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Flat Manifolds (Geometry)

A Riemannian manifold X iIs a real, connected,
differentiable n-manifold,

equipped with a Riemannian metric, I.e., a scalar

product on each tangent space 7,.X, depending
smoothly on z.

X Is flat, If its sectional curvature iIs 0.

For short. A flat manifold is a compact, flat, Rie-
mannian manifold.
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In the following, X denotes a
flat manifold of dimension n.
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From Geometry to Algebra, |

— The universal covering space of X equals R".

—I':= m (X, x9), the fundamental group of X,
acts as group of deck transformations on R".

— X = R"/T" (isometric).

—I' < E(n), the group of rigid motions of R".

— I' I1s discrete and torsion free.
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The Affine Group

A(n) := GL(n) x R™, the affine group.

\

A(n) = {(A ?1)) | A e GL(n),v e R" < GL(n+1).

/

E(n):=0(n) x R" < A(n).




From Geometry to Algebra, 11

Let I' be the fundamental group of X. Then we
have:

Bieberbach 1:

(1) L .:=TNR"Is a free abelian group of rank n,
and a maximal abelian subgroup of I,

(2) G :=T'/L is finite, the holonomy group of X,

Conversely, if I' < E(n) is torsion free and satis-
fies (1) and (2), then R"/I" is a flat manifold.

_ S




From Geometry to Algebra, 111

Let X, be flat n-manifolds with fundamental
groups I'; < E(n),i =1, 2.

Bieberbach 2: The following are equivalent:
(1) X; and X, are affine equivalent.

(2) I'y and I'y; are isomorphic.

(3) I'y and I'; are conjugate in A(n).

Bieberbach 3: Up to affine equivalence, there are
only finitely many flat n-manifolds.
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Classification, |

n = 1: One flat manifold: S! = R/Z.

n = 2: Two flat manifolds:
(1) The torus R?/Z?,
(2) The Klein bottle R?/I", with

[(—2 00\ (10 a)
r;< 0 21 ]|,101%5 a,bEZ>.
\ 0 0 2/ \001)

n = 3: Ten flat manifolds (Hantzsche and Wendt,
'35), called platycosms by Conway and Rossetti.
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Classification, 11

n = 4. Classification by Brown, Bulow, NeubUser,
Wondratschek and Zassenhaus, 78,
(74 flat manifolds).

n = 5. Classification by Sczcepanski and Cid and
Schulz, '01, (1060 flat manifolds).

n = 6. Classification by Cid and Schulz, 01,
(38746 flat manifolds).

Classification for n = 5,6 completed with CARAT
(http://wwwb.math.rwth-aachen.de/carat/).
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Bieberbach Groups, |

A Bieberbach group of rank n Is a torsion free
group I' given by a s.e.s.

0 —L —I1 —0G—1,
where G Is finite and L is a free abelian group of

rank n and a maximal abelian subgroup of I.

Thus G acts on L by conjugation, and we get a
faithful holonomy representation p : G — O(n).

Moreover, I' can be embedded into £ (n), so that
R™/T" is a flat manifold.
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Bieberbach Groups, I

To define a Bieberbach group we need:

(1) G < GL(L) finite, where L is a free abelian
group (equivalently: G < GL,(Z) finite),

(2) A special element o € H*(G, L).

[ € H?(G, L) is special, if res&(a) # 0 for every
U < G of prime order.]
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Finite groups as holonomy groups, |

Let G be a finite group.

Is G the holonomy group of a flat manifold?

Need:

(1) ZG-lattice L, with G acting faithfully,

(2) o € H*(G, L) special.

Auslander-Kuranishi, '57: Take L := ®Z|G/U],
where U runs over all subgroups of prime order,
up to conjugacy.
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Finite groups as holonomy groups, I

For ZG-lattice L put QL := Q ®z L, a QG-mod.

Conjecture (Szczepanski): G is the holonomy
group of a flat manifold with translation lattice L,
such that QL Is multiplicity free.

m(G): smallest n s.t. GG is the holonomy group of
a flat n-manifold.

Hiller: m(Cy) = p"(p — 1).

Plesken, ’'89: determines m(PSLs(p)), e.g.
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Reducibility of holonomy represent’n

Let I' be a Bieberbach group:

0 —L —1 —G—1.

Theorem (Szczepanski-H., '91): QL is reducible.

Proved before for soluble G by Gerald CIiff.
Our proof uses the classification of finite simple
groups.
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Ingredients in Proof, |

Suppose QL is irreducible.

Let {x;} be the set of irreducible characters of
CL. Let p be a prime with p | |G|. Then:

(1) x; Is in the principal p-block of G.

(2) (Plesken, '89): Suppose G has a cyclic Sylow
p-subgroup. Let the Brauer tree of the principal
block be 1 — y— 6

Then 0 € {x;}.
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Ingredients in Proof, I

Usually 6 as in (2) is not in principal g-block for
some prime q # p.

Generalize to non-abelian simple subnormal
subgroups, use classification.
If G has normal p-subgroup N, then:

Case 1: Some prime ¢ # p divides |G|. Then
N C ker(CL) (since all x; are in principal g-block).

Case 2: (G Is a p-group. Easy.
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In the following, 1" denotes the
fundamental group of X, the extension

0 — L —I1 —-GG—1

being described by o € H*(G, L).
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Affine Selfequivalences, |

Aff(X): group of affine self equivalences of X,
Affy(X) connected component of 1.

Affy(X) is a torus of dimension b,(X).
(01(X) =rk H(G, L).)

AFF(X) /Ay (X) = Out(T).

How small or large can Aff(X') be?
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Affine Selfequivalences, I

Theorem (Hiller-Sah, '86). Suppose for some
prime p dividing |G|, a Sylow p-subgroup of G is
cyclic and has a normal complement.

Then b;(X) # 0. In particular Affy(X) # 1.

Theorem (Szczepanski-H., '97): Suppose for
some prime p dividing |G|, a Sylow p-subgroup of
( has a normal complement (G is p-nilpotent).
Then Aff(X) # 1.
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The outer automorphism group of I

Theorem (Charlap-Vasquez, '73): There is a
short exact sequence

0 — HY(G,L) — Oout(l') — N,/p(G) — 1,

where N, = No) (p(G), @).

Sketch of proof of “p-nilpotency theorem?”:
— May assume H’(G, L) = 0. Then:
—p | |HYG, L)| iff L/pL has a trivial submodule.

— (G is p-nilpotent and p | |H*(G, L)|, hence L/pL
has a trivial submodule.
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Finiteness of outer automorphism grp

N, is finite if and only if Co(,,)(p(G)) is finite.
This gives the following theorem, implicitly
contained in Brown et al.

Theorem: Equivalent are:

(1) Out(I") is finite.

(2) QL 1s multiplicity free, and RS Is simple for
every simple constituent S of QL.
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Waldmuller’s Example

Theorem (Waldmdller, '02): There Is a 141-
dimensional flat manifold X with holonomy group
M4 such that Aff(X) = 1.
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Spin Structures, |

X is oriented, if p(G) < SO(n).

From now on assume X oriented.

A spin structure on X allows to define a Dirac
operator on X.

The spin structures on X correspond to the lifts
e: ' = Spin(n) with pom = Xoe:

Spin(n)
I 4 SOl(n)

_ Sixth Century Conference in Representation Theory, University of Aberdeen, 26—-29 October 2005 — p.24/28



Special Spin Structures, |

A special spin structure is a spin structure £ with
e(L) =1, i.e., there exists

e’ G — Spin(n) with p = Ao &":
Spin(n)

Pl

r—"G~—%S0(n)
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Special Spin Structures, 11

There Is a nice negative criterion by Griess and

Gagola and Garrison, '82:

Theorem: Suppose there is an involution g € G,

such that
1

5 (n — trace(p(g))) = 2(mod 4).

Then no such £’ exists.
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Spin Structures, 11

_et .Sy be a Sylow 2-subgroup of G.
Put Iy := 7T_1(SQ), X9 1= R”/I’Q

Proposition (Dekimpe et al., '04): X has spin
structure if and only if X5 has spin structure.

Examples: (1) (Pfaffle, ’00): All flat 3-manifolds
have spin structures.

(2) (Miatello-Podesta, '04): There is G < GLg(Z),
G = Cy x Oy, and special o; € H*(G,Z°5),1=1,2

9 )

such that I'; has spin structure and I'; doesn't.
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Thank you for your attention!
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