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Abstract

Given a linear (algebraic) group G acting on real or complex n-space,
we determine all the common invariant sets of G-symmetric vector fields.
It turns out that the investigation of certain algebraic varieties is sufficient
to characterize these invariant sets forced by symmetry. Toral, compact
and reductive groups are discussed in some detail, and examples, including
a Couette-Taylor system, are presented.

1 Introduction and preliminaries

In the present paper we discuss ordinary differential equations that are sym-
metric with respect to some linear group G. The aim is to determine and char-
acterize those invariant sets that are common to all G-symmetric differential
equations.

We first fix notation and terminology. Let an ordinary differential equation

ẋ = f(x)(1)

be given on an open subset U of Kn, with K standing for R or C. The indepen-
dent variable t will always be assumed real. Our focus will be on polynomial
vector fields (and U = Kn). Extensions to analytic and formal power series
vector fields are straightforward. We will denote the solution of the initial value
problem ẋ = f(x), x(0) = y (near t = 0) by Φ(t, y) = Φf (t, y) and refer to Φf
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as the local flow of f . For fixed y there is a maximal interval Iy of existence for
Φ(t, y), and the set of all Φ(t, y), with y ∈ Iy, is called the trajectory through y.

We will answer the following principal question: Let G ⊆ GL(n,K) be a
linear group. What invariant sets do necessarily exist for any G-symmetric
polynomial differential equation; in other words, what invariant sets are forced
by the symmetry group?

This question is of interest in its own right, but also a starting point for
further investigations of symmetric vector fields. For compact groups and C∞

vector fields the question was essentially answered e.g. in Field [9], and plays
an important role for instance in Krupa’s [16] investigation of bifurcations of
relative equilibria.

We consider an arbitrary linear algebraic group G acting linearly on n-space.
Requiring linearity of the group action does not impose an essential restriction
for compact groups, cf. e.g. Guillemin and Sternberg [14], or for semisimple
groups, cf. e.g. Kushnirenko [17], in the local analytic setting. Since we are
primarily interested in polynomial or analytic vector fields (in view of compu-
tations), there is also no loss of generality in discussing only algebraic groups.
We note that one drawback seems unavoidable when discussing this broad class
of groups: In contrast to compact group actions, a general extension to infi-
nite dimensional systems seems impossible. (One should mention that certain
noncompact group actions for infinite dimensional systems have been discussed,
and successfully used in applications, by Fiedler et al. [10], Golubitsky et al.
[13], and others. But these results were based on additional assumptions, for
instance compactness of isotropy groups.)

We use some elementary notions and results from Commutative Algebra in
our approach. Our results include a precise characterization of the minimal
invariant sets which are common to all G-symmetric vector fields. As it turns
out, the Zariski closure of such a minimal invariant set is a vector subspace,
and the investigation of common invariant sets amounts to the investigation
of certain algebraic varieties (Theorems 1 and 2). Moreover, if an irreducible
subvariety of such a variety is invariant for all G-symmetric vector fields and is
not a linear space then there exists a common rational first integral for the G-
symmetric vector fields on this subvariety (Theorem 3). We discuss toral groups,
compact groups and reductive groups in some detail, and provide descriptions
of the subspaces spanned by minimal common invariant sets in Propositions 3
and 4, and Theorems 4 and 6. At the end of the paper we present examples,
including a Couette-Taylor system and some low-dimensional representations of
SL(2).

The results of the present paper form a basis for future work, with two prob-
lems to be addressed in particular. First, there exist group representations for
which orbit space reduction via group invariants (see e.g. the survey by Chossat
[5]) is not applicable (when the invariant algebra is not finitely generated) or not
feasible (e.g. when even minimal sets of generators are very large). Here, our
results provide a starting point for alternative reduction approaches, e.g. via
rational functions. Second, the qualitative behavior of symmetric differential
equations on invariant sets, in particular minimal ones, is of special interest,
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in particular for low-dimensional invariant subsets of high-dimensional repre-
sentations. In Proposition 10 we provide a first result (assuming no a priori
knowledge about the structure of symmetric vector fields on the whole space)
concerning the extension of polynomial vector fields on minimal common invari-
ants sets to rational symmetric vector fields on the whole space. This will be
taken up in forthcoming work.

2 General properties and known results

We will assume that equation (1) has polynomial right-hand side and is sym-
metric with respect to a linear group G ⊆ GL(n,K), thus the identities

Tf(x) = f(Tx)(2)

hold for all T ∈ G. In view of polynomiality (or, more generally, analyticity)
of f we may take G to be an algebraic group defined over K, with identity
component G0. Denote the Lie algebra of G by L. We do not require finite
generation of the invariant algebra of G, or of any related modules.

Polynomial differential equations (1) correspond to derivations of the algebra
K [x1, . . . , xn], via assigning to f = (f1, . . . , fn)t the associated Lie derivative

Lf =
∑

fi
∂

∂xi
.

Therefore we will identify f with this element of Der (K [x1, . . . , xn]), and also
speak of f as a vector field. To G-symmetric differential equations there corre-
spond G-invariant derivations, i.e., derivations which commute with the group
action on polynomials. The set of these will be denoted by

DG = DerG (K [x1, . . . , xn]) .

Let us record a few elementary properties, which are easy to prove directly from
the symmetry criterion (2). The first two depend essentially on linearity of the
group action.

Lemma 1. Let f and g be G-symmetric vector fields. Then the composite f ◦g,
the left-symmetric product defined by (f •g)(x) = Dg(x)f(x) and the Lie bracket
[f, g] = f • g − g • f are G-symmetric. In particular the G-symmetric vector
fields form a Lie algebra.

At this point it may be appropriate to remark on terminology. In invariant
theory, maps satisfying (2) are usually called covariant. In the scenario that
we consider (linear group actions on vector spaces) some criteria for maps and
vector fields coincide, and thus most results could be stated for covariant maps
as well as for symmetric vector fields. The actual notations and notions chosen
here reflect the intended applications.

Recall that a subset Y of Kn is called invariant for the polynomial differential
equation (1) if for every y ∈ Y the whole trajectory through y is contained in Y .
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It is obvious that set operations (union, intersection, complement) on invariant
sets produce invariant sets. Moreover, due to continuous dependence the closure,
interior and boundary of an invariant set (with respect to the norm topology)
are also invariant. We are interested in sets that are invariant with respect to
all G-symmetric vector fields.

Definition 1. (a) A set Y ⊆ Kn is called DerG (K [x1, . . . , xn])-invariant (or
DG-invariant) if it is an invariant set for every G-symmetric differential equa-
tion.
(b) Given a DG-invariant set Y and v ∈ Y , we call Y minimal with respect to
v if v ∈ Z for some DG-invariant set Z implies Y ⊆ Z.

Lemma 2. (a) Unions, intersections and complements of DG-invariant sets
are DG-invariant. In particular, for every v ∈ Kn there exists a minimal DG-
invariant set containing v.
(b) The closure, boundary and interior (with respect to the norm topology) of a
DG-invariant set is DG-invariant.
(c) Every connected component (with respect to the norm topology) of a DG-
invariant set is DG-invariant.

Proof. Parts (a) and (b) are immediate from the remarks above. To prove part
(c), note that for any v ∈ Kn, the union of all the trajectories through v of
G-symmetric differential equations is connected.

We record a few more simple and mostly well-known, but useful observations.

Lemma 3. Let H be a (closed) subgroup of G. Then every DH-invariant set
Y is also DG-invariant.

Lemma 4. (a) Let ẋ = f(x) admit the symmetry group G. Then for any T ∈ G
and y ∈ Rn one has

TΦf (t, y) = Φf (t, Ty) for all t.

(b) If Y is invariant for some G-symmetric vector field and T ∈ G then TY is
invariant.

Proof. Since T is a symmetry, TΦf (t, y) is a solution of the differential equation.
At t = 0 this solution attains the value Ty. The second assertion is an obvious
consequence.

Proposition 1. (a) All points on a trajectory of ẋ = f(x) have the same
isotropy subgroup.
(b) Given any (closed) subgroup H of G, the fixed point subspace

Fix(H) := {z : Tz = z for all T ∈ H}

of H is DG-invariant.
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Proof. Both assertions are direct consequences of Lemma 4; for the first asser-
tion note that flows can be reversed.

Corollary 1. Let G be given, and let v ∈ Kn. Then the minimal DG-invariant
set with respect to v is contained in the fixed point subspace of the isotropy group
Gv. (In particular one has f(v) ∈ Fix(Gv) for all G-symmetric vector fields f .)

3 Rank considerations

We first recall some familiar invariance criteria. (See, e.g. [23]. For the reader’s
convenience a proof is given in the Appendix.)

Lemma 5. (a) Given equation (1), let ψ1, . . . , ψr ∈ K [x1, . . . , xn]. If there are
µij ∈ K [x1, . . . , xn] such that

Lf (ψj) =
∑
k

µjkψk, 1 ≤ j ≤ r(3)

then the set Y of common zeros of the ψj is invariant for ẋ = f(x).
(b) A vector subspace W of Kn is invariant for ẋ = f(x) if and only if f(w) ∈W
for all w ∈W .

Next we introduce a class of distinguished invariant sets.

Definition 2. Let G ⊆ GL(n,K).
(a) For v ∈ Kn denote by

εv : DG → Kn, f 7→ f(v)

the evaluation map.
(b) For a nonnegative integer s let

Zs = Zs(G) := {y ∈ Kn : dim(εy(DG)) ≤ s}

and Z∗s+1 := Zs+1 \ Zs.

Remarks. (a) The set εv(DG) is a vector subspace and equal to the set of all
f(v), f symmetric with respect to G. The notation εv is taken from Lehrer and
Springer [18] and Panyushev [20], who discuss covariant maps. The symmetry
condition shows that εv(DG) ⊆ Fix(Gv). Since h(x) = x defines a G-symmetric
vector field, one always has v ∈ εv(DG).
(b) Obviously y ∈ Zs if and only if for all q ≥ 1 and all G-symmetric vector
fields g1, . . . , gq the rank of (g1(y), · · · , gq(y)) is not greater than s. Since the
points satisfying this rank condition can be described as common zero sets of
suitable determinants, one sees that every Zs is Zariski closed. Moreover, y ∈ Zs
satisfies y ∈ Z∗s if and only if there exist G-symmetric vector fields h1, . . . , hs
such that h1(y), . . . , hs(y) are linearly independent in Kn.
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Theorem 1. (a) For every s ≥ 0 the sets Zs and Z∗s+1 are invariant for every
G-symmetric vector field. Moreover, the sets Zs and Z∗s+1 are also invariant
with respect to the group action.
(b) For every y ∈ Kn the subspace εy(DG) is invariant for every G-symmetric
vector field.

Proof. We first prove part (b). For any G-symmetric f and any w ∈ εy(DG) it
suffices to show that f(w) ∈ εy(DG), due to Lemma 5. But there is a g ∈ DG
such that w = g(y), and by Lemma 1 one has f(w) = (f ◦ g)(y) ∈ εy(DG).
Now the DG-invariance of Zs and Z∗s+1 follows by Lemma 2. The group in-
variance is straightforward from the definitions: If g1(y), . . . , gp(y) are lin-
early (in-)dependent then so are g1(Ty), . . . , gp(Ty) for all T ∈ G, due to
gi(Ty) = Tgi(y).

Remark. Essentially, part (a) remains true for (nonlinear) algebraic group ac-
tions on affine varieties Y and G-symmetric vector fields on Y : For every s
the set Zs is DG-invariant. Here, εv should be viewed as a map to the tangent
space to Y at v. The proof works with (s+ 1)× (s+ 1) minors of matrices that
have columns built from the module elements g ∈ DG, and uses the invariance
criterion (3) for their common zero set, viz. Zs, noting that the ideal generated
by all such (s+1)× (s+1) minors is finitely generated by Hilbert’s ”Basissatz”.
The argument is an obvious modification of the proof of Theorem 3.1 in [23].
In this sense, part (a) does not depend on the linearity of the action of G.

The following observation may be seen as a weak finiteness result forG-symmetric
vector fields, for arbitrary G. Moreover, it is of interest even if the invariant
algebra of G and the module of symmetric vector fields are finitely generated.

Proposition 2. There exist finitely many G-symmetric vector fields h1, . . . , hq
such that for every v the space εv(DG) is spanned by h1(v), . . . , hq(v). Given any
G-symmetric f and v ∈ Z∗s there exist rational functions σj which are defined
and G-invariant in a Zariski-open neighborhood of v in Zs such that

f =

q∑
j=1

σjhj

in this neighborhood.

Proof. Given y ∈ Z∗s , by Cramer’s rule there exist symmetric vector fields
gy,1, . . . , gy,s and a Zariski-open neighborhood Uy such that for every v ∈ Uy the
space spanned by g1(v), . . . , gs(v) has dimension s. By quasi-compactness of the
Zariski topology, finitely many of these neighborhoods suffice to cover every Z∗s .
The collection of all the associated vector fields satisfies the desired condition.
For the last assertion, choose a subset I of {1, . . . , q} such that the hj(v) with
j ∈ I form a basis of εv(DG), and set σj = 0 for j 6∈ I. Since the coefficients of
the hj are then uniquely determined, and f and all hj are G-symmetric, the σj
are G-invariant.

6



Remark. This Proposition suggests to think of the DG-invariant sets Zs as the
Zariski-closed invariant sets of “general” G-symmetric polynomial vector fields.
For instance, there is an open and dense subset U∗ ⊂ Kq such that for every v
the vector fields

∑
αjhj(v), with (α1, . . . , αq) ∈ U∗, span εv(DG).

Given a (closed) subgroup H of G and v ∈ Kn, consider the space εv(DH)
which is spanned by all g(v) with H-symmetric g. We note an elementary
property (following from the definitions and Lemma 3) for later use.

Lemma 6. The space εv(DH) is DG-invariant and contains εv(DG).

Thus one has a descending chain

Kn = Zn ⊇ Zn−1 ⊇ · · · ⊇ Z0

of DG-invariant sets, and y ∈ Z∗s is contained in the s-dimensional DG-invariant
vector subspace εy(DG).

Theorem 2. Let y ∈ Z∗r . Then the minimal DG-invariant set with respect
to y is the connected component, in the norm topology, of y in εy(DG) \ Zr−1.
Moreover, εy(DG) is the smallest Zariski-closed DG-invariant set which contains
y.

Proof. It is obviously sufficient to prove the first assertion. Thus let Y be the
minimal DG-invariant set with respect to y.
(i) We already know that Y ⊆ εy(DG); see Theorem 1. Moreover Y ⊆ εy(DG) \
Zr−1, since the latter set is DG-invariant and contains y. Since every connected
component of a DG-invariant set is itself DG-invariant (Lemma 2), Y is con-
nected. Let Y ∗ be the connected component of εy(DG) \ Zr−1 which contains
Y .
(ii) Let v ∈ Y . Then there exists a neighborhood of v in εy(DG) \ Zr−1 which
is also contained in Y . To prove this, let g1, . . . , gr be G-symmetric such that
the gi(v) are linearly independent. Consider the analytic map

Ψ : (α1, . . . , αr) 7→ Φα1g1+···+αrgr (1, v)

which maps some connected neighborhood U of 0 ∈ Kr to εy(DG). From the
series expansion

Ψ(α1, . . . , αr) = v + α1g1(v) + · · ·+ αrgr(v) + o(|α1|, . . . , |αs|)

one sees that the derivative

DΨ(0, . . . , 0) = (g1(v), . . . , gr(v))

has rank r, and therefore induces an analytic diffeomorphism from some (con-
nected) neighborhood of 0 in Kr to a neighborhood of v in εy(DG). By Lemma
2 this neighborhood is contained in Y .
(iii) According to (ii), Y is relatively open in Y ∗. But the same argument shows
relative openness of the complement Y ∗ \ Y , and thus Y = Y ∗ since Y ∗ is
connected.
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Lemma 7. Let G ⊆ GL(n,R) and y ∈ Rn, and consider

εy(DR
G) = {f(y); f : Rn → Rn is G− symmetric} ,

εy(DC
G) = {h(y); h : Cn → Cn is G− symmetric} .

Then the complex space εy(DC
G) is the complexification of the real space εy(DR

G).
In particular the respective dimensions are equal.

Proof. Given any complex G-symmetric vector field, its conjugate is also G-
symmetric. Therefore εy(DC

G) is equal to its complex conjugate subspace, which
implies that if εy(DC

G) is spanned by w1, . . . , wm then it is also spanned by the
real and imaginary parts of the wj . The assertion follows.

Example. Consider the “diagonal” action of SO(3,R) on

R6 =

{
x =

(
u
v

)
: u, v ∈ R3

}
Thus G consists of all block diagonal matrices of the form(

C 0
0 C

)
, C ∈ SO(3).

According to [11], Subsection 2.5, Examples (d) and (e), the module DG is
generated by the elements(

u
0

)
,

(
0
u

)
,

(
v
0

)
,

(
0
v

)
,

(
u× v

0

)
,

(
0

u× v

)
.

Therefore, if u0 and v0 are linearly independent in R3 then for y = (u0

v0
) the

dimension of εy(DG) is equal to 6. If u0 and v0 are linearly dependent but not
both equal to zero then εy(DG) has dimension 2.

This example illustrates the usefulness of Theorem 2 if the module DG is
sufficiently well known. We note the application to SO(3)-symmetric second-
order systems in R3: The only nontrivial invariant sets forced by symmetry are
defined by the condition that position and velocity have the same direction.
(The six-dimensional vector fields corresponding to the second-order systems
are of a particular type, but they generate the full Lie algebra DG, and this is
the relevant structure when discussing common invariant sets.)

Remark. Most of the results obtained thus far also apply to G-symmetric dis-
crete dynamical systems

x(t+ 1) = h(x(t)),

as is to be expected, since the conditions for symmetric vector fields and for
covariant maps correspond: The symmetry criterion (2) also applies to difference
equations, thanks to the linearity of the group action. Thus one may consider
the set of all G-symmetric maps from Kn to itself, which is closed with respect
to vector space operations and composition. Mutatis mutandis, the elementary
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properties from Lemmas 2 (except for the connectedness property), 3 and 4,
and from Proposition 1 and its Corollary hold. The principal result, Theorem 2
needs modification only with respect to connectedness: The minimal invariant
set containing v is, in general, a union of connected components of εv(DG)\Zs−1.

It should be emphasized that the search for arbitrary DG-invariant sets has
been reduced to investigating the algebraic sets εv(DG) and Zs. The next result
elucidates the structure of G-symmetric vector fields on Zs.

Theorem 3. Let Y ⊆ Zs be an irreducible DG-invariant subvariety, and Y ∩
Z∗s 6= ∅. Then either Y = εv(DG) for some v ∈ Y or there exists a nonconstant
rational first integral of DG on Y ; i.e., a nonconstant rational function ψ on Y
such that

Lf (ψ)(x) = 0 for all x ∈ Y and for all f ∈ DG,

whence all level sets of ψ on Y are DG-invariant. In particular, Z∗n = ∅ if and
only if there exists a nonconstant rational first integral for DG on Kn.

Proof. If there exists a nonconstant rational first integral ψ of DG on Y then ψ
is defined on an open and dense subset Ỹ ⊆ Y , and every level set ψ = const.
on Ỹ is DG-invariant. Since every level set has dimension smaller than dimY ,
we see that dim εy(DG) < dimY for all v ∈ Ỹ , hence for all v ∈ Y .

To prove the reverse direction, let v ∈ Y such that dim εv(DG) = s. If
dimY = s then Y = εv(DG) by irreducibility. In the following assume that
dimY > s, and let f1, . . . , fs ∈ DG such that f1(v), . . . , fs(v) are linearly inde-
pendent. In addition, we may take f1(x) = x. By Cramer’s rule, every g ∈ DG
admits a representation

g =

s∑
j=1

αjfj on Y,

with rational functions αj .
Given a matrix with s columns a1, . . . , as ∈ Kn, denote by ∆ = ∆(a1, . . . , as)
any s× s minor of this matrix. Consider the polynomial

ρ(x) := ∆ (f1(x), . . . , fs(x)) ∈ K[Y ].

For any f ∈ DG we have f • fj ∈ DG by Lemma 1, hence

f • fj =

s∑
j=1

αjkfk on Y,

with rational functions αjk. By the product rule and the alternating property
of ∆ one finds

Lf (ρ)(x) =
∑
j ∆ (f1(x), . . . , f • fj(x), . . . , fs(x))

=
∑
j,k αjk(x)∆ (f1(x), . . . , fk(x), . . . , fs(x))

=
∑
j αjj(x)∆ (f1(x), . . . , fj(x), . . . , fs(x))

=
(∑

j αjj(x)
)
ρ(x), all x ∈ Y.
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If ∆1 and ∆2 are minors such that ρ2 6= 0 then

Lf (ρ1/ρ2) =
1

ρ2
2

(ρ2Lf (ρ1)− ρ1Lf (ρ2)) = 0 on Y

and unless ρ1/ρ2 is constant, it is a first integral as asserted.
There remains to show that not all such quotients are constant. Assume, on the
contrary, that for any choice of two s× s minors the quotient will be constant.
Denote the rows of the matrix (f1(x), . . . , fs(x)) by z1(x), . . . , zn(x). We may
assume that z1(v), . . . , zs(v) are linearly independent. Then Cramer’s rule im-
plies the existence of rational functions βjk (actually, quotients of s× s minors)
such that

zj =

s∑
k=1

βjkzk on Y ; all j > s.

If ρ1/ρ2 is constant for every choice of s×s minors then all the βjk are constant.
Now recall that f1(x) = x, hence in particular

xj −
s∑

k=1

βjkxk = 0 on Y, s < j ≤ n.

In other words, Y is contained in an s-dimensional vector subspace of Kn. This
is a contradiction to the assumption dimY > s.

The assumption Y ∩ Z∗s 6= ∅ in this Theorem involves no loss of generality.

4 Diagonalizable groups

In this section we will discuss connected diagonalizable groups. It seems ap-
propriate to fix terminology first. We call a connected algebraic group (real
or complex) an algebraic torus if its complexification is isomorphic to some full
group of r×r diagonal matrices. Equivalently, the complexification is connected
and diagonalizable (see Humphreys [15]). A multiplicative one-parameter group
H ⊆ GL(n,C) is the image of a nontrivial homomorphism γ : C∗ → GL(n,C)
of algebraic groups; thus the matrix of γ(s) with respect to a suitable basis is
diagonal with entries skj , kj ∈ Z, not all zero. By a real (compact) torus we
mean a real algebraic torus which is compact in the norm topology. (There are
other characterizations; see Bröcker and tom Dieck [4].)

Let G be an algebraic torus over C, with Lie algebra L. Then Cn is the
direct sum of weight spaces

Ui := {x : Bx = ωi(B) · x, for all B ∈ L}

for suitable (pairwise distinct) weights ω1, . . . , ωr. We may assume that L con-
sists of diagonal matrices, and we may furthermore assume that the elements of
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Ui are of the form 

0
...
0
zi
0
...
0


; zi ∈ Cdi .

Proposition 3. Let G ⊆ GL(n,C) be an algebraic torus, with notation as
above. Given v ∈ Cn, let

y =

r∑
i=1

yi ∈ εv(DG) (yi ∈ Ui),

with a maximal number s of nonzero terms: yi1 6= 0, . . . , yis 6= 0. Then

εv(DG) = Ui1 + · · ·+ Uis .

In particular one has Z∗n 6= ∅.

Proof. Due to Lemma 5(b) and Theorem 1(b), f(y) ∈ εv(DG) for allG-symmetric
f . Consider, in particular, the linear vector fields that are symmetric with re-
spect to G. According to the assumption above, these are represented by block
diagonal matrices of the form

C :=


C1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 Cr

 , Ci ∈ C(di,di) arbitrary.

Now for any j ∈ {i1, . . . , is} and any zj ∈ Uj there is a matrix Cj such that
Cjyj = zj . This shows that Ui1 + · · · + Uis ⊆ εv(DG). Equality follows from
maximality of the number of nonzero terms for y.

In view of Lemma 7 we also have:

Corollary 2. If G̃ ⊆ GL(n,R) is an algebraic torus then the assertion holds,
mutatis mutandis, for all v ∈ Rn and the real space

εv(DG) = {f(y); f : Rn → Rn is G− symmetric} .

Moreover, in the complex setting one can easily characterize the common
invariant subspaces of all G-symmetric vector fields. We keep the hypotheses
and assumptions from above. The arguments in the proof are quite similar to
those used for Poincaré-Dulac normal forms on invariant manifolds; see Bibikov
[1], and also [22].

11



Proposition 4. Let G ⊆ GL(n,C) be an algebraic torus, with further notation
as in Proposition 3. Moreover, let I = {i1, . . . , is} be a proper nonempty subset
of {1, . . . , r}. Then the subspace

UI := Ui1 + · · ·+ Uis

is invariant for every G-symmetric vector field if and only if the following con-
dition is satisfied: For every k ∈ {1, . . . , r} \ I one has∑

j∈I
mjωj 6= ωk(4)

for all tuples of nonnegative integers mj such that
∑
mj ≥ 1.

Proof. Let e1, . . . , en denote the standard basis, with coordinates x1, . . . , xn,
and let χj be the character corresponding to xj . We will prove the assertion for
the spaces VJ :=

∑
`∈J Ce`. By Proposition 3 this will suffice, since every χj is

among the ωi’s, and vice versa.
The G-symmetric polynomial vector fields are precisely the linear combina-

tions of monomials ∏
1≤i≤n

xmi
i e`(5)

with nonnegative integers mi and 1 ≤ ` ≤ n satisfying∑
miχi = χ`.

Assume that for some k ∈ {1, . . . , n} \ J there are nonnegative integers sj such
that

χk =
∑
j∈J

sjχj ,
∑

sj ≥ 1.

Then the polynomial vector field

g(x) =
∏
j∈J

x
sj
j ek

is G-symmetric, but does not leave VJ invariant.
On the other hand, if condition (4) holds then every G-symmetric vector

monomial (5) maps VJ to itself.

Remark. The proof provides a description of all DG-symmetric vector mono-
mials, and, as noted, every G-symmetric vector field is a linear combination of
these. Likewise, the G-invariants are linear combinations of those monomials
xd11 · · ·xdnn whose exponents satisfy

∑
diχi = 0. This basic observation follows

from the diagonalizability of the group action on spaces of functions resp. vector
fields (see e.g. [22]), and gives rise to an iterative procedure to determine all
monomial invariants and symmetric vector monomials for toral groups. This
procedure is outlined in the Appendix, for the reader’s convenience.
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Corollary 3. Let assumptions and notation be as in Proposition 4. For B ∈ L
and a linear form α on L define

I∗α(B) = {j : 1 ≤ j ≤ r and ωj(B) · α(B) > 0} ,
Iα(B) = {j : 1 ≤ j ≤ r and ωj(B) · α(B) ≥ 0} .

Then UI is DG-invariant both for I = I∗α(B) and for I = Iα(B).

Proof. Let I = I∗α(B) and assume that there are nonnegative integers mj and
some index k 6∈ I such that

∑
mjωj = ωk. Then∑

mjωj(B)α(B) = ωk(B)α(B)

leads to a contradiction, as the left-hand side is > 0 and the right-hand side is
≤ 0. Proposition 4 shows the first assertion. The proof of the second assertion
is similar.

There are some applications which we record for later use.

Proposition 5. Let G ⊆ GL(n,C) be a complex algebraic group.
a) The set of all v such that lims→0 γ(s)v = 0 for some multiplicative one-
parameter subgroup H = {γ(s); s ∈ C∗} is DG-invariant. In addition, if
lims→0 γ(s)v = 0 then lims→0 γ(s)w = 0 for all w ∈ εv(DG).
b) The set of all v such that lims→0 γ(s)v exists for some one-parameter subgroup
H = {γ(s); s ∈ C∗} is DG-invariant. In addition, if lims→0 γ(s)v exists then
lims→0 γ(s)w exists for all w ∈ εv(DG).

Proof. The limit lims→0 s
k exists if and only if k ≥ 0, and lims→0 s

k = 0 if
and only if k > 0. We may assume that the matrix of γ(s) is diagonal, and
consider the generator B = diag (k1, . . . , kn) of this one-parameter group. Then
lims→0 γ(s)v exists (resp., equals 0) if and only if v ∈ UI for I = Iα(B) (resp.
I = I∗α(B)), where α sends B to 1. By Corollary 3 and Lemma 3, the subspace
UI is DH -invariant, hence DG-invariant, hence contains εv(DG) by Theorem 2,
and the proof is finished.

Proposition 6. Let G ⊆ GL(n,C) be the complexification of a real compact

torus G̃ ⊆ GL(n,R), with further notation as in Proposition 3. Then the real
DG̃-invariant subspaces UI ∩Rn correspond to submodules of

∑
Zωj in the fol-

lowing sense:
UI ∩ Rn is DG̃-invariant if and only if∑

j∈I
Zωj ∩ {ω1, . . . , ωr} = {ωj : j ∈ I}

Proof. We may assume that U j = Ur+1−j and

−ωj = ωj = ωr+1−j

13



for 1 ≤ j ≤ r, since all elements of the Lie algebra of G̃ have purely imaginary
eigenvalues. A subspace of Cn is the complexification of some subspace of Rn
if and only if it is pointwise invariant under conjugation. Thus nonzero weights
come in pairs adding to zero, and the criterion in Proposition 4 is equivalent to

ωk 6∈
∑
j∈I

Zωj for k 6∈ I.

Example. Let ` be any positive integer. Then

B` := i · diag (2`, 2`− 2, . . . , 2, 0,−2, . . . ,−2`+ 2,−2`)

spans the Lie algebra of an algebraic torus H which is the complexification of a
real torus H̃, and corresponds to a semisimple element in the complexification
of the irreducible (2` + 1)-dimensional representation of SO(3,R). According
to Proposition 6, and since Z is a principal ideal domain, the DH̃ -invariant
subspaces of Rn are given by

Vk := UI ∩ Rn, I = Ik := i · 2kZ ∩ {i · 2`, . . . , i · 2, 0, i · (−2), . . . , i · (−2`)}

for 0 ≤ k ≤ `. Thus one obtains precisely ` proper DH̃ -invariant subspaces; viz.,

all Vk with k 6= 1. The dimension of Vk is equal to 1 + 2
[
`
k

]
if k > 0.

5 Compact groups

In view of Proposition 1 and Theorem 2 it is natural to investigate the inclusion
εv(DG) ⊆ Fix (Gv). For real compact groups it is known that equality holds
for all v. This is usually proved as a consequence of the Palais slice theorem;
see e.g. Field [9], Lemma A. (The basic idea is also used in Michel [19].) We
provide an elementary proof here, which takes a different approach.

Theorem 4. Let G be a compact subgroup of GL(n,R). Then εy(DG) =
Fix(Gy) for all y ∈ Rn.

Proof. (i) We may assume that G ⊆ O(n,R) and that the norm on Rn is induced
by the G-invariant scalar product. Moreover, let µ denote the Haar measure on
G. Given any C∞ function φ on Rn and any w ∈ Rn, one obtains a G-symmetric
C∞ vector field via

g∗w(x) :=

∫
G

φ(Tx)T−1w dµ(T ).

(ii) Let y ∈ Rn and w ∈ Fix(Gy). Then for every ε > 0 there exists a δ > 0 such
that

||Ty − y|| < δ ⇒ ||Tw − w|| < ε, all T ∈ G.

14



To prove this, assume the contrary. Then there exist some ρ > 0 and a sequence
(T`) in G such that T`y → y as `→∞ but all ||T`w−w|| > ρ. We may assume
that limT` =: T ∗ exists. From

y = limT`y = T ∗y

one sees that T ∗ ∈ Gy. But this implies T ∗w = w; a contradiction.

(iii) Given y ∈ Rn, w ∈ Fix(Gy) and ε > 0, there exists a G-symmetric C∞

vector field gw such that

||gw(y)− w|| < ε.

To see this, choose δ > 0 so that ||Ty − y|| < δ implies ||Tw − w|| < ε for all
T ∈ G, and choose φ as a nonnegative function with support contained in the
ball Bδ(y), with φ(y) = 1. With g∗w as in part (i), define

gw(x) :=
1∫

G
φ(Ty) dµ(T )

· g∗w(x), x ∈ Kn.

Then

gw(y)− w =
1∫

G
φ(Ty) dµ(T )

·
∫
G

φ(Ty)(T−1w − w) dµ(T )

and

||gw(y)− w|| ≤ 1∫
G
φ(Ty) dµ(T )

·
∫
G

φ(Ty)(||T−1w − w||dµ(T ) < ε,

since ||T−1w − w|| < ε whenever φ(Ty) 6= 0.

(iv) Let (w1, . . . , wr) be a basis of Fix(Gy). Then there exists ε > 0 such that
every system (v1, . . . , vr) in Fix(Gy) with ||v1−w1|| < ε, . . . , ||vr−wr|| < ε also
forms a basis of Fix(Gy). According to (iii) there exist G-symmetric C∞ vector
fields g1, . . . , gr such that the gi(y) span Fix(Gy).

(v) According to a theorem by Poénaru [21], the module of G-symmetric C∞

vector fields over the algebra of C∞ G-invariants is generated by polynomial
vector fields.

Remark. At this point it may be appropriate to sketch the relation between the
familiar stratification of Kn by the action of a compact group G and the de-
composition induced by the varieties Zs (see Theorems 1 and 2). For a compact
group G and any v ∈ Kn the subspaces εv(DG) and Fix(Gv) are equal, thus the
smallest Zariski-closed DG-invariant subset which contains v is the fixed point
space of the isotropy group. (For general groups εv(DG) may be a proper subset
of the fixed point space.) For compact G and v ∈ Kn, the stratum of v is by
definition the set of all y ∈ Kn with isotropy subgroup conjugate to Gv. Since
two elements of Kn have conjugate isotropy groups if they lie on the same orbit,
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the stratum contains G · Fix(Gv). Note that Av := G · Fix(Gv) is the small-
est Zariski-closed set which contains v and is both DG-invariant and G-stable.
By properties of algebraic group actions, G · Fix(Gv) is open and dense in Av.
Therefore the closure of the stratum is the union of a (finite) number of sets
Ay. On the other hand, if dim(Fix(Gv)) = r then G · Fix(Gv) is contained in
Z∗r , and so is the stratum. Thus the decomposition into strata may be finer
than the decomposition into the Z∗s , and the G ·Fix(Gv) (resp. the Av) provide
the most refined decomposition. (For general groups this decomposition carries
over to G · εv(DG) and its closure.)

We note a consequence of some practical value for a compact and connected
group G. In order to search for points v with εv(DG) 6= Rn, one may restrict
attention to a maximal torus of G.

Corollary 4. Let G ⊆ GL(n,R) be compact and connected such that Z∗n(G) 6= ∅,
and let H be a maximal torus of G. If v ∈ Zn−1(G) then there exists T ∈ G
such that Tv has nontrivial isotropy in H. Conversely, if w ∈ Zn−1(H) then
Tw ∈ Zn−1(G) for all T ∈ G. In other words,

Zn−1(G) = G · Zn−1(H)

Proof. By Theorem 4 there is an element S ∈ G, S 6= id such that Sv = v. By
Bröcker and tom Dieck [4], Theorem IV.1.6, S lies in a maximal torus, which
in turn is conjugate to H. Thus TST−1 ∈ H for a suitable T ∈ G, and TST−1

fixes v. This proves the inclusion ”⊆”. The reverse inclusion is elementary:
For T ∈ G and w ∈ Kn one has εTw = Tεw, hence by Lemma 6 one finds for
w ∈ Zn−1(H):

εTw(DG) ⊆ εTw(DH) ⊆ Tεw(DH) 6= Kn.

Recall that Zn−1(H) can be determined in a systematic and relatively easy
manner (Proposition 6). But the description above does not directly provide
defining equations for Zn−1(G).

Example. We continue the example at the end of Section 4, with the irreducible
(2`+1)-dimensional representation G of SO(3,R). The Lie algebra of a maximal

torus H̃ is spanned by

B` := i · diag (2`, 2`− 2, . . . , 2, 0,−2, . . . ,−2`+ 2,−2`) ,

and the nontrivial DH̃ -invariant subspaces are just V0, V2, . . . , V`. Now assume
` > 2. One obtains DG- invariant subsets G · Vk, of dimension ≤ 3 + `, since
dimVk = 1 + 2 [`/k], G is three-dimensional and the stabilizer of Vk contains
H. Therefore Z∗2`+1 6= ∅, and by Corollary 4, Z2` is just the union of the G ·Vk,
k 6= 1.

There is a shortcut to determine the varieties Zs for a compact group G
from those of the connected identity component G0.
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Proposition 7. Let G 6= G0 be compact.
(a) There exist homogeneous polynomials φ1, . . . , φr which generate the invariant
algebra of G0 and are K-linearly independent, such that the vector space Kφ1 +
· · ·+ Kφr is stable with respect to the G action. Define

Φ =

 φ1

...
φr


Then for every T ∈ G there exists a unique T̃ ∈ GL(r,K) such that the identity

Φ(Tx) = T̃Φ(x)

holds. T̃ depends only on the class of T mod G0, thus one has an induced action
of G/G0 on Kr.
(b) If Sv = v for some S ∈ G then S̃Φ(v) = Φ(v), and conversely. Thus the
image of Fix (Gv) is equal to the fixed point space of (G/G0)Φ(v).
(c) The following equality holds:

εv(DG) = εv(DG0) ∩
{
x : S̃Φ(x) = Φ(x), for all S̃ ∈ Gv/(G0 ∩Gv)

}
.

Proof. For every T ∈ G and every homogeneous G0-invariant φ, φ ◦ T is a
G0-invariant which is homogeneous of the same degree. Given a homogeneous
system of generators φ1, . . . , φs for the invariant algebra of G0, the φj ◦T , T ∈ G
will therefore span a finite dimensional vector space. Extending the system
φ1, . . . , φs to a basis of this vector space will yield a system φ1, . . . , φr that
satisfies part (a). Moreover this system separates G0-orbits, due to compactness.

The nontrivial assertion of part (b) follows: If S̃Φ(v) = Φ(v) for some S ∈ G
then, due to the separation property, Sv is on the same G0-orbit as v, thus
Sv = Tv for some T ∈ G0, whence S−1Tv = v.

6 Reductive groups

This section is devoted to extending some of the results for compact groups
to complex or real reductive groups. (Recall that the complexification of a
real compact group is reductive.) For reductive groups one cannot expect the
equality εy(DG) = Fix(Gy) to hold for all y. Counterexamples exist even for
algebraic tori.
Example. Let G consist of all diagonal matrices with entries a, a2, a3, with
a ∈ C∗. The remark following Proposition 4 shows that DG is generated by the
vector fields x1

0
0

 ,

 0
x2

0

 ,

 0
x2

1

0

 ,

 0
0
x3

 ,

 0
0

x1x2

 ,

 0
0
x3

1

 .

17



Consider v = (0, 1, 1)tr: Since a2 = a3 = 1 implies a = 1, one has Fix(Gv) = C3,
whereas the image of εv is two-dimensional.

But for reductive groups there exists a good criterion for surjectivity of the
evaluation map.

Theorem 5. (Panyushev [20].) For a complex reductive group G, the evaluation
map

εv : DG → Fix (Gv), f 7→ f(v)

is surjective, and thus equality εv(DG) = Fix (Gv) holds, whenever the Zariski
closure of the orbit G · v is a normal variety and G · v \ G · v has codimension
> 1 in G · v. In particular equality holds when the orbit of v is Zariski closed.

Proposition 8. (Hilbert-Mumford criterion; Birkes [2], Theorem 4.2.) Let
G ⊆ GL(n, C) be reductive, and v ∈ G such that the orbit Gv is not closed.
Then there exists a nontrivial multiplicative one-parameter group {γ(s); s ∈ C∗}
such that lims→0 γ(s)v exists.

Remark. Due to Proposition 5 the set of all v which satisfy such a limit condition
for some multiplicative one-parameter subgroup is DG-invariant.

We obtain a precise description of Z∗n for complex reductive groups.

Theorem 6. Let G ⊆ GL(n, C) be reductive, and Z∗n 6= ∅. Then for all v ∈ Cn
the following hold:
a) If the orbit G · v is closed and Gv is trivial then v ∈ Z∗n.
b) If G ⊆ SL(n, C) and v ∈ Z∗n then G · v is closed and Gv is trivial.

Proof. The proof of part a) is immediate from Panyushev’s theorem: Since the
orbit of v is closed, one has εv(DG) = Fix (Gv), and εv(DG) = Kn from trivial
isotropy.

To prove part b), we first show that G · v is closed. Assume that this is not
the case. Then by the Hilbert-Mumford criterion there is a nontrivial multi-
plicative one-parameter group {γ(s); s ∈ C∗} such that lims→0 γ(s)v exists. By
Proposition 5, lims→0 γ(s)w exists for all w ∈ εv(DG) = Kn. Thus, if

γ(s) = diag(sk1 , . . . , skn); ki ∈ Z

(as may be assumed) then all ki ≥ 0 and
∑
ki > 0; a contradiction to γ(s) ∈

SL(n).
By Theorem 5, again, one has Kn = εv(DG) = Fix (Gv) and therefore Gv is
trivial.

For real reductive groups Panyushev’s theorem has the following conse-
quence:

Theorem 7. Let G ⊆ GL(n,R) be reductive, with complexification CG, and
let y ∈ Rn such that the G-orbit of y is closed in the norm topology. Then the

CG-orbit of y is Zariski closed and

εy(DG) = Fix ((CG)y ∩G) .
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Proof. Zariski-closedness of the orbit follows from Birkes [2], Corollary 5.3, and
then surjectivity of the map εy follows from Theorem 5.

Example. In general one has Gy 6= ((CG)y ∩G). Let

G =
{

diag(a3, a, a−1, a−3) : a ∈ R∗
}

and v = (1, 0, 0, 1)t. Then CG is defined by the same conditions with a ∈ C∗.
The isotropy groups are defined by the condition a3 = 1. This forces trivial
isotropy (and Fix(Gv) = R4) in the real case, while one may let a be a primitive
third root of unity and obtain a two-dimensional fixed point space for CG.

We close this section with some remarks on a natural extension problem:
Given G ⊆ GL(n,K) and a DG-invariant variety Y , under what circumstances
can a polynomial vector field f̃ on Y be extended to a G-symmetric vector
field on Kn? This is of special interest for low-dimensional DG-invariant sets of
high-dimensional systems, for which a complete discussion is not feasible.

The following necessary condition is obvious: Let H ⊆ G be the stabilizer
subgroup of Y . The restriction of a G-symmetric vector field on Kn to Y has
symmetry group H|Y , and therefore f̃ must admit this symmetry group.

If G is reductive and the variety Y is also G-stable then H = G and the
above condition is also sufficient. See e.g. the Lemma in Panyushev [20] for the
following well-known result.

Proposition 9. Let G ⊆ GL(n,K) be reductive, and Y a G-stable subvariety
of Kn. Then every G-symmetric polynomial vector field on Y extends to a G-
symmetric polynomial vector field on Kn.

If Y is not G-stable then, in general, H-symmetry is not even sufficient to
ensure well-definedness of an extension as a map. Let W ⊆ Kn be an irreducible
affine DG-invariant subvariety, and f̃ : W → Kn a polynomial vector field.
(Linear subspaces are of particular interest, due to Theorem 2 and Proposition
1.) Let V be the Zariski closure of G ·W and note that G ·W contains a Zariski-
open and dense subset of V . If there is an extension f of f̃ to a G-symmetric
vector field on V then necessarily the following well-definedness condition holds:

If w ∈W, T ∈ G are such that Tw ∈W then f̃(Tw) = T f̃(w).(6)

As one easily verifies, this condition is necessary and sufficient for the existence
of a G-symmetric extension map f : G ·W → Kn of f̃ , which must be given by

f(Tx) = T f̃(x), x ∈W, T ∈ G.(7)

The problem is to decide whether (7) defines a polynomial f . Without further
assumptions, the following result seems to be the best possible.

Proposition 10. Let G be connected, let W be an irreducible affine subvariety,
and f̃ : W → W a polynomial vector field which satisfies the well-definedness
condition (6). Then there exists a rational G-symmetric vector field f on the
Zariski closure V of G ·W such that f |W = f̃ .
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Proof. The map
Φ : G×W → V, (T, x) 7→ Tx

is a dominant morphism of irreducible varieties by construction. Now consider

F : G×W → Kn, F (T, x) := T f̃(x).

By the well-definedness condition (6), this map is constant on the fibers of Φ.
According to a theorem by Chevalley cited by Borel [3] (Proposition on p. 43),
applied to every entry of F , there exists a rational f on V such that F = f ◦Φ; in
other words, T f̃(x) = f(Tx) for all T ∈ G and all x in a nonempty Zariski-open
subset of W .

Remarks. (a) Condition (6) forces f̃ to be symmetric with respect to the stabi-
lizer subgroup H of W .
(b) Condition (6) forces all intersections of W with isotropy fixed point sub-
spaces of Kn to be f̃ -invariant. Indeed, Tv = v for T ∈ G, v ∈ W implies
T f̃(v) = f̃(v). It is not clear whether the analogous statement for the sub-
spaces εv(DG) holds generally.
(c) In case y ∈ W := Fix(Gv) for some v, one can characterize the group ele-
ments T which satisfy the premise of (6): One has y ∈W if and only if Gv ⊆ Gy.
In view of GTy = TGyT

−1, one sees that Ty ∈W is equivalent to

T−1GvT ⊆ Gy.

In case Gy = Gv this condition characterizes the normalizer of Gv, and is
equivalent to T (W ) = W .

7 Examples

7.1 Couette-Taylor symmetry

The previous sections provide, among other results, the tools to discuss groups
with toral identity component, such as the symmetry group G of a Couette-
Taylor system. While this system has been studied extensively, it may be of
some interest to see that and how our approach facilitates computations and
increases transparency. Our aim is not to discuss a particular system but to
investigate the invariant sets of a general system admitting the symmetry group.
(See the Remark following Proposition 2.) We will show that all the relevant
information can be obtained in a few pages, starting from scratch.

The Couette-Taylor system under consideration here lives on a six-dimensi-
onal real phase space. (We follow the presentation and notation in Gatermann
[12], Ch. 4.) Via complexification one turns to to C6, with coordinates denoted
by z0, . . . , z5, and the real phase space V is defined by zi+3 = zi for 0 ≤ i ≤
2. The connected identity component G0 of the symmetry group G is a two-
dimensional torus whose Lie algebra L is spanned by iC1 and iC2, with

C1 := diag (1, 2, 0, −1, −2, 0)

C2 := diag (0, 1, 1, 0, −1, −1) .
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The full group is generated by G0 and the involution (”reflection”) R which
exchanges z0 and z3, z1 and z2, z4 and z5, respectively. All conjugates of R are
also involutions, with three-dimensional fixed point spaces.

Proposition 11. (a) The invariant algebra of G0 is generated by

ψ1 = z1z4, ψ2 = z2z5, ψ3 = z0z3, ψ4 = z2
0z2z4, ψ5 = z1z

2
3z5

with the single relation ψ4ψ5 − ψ1ψ2ψ
2
3 = 0. On the real subspace V one has

ψk = ψk, 1 ≤ k ≤ 3;

ψ4 = ψ5.

(b) A vector field is G0-symmetric if and only if it has the form

f(z) =


σ1 · z0 + σ2 · z1z3z5

σ3 · z1 + σ4 · z2
0z2

σ5 · z2 + σ6 · z1z
2
3

σ7 · z3 + σ8 · z0z2z4

σ9 · z4 + σ10 · z2
3z5

σ11 · z5 + σ12 · z2
0z4


with the σj polynomials in ψ1, . . . , ψ5. The vector field stabilizes the real subspace
V if and only if σ6+j = σj on V , 1 ≤ j ≤ 6.

Proof. This is a straightforward consequence of the remark following Proposition
4 (see also the Appendix). We sketch only the computations for the invariants,
starting with the invariants of C2. A monomial

zm0
0 · · · zm5

5

is invariant for C2 if and only if

m1 +m2 −m4 −m5 = 0.

Therefore (compare the 1 : 1 - resonance, e.g. in [22]) a generator system for
the invariant algebra of C2 is given by

φ1 := z0; φ2 := z3; φ3 := z1z4; φ4 := z1z5; φ5 := z2z4; φ6 := z2z5.

The φj are mapped to scalar multiples of themselves by LC1
; one finds

LC1

(
φd11 · · ·φ

d6
6

)
= (d1 − d2 + 2d4 − 2d5) · φd11 · · ·φ

d6
6

hence G0-invariant monomials in the φj are characterized by

d1 − d2 + 2d4 − 2d5 = 0.

(This corresponds to the 1 : 2 - resonance; see e.g. [22]) . Thus we obtain
generators

φ3; φ6; φ1φ2; φ2
1φ5; φ2

2φ4,
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since φ4φ5 = φ3φ6 may be discarded. The remaining computations are similar.
The assertion about vector fields stabilizing the real subspace V follows from the
necessary and sufficient condition that any entry with index j + 3 must have a
value conjugate to the entry with index j when applied to an element of V .

Corollary 5. The nontrivial invariant subspaces of V common to all real vector
fields with G0 symmetry are given by

Y1 := {z ∈ V ; z0 = z3 = 0} ;
Y2 := {z ∈ V ; z0 = z3 = z1 = z4 = 0} ;
Y3 := {z ∈ V ; z0 = z3 = z2 = z5 = 0} ;
Y4 := {z ∈ V ; z1 = z4 = z2 = z5 = 0} .

Proof. We use the criterion in Proposition 6. Thus let the weights ωj on L be
defined by

ω1(C1) = 1, ω1(C2) = 0,
ω2(C1) = 2, ω2(C2) = 1,
ω3(C1) = 0, ω3(C2) = 1.

Since ω2 and ω3 are not contained in Z · ω1, one finds invariance of Y4; and
invariance of Y3 and Y2 follow by consideration of Z ·ω2 and Z ·ω3, respectively.
The relation 2ω1 − ω2 + ω3 = 0 shows that ω2 ∈ Z · ω1 + Z · ω3 as well as
ω3 ∈ Z · ω1 + Z · ω2; hence no nontrivial DG0 -invariant subspaces correspond to
these submodules. But ω1 6∈ Z · ω2 + Z · ω3 shows the invariance of Y1.

Now we turn to the full group G. The reflection R acts on G0-invariants as
follows:

ψ1 ◦R = ψ2; ψ3 ◦R = ψ3; ψ4 ◦R = ψ5.

Thus Kψ1 + · · · + Kψ5 is stable with respect to this action. We define for a
polynomial σ in five variables:

σ∗(ψ1, . . . , ψ5) := σ(ψ2, ψ1, ψ3, ψ5, ψ4);

in other words, σ∗ = σ ◦ R̃.

Proposition 12. A vector field is G-symmetric if and only if it has the form

f(z) =


σ1 · z0 + σ2 · z1z3z5

σ3 · z1 + σ4 · z2
0z2

σ∗3 · z2 + σ∗4 · z1z
2
3

σ∗1 · z3 + σ∗2 · z0z2z4

σ9 · z4 + σ10 · z2
3z5

σ∗9 · z5 + σ∗10 · z2
0z4


The vector field stabilizes the real subspace V if and only if

σ∗1 = σ1, σ∗2 = σ2;
σ9 = σ3, σ10 = σ4

hold on V .
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Proof. If f is G0-symmetric then f + R−1 ◦ f ◦ R is G-symmetric, and every
G-symmetric vector field is obtained in this way. All assertions now follow from
routine calculations.

Proposition 13. The set

Y5 := {w ∈ V ; ψ1(w) = ψ2(w) and ψ4(w) = ψ5(w)}

is invariant for every G-symmetric (real) vector field. Moreover Gv is not a
subset of G0 only if v ∈ Y5, which is the union of the three-dimensional fixed-
point spaces of R and its conjugates; thus Y5 ⊆ Z3.

The varieties Zs are determined from Y1, . . . , Y5 and unions and intersections
of these sets.

Proof. The subspace Kψ1 + · · ·Kψ5 is G/G0-invariant; now apply Proposition
7 and Theorem 2.

The fixed point spaces of the conjugates of R and their intersections with Y4

resp. Y1 are determined by straightforward computations: For v ∈ Y5 one finds

Cv := {z ∈ V ; z0v3 = z3v0, z1v2 = z2v1, z4v5 = z5v4}
Bv := {z ∈ V ; z0v3 = z3v0, z1 = z2 = z4 = z5 = 0}
Av := {z ∈ V ; z0 = z3 = 0, z1v2 = z2v1, z4v5 = z5v4}

In particular the fixed point space of R equals Cv with v0 = · · · v5 = 1.

Since Y1 through Y4 are also group invariant, the dynamics of G-symmetric
vector fields on these spaces is straightforward. As for Y5, the situation is
different, but it is sufficient to consider Y ∗5 := Y5 \(Y1∪Y4). Note that all zi 6= 0
on Y ∗5 . The following result gives a complete characterization of their structure.

Proposition 14. The restriction of every G-symmetric differential equation to
Y ∗5 = Y5 \ (Y1 ∪ Y4) admits the first integrals z3/z0, z2/z1 and z4/z5. One may
rewrite the differential equation in the form

ż0 = (τ1 + ρ1τ2) z0

ż1 = (τ3 + ρ2τ4) z1

ż2 = (τ3 + ρ2τ4) z2

ż3 = (τ1 + ρ1τ2) z3

ż4 = (τ9 + ρ3τ10) z4

ż5 = (τ9 + ρ3τ10) z5.

with polynomials τk depending on ψ1, ψ3, ψ4 only, and τ1 = τ1, τ2 = τ2, τ9 = τ3

and τ10 = τ4, and

ρ1 = z1z3z5/z0 = z0z2z4/z3

ρ2 = z2
0z2/z1 = z1z

2
3/z2

ρ3 = z2
3z5/z4 = z2

0z4/z5,
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On a level set z3/z0 = α1, z2/z1 = α2 and z4/z5 = α3 of the first integrals one
has ψ4 = α2/α1 · ψ1ψ3, and

ρ1 = α1α3ψ1, ρ2 =
α2

α1
ψ3, ρ3 =

α3

α1
ψ3,

which shows that the system on the level set is reducible to a two-dimensional
system by (ψ1, ψ3)tr.

Proof. The first integrals can be determined as in the proof of Theorem 3: From
Proposition 12 one obtains, for instance, module elements

0
z1

z2

0
0
0

 ,


0
0
0
0
z4

z5

 ,


0

z2
0z2

z1z
2
3

0
0
0

 .

On Y5 ⊆ Z3 we consider 3 × 3 minors of the matrix with these columns. The
minor with rows 1, 2 and 4 equals z2

1z
2
3z4, while the minor with rows 1, 2 and

5 equals z2
1z

2
3z5. Their quotient z4/z5 is a first integral. The remaining first

integrals are obtained similarly. Moreover, on Y5 one has ψ1 = ψ2 and ψ4 = ψ5,
and on Y ∗5 this implies

z2
1z

2
3z4z5 = z2

0z
2
2z4z5 ⇒ z2

1z
2
3 = z2

0z
2
2

by cancellation. By this and similar computations the identities asserted for the
ρi hold.
From the first integral z0/z3 one obtains additional conditions on the polyno-
mials in Proposition 12: On Y ∗5 one has

0 = z3 · (σ1z0 + σ2z1z3z5)− z0(σ∗1z3 + σ∗2z0z2z4)
= (σ1 − σ∗1)z0z3 + (σ2 − σ∗2)z1z

2
3z5

which implies σ1 = σ∗1 and σ2 = σ∗2 on Y ∗5 and on Y5. Similarly one finds σj =
σ∗j for the remaining indices. The assertions now follow from straightforward
computations.

Remark. One may compare these results to the list of isotropy fixed point spaces
in Gatermann [12], Table 4.5. (This table, as usual, lists representatives modulo
conjugation.) The first item in this list corresponds to {0}, the second item to
Bv with v = (1, 1, 0, . . . , 0)tr. Item 3 corresponds to Y2 and Y3, while item 4
corresponds to Av with v = (0, 1, 1, 0, 1, 1)tr. Both items 5 and 7 correspond to
Cv, with v = (1, 1, 1, 1, 1, 1)tr resp. v = (i, 1, 1,−i, 1, 1)tr. Item 6 corresponds
to Y1, and the last item corresponds to V . The approach taken here seems
more transparent and avoids nontrivial as well as unpleasant tasks such as the
determination of all isotropy subgroups.
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7.2 Representations of SL(2)

The representations of SL(2) are well-understood: For every dimension d there
is one and only one irreducible representation, up to isomorphism, which can be
realized by the linear action on forms of degree d−1 in two variables. Elliott [8]
is a classical source. We will recall some facts on irreducible representations, for
the reader’s convenience and also to fix notation (which is not standardized).

We consider the space of forms of degree d− 1 in two variables u and v with
basis

e1 := ud−1, e2 := ud−2v, . . . , ed := vd−1.

(This differs from Elliott by some scaling factors, but is compatible with Cush-
man and Sanders [7], and also with [11], from which we will quote some results.)
The action of SL(2) on forms is as follows:(

a b
c d

)
acts via

{
u 7→ du− bv
v 7→ −cu+ av

(8)

We will denote by G the group of matrices which represent this action with
respect to the basis e1, . . . , ed.

With increasing dimension the generators and relations even for the invariant
algebra become intractable. In this subsection we will discuss low-dimensional
irreducible representations, viz., the four-dimensional and the five-dimensional
irreducible representation. Both of these have been thoroughly investigated by
Elliott [8], p. 97 ff. and p. 213 ff.. (See also Cushman and Sanders [7], from which
invariants and covariants are taken.) But some properties of symmetric vector
fields, their invariant sets and the extension problem seem worth mentioning.

A. First, we consider the four-dimensional irreducible representation of SL(2)
(see also [11], Example 2.5 (c)). The invariant algebra is generated by

φ = 18x1x2x3x4 − 27x2
1x

2
4 − 4x1x

3
3 + x2

2x
2
3 − 4x3

2x4,

and the module of symmetric vector fields is generated by

f1(x) = x, f2(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)


with

ψ1(x) = −27x2
1x4 + 9x1x2x3 − 2x3

2,
ψ2(x) = −27x1x2x4 + 18x1x

2
3 − 3x2

2x3,
ψ3(x) = 27x1x3x4 + 3x2x

2
3 − 18x2

2x4,
ψ4(x) = 27x1x

2
4 + 2x3

3 − 9x2x3x4.

Therefore C4 = Z2, and from Theorem 3 one can determine rational first inte-
grals. Computing the minors of (f1(x), f2(x)) one obtains, for instance,

det

(
x1 ψ1

x2 ψ2

)
= 2(3x1x3 − x2

2)2,
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and continuing one finds by straightforward computations that Z1 is the two-
dimensional variety defined by ρ1(x) = ρ2(x) = ρ3(x) = 0, with

ρ1 : = 3x1x3 − x2
2

ρ2 : = 9x1x4 − x2x3

ρ3 : = 3x2x4 − x2
3

and that every G-symmetric system admits rational first integrals ρi/ρj .
By Proposition 8, Proposition 5 and the fact that all semisimple elements

of L are conjugate to a scalar multiple of B, the null cone (the zero set of φ)
is equal to {G · x : x3 = x4 = 0}. Every element v not in the null cone has
closed orbit (Proposition 8), whence the minimal DG-invariant subspace equals
the fixed point space of Gv by Panyushev’s theorem.

Modulo the ideal generated by the ρi one has x2
2 ≡ 3x1x3 and x2

3 ≡ 3x2x4,
hence

φ ≡ 18x1x2x3x4 − 27x2
1x

2
4 − 4x1x

3
3 + 3x1x

3
3 − 12x1x2x3x4

≡ x1

(
6x2x3x4 − 27x1x

2
4 − x3

3

)
≡ x1

(
3x2x3x4 − 27x1x

2
4

)
≡ −3x1x4ρ2 ≡ 0

Therefore Z1 is contained in the null cone, the subspace εv(DG) is two-dimensional
for every v not in the null cone, and equals the level set of (ρi−1/ρi, ρi+1/ρi)
provided that ρi(v) 6= 0 (with indices modulo 3).

As a representative for a two-dimensional subspace contained in the null
cone consider the DG-invariant space Y defined by x3 = x4 = 0. We will discuss
the well-definedness condition (6). If 0 6= w = (σ, τ, 0, 0)tr ∈ Y and T ∈ G
then Tw ∈ Y is equivalent to

b2(−bσ + aτ) = 0 and 3b2dσ − (b2c+ 2abd)τ = 0.

In any case, this forces b = 0, and therefore Tw ∈ Y if and only if T is an
element of the stabilizer Ĝ of Y , which is characterized by the condition b = 0.
A differential equation on Y is Ĝ-symmetric if and only if it is as follows, with
constants α and β:

ẋ1 = αx1 − 2βx3
2

ẋ2 = αx2

Inspection shows that every such equation can be extended to a G-symmetric
differential equation on C4.

As a representative for a two-dimensional DG-invariant subspace not con-
tained in the null cone consider the common zero set W of ρ1 and ρ3, which is
obviously determined by x2 = x3 = 0. Again we consider the extension problem
and the compatibility condition. If 0 6= w = (σ, 0, 0, τ)tr ∈W and T ∈ G then
Tw ∈W is equivalent to(

−3bd2 3ac2

3b2d −3a2c

)(
σ
τ

)
=

(
0
0

)
.
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Elements of the stabilizer Ĝ of W are therefore characterized by either b = c = 0
(and ad = 1) or a = d = 0 (and bc = −1). The Ĝ-symmetric differential
equations on W are given by

ẋ1 =
(
µ(x2

1x
2
4) + x1x4ν(x2

1x
2
4)
)
x1

ẋ4 =
(
µ(x2

1x
2
4)− x1x4ν(x2

1x
2
4)
)
x4

with arbitrary polynomials µ and ν in one variable. In this case, there exist
T /∈ Ĝ which send some nonzero element of W to W : Indeed, the determinant
of the matrix in the defining condition is equal to 9abcd, and therefore every
T with one entry zero works. For a corresponding w, one the other hand, one
always finds σ = 0 or τ = 0, and condition (6) for such T and w turns out to

be satisfied by every Ĝ-symmetric vector field on W . Again, inspection shows
that every such vector field is the restriction of some G-symmetric vector field
on C4.

B. Second, we consider the five-dimensional irreducible representation of SL(2),
using results on invariants from [7] and the procedure outlined in [11]. The
invariant algebra is generated by the two polynomials

φ1 = 12x1x5 − 3x2x4 + x2
3

φ2 = 72x1x3x5 − 27x1x
2
4 − 2x3

3 − 27x2
2x5 + 9x2x3x4,

and the module of DG-invariant vector fields is generated by the two elements

f1(x) = x; f2(x) =


8x1x3 − 3x2

2

24x1x4 − 4x2x3

48x1x5 + 6x2x4 − 4x2
3

24x2x5 − 4x3x4

8x3x5 − 3x2
4


Therefore C5 = Z2. From the minors of (f1(x), f2(x)) one finds the polynomials

ρ1(x) = 4x3x4x5 − x3
4 − 8x2x

2
5

ρ2(x) = −2x2x4x5 + 4x2
3x5 − x3x

2
4 − 16x1x

2
5

ρ3(x) = −8x1x4x5 + 4x2x3x5 − x2x
2
4

ρ4(x) = −x1x
2
4 + x2

2x5

ρ5(x) = 8x1x2x5 − 4x1x3x4 + x2
2x4

ρ6(x) = 2x1x2x4 − 4x1x
2
3 + x2

2x3 + 16x2
1x5

ρ7(x) = −4x1x2x3 + x3
2 + 8x2

1x4

whose common zero set is the three-dimensional variety Z1, and which provide
rational first integrals ρi/ρj . By Proposition 8, Proposition 5 and the fact that
all semisimple elements of L are conjugate to a scalar multiple of B, the null
cone (the common zero set of φ1 and φ2) is equal to {G ·x : x3 = x4 = x5 = 0},
and the set of elements which satisfy the conclusion of Proposition 8 is equal
to {G · x : x4 = x5 = 0}. Every element v not in this set has closed orbit,
whence the minimal DG-invariant subspace equals the fixed point space of Gv
by Panyushev’s theorem.
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We also discuss the dynamics on some DG-invariant subspaces. All elements
on W1 = {x : x4 = x5 = 0} satisfy the conclusion of Proposition 8, and the
restriction of any symmetric differential equation to W1 is ”triangular”, thus

ẋ1 = µ1(x1, x2, x3)
ẋ2 = µ1(x2, x3)
ẋ3 = µ1(x3)

with suitable µi. On the other hand, the restriction of a G-symmetric differential
equation to W2 = {x : x2 = x4 = 0} has the form

ẋ1 = σ · x1 + τ · 8x3x1

ẋ3 = σ · x3 + τ · (48x1x5 − 4x2
3)

ẋ5 = σ · x5 + τ · 8x3x5

with polynomials σ and τ in φ1 and φ2 (restricted to W2). The identity compo-

nent Ĝ0 of the stabilizer subgroup of W2 consists of all transformations induced
by the diag(a, a−1) ∈ SL(2), and therefore is one-dimensional. By (φ1, φ2)
one obtains reduction to dimension two. If one considers the minimal sub-
space εv(DG), e.g. for v = e1 + e5, one finds that it is two-dimensional with
finite stabilizer subgroup. Therefore symmetry induces no further reduction of
dimension.

Finally, we look at the DG-invariant one-dimensional space V = 〈e3〉. By a
straightforward calculation, an element of G maps a nonzero element of V to V
if and only if either b = c = 0 (and ad = 1) or a = d = 0 (and bc = −1). The

same condition defines the stabilizer subgroup Ĝ of V . Moreover the restriction
of Ĝ acts trivially on V , whence every vector field on V is Ĝ|V -symmetric.
Since nonzero constant vector fields on V cannot be extended to G-symmetic
vector fields on C5, the symmetry condition alone on V is not sufficient for
extendability. But the compatibility condition (6) also implies that T f̃(0) =
f̃(0) for all T ∈ G, and therefore {0} is an invariant set for every extendable
vector field. Inspection shows that every vector field on V which stabilizes 0 is
the restriction of some G-symmetric vector field on C5.

Appendix

A. Proof of Lemma 5. Given ψ1, . . . , ψr ∈ K [x1, . . . , xn] and µij ∈ K [x1, . . . , xn]
such that

Lf (ψj) =
∑
k

µjkψk, 1 ≤ j ≤ r

we have to show that the set Y of common zeros of the ψj is invariant for
ẋ = f(x). Thus let v ∈ Y , and abbreviate z(t) = Φ(t, v). Then for 1 ≤ j ≤ r
one has

d

dt
ψj(z(t)) = Lf (ψj)(z(t) =

∑
k

µjk(z(t))ψk(z(t))
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and thus (ψ1(z(t)), . . . , ψr(z(t)))
tr

satisfies a homogeneous linear system of dif-
ferential equations with matrix (µjk(z(t))) and initial value 0. By the uniqueness
theorem, this solution is identically zero, whence z(t) ∈ Y for all t. Part (a)
is therefore proven, and one direction of part (b) is an immediate consequence.
The reverse direction of part (b) follows from the expansion

Φ(t, w) = w + t · f(w) + · · · ,

whence Φ(t, w) ∈W for all t implies f(w) ∈W .

B. Invariants and symmetric vector monomials for algebraic tori: Let G be a
complex algebraic torus, with Lie algebra L.
(i) Auxiliary result: Given complex numbers λ1, . . . , λs and α, consider all tuples
(m1, . . . ,ms) of nonnegative integers such that

m1λ1 + · · ·+msλs = 0(9)

and all tuples (n1, . . . , ns) of nonnegative integers such that

n1λ1 + · · ·+ nsλs = α.(10)

For problem (9) there exist finitely many solutions such that every solution is a
nonnegative integer linear combination of these. For problem (10), provided it
is solvable, there exist finitely many solutions such that every solution is a sum
of one of these and an arbitrary solution of Problem (9). (See [22], Proposition
1.6. This fact is related to Dickson’s Lemma in Commutative Algebra; see e.g.
Cox et al. [6].)
(ii) Let C1, . . . , Cr be a vector space basis of L. From the eigenvalues λ1, . . . , λn
of C1 determine monomial generators for the C1-invariant algebra via

∑
diλi =

0 (Problem (9)). Assuming that monomial generators φt,1, . . . , φt,`t for the
invariant algebra of CC1 + · · ·CCt are known, these will be eigenfunctions for
LCt+1

with eigenvalues λt+1,1, . . . , λt+1,`t . If a monomial xm1
1 · · ·xmn

n is a joint
invariant of C1, . . . , Ct+1 then, being a joint invariant of C1, . . . , Ct, it can be
written in the form

φd1t,1 . . . φ
d`t
t,`t
,

and this is an invariant of Ct+1 if and only if
∑
diλt+1,i = 0, which again leads

to Problem (9). Thus one finds generating monomials for the invariant algebra.
(iii) For vector monomials, consider xm1

1 · · ·xmn
n ej , with j fixed. For C1 the

condition is then
∑
diλi = λj . By Problem (10) there are finitely many mono-

mials ψ1,1ej , . . . , ψ1,m1ej which generate the module over the algebra of C1-
invariants. Assuming that monomial generators φt,1, . . . , φt,`t for the invariant
algebra and ψt,1ej , . . . , ψt,mt

ej for the corresponding module with respect to
CC1 + · · ·CCt are given, these will be eigenfunctions for LCt+1

with eigenvalues
λt+1,1, . . . , λt+1,`t , resp. µt+1,1, . . . , µt+1,mt

. Now a vector monomial

φd1t,1 . . . φ
d`t
t,`t
ψt+1,kej

is symmetric for C1, . . . , Ct+1 if and only if
∑
diλt+1,i = −µt+1,k +αt+1,j , with

αt+1,j the eigenvalue of Ct+1 corresponding to ej . This again leads to Problem
(10).
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C.R. Acad. Sc. Paris A 278, 433 - 436 (1971).

[20] D.I. Panyushev: On covariants of reductive algebraic groups. Indag. Math.,
N.S. 13, 125 - 129 (2002).

[21] V. Poénaru: Singularités C∞ en présence de symétrie. Lecture Notes in
Mathematics 510. Springer-Verlag, Berlin-New York (1976)

[22] S. Walcher: On differential equations in normal form. Math. Ann. 291,
293 - 314 (1991).

[23] S. Walcher: Multi-parameter symmetries of first order ordinary differential
equations. J. Lie Theory 9 , 249 - 269 (1999).

31


