for completeness.

Lemma 3.1 Let {h1, h2, · · · , hn} be a k-basis of H and let {h1, h2, · · · , hn} be
the dual basis in H∗. Then:

(1) Σλ(Λ1)S(Λ2) = Σλ(Λ1)Λ2 = 1.

(2) Σni=1h
i ⊗ hi = Σθλ(Λ1)⊗ S(Λ2).

Proof. (1) For any f ∈ H∗ we have f(Σλ(Λ1)Λ2) = Σλ(Λ1)f(Λ2) = (λf)(Λ) =
f(1)λ(Λ) = f(1). It follows that Σλ(Λ1)Λ2 = 1, and also that Σλ(Λ1)S(Λ2) = 1.

(2) Since H is finite dimensional, H∗ ⊗ H ∼= Hom(H,H). Hence we may
regard both sides of the equation in (2) as elements of Hom(H,H). Let x ∈ H.
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Then
Σθλ(Λ1)(x)S(Λ2) = Σλ(xΛ1)S(Λ2)

= Σλ(x1Λ1)S(Λ2)S(x2)x3

= Σλ(Λ1)S(Λ2)x
= x = Σni=1h

i(x)hi.

Hence Σni=1h
i ⊗ hi = Σθλ(Λ1)⊗ S(Λ2). Q.E.D.

Note that k is a Hopf subalgebra of H. Let V be a k-vector space. Then
we have the induced H-module V ↑Hk = H ⊗ V and the coinduced H-module
V⇑Hk = Hom(H,V ). One can easily check that the natural k-linear isomorphism

σ : H∗ ⊗ V → Hom(H,V ) = V⇑Hk
f ⊗ v 7→ (h 7→ f(h)v)

is an H-module isomorphism, where the H-action on H∗⊗V is given by ⇀ only
acting on the left tensor factor H∗. Hence we have an H-module isomorphism

Θλ = σ ◦ (θλ ⊗ id) : V ↑Hk = H ⊗ V → Hom(H,V ) = V⇑Hk

Θλ(h⊗ v)(h′) = λ(h′h)v, h, h′ ∈ H, v ∈ V.

Let {h1, h2, · · · , hn} be a k-basis of H and let {h1, h2, · · · , hn} be the dual basis
in H∗. Then it is easy to show that σ−1 : Hom(H,V ) → H∗ ⊗ V is given
by σ−1(f) = Σni=1h

i ⊗ f(hi). It follows from Lemma 3.1(2) that σ−1(f) =
Σθλ(Λ1)⊗f(S(Λ2)) for any f ∈ Hom(H,V ). Thus we get the following corollary.

Corollary 3.2 Let V be a k-vector space. Then V ↑Hk ∼= V⇑Hk as H-modules.
An isomorphism Θλ : V ↑Hk = H ⊗ V → Hom(H,V ) = V⇑Hk is given by

Θλ(h⊗ v)(h′) = λ(h′h)v, h, h′ ∈ H, v ∈ V.

The inverse Θ−1
λ : V⇑Hk = Hom(H,V )→ H ⊗ V = V ↑Hk is given by

Θ−1
λ (f) = ΣΛ1 ⊗ f(S(Λ2)), f ∈ Hom(H,V ).

Corollary 3.3 Let M be an H-module and let V be a k-vector space. Then we
have k-linear isomorphisms:

(1) T : Hom(M,V )→ HomH(M,V ↑Hk ) = HomH(M,H ⊗ V ) given by

T (f)(m) = ΣΛ1 ⊗ f(S(Λ2)m), f ∈ Hom(M,V ), m ∈M .

(2) F : Hom(V,M)→ HomH(V ↑Hk ,M) = HomH(H ⊗ V,M) given by

F (f)(h⊗ v) = hf(v), f ∈ Hom(V,M), h ∈ H, v ∈ V .

Proof. This follows from the Nakayama relations (see, e.g., [3, Proposition
2.8.3]) and Corollary 3.2. Q.E.D.

Let M be any H-module. Then the subspace of invariants is defined by

MH := {m ∈M | hm = ε(h)m, ∀h ∈ H}.
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Thus MH is the unique maximal trivial H-submodule of M and there is a trace
map

_

Λ: M →MH , m 7→ Λm, m ∈M.

If V is another H-module, then Hom(M,V ) is an H-module and

Hom(M,V )H = HomH(M,V ).

We thus have a trace map
_

Λ: Hom(M,V )→ HomH(M,V ), whose image we de-
note by HomH(M,V )1. By definition,

_

Λ (f)(m) = (Λ · f)(m) = ΣΛ1f(S(Λ2)m)
for f ∈ Hom(M,V ) and m ∈ M . The elements of HomH(M,V )1 are called
projective homomorphisms.

Proposition 3.4 Let M and V be H-modules. Let φ ∈ Hom(M,V ). Then
φ ∈ HomH(M,V )1 if and only if there exist a projective H-module P , maps
ψ1 ∈ HomH(M,P ) and ψ2 ∈ HomH(P, V ) such that φ = ψ2 ◦ ψ1.

Proof. Suppose that φ ∈ HomH(M,V )1. Then there is an f ∈ Hom(M,V )
such that φ =

_

Λ (f). Let P := V ↓Hk ↑Hk = H⊗V ↓k. Then P is a projective (in fact
a free) H-module. Let ψ1 := T (f) and ψ2 : P = H⊗V → V , h⊗v 7→ hv, where
T is as in Corollary 3.3. Then ψ1 ∈ HomH(M,P ) and ψ2 ∈ HomH(P, V ). Now
let m ∈ M . Then we have (ψ2 ◦ ψ1)(m) = ψ2(T (f)(m)) = ΣΛ1f(S(Λ2)m) =

_

Λ
(f)(m) = φ(m).

To prove the converse, note that for any projective H-module P there is
a k-vector space W such that P is a direct summand of W↑Hk . Hence we
may assume that there is a k-vector space W and H-module morphisms ψ1 :
M → W↑Hk and ψ2 : W↑Hk → V such that φ = ψ2 ◦ ψ1. By Corollary 3.3
there exist φ1 ∈ Hom(M,W ) with ψ1 = T (φ1), and φ2 ∈ Hom(W,V ) with
ψ2 = F (φ2). Then for any m ∈M , φ(m) = (ψ2 ◦ψ1)(m) = F (φ2)(T (φ1)(m)) =
F (φ2)(ΣΛ1 ⊗ φ1((SΛ2)m)) = ΣΛ1φ2(φ1((SΛ2)m)) = ΣΛ1(φ2 ◦ φ1)((SΛ2)m) =
(Λ · (φ2 ◦ φ1))(m). Hence φ = Λ · (φ2 ◦ φ1) ∈ Hom(M,V )1. Q.E.D.

Corollary 3.5 Let M and V be finite-dimensional H-modules and let φ ∈
HomH(M,V ). Then the following statements are equivalent:

(1) φ ∈ HomH(M,V )1.
(2) φ factors through the projective cover of V .
(3) φ factors through the injective envelope of M .

Proof. Since a finite dimensional Hopf algebra is a Frobenius algebra, an H-
module is projective if and only if it is injective. By using Proposition 3.4 the
corollary can be proven in the same way as that of [11, Lemma II.2.7]. Q.E.D.

Corollary 3.6 Let M be a finite-dimensional H-module and let V be a simple
H-module. Then the following statements hold:

(1) HomH(M,V )1 6= {0} if and only if P (V ) is a direct summand of M .
(2) HomH(V,M)1 6= {0} if and only if I(V ) is a direct summand of M .
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Proof. If HomH(M,V )1 6= {0}, then it follows from Corollary 3.5 that there are
H-module morphisms φ1 : M → P (V ) and φ2 : P (V )→ V such that φ2◦φ1 6= 0.
Since V is simple and P (V ) is the projective cover of V , φ1 must be surjective.
It follows that P (V ) is a direct summand of M . Conversely, if P (V ) is a direct
summand of M , then there is an H-module epimorphism φ1 : M → P (V ). Of
course, there is an H-module epimorphism φ2 : P (V )→ V . Hence φ2 ◦ φ1 6= 0,
and it follows from Corollary 3.5 that HomH(M,V )1 6= {0}. This proves (1).
Part (2) follows with a dual argument. Q.E.D.

Theorem 3.7 Let M , V and W be H-modules. Then
(1) Hom(W ⊗M,V ) ∼= Hom(W,Hom(M,V )) as H-modules and
(2) HomH(W ⊗M,V )1

∼= HomH(W,Hom(M,V ))1.
If, in addition, M or V is finite dimensional, then

(3) Hom(W ⊗M,V ) ∼= Hom(W,V ⊗M∗) as H-modules and
(4) HomH(W ⊗M,V )1

∼= HomH(W,V ⊗M∗)1.

Proof. Parts (1) and (2) are straightforward. Parts (3) and (4) follow from
Parts (1), (2) and [10, Proposition III.5.2].

Note that Property (4) has been proved by Landrock and Michler in case of
group algebras (see [11, Theorem II.6.10]). Q.E.D.

Corollary 3.8 Let V1 and V2 be simple H-modules. Then
(1) P (kε) is isomorphic to a direct summand of V1⊗V2 if and only if V1

∼= V ∗2
and V1 is projective.

(2) I(kε) is isomorphic to a direct summand of V1⊗V2 if and only if V ∗1 ∼= V2

and V1 is projective.
(3) P (kε) is isomorphic to a direct summand of V1 ⊗ V2 if and only if I(kε)

is a direct summand of V2 ⊗ V1.
(4) If S2 is inner, then P (kε) is isomorphic to a direct summand of V1 ⊗ V2

if and only if I(kε) is a direct summand of V1 ⊗ V2.

Proof. (1) By Corollary 3.6 and Theorem 3.7(4) we have:

P (kε) is a direct summand of V1 ⊗ V2 ⇔ HomH(V1 ⊗ V2, kε)1 6= {0}
⇔ HomH(V1, V

∗
2 )1 6= {0}

⇔ P (V ∗2 ) is a direct summand of V1

⇔ V1
∼= V ∗2 and V1 is projective.

(2) For any H-module V , we define an H-action on V ∗ as follows:

(h . f)(v) := f(S−1(h)v), h ∈ H, f ∈ V ∗, v ∈ V.

Denote the H-module (V ∗, .) by V ◦. One can easily check that V ∗◦ ∼= V ∼= V ◦∗

as H-modules when V is finite dimensional. Since H is a Frobenius algebra, a
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finite dimensional H-module V is projective if and only if V ∗ is projective if and
only if V ◦ is projective. Hence by Corollary 3.6 and Theorem 3.7(4) we have

I(kε) is a direct summand of V1 ⊗ V2 ⇔ HomH(kε, V1 ⊗ V2)1 6= {0}
⇔ HomH(kε, V1 ⊗ V ◦∗2 )1 6= {0}
⇔ HomH(V ◦2 , V1)1 6= {0}
⇔ P (V1) is a direct summand of V ◦2
⇔ V1

∼= V ◦2 and V1 is projective
⇔ V ∗1

∼= V2 and V1 is projective

(3) This follows from (1) and (2).
(4) If S2 is inner, then V ∗∗ ∼= V for any finite dimensional H-module V , i.e.,

V ◦ ∼= V ∗. Now (4) follows from (1) and (2). Q.E.D.

Corollary 3.9 Let V1, · · · , Vr be simple H-modules with r ≥ 2. Then P (kε) is
a direct summand of V1 ⊗ · · · ⊗ Vr if and only if P (V ∗r ) is a direct summand of
V1 ⊗ · · · ⊗ Vr−1.

Proof. By Theorem 3.7(4), HomH(V1 ⊗ · · · ⊗ Vr, kε)1
∼= HomH(V1 ⊗ · · · ⊗

Vr−1, V
∗
r )1. This implies the result by Corollary 3.6. Q.E.D.

We can now prove the results mentioned at the end of Section 2.

Corollary 3.10 Suppose that Jw(H) 6= J . Then l′w(H) = 2 if and only if
H/Jw(H) has a simple and projective module.

Proof. This follows from Corollary 3.8 and Proposition 2.6(1). Q.E.D.

Corollary 3.11 (1) We have lw(H) = l′w(H).
(2) Suppose that l′w(H) > 1. Then l′′w(H) = l′w(H)− 1.

Proof. (2) This is immediate by Corollary 3.9.
(1) We first show, using the argument of Alperin in the proof of [1, Theorem

2], that lw(H) ≤ l′′w(H) + 1. For this it suffices to prove that if P is a nonzero
projective H-module and if V is a simple H-module, then there is a simple H-
module V1 such that P (V ) is a direct summand of V1 ⊗ P . Indeed, let V1 be a
simple submodule of V ⊗P ∗. By Theorem 3.7(3) we have HomH(V1, V ⊗P ∗) ∼=
HomH(V1 ⊗ P, V ) (since the isomorphism given there is an isomorphism of H-
modules). Since V1 ⊗ P is projective and V is simple this implies that P (V ) is
a direct summand of V1 ⊗ P .

If l′w(H) = 1, then lw(H) = l′w(H) by Proposition 2.6(1). We may thus
assume that l′w(H) > 1. By Part (2) we find that

lw(H) ≤ l′′w(H) + 1 = l′w(H) ≤ lw(H),

proving our assertion. Q.E.D.
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The following result is needed in the proof of the reciprocity laws of Corol-
lary 3.14.

Lemma 3.12 Let M be a finite-dimensional H-module and let V be a simple
H-module. If k is a splitting field for H, then

(1) dimkHomH(M,V )1 equals the multiplicity of P (V ) as a direct summand
of M , and

(2) dimkHomH(V,M)1 equals the multiplicity of I(V ) as a direct summand
of M .

Proof. Suppose M = P1⊕P2⊕· · ·⊕Pn⊕W such that Pi ∼= P (V ) for 1 ≤ i ≤ n,
and such that P (V ) is not a direct summand of W . Let πi : M → Pi be the
projection corresponding to the above decomposition, and let σi : Pi → P (V )
be an H-module isomorphism for 1 ≤ i ≤ n. Let τ : P (V ) → V be a fixed H-
module epimorphism. Let φi = τ ◦ σi ◦ πi, 1 ≤ i ≤ n. Then φi is an H-module
epimorphism from M to V , and φi ∈ HomH(M,V )1 by Corollary 3.5. Clearly,
φi(W ) = {0} and if i 6= j then φi(Pj) = {0}. Suppose that Σni=1αiφi = 0 for
some αi ∈ k. Then for any j we have {0} = (Σni=1αiφi)(Pj) = αjφj(Pj) =
αjφj(M) = αjV , which implies that αj = 0. It follows that {φi | 1 ≤ i ≤ n} is
linearly independent over k.

On the other hand, let φ ∈ HomH(M,V )1. It follows from Corollary 3.5
that there is an H-module morphism ψ : M → P (V ) such that φ = τ ◦ ψ. And
then φ|W = τ ◦ (ψ|W ). Since P (V ) is not a direct summand of W , it follows
from Corollaries 3.5 and 3.6 that φ|W = 0. Since P (V ) ∼= Pi is a projective
cover of V and k is a splitting field for H, HomH(Pi, V ) ∼= HomH(P (V ), V ) ∼=
HomH(P (V )/radP (V ), V ) ∼= k. Now HomH(Pi, V ) 3 φi|Pi = τ ◦ σi 6= 0, and
hence there is an αi ∈ k such that φ|Pi = αiφi|Pi for any 1 ≤ i ≤ n. We claim
that φ = Σni=1αiφi. In fact, we have proved that φ(w) = Σni=1αiφi(w) = 0 for all
w ∈ W . Let m ∈ Pj . Then (Σni=1αiφi)(m) = Σni=1αiφi(m) = αjφj(m) = φ(m).
This shows the claimed equation. From the above discussion it is easy to see
that if the multiplicity of P (V ) as a direct summand of M is infinite then
dimkHomH(M,V )1 = ∞. This completes the proof of (1). One can prove (2)
by a dual argument. Q.E.D.

Corollary 3.13 Let V1, V2 and V3 be simple H-modules. Assume that k is a
splitting field for H. Then the following numbers are equal:

(1) The multiplicity of P (V3) as a direct summand of V1 ⊗ V2.
(2) The multiplicity of I(V1) as a direct summand of V3 ⊗ V ∗2 .

Proof. This follows from Lemma 3.12 and Theorem 3.7(4). Q.E.D.

Recall from [5] or [15] that a Hopf algebra H is almost cocommutative if the
antipode S of H is bijective and if there exists an invertible element R ∈ H⊗H
such that for all h ∈ H,

∆op(h) := Σh2 ⊗ h1 = R∆(h)R−1.
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It is well-known (see, e.g., [15]), that if H is almost cocommutative then S2 is
inner and V ⊗W ∼= W ⊗ V for any H-modules V and W .

Corollary 3.14 Assume that k is a splitting field for H and that H is almost
cocommutative. Let V1, V2, and V3 be simple H-modules. Then the following
numbers are equal:

(1) The multiplicity of P (V3) as a direct summand of V1 ⊗ V2.
(2) The multiplicity of P (V ∗2 ) as a direct summand of V1 ⊗ V ∗3 .
(3) The multiplicity of P (V ∗1 ) as a direct summand of V2 ⊗ V ∗3 .
(4) The multiplicity of I(V1) as a direct summand of V ∗2 ⊗ V3.
(5) The multiplicity of I(V2) as a direct summand of V ∗1 ⊗ V3.
(6) The multiplicity of I(V ∗3 ) as a direct summand of V ∗1 ⊗ V ∗2 .

Proof. This follows from Lemma 3.12, Theorem 3.7(4), and the proof of Corol-
lary 3.8. Q.E.D.

4 The Case of Group Algebras

In this section we apply and extend our previous result to the case of group
algebras of finite groups. Thus let G be a finite group and k a field. We also fix
a prime number p.

The first part of the following result is well known (see, e.g., [17, Corollary 2]
or [16, p. 329]).

Lemma 4.1 Put H = kG and let I be a Hopf ideal of H. Then there is a
normal subgroup N of G such that I = HK+ = K+H, and hence H/I ∼=
k(G/N) as Hopf algebras, where K = kN is a normal Hopf subalgebra of H,
K+ = K ∩H+, H+ = Ker(ε).

Furthermore, if char(k) = p > 0, then I is nilpotent if and only if N is a
p-group.

Proof. Let π : H → H/I be the natural projection. Since π is a Hopf algebra
epimorphism and G is a k-basis in H, H/I = kG, where G = {π(g) | g ∈ G} =
G(H/I). The map π induces a group epimorphism by restriction π|G : G→ G.
Let N = Ker(π|G). Then N is a normal subgroup and π|G induces a group
isomorphism G/N ∼= G, and the composition H

π→ H/I = kG ∼= k(G/N)
is induced by the natural projection of groups G → G/N . It follows that
Ker(π) = HK+ = K+H, where K = kN .

If I is nilpotent, then K+ is a nilpotent ideal of kN which implies that N is
a p-group. Conversely, if N is a p-group, then N acts trivially on every simple
kG-module and thus K+ ⊆ J . Hence I ⊆ J is nilpotent. Q.E.D.

Recall that Op(G) denotes the largest normal p-subgroup of G.
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Corollary 4.2 Suppose that char(k) = p > 0. Put H = kG. Then Jw(H) =
H(kOp(G))+ = (kOp(G))+H, and hence H/Jw(H) ∼= k(G/Op(G)). Conse-
quently Op(G) = {1} if and only if Jw(H) = {0}.

Proof. By Corollary 2.3(1), Jw(H) is the maximal nilpotent Hopf ideal of H.
The result follows from Lemma 4.1. Q.E.D.

Note that Corollary 2.4(6), together with Corollary 4.2 provide an alternative
proof for a theorem of Alperin [1, Theorem 1], namely that every indecomposable
projective kG-module is irreducibly generated if Op(G) = {1}.

Suppose that char(k) = p and let F be an extension field of k. Then we can
naturally identify FG with F ⊗ kG. Hence Jw(FG) = F ⊗ Jw(kG) = FJw(kG)
by Corollary 4.2. It is well-known (see, e.g., [9, Theorem 1.5]), that Jac(FG) =
F ⊗ Jac(kG). By induction on n one can easily check that ∧nJac(FG) = F ⊗
∧nJac(kG) for all n ≥ 1. It follows from Corollary 4.2 that lw(FG) = lw(kG).
This in turn implies lw(kG) = lw(k′G) for any two fields k and k′ of the same
characteristic.

Definition 4.3 We define

hp(G) := lw(kG),

where k is a field of characteristic p. (By the preceding remarks this is indepen-
dent of the chosen field.)

As an application of the ideas developed so far we prove a well known result
(see [16, Corollary 8]). Recall from [2] that a Hopf algebra H is said to have
the Chevalley property if the tensor product of any two simple H-modules is
semisimple. This is equivalent to the statement that the Jacobson radical J =
Jac(H) of H is a Hopf ideal (see [13] or Lemma 2.1(1) and Corollary 2.2).

Theorem 4.4 Suppose that char(k) = p > 0. Then the following statements
are equivalent:

(1) H = kG has the Chevalley property.
(2) Any Sylow p-subgroup of G is normal in G.
(3) Op(G) is a Sylow p-subgroup of G.
(4) hp(G) = 1.

Proof. By Lemma 4.1 and Corollary 4.2, Jw(H) = H(kOp(G))+ = (kOp(G))+H
and H/Jw(H) ∼= kG as Hopf algebras, where G := G/Op(G). Now by Corollary
2.3 we have

J is a Hopf ideal ⇔ J = Jw(H)
⇔ H/Jw(H) is semisimple
⇔ kG is semisimple
⇔ p does not divide |G| = [G : Op(G)]
⇔ Op(G) is a Sylow p-subgroup of G.
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This shows the equivalence of (1) and (3). The equivalences of (1) and (4) and
of (2) and (3) are obvious. Q.E.D.

Using the classification of the finite simple groups we can determine hp(G)
for such groups provided p is at least 5.

Corollary 4.5 Let G be a finite, non-abelian simple group and let p be a prime.
If p ≥ 5, then hp(G) ≤ 2.

Proof. Let k be algebraically closed with char(k) = p ≥ 5. By the classification
of the finite simple groups, a finite non-abelian simple group must be one of the
following: (i) an alternating group An with n ≥ 5; (ii) a finite simple group of
Lie type; (iii) a sporadic simple group. If G is as in case (i), then it follows
from [8] that kG has a simple and projective module. If G is as in case (ii),
by [14, Theorem 5.1], kG has a simple and projective module. Using GAP [7],
Thomas Breuer has checked that kG has a simple and projective module if G
is a sporadic simple group. Thus in any case, kG has a simple and projective
module.

It follows from Proposition 2.6 and Corollary 3.11(1) that hp(G) = lw(kG) =
l′w(kG) ≤ 2. Q.E.D.

We next derive two reduction theorems relating the invariant hp(G) to nor-
mal subgroups and central factor groups of G, respectively.

Theorem 4.6 Let N be a normal subgroup of G. Then the following holds.
(1) hp(N) ≤ hp(G).
(2) If p - [G : N ], then hp(N) = hp(G).

Proof. Clearly, Op(N) = N ∩Op(G). Let G := G/Op(G) and N := N/Op(N).
Then N ∼= NOp(G)/Op(G) is a normal subgroup of G. Moreover, [G : N ] =
[G : NOp(G)] [NOp(G) : N ] = [G : N ] [Op(G) : Op(N)]. Hence if p - [G : N ]
then p - [G : N ]. Thus we may assume that Op(G) = {1} and Op(N) = {1}
without loss of generality.

Assume that char(k) = p and put H := kG and L := kN . Then L is a Hopf
subalgebra of H and Jw(H) = Jw(L) = {0}. Let J(H) and J(L) denote the
Jacobson radicals of H and L respectively. Then J(L) = L∩ J(H) since N is a
normal subgroup of G. Denote the wedge in L by ∧nL and the one in H by ∧nH .

(1) Since L is a Hopf subalgebra of H and J(L) = L∩J(H), one easily checks
that ∧nLJ(L) = L ∩ ∧nHJ(H) for all n ≥ 1. It follows that hp(N) ≤ hp(G).

(2) Assume that p - [G : N ]. Then V ↑H is semisimple for any simple L-
module V (see, e.g., [9, Theorem VII.9.4]). Put n := l′w(kN) and let V1, . . . , Vn
be simple kN -modules such that V1⊗· · ·⊗Vn contains the projective cover Q of
the trivial kN -module as a direct summand. This implies that V1↑H⊗· · ·⊗Vn↑H
contains the projective cover of the trivial kG-module as a direct summand.
Since Vi↑H is semisimple for all i, it follows that l′w(kG) ≤ n. Hence hp(G) =
lw(kG) = l′w(kG) ≤ l′w(kN) = lw(kN) = hp(N). Q.E.D.
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Proposition 4.7 Let Z(G) denote the center of G, let Z be a subgroup of Z(G)
and put G := G/Z. If Op(G) = {1} then Op(G) = {1} and hp(G) ≤ hp(G).

Proof. Assume that Op(G) = {1}. Let K/Z = Op(G) = Op(G/Z), and let
T be a Sylow p-subgroup of K. Since p - |Z| and Z is a subgroup of Z(G),
K = T × Z, and hence T = Op(K). It follows that T is normal in G, which
implies T = {1} since Op(G) = {1}. Hence Op(G) = {1}.

Assume that char(k) = p. Then the canonical group epimorphism G → G
induces an algebra epimorphism kG → kG. In turn, this induces an algebra
epimorphism kG/J(kG) → kG/J(kG) which is also a homomorphism of kG-
modules. Note that the projective cover P (kε) of the trivial kG-module kε is also
the projective cover of the trivial kG-module kε. Hence if (kG/J(kG))⊗n con-
tains P (kε) as a kG-module direct summand for some n ≥ 1, then (kG/J(kG))⊗n

contains P (kε) as a kG-module direct summand. This shows that l′w(kG) ≤
l′w(kG). The assertion now follows from Corollary 3.11(1). Q.E.D.

Theorem 4.8 Assume that char(k) = p. Let N be a normal subgroup G with
p - |N | and let P be a Sylow p-subgroup of G.

(1) Let M1,M2, · · · ,Mn be simple kN -modules, and put

Ui := StabG(Mi) = {g ∈ G | gM i
∼= Mi}.

If U1 ∩U2 · · · ∩Un ∩P = {1}, then there exist simple kG-modules V1, V2, · · · , Vn
such that V1 ⊗ V2 ⊗ · · · ⊗ Vn has a nonzero projective direct summand.

(2) Assume in addition that N is abelian and has a complement in G.
Assume also that k is a splitting field for all subgroups of G. Suppose that
V1, V2, · · · , Vm are simple kG-modules such that V1⊗V2⊗· · ·⊗Vm has a nonzero
projective direct summand. Let Mi be a simple submodule of Vi↓N , and put
Ui := StabG(Mi), i = 1, 2, · · · ,m. Then y1U1 ∩ y2U2 ∩ · · · ∩ ymUm ∩P = {1} for
some y1, y2, · · · , ym ∈ G.

Proof. (1) By Clifford theory (see [4, p. 259]), there are kUi-modules Wi,
i = 1, 2, · · · , n, such that Vi := Wi↑GUi is simple. Using Mackey’s tensor product
theorem (see [4, p. 240]), one can easily show by induction on n that V1 ⊗ V2 ⊗
· · · ⊗ Vn is isomorphic to a direct sum of modules of the form

((x1W 1 ⊗ x2W 2 ⊗ · · · ⊗ xnWn)↓x1U1∩x2U2∩···∩xnUn)↑G,

with xi ∈ G, 1 ≤ i ≤ n. One of the direct summands occurs for x1 = x2 = · · · =
xn = 1. Since P is a Sylow p-subgroup of G, V1⊗V2⊗· · ·⊗Vn contains a nonzero
projective direct summand if and only if (V1 ⊗ V2 ⊗ · · · ⊗ Vn)↓P contains one.
By Mackey’s subgroup theorem (see [4, p. 237]), (V1⊗V2⊗· · ·⊗Vn)↓P contains
a direct summand isomorphic to ((W1 ⊗W2 ⊗ · · · ⊗Wn)↓U1∩U2∩···∩Un∩P )↑P ,
which is projective since U1 ∩ U2 ∩ · · · ∩ Un ∩ P = {1}.

(2) Since k is a splitting field for kN by assumption, the Mi are all 1-
dimensional. Since N is abelian and has a complement in G, the Mi can be
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extended to simple (1-dimensional) kUi-modules Wi. As in the proof of (1),
(V1 ⊗ V2 ⊗ · · · ⊗ Vm)↓P contains a nonzero projective direct summand. Hence
there are elements y1, y2, · · · , ym ∈ G such that

((y1W 1 ⊗ y2W 2 ⊗ · · · ⊗ ymWm)↓y1U1∩y2U2∩···∩ymUm∩P )↑P

has a nonzero projective direct summand. Since P is a p-group, a kP -module is
projective if and only if it is free. Since all the Wi are 1-dimensional, one gets
y1U1 ∩ y2U2 ∩ · · · ∩ ymUm ∩ P = {1}. Q.E.D.

Proposition 4.9 Let G be a finite solvable group. Suppose that, for some
prime q 6= p, there exists an elementary abelian normal q-subgroup N of G
with CG(N) = N , and such that G acts irreducibly on N . Then hp(G) ≤ 4.

Proof. We may assume that k is algebraically closed and that char(k) = p.
Let N̂ := Hom(N,C×) denote the set of irreducible C-characters of N . Then,
by assumption, L := G/N acts irreducibly and faithfully on N̂ . It follows from
[18, Theorems 2.1 and 3.1] that there exist λ1, λ2, λ3 ∈ N̂ with StabG(λ1) ∩
StabG(λ2) ∩ StabG(λ3) = N . Since char(k) - |N |, it follows that there exist
simple kN -modulesM1, M2, M3 (with Brauer characters λ1, λ2, λ3 respectively)
such that StabG(M1)∩StabG(M2)∩StabG(M3) = {1}. It follows from Theorem
4.8(1) that there are simple kG-modules V1, V2 and V3 such that V1⊗V2⊗V3 has
a nonzero projective direct summand. Proposition 2.6(2) and Corollary 3.11(1)
now imply the desired result. Q.E.D.

We conclude with an example of a groupG of the kind discussed above, which
satisfies h2(G) = 3. We have not been able to find a group with hp(G) = 4.

Example 4.10 Let F3 denote the field with 3 elements and put

P =
〈(

0 1
1 0

)
,

(
0 1
−1 0

)〉
≤ GL(2,F3).

Thus P is the dihedral group of order 8. Let N be the 2-dimensional column
space over F3. Then P has two orbits on N \ {0}, namely{(

1
0

)
,

(
−1
0

)
,

(
0
1

)
,

(
0
−1

)}
and {(

1
1

)
,

(
−1
1

)
,

(
1
−1

)
,

(
−1
−1

)}
.

Let G = N o P . Then |G| = 72 and O2(G) = {1}. By Theorem 4.8(2), G does
not have a simple projective kG-module, but by Theorem 4.8(1) there are two
simple kG-modules V1 and V2 such that V1 ⊗ V2 contains a projective direct
summand. Hence h2(G) = 3.

15



Acknowledgments

This work was finished while the first author was staying at Lehrstuhl D für
Mathematik, RWTH Aachen, Germany, as a Post-Doctoral Fellow in the DFG-
Graduiertenkolleg: “Hierarchie und Symmetrie in Mathematischen Modellen”.
He would like to thank the Department of Mathematics at RWTH Aachen for
its hospitality. He is also supported by NSF of China.

References

[1] J. L. Alperin, Projective modules and tensor products, J. Pure Appl.
Algebra 8 (1976), 235–241.

[2] N. Andruskiewitsch, P. Etingof, and S. Gelaki, Triangular Hopf
algebras with the Chevalley property, Michigan Math. J. 49 (2001), 277–
298.

[3] D. J. Benson, Representations and cohomology, Vol. 1, Cambridge Uni-
versity Press, Cambridge, 1991.

[4] C. W. Curtis and I. Reiner, Methods of representation theory, Vol. 1,
Wiley-Interscience, New York, 1981.

[5] V. G. Drinfeld, On almost cocommutative Hopf algebras, Leningrad
Math J. 1 (1990), 321–342 (Russian original in Algebra and Analysis,
1989).

[6] J. Feldvoss and L. Klingler, Tensor powers and projective modules
for Hopf algebras, Canadian Math. Soc. Conference Proceedings, Vol. 24
(1998), 195–203.

[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Ver-
sion 4.3; 2002, http://www.gap-system.org.

[8] A. Granville and K. Ono, Defect zero p-blocks for finite simple groups,
Trans. Amer. Math. Soc. 348 (1996), 331–347.

[9] B. Huppert and N. Blackburn, Finite groups II, Springer-Verlag,
Berlin·Heidelberg·New York, 1982.

[10] C. Kassel, Quantum groups, Springer-Verlag, New York, 1995.

[11] P. Landrock, Finite group algebras and their modules, Cambridge Uni-
versity Press, Cambridge, 1983.

[12] R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear
form for Hopf algebras, Amer. J. Math. 91 (1969), 75–94.

[13] M. Lorenz, Representations of finite-dimensional Hopf algebras, J. Al-
gebra 188 (1997), 476–505.

16



[14] G. O. Michler, A finite simple group of Lie type has p-blocks with
different defects, p 6= 2, J. Algebra 104 (1986), 220–230.

[15] S. Montgomery, Hopf algebras and their actions on rings, CBMS Series
in Math., Vol. 82, AMS, Providence, 1993.

[16] D. S. Passman and D. Quinn, Burnside’s theorem for Hopf algebras,
Proc. Amer. Math. Soc. 123 (1995), 327–333.

[17] M. A. Rieffel, Burnside’s theorem for representations of Hopf algebras,
J. Algebra 6 (1967), 123–130.

[18] A. Seress, The minimal base size of primitive solvable permutation
groups, J. London Math. Soc. 53 (1996), 243–255.

[19] M. E. Sweedler, Hopf algebras, Benjamin, New York, 1969.

17


