Exercise sheet for the Tutorial on Computational Representation Theory within the program *Group Theory and Computational Methods*, ICTS-TIFR, Bangalore, 05 – 14 November 2016

In the following exercises, G is a finite group and F a field.

- 1. Let N be a normal subgroup of G. Show that every (irreducible) F-representation of G/N yields an (irreducible) F-representation of G.
- 2. Show that two F-representations of G of degree 1 are equivalent, if and only if they are equal.
- 3. Let G' denote the commutator subgroup of G. Prove that G and G/G' have the same number of irreducible F-representation of degree 1.
- 4. Compute (by hand) the ordinary character table of the symmetric group S_3 .
- 5. Compute (by hand) the ordinary character table of the symmetric group S_4 . Use the fact that S_4 has a factor group isomorphic to S_3 . Construct an irreducible \mathbb{C} -representation of S_4 of degree 3 by finding an invariant subspace in a 4-dimensional \mathbb{C} -vector space V, on which S_4 acts by permuting four basis vectors v_1, \ldots, v_4 in the same way as it permutes the letters $1, \ldots, 4$.
- 6. Let χ and λ be two \mathbb{C} -characters of G with $\lambda(1) = 1$. Show that $\chi \cdot \lambda : G \to \mathbb{C}, g \mapsto \chi(g)\lambda(g)$ is a \mathbb{C} -character of G.
- 7. Let \mathfrak{X} and \mathfrak{Y} denote two *F*-representations of *G* on the vector spaces *U* and *W*, respectively. Show that there is an *F*-representation \mathfrak{Z} of *G* on $U \otimes_F W$ such that

$$(u \otimes w)\mathfrak{Z}(g) = u\mathfrak{X}(g) \otimes w\mathfrak{Y}(g)$$

for all $u \in U$, $w \in W$ and $g \in G$.

Compute the character χ_3 from the characters $\chi_{\mathfrak{X}}$ and $\chi_{\mathfrak{Y}}$.

- 8. Let χ be a \mathbb{C} -character of G and let $g \in G$. Show that $\chi(g^{-1}) = \chi(g)$, where \overline{z} denotes the complex conjugate of $z \in \mathbb{C}$.
- 9. Prove the Second Orthogonality Relations: Let $Irr(G) = \{\chi_1, \ldots, \chi_k\}$ denote the set of irreducible \mathbb{C} -characters of G, and let $g, h \in G$. Show that

$$\sum_{i=1}^{k} \chi_i(g)\chi_i(h^{-1}) = \begin{cases} |C_G(g)|, & \text{if } g \text{ and } h \text{ are conjugate in } G \\ 0, & \text{otherwise} \end{cases}$$

Hint: Write the Orthogonality Relations as a matrix equation and use the fact that an invertible matrix commutes with its inverse.

10. Use the character table of the sporadic group M_{11} to show that the alternating group A_5 is a subgroup of M_{11} .

Hint: Use GAP to compute structure constants of M_{11} and a presentation of A_5 , e.g. $A_5 = \langle a, b \mid a^2 = b^3 = (ab)^5 = 1 \rangle$.

- 11. Let F be finite of characteristic p and let G be a p-group. Show that G has a unique irreducible F-representation.
- 12. Use GAP to compute the *p*-modular character tables of the alternating group A_5 for p = 3, 5. What about p = 2? (The *p*-modular character table of *G* is the Brauer character table of *G* with respect to an algebraically closed field *F* of characteristic *p*.)

Hint: Produce projective characters using suitable products of characters or induced characters. Use the fact that $|G|_p$, the *p*-part of |G|, divides $\Phi(1)$ for every PIM Φ .

References

- I. M. ISAACS, Character Theory of Finite Groups, AMS Chelsea Publishing, Providence, RI, 2006.
- [2] K. LUX AND H. PAHLINGS, Representations of Groups. A computational approach. Cambridge University Press, 2010.