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Throughout my lecture, G denotes a
finite group and K a field.
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Representations: Definitions

A K-representation of G of degree d is a
homomorphism

X : G → GL(V ),

where V is a d-dimensional K-vector space.

X is irreducible, if V does not have any proper
G-invariant subspaces.

Choosing a basis of V , we obtain a matrix repre-

sentation G → GLd(K) to compute with.
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Representations: Classification

– There are only finitely many irreducible
K-representations of G up to equivalence.

– Classify all irreducible representations of G.

– Describe all irreducible representations of all
finite simple groups.

– Use a computer for sporadic simple groups.
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Representations: Constructions

Representations can be constructed

– from permutation representations,

– from two representations through their
Kronecker product,

– from representations through invariant
subspaces,

– in various other ways.
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Permutation Representations

A permutation representation of G on the finite
set Ω = {ω1, . . . , ωn} is a homomorphism

κ : G → SΩ,

where SΩ denotes the symmetric group on Ω.

Let KΩ denote a K-vector space with basis Ω.

Replacing each κ(g) ∈ SΩ by the corr. linear map
X(g) of KΩ (permuting its basis as κ(g)),

we obtain a K-representation of G.
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Invariant Subspaces

Let X : G → GL(V ) be a K-representation of G.

For v ∈ V and g ∈ G, write v.g := v · X(g).
(V is a right KG-module.)

Let W be a G-invariant subspace of V , i.e.:

w.g ∈ W for all w ∈ W, g ∈ G.

We obtain K-representations

XW : G → GL(W ) and XV/W : G → GL(V/W )

in the natural way.
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All Irreducible Representations

Iterating the constructions, e.g.,

– K-representations from permutation
representations,

– Kronecker products,

– various others,

and reductions via invariant subspaces,

one obtains all irreducible representations of G.
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The Meat-Axe

The Meat-Axe is a collection of programs that
perform the above tasks (for finite fields K).

It was invented and developed by Richard Parker
and Jon Thackray around 1980.

Since then it has been improved and enhanced

by many people, including Derek Holt, Gábor

Ivanyos, Klaus Lux, Jürgen Müller, Sarah Rees,

and Michael Ringe.
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The Meat-Axe: Basic Problems

How does one find a non-trivial proper
G-invariant subspace of V ?

– It is enough to find a vector w 6= 0 which lies
in a proper G-invariant subspace W .

– Indeed, given 0 6= w ∈ W , the orbit
{w.g | g ∈ G} spans a G-invariant subspace
contained in W .

How does one prove that X is irreducible?
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Norton’s Irreducibility Criterion

Let A1, . . . , Al, be (d × d)-matrices over K.

Put A := K[A1, . . . , Al] (algebra span).

Write At for the transpose of A, and
At := K[At

1, . . . , A
t
l].

Let B ∈ A.

Then one of the following occurs:
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Norton’s Irreducibility Criterion

1. B is invertible.

2. There is a non-trivial vector in the (left)
nullspace of B which lies in a proper A-invariant
subspace.

3. Every non-trivial vector in the (left) nullspace
of Bt lies in a proper At-invariant subspace.

4. A acts irreducibly on K1×d.
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The Meat-Axe: Basic Strategy

If G = 〈g1, . . . , gl〉, put Ai := X(gi), 1 ≤ i ≤ l.

Find singular B ∈ A (by a random search) with
nullspace N of small dimension (preferably 1).

For all 0 6= w ∈ N test if w.A = K1×d. (Note that
w.A is G-invariant.) If YES

For one 0 6= w in the nullspace of Bt test if w.At =

K1×d. If YES, X is irreducible.
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The Meat-Axe: Remarks

The above strategy works very well if K is small.

As K gets larger, it gets harder to find a suitable
B by a random search.

Holt and Rees use characteristic polynomials of

elements of A to find suitable Bs and also to re-

duce the number of tests considerably.
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Rob Wilson’s Atlas

A huge collection of explicit representations of
finite groups is contained in Rob Wilson’s WWW
Atlas of Finite Group Representations:

http://web.mat.bham.ac.uk/atlas/v2.0/

These representations have been computed by
Wilson and collaborators, e.g.,

the representation of M of degree 196 882 over F2

by Linton, Parker, Walsh, and Wilson.
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Computations in the Monster

A matrix of M ≤ GL(196 882, 2): 5GB memory

Order of an element: 2 seconds

Wilson: The Monster is a Hurwitz group (2001)
Hurwitz group: (2, 3, 7)-generating system
10 years of CPU time

Holmes and Wilson:

– maximal subgroups of M ,
e.g., PGL(2, 29) (2002), PSL(2, 59) (2004)

– PSL(2, 23), is not maximal (though in M )
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Condensation

The Meat-Axe can reduce representations of
degree up to 50 000 over F2.

Over larger fields, only smaller degrees are
feasible.

To overcome this problem, Condensation is used
(Thackray, Parker, ca. 1980).
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Condensation: Theory

Let A be a K-algebra and e ∈ A an idempotent,

i.e., 0 6= e = e2 (a projection).

Get a functor: mod-A → mod-eAe, M 7→ Me.

If S ∈ mod-A is simple, then Se = 0 or simple.

If Se 6= 0 for all simple S ∈ mod-A,
then this functor is an equivalence of categories.

(A and eAe have the same representations.)
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Condensation: . . . and Practice, I

Let H ≤ G with char(K) - |H|.

Put

e :=
1

|H|
∑

h∈H

h ∈ KG.

Let M := KΩ be the permutation module w.r.t.
an action of G on the finite set Ω.

Then Me is the set of H-fixed points in M .

For g ∈ G, need to describe action of ege on Me.
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Condensation: . . . and Practice, II

Let Ω1, . . . , Ωm be the H-orbits on Ω.

The orbits sums Ω̂j ∈ KΩ form a basis of Me.

W.r.t. this basis, the (i, j)-entry aij of the matrix of
ege on Me equals

aij =
1

|Ωj|
|Ωig ∩ Ωj|.
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Condensation: History
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Condensation: Applications

Benson, Conway, Parker, Thackray, Thompson,
1980: Existence of J4.

Thackray, 1981: 2-modular character table of
McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of
Th modulo 19.
dim(M) = 976 841 775, dim(Me) = 1403.

Müller, Neunhöffer, Röhr, Wilson, 2002: Brauer
trees of Ly modulo 37 and 67.

dim(M) = 1 113 229 656.
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Association Schemes and Condensation

Suppose G acts transitively on Ω;
O1, . . . ,Om: orbits of G on Ω × Ω (orbitals)

S := (O1, . . . ,Om) association scheme on Ω

Oj is a regular graph (on the vertex set Ω);
let Aj denote its adjacency matrix.

B := C[A1, . . . , Am] Bose-Mesner algebra of S

|Ωig ∩ Ωj| structure constants of B, the
intersection numbers of S

(Ωj orbits of H := Stab(ω1) on Ω)
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Foulkes’ Conjecture

Let m ≥ n > 0 be integers.

Sm o Sn ≤ Smn and Sn o Sm ≤ Smn.

Ωm,n: set of cosets of Sm o Sn in Smn.

Conjecture (Foulkes, 1950):

QΩm,n ≤ QΩn,m, as QSmn-modules.
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Foulkes’ Conjecture: Black, List

Black, List, 1989:

– define (0, 1)-matrix Mm,n of size |Ωn,m|× |Ωm,n|

– if Mm,n has maximal rank, than Foulkes’
conjecture holds

– if Mm,m is invertible, than Mm,n has maximal
rank for all n ≤ m

– M 2,2 and M 3,3 are invertible
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Foulkes’ Conj.: Jacob, Müller, Neunh.

Mm,m is an adjacency matrix of the action of Sm2

on the cosets of Sm o Sm.

Use Condensation to compute intersection
numbers.

Size of M 4,4: 16!/(4!)5 = 2 627 625.

Jacob, 2004: M 4,4 is invertible.

Size of M 5,5: 25!/(5!)6 = 5 194 672 859 376.

Müller, Neunhöffer, 2004: M 5,5 is singular.
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Ramanujan Graphs

A k-regular undirected graph Γ with

λ(Γ) ≤ 2
√

k − 1,

is a Ramanujan graph (Lubotzky, Phillips,
Sarnak).

Here,

λ(Γ) = max{|a| | a eigenvalue of A(Γ), |a| < k},

where A(Γ) is the adjacency matrix of Γ.
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Orbital Graphs as Ramanujan Graphs

Suppose G acts transitively on Ω with orbitals
O1, . . . ,Om, adjacency matrices A1, . . . , Am.

The eigenvalues of the Aj can be computed from
the intersection numbers, hence with
Condensation.

If the Bose-Mesner algebra is commutative, these

eigenvalues are entries of its character table.
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Example: G = J2

Ω = G/H with H = 22+4.(3 × S3)

Character table of Bose-Mesner algebra:

J2 A1 A2 A3 A4 A5 A6

χ1 1 192 96 192 12 32

χ2 1 −18 6 2 −3 12

χ3 1 −28 16 12 7 −8

χ4 1 0 −12 12 0 −1

χ5 1 10 −2 −18 5 4

χ6 1 6 6 −6 −3 −4
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Sporadic Ramanujan Graphs

In the above example, the graph O4 is a
192-regular Ramanujan graph on 525 vertices

(since 18 ≤ 2
√

192 − 1 ≈ 27.64).

Ines Höhler, 2001: computed 221 of the 245
character tables of commutative association
schemes occurring in sporadic groups
(Breuer-Lux list).

She found 358 Ramanujan graphs.
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Thank you for your attention!
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