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CHARACTERS

RECOLLECTION

Objective: Classify all irreducible representations of all finite
simple groups and related finite groups,

find labels for their irreducible representations, find the degrees
of these, etc.

In the following: G = GF a finite reductive group over F,
char(F) = p,

k an algebraically closed field.
Recall that we distinguish three cases:

1. char(k) = p; defining characteristic
2. char(k) = 0; ordinary representations
3. 0 < char(k) # p; non-defining characteristic

Today | mainly talk about Case 2, so assume that char(k) =0
for the time being.



CHARACTERS

A SIMPLIFICATION: CHARACTERS
Let V, V' be kG-modules.
The character afforded by V is the map

xv:G— k, g~ Trace(g|V).

Characters are class functions.
V and V' are isomorphic, if and only if yy = x .
Irr(G) := {xv | V simple kG-module}: irreducible characters
C: set of representatives of the conjugacy classes of G

The square matrix
X(D]yein(a).gec
is the ordinary character table of G.



CHARACTERS

AN EXAMPLE: THE ALTERNATING GROUP Ags

EXAMPLE (THE CHARACTER TABLE OF As = SL,(4))

1la 2a 3a ba 5b
x1 | 1 1 1 1 1
xo| 3 -1 0 A xA
x3| 3 1 0 *xA A
xa| 4 O 1 —1 —1
xs| 5 1 -1

A=(1-+5)/2, +A=(1+5)/2

1e1a, (1,2)(8,4) €2a, (1,2,3) € 3a,
(1,2,3,4,5) €5a, (1,3,5,2,4)5b



CHARACTERS

GOALS AND RESULTS

Objective: Describe all ordinary character tables of all finite
simple groups and related finite groups.

Almost done:

1. For alternating groups: Frobenius, Schur

2. For groups of Lie type: Green, Deligne, Lusztig, Shoji, .. .

(only “a few” character values missing)
3. For sporadic groups and other “small” groups:

Atlas of Finite Groups, Conway, Curtis,
Norton, Parker, Wilson, 1986




DELIGNE-LUSZTIG THEORY

THE GENERIC CHARACTER TABLE FOR SlL»(q), g EVEN

G G Cs(a) Ca(b)
X1 1 1 1 1
X2 g 0 1 —1
xa(m) | g+1 1 M0
xa(n) [g—1 —1 0 —En -
am=1,...,(9-2)/2, b,n=1,...,q9/2,
Ci=exp(BRt), = exp(B)

a
[ % /ﬁa } € Cs3(a) (u € Fq a primitive (g — 1)th root of 1)

w0 c N
0 b |~ C4(b) (v € F 2 @ primitive (g + 1)th root of 1)

Specialising g to 4, gives the character table of SL,(4) = As.



DELIGNE-LUSZTIG THEORY

DRINFELD’S EXAMPLE

The cuspidal simple kSLy(g)-modules have dimensions g — 1
and (g — 1)/2 (the latter only occur if p is odd).

How to construct these?

Consider the affine curve
C={(x.y) e F?|xy9—x%y =1}.

G = SLy(q) acts on C by linear change of coordinates.

Hence G also acts on the étale cohomology group
Hg(Cv @5)7

where ¢ is a prime different from p.

It turns out that the simple Q, G-submodules of H}(C,Qy) are
the cuspidal ones (here k = Q).



DELIGNE-LUSZTIG THEORY

DELIGNE-LUSZTIG VARIETIES
Put k := @g.

Deligne and Lusztig (1976) construct for each pair (T, 6),
where T is an F-stable maximal torus of G, and @ < Irr(TF), a
generalised character RE(0) of G.

(A generalised character of G is an element of Z[Irr(G)].)

Let (T, 0) be a pair as above.

Choose a Borel subgroup B = TU of G with Levi subgroup T.
(In general B is not F-stable.)

Consider the Deligne-Lusztig variety associated to U,

Yu={9€G|g 'F(g9) €U}

This is an algebraic variety over F.



DELIGNE-LUSZTIG THEORY

DELIGNE-LUSZTIG GENERALISED CHARACTERS

The finite groups G = GF and T = T act on Yy, and these
actions commute.

Thus the étale cohomology group Hi(Yy, Q) is a
Q¢,G-module-Q, T,

and so its #-isotypic component H.( Yy, Q,)s is a Q,G-module,
whose character is denoted by ch H.( Yy, Q;)e.
Only finitely many of the vector spaces H.( Yy, Q,) are # 0.
Now put
RE(6) = S"(~1)ch Hi( Yy, B0k
i

This is a Deligne-Lusztig generalised character.



DELIGNE-LUSZTIG THEORY

PROPERTIES OF DELIGNE-LUSZTIG CHARACTERS

The above construction and the following facts are due to
Deligne and Lusztig (1976).

FACTS
Let (T,0) be a pair as above. Then

1. R€(0) is independent of the choice of B containing T.

2. If0 is in general position, i.e. Ng(T,0)/T = {1}, then
+RE(9) is an irreducible character.

FACTS (CONTINUED)

3. Forx € Irr(G), there is a pair (T, 0) such that x occurs in
RE(6).



DELIGNE-LUSZTIG THEORY

A GENERALISATION

Instead of a torus T one can consider any F-stable Levi
subgroup L of G.

Warning: L does in general not give rise to a Levi subgroup of
G in the sense of my first lecture.

Consider a parabolic subgroup P of G with Levi complement L
and unipotent radical U, not necessarily F-stable.

The corresponding Deligne-Lusztig variety Yy is defined as
before: Yy ={gc G| g 'F(g) € UL

One gets a Lusztig-induction map

Rfcp Z(Irr(L)] — Z[Irr(G)], p Rlc_;cp( ).



DELIGNE-LUSZTIG THEORY

PROPERTIES OF LUSZTIG INDUCTION

The above construction and the following facts are due to
Lusztig (1976).

Let L be an F-stable Levi subgroup of G contained in the
parabolic subgroup P, and let i € Z[Irr(L)].

FACTS
1. RE_a(u)(1) = £[G: L]y - ().

2. IfP is F-stable, then RE (1) = RE(v) is the
Harish-Chandra induced character.

It is now (almost) known, that RE_;, is independent of P.



DELIGNE-LUSZTIG THEORY

UNIPOTENT CHARACTERS

DEFINITION (LUSZTIG)

A character x of G is called unipotent, if x is irreducible, and if x
occurs in R€(1) for some F-stable maximal torus T of G,
where 1 denotes the trivial character of T = TF.

We write Irr!(G) for the set of unipotent characters of G.

The above definition of unipotent characters uses étale
cohomology groups.

So far, no elementary description known, except for GL(q);
see below.

Lusztig classified IrrY(G) in all cases, independently of g.

Harish-Chandra induction preserves unipotent characters (i.e.
Irr’(G) is a union of Harish-Chandra series), so it suffices to
construct the cuspidal unipotent characters.



DELIGNE-LUSZTIG THEORY

THE UNIPOTENT CHARACTERS OF GL,(q)
Let G = GLp(q) and T the torus of diagonal matrices.
Then Irr’(G) = {x € Irr(G) | x occurs in RE(1)}.
Moreover, there is bijection
Pn < Ir'(G), X+ xa,
where P, denotes the set of partitions of n.
This bijection arises from Endg(R$(1)) = H 4(Sn) = kSh.

The degrees of the unipotent characters are “polynomials in q”:

an (@ =1)(@q"" " —-1)---(q-1)
xa(1)=q oo (q 1 )

with d(X\) € N, and h(\) runs through the hook lengths of .




DELIGNE-LUSZTIG THEORY

DEGREES OF THE UNIPOTENT CHARACTERS OF GLs(q)

A xa(1)

(5) 1
(4,1) q(g+1)(g*+1)
B.2) (" +e*+d+q+1)
(3,12) (@ +1)(Gg*+q+1)
(22,1) q*(a*+q®*+q*+q+1)
(2,1%) ®(g+1)(g° +1)
(15) q10




LUSZTIG’S JORDAN DECOMPOSITION

JORDAN DECOMPOSITION OF CONJUGACY CLASSES
This is a model classification for Irr(G).

For g € G with Jordan decomposition g = us = su, we write
Cﬁ’:s for the G-conjugacy class containing g.

This gives a labelling

{conjugacy classes of G}

!

{Cgu | s semisimple, u € Cg(s) unipotent}.

(In the above, the labels s and u have to be taken modulo
conjugacy in G and Cg(s), respectively.)

Moreover, |CG,| = |G : Cq(s)||CYS™.

This is the Jordan decomposition of conjugacy classes.



EXAMPLE: THE GENERAL LINEAR GROUP ONCE MORE
G = GLn(q), s € G semisimple. Then
Ca(s) = GLn, (@%) x GLp,(q%) x -+ x GLn,(q"™)
with >°1, nid; = n. (This gives finitely many class types.)

Thus it suffices to classify the set of unipotent conjugacy
classes U of G.

By Linear Algebra we have
U <— Pp = {partitions of n}

C{, +— (sizes of Jordan blocks of )

This classification is generic, i.e., independent of q.

In general, i.e. for other groups, it depends slightly on q.



LUSZTIG’S JORDAN DECOMPOSITION

JORDAN DECOMPOSITION OF CHARACTERS

Let G* denote the reductive group dual to G.

(Every reductive group has a dual, also reductive.)
EXAMPLES

(1) If G = GL,(F), then G* = G.

(2) If G = SO2p,11(F), then G* = Sp,,,,(F).

F gives rise to a Frobenius map on G*, also denoted by F.

MAIN THEOREM (LUSZTIG; JORDAN DEC. OF CHAR’S,
1984)

Suppose that Z(G) is connected. Then there is a bijection
Irr(G) «— {xs.x | s € G* semisimple , X € Irr!(Cg+(S))}

(where the s € G* are taken modulo conjugacy in G*).
Moreover, xs (1) = |G*: Cg+(8)|p A(1).



LUSZTIG’S JORDAN DECOMPOSITION

THE IRREDUCIBLE CHARACTERS OF GL,(q)

Let G = GLx(q). Then
Irr(G) = {xs. | s € G semisimple, X € Irr¥(Cg(s))}-

We have Cg(s) = GLn, (q%) x GLn,(q%) x - - x GLp,(q%)
with >, nid; = n.

Thus A = A\ KA\ X -+ & Ay with \; € Irr¥(GLp,(g%)) +— P,

Moreover,

_ (@-1)- (q—1 0
xexl1) = 17 [(q9m —1)--- (g% —1)] []xa

i=1




LUSZTIG’S JORDAN DECOMPOSITION

DEGREES OF THE IRREDUCIBLE CHARACTERS OF

GLs(9q)
Ca(s) A xsA(1)
GL1(¢®) (1) (@—1)%(q+1)
GL1(¢®) xGLy(q) (X))  (q—1)(g°+g+1)
GL1(q)® (HRMXRM) (@+1)(GP+g+1)
(2)X (1) QG +qg+1
CL@xCH@D @ e a@rar
(3) 1
GLs(q) (2,1) a(g+1)
(1,1,1) q°

(This example was already known to Steinberg.)



LUSZTIG’S JORDAN DECOMPOSITION

LUSZTIG SERIES

Lusztig (1988) also obtained a Jordan decomposition for Irr( G)
in case Z(G) is not connected, e.g. if G = SL,(F) or
G = Sp,,,(F) with p odd.

For such groups, Cg-(S) is not always connected, and the
problem is to define Irr(Cg-(S)), the unipotent characters.

The Jordan decomposition yields a partition

Im(G) = |J £(Gs),

[s]lcG*

where [s] runs through the semisimple G*-conjugacy classes of
G* and s € [¢].

By definition, £(G, s) = {xs. | A € IrrY(Cg-(8)}.
For example £(G, 1) = IrrY(G).
The sets £(G, s) are called rational Lusztig series.



LUSZTIG’S JORDAN DECOMPOSITION

JORDAN DECOMPOSITION IN POSITIVE
CHARACTERISTIC?

Now assume that 0 < char(k) = ¢ # p. Write Irry(G) := Irr(G).
Here, we also have a notion of unipotent characters, Irr/(G).
Investigations are guided by the following main conjecture.

CONJECTURE
Suppose that Z(G) is connected. Then there is a labelling

Irre(G) <+ {ps,. | s € G* semisimple , (1 |s|,p € Irrf(Cg-(S))},

such that s ,,(1) = |G*: Cg+(S)|pr p(1)-
Moreover, vs,, can be computed from .

Known to be true for GL,(q) (Dipper-James, 1980s) and if
Cg+(8) is a Levi subgroup of G* (Bonnafé-Rouquier, 2003).
The truth of this conjecture would reduce the computation of
Irre(@G) to unipotent characters.



LUSZTIG’S JORDAN DECOMPOSITION

GENERICITY

Recall that |G| = gV [T, ®i(q)¥, where @; is the ith
cyclotomic polynomial and a; € N.

If | |G| but ¢1q, there is a smallest e < m with a, > 0 such
that ¢ | ®¢(q).

CONJECTURE (GECK)

If ¢ is not too small, there is a natural bijection Irr’(G) « Irrj(G).

In particular, Irrj(G) can be classified independently of g.

CONJECTURE (GENERICITY CONJECTURE)

If ¢ is not too small, the values of the element of Irr/(G) only
depend on e, noton ¢.

This would reduce the computation of Irr/(G) to finitely many
cases: finitely many e < m, finitely many small primes /.



End of Lecture llI.

Thank you for your listening!
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