Invariant sets forced by symmetry

Frank D. Grosshans
Department of Mathematics, West Chester University
West Chester, PA 19383, USA
Jürgen Scheurle
Zentrum Mathematik, TU München
Boltzmannstr. 3, 85747 Garching, Germany
Sebastian Walcher
Lehrstuhl A für Mathematik, RWTH Aachen
52056 Aachen, Germany

Dedicated to Tudor Ratiu on the occasion of his sixtieth birthday.

Abstract

Given a linear (algebraic) group G acting on real or complex n-space, we determine all the common invariant sets of G-symmetric vector fields. It turns out that the investigation of certain algebraic varieties is sufficient to characterize these invariant sets forced by symmetry. Toral, compact and reductive groups are discussed in some detail, and examples, including a Couette-Taylor system, are presented.

1 Introduction and preliminaries

In the present paper we discuss ordinary differential equations that are symmetric with respect to some linear group G. The aim is to determine and characterize those invariant sets that are common to all G-symmetric differential equations.

We first fix notation and terminology. Let an ordinary differential equation

$$
\begin{equation*}
\dot{x}=f(x) \tag{1}
\end{equation*}
$$

be given on an open subset U of \mathbb{K}^{n}, with \mathbb{K} standing for \mathbb{R} or \mathbb{C}. The independent variable t will always be assumed real. Our focus will be on polynomial vector fields (and $U=\mathbb{K}^{n}$). Extensions to analytic and formal power series vector fields are straightforward. We will denote the solution of the initial value problem $\dot{x}=f(x), \quad x(0)=y$ (near $t=0)$ by $\Phi(t, y)=\Phi_{f}(t, y)$ and refer to Φ_{f}
as the local flow of f. For fixed y there is a maximal interval I_{y} of existence for $\Phi(t, y)$, and the set of all $\Phi(t, y)$, with $y \in I_{y}$, is called the trajectory through y.

We will answer the following principal question: Let $G \subseteq G L(n, \mathbb{K})$ be a linear group. What invariant sets do necessarily exist for any G-symmetric polynomial differential equation; in other words, what invariant sets are forced by the symmetry group?

This question is of interest in its own right, but also a starting point for further investigations of symmetric vector fields. For compact groups and C^{∞} vector fields the question was essentially answered e.g. in Field [9], and plays an important role for instance in Krupa's [16] investigation of bifurcations of relative equilibria.

We consider an arbitrary linear algebraic group G acting linearly on n-space. Requiring linearity of the group action does not impose an essential restriction for compact groups, cf. e.g. Guillemin and Sternberg [14], or for semisimple groups, cf. e.g. Kushnirenko [17], in the local analytic setting. Since we are primarily interested in polynomial or analytic vector fields (in view of computations), there is also no loss of generality in discussing only algebraic groups. We note that one drawback seems unavoidable when discussing this broad class of groups: In contrast to compact group actions, a general extension to infinite dimensional systems seems impossible. (One should mention that certain noncompact group actions for infinite dimensional systems have been discussed, and successfully used in applications, by Fiedler et al. [10], Golubitsky et al. [13], and others. But these results were based on additional assumptions, for instance compactness of isotropy groups.)

We use some elementary notions and results from Commutative Algebra in our approach. Our results include a precise characterization of the minimal invariant sets which are common to all G-symmetric vector fields. As it turns out, the Zariski closure of such a minimal invariant set is a vector subspace, and the investigation of common invariant sets amounts to the investigation of certain algebraic varieties (Theorems 1 and 2). Moreover, if an irreducible subvariety of such a variety is invariant for all G-symmetric vector fields and is not a linear space then there exists a common rational first integral for the G symmetric vector fields on this subvariety (Theorem 3). We discuss toral groups, compact groups and reductive groups in some detail, and provide descriptions of the subspaces spanned by minimal common invariant sets in Propositions 3 and 4 , and Theorems 4 and 6 . At the end of the paper we present examples, including a Couette-Taylor system and some low-dimensional representations of $S L(2)$.

The results of the present paper form a basis for future work, with two problems to be addressed in particular. First, there exist group representations for which orbit space reduction via group invariants (see e.g. the survey by Chossat [5]) is not applicable (when the invariant algebra is not finitely generated) or not feasible (e.g. when even minimal sets of generators are very large). Here, our results provide a starting point for alternative reduction approaches, e.g. via rational functions. Second, the qualitative behavior of symmetric differential equations on invariant sets, in particular minimal ones, is of special interest,
in particular for low-dimensional invariant subsets of high-dimensional representations. In Proposition 10 we provide a first result (assuming no a priori knowledge about the structure of symmetric vector fields on the whole space) concerning the extension of polynomial vector fields on minimal common invariants sets to rational symmetric vector fields on the whole space. This will be taken up in forthcoming work.

2 General properties and known results

We will assume that equation (1) has polynomial right-hand side and is symmetric with respect to a linear group $G \subseteq G L(n, \mathbb{K})$, thus the identities

$$
\begin{equation*}
T f(x)=f(T x) \tag{2}
\end{equation*}
$$

hold for all $T \in G$. In view of polynomiality (or, more generally, analyticity) of f we may take G to be an algebraic group defined over \mathbb{K}, with identity component G^{0}. Denote the Lie algebra of G by \mathcal{L}. We do not require finite generation of the invariant algebra of G, or of any related modules.

Polynomial differential equations (1) correspond to derivations of the algebra $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, via assigning to $f=\left(f_{1}, \ldots, f_{n}\right)^{t}$ the associated Lie derivative

$$
L_{f}=\sum f_{i} \frac{\partial}{\partial x_{i}}
$$

Therefore we will identify f with this element of $\operatorname{Der}\left(\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]\right)$, and also speak of f as a vector field. To G-symmetric differential equations there correspond G-invariant derivations, i.e., derivations which commute with the group action on polynomials. The set of these will be denoted by

$$
\mathcal{D}_{G}=\operatorname{Der}_{G}\left(\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]\right) .
$$

Let us record a few elementary properties, which are easy to prove directly from the symmetry criterion (2). The first two depend essentially on linearity of the group action.

Lemma 1. Let f and g be G-symmetric vector fields. Then the composite $f \circ g$, the left-symmetric product defined by $(f \bullet g)(x)=D g(x) f(x)$ and the Lie bracket $[f, g]=f \bullet g-g \bullet f$ are G-symmetric. In particular the G-symmetric vector fields form a Lie algebra.

At this point it may be appropriate to remark on terminology. In invariant theory, maps satisfying (2) are usually called covariant. In the scenario that we consider (linear group actions on vector spaces) some criteria for maps and vector fields coincide, and thus most results could be stated for covariant maps as well as for symmetric vector fields. The actual notations and notions chosen here reflect the intended applications.

Recall that a subset Y of \mathbb{K}^{n} is called invariant for the polynomial differential equation (1) if for every $y \in Y$ the whole trajectory through y is contained in Y.

It is obvious that set operations (union, intersection, complement) on invariant sets produce invariant sets. Moreover, due to continuous dependence the closure, interior and boundary of an invariant set (with respect to the norm topology) are also invariant. We are interested in sets that are invariant with respect to all G-symmetric vector fields.

Definition 1. (a) A set $Y \subseteq \mathbb{K}^{n}$ is called $\operatorname{Der}_{G}\left(\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]\right)$-invariant (or \mathcal{D}_{G}-invariant) if it is an invariant set for every G-symmetric differential equation.
(b) Given a \mathcal{D}_{G}-invariant set Y and $v \in Y$, we call Y minimal with respect to v if $v \in Z$ for some \mathcal{D}_{G}-invariant set Z implies $Y \subseteq Z$.

Lemma 2. (a) Unions, intersections and complements of \mathcal{D}_{G}-invariant sets are \mathcal{D}_{G}-invariant. In particular, for every $v \in \mathbb{K}^{n}$ there exists a minimal $\mathcal{D}_{G^{-}}$ invariant set containing v.
(b) The closure, boundary and interior (with respect to the norm topology) of a \mathcal{D}_{G}-invariant set is \mathcal{D}_{G}-invariant.
(c) Every connected component (with respect to the norm topology) of a $\mathcal{D}_{G^{-}}$ invariant set is \mathcal{D}_{G}-invariant.

Proof. Parts (a) and (b) are immediate from the remarks above. To prove part (c), note that for any $v \in \mathbb{K}^{n}$, the union of all the trajectories through v of G-symmetric differential equations is connected.

We record a few more simple and mostly well-known, but useful observations.
Lemma 3. Let H be a (closed) subgroup of G. Then every \mathcal{D}_{H}-invariant set Y is also \mathcal{D}_{G}-invariant.

Lemma 4. (a) Let $\dot{x}=f(x)$ admit the symmetry group G. Then for any $T \in G$ and $y \in \mathbb{R}^{n}$ one has

$$
T \Phi_{f}(t, y)=\Phi_{f}(t, T y) \quad \text { for all } t
$$

(b) If Y is invariant for some G-symmetric vector field and $T \in G$ then $T Y$ is invariant.

Proof. Since T is a symmetry, $T \Phi_{f}(t, y)$ is a solution of the differential equation. At $t=0$ this solution attains the value $T y$. The second assertion is an obvious consequence.

Proposition 1. (a) All points on a trajectory of $\dot{x}=f(x)$ have the same isotropy subgroup.
(b) Given any (closed) subgroup H of G, the fixed point subspace

$$
\operatorname{Fix}(H):=\{z: T z=z \text { for all } T \in H\}
$$

of H is \mathcal{D}_{G}-invariant.

Proof. Both assertions are direct consequences of Lemma 4; for the first assertion note that flows can be reversed.

Corollary 1. Let G be given, and let $v \in \mathbb{K}^{n}$. Then the minimal \mathcal{D}_{G}-invariant set with respect to v is contained in the fixed point subspace of the isotropy group G_{v}. (In particular one has $f(v) \in \operatorname{Fix}\left(G_{v}\right)$ for all G-symmetric vector fields f.)

3 Rank considerations

We first recall some familiar invariance criteria. (See, e.g. [23]. For the reader's convenience a proof is given in the Appendix.)

Lemma 5. (a) Given equation (1), let $\psi_{1}, \ldots, \psi_{r} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. If there are $\mu_{i j} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\begin{equation*}
L_{f}\left(\psi_{j}\right)=\sum_{k} \mu_{j k} \psi_{k}, \quad 1 \leq j \leq r \tag{3}
\end{equation*}
$$

then the set Y of common zeros of the ψ_{j} is invariant for $\dot{x}=f(x)$.
(b) A vector subspace W of \mathbb{K}^{n} is invariant for $\dot{x}=f(x)$ if and only if $f(w) \in W$ for all $w \in W$.

Next we introduce a class of distinguished invariant sets.
Definition 2. Let $G \subseteq G L(n, \mathbb{K})$.
(a) For $v \in \mathbb{K}^{n}$ denote by

$$
\epsilon_{v}: \mathcal{D}_{G} \rightarrow \mathbb{K}^{n}, \quad f \mapsto f(v)
$$

the evaluation map.
(b) For a nonnegative integer s let

$$
Z_{s}=Z_{s}(G):=\left\{y \in \mathbb{K}^{n}: \operatorname{dim}\left(\epsilon_{y}\left(\mathcal{D}_{G}\right)\right) \leq s\right\}
$$

and $Z_{s+1}^{*}:=Z_{s+1} \backslash Z_{s}$.
Remarks. (a) The set $\epsilon_{v}\left(\mathcal{D}_{G}\right)$ is a vector subspace and equal to the set of all $f(v), f$ symmetric with respect to G. The notation ϵ_{v} is taken from Lehrer and Springer [18] and Panyushev [20], who discuss covariant maps. The symmetry condition shows that $\epsilon_{v}\left(\mathcal{D}_{G}\right) \subseteq \operatorname{Fix}\left(G_{v}\right)$. Since $h(x)=x$ defines a G-symmetric vector field, one always has $v \in \epsilon_{v}\left(\mathcal{D}_{G}\right)$.
(b) Obviously $y \in Z_{s}$ if and only if for all $q \geq 1$ and all G-symmetric vector fields g_{1}, \ldots, g_{q} the rank of $\left(g_{1}(y), \cdots, g_{q}(y)\right)$ is not greater than s. Since the points satisfying this rank condition can be described as common zero sets of suitable determinants, one sees that every Z_{s} is Zariski closed. Moreover, $y \in Z_{s}$ satisfies $y \in Z_{s}^{*}$ if and only if there exist G-symmetric vector fields h_{1}, \ldots, h_{s} such that $h_{1}(y), \ldots, h_{s}(y)$ are linearly independent in \mathbb{K}^{n}.

Theorem 1. (a) For every $s \geq 0$ the sets Z_{s} and Z_{s+1}^{*} are invariant for every G-symmetric vector field. Moreover, the sets Z_{s} and Z_{s+1}^{*} are also invariant with respect to the group action.
(b) For every $y \in \mathbb{K}^{n}$ the subspace $\epsilon_{y}\left(\mathcal{D}_{G}\right)$ is invariant for every G-symmetric vector field.

Proof. We first prove part (b). For any G-symmetric f and any $w \in \epsilon_{y}\left(\mathcal{D}_{G}\right)$ it suffices to show that $f(w) \in \epsilon_{y}\left(\mathcal{D}_{G}\right)$, due to Lemma 5. But there is a $g \in \mathcal{D}_{G}$ such that $w=g(y)$, and by Lemma 1 one has $f(w)=(f \circ g)(y) \in \epsilon_{y}\left(\mathcal{D}_{G}\right)$. Now the \mathcal{D}_{G}-invariance of Z_{s} and Z_{s+1}^{*} follows by Lemma 2. The group invariance is straightforward from the definitions: If $g_{1}(y), \ldots, g_{p}(y)$ are linearly (in-)dependent then so are $g_{1}(T y), \ldots, g_{p}(T y)$ for all $T \in G$, due to $g_{i}(T y)=T g_{i}(y)$.

Remark. Essentially, part (a) remains true for (nonlinear) algebraic group actions on affine varieties Y and G-symmetric vector fields on Y : For every s the set Z_{s} is \mathcal{D}_{G}-invariant. Here, ϵ_{v} should be viewed as a map to the tangent space to Y at v. The proof works with $(s+1) \times(s+1)$ minors of matrices that have columns built from the module elements $g \in \mathcal{D}_{G}$, and uses the invariance criterion (3) for their common zero set, viz. Z_{s}, noting that the ideal generated by all such $(s+1) \times(s+1)$ minors is finitely generated by Hilbert's "Basissatz". The argument is an obvious modification of the proof of Theorem 3.1 in [23]. In this sense, part (a) does not depend on the linearity of the action of G.

The following observation may be seen as a weak finiteness result for G-symmetric vector fields, for arbitrary G. Moreover, it is of interest even if the invariant algebra of G and the module of symmetric vector fields are finitely generated.

Proposition 2. There exist finitely many G-symmetric vector fields h_{1}, \ldots, h_{q} such that for every v the space $\epsilon_{v}\left(\mathcal{D}_{G}\right)$ is spanned by $h_{1}(v), \ldots, h_{q}(v)$. Given any G-symmetric f and $v \in Z_{s}^{*}$ there exist rational functions σ_{j} which are defined and G-invariant in a Zariski-open neighborhood of v in Z_{s} such that

$$
f=\sum_{j=1}^{q} \sigma_{j} h_{j}
$$

in this neighborhood.
Proof. Given $y \in Z_{s}^{*}$, by Cramer's rule there exist symmetric vector fields $g_{y, 1}, \ldots, g_{y, s}$ and a Zariski-open neighborhood U_{y} such that for every $v \in U_{y}$ the space spanned by $g_{1}(v), \ldots, g_{s}(v)$ has dimension s. By quasi-compactness of the Zariski topology, finitely many of these neighborhoods suffice to cover every Z_{s}^{*}. The collection of all the associated vector fields satisfies the desired condition. For the last assertion, choose a subset I of $\{1, \ldots, q\}$ such that the $h_{j}(v)$ with $j \in I$ form a basis of $\epsilon_{v}\left(\mathcal{D}_{G}\right)$, and set $\sigma_{j}=0$ for $j \notin I$. Since the coefficients of the h_{j} are then uniquely determined, and f and all h_{j} are G-symmetric, the σ_{j} are G-invariant.

Remark. This Proposition suggests to think of the \mathcal{D}_{G}-invariant sets Z_{s} as the Zariski-closed invariant sets of "general" G-symmetric polynomial vector fields. For instance, there is an open and dense subset $U^{*} \subset \mathbb{K}^{q}$ such that for every v the vector fields $\sum \alpha_{j} h_{j}(v)$, with $\left(\alpha_{1}, \ldots, \alpha_{q}\right) \in U^{*}$, span $\epsilon_{v}\left(\mathcal{D}_{G}\right)$.

Given a (closed) subgroup H of G and $v \in \mathbb{K}^{n}$, consider the space $\epsilon_{v}\left(\mathcal{D}_{H}\right)$ which is spanned by all $g(v)$ with H-symmetric g. We note an elementary property (following from the definitions and Lemma 3) for later use.

Lemma 6. The space $\epsilon_{v}\left(\mathcal{D}_{H}\right)$ is \mathcal{D}_{G}-invariant and contains $\epsilon_{v}\left(\mathcal{D}_{G}\right)$.
Thus one has a descending chain

$$
\mathbb{K}^{n}=Z_{n} \supseteq Z_{n-1} \supseteq \cdots \supseteq Z_{0}
$$

of \mathcal{D}_{G}-invariant sets, and $y \in Z_{s}^{*}$ is contained in the s-dimensional \mathcal{D}_{G}-invariant vector subspace $\epsilon_{y}\left(\mathcal{D}_{G}\right)$.
Theorem 2. Let $y \in Z_{r}^{*}$. Then the minimal \mathcal{D}_{G}-invariant set with respect to y is the connected component, in the norm topology, of y in $\epsilon_{y}\left(\mathcal{D}_{G}\right) \backslash Z_{r-1}$. Moreover, $\epsilon_{y}\left(\mathcal{D}_{G}\right)$ is the smallest Zariski-closed \mathcal{D}_{G}-invariant set which contains y.

Proof. It is obviously sufficient to prove the first assertion. Thus let Y be the minimal \mathcal{D}_{G}-invariant set with respect to y.
(i) We already know that $Y \subseteq \epsilon_{y}\left(\mathcal{D}_{G}\right)$; see Theorem 1. Moreover $Y \subseteq \epsilon_{y}\left(\mathcal{D}_{G}\right) \backslash$ Z_{r-1}, since the latter set is \mathcal{D}_{G}-invariant and contains y. Since every connected component of a \mathcal{D}_{G}-invariant set is itself \mathcal{D}_{G}-invariant (Lemma 2), Y is connected. Let Y^{*} be the connected component of $\epsilon_{y}\left(\mathcal{D}_{G}\right) \backslash Z_{r-1}$ which contains Y.
(ii) Let $v \in Y$. Then there exists a neighborhood of v in $\epsilon_{y}\left(\mathcal{D}_{G}\right) \backslash Z_{r-1}$ which is also contained in Y. To prove this, let g_{1}, \ldots, g_{r} be G-symmetric such that the $g_{i}(v)$ are linearly independent. Consider the analytic map

$$
\Psi: \quad\left(\alpha_{1}, \ldots, \alpha_{r}\right) \mapsto \Phi_{\alpha_{1} g_{1}+\cdots+\alpha_{r} g_{r}}(1, v)
$$

which maps some connected neighborhood U of $0 \in \mathbb{K}^{r}$ to $\epsilon_{y}\left(\mathcal{D}_{G}\right)$. From the series expansion

$$
\Psi\left(\alpha_{1}, \ldots, \alpha_{r}\right)=v+\alpha_{1} g_{1}(v)+\cdots+\alpha_{r} g_{r}(v)+o\left(\left|\alpha_{1}\right|, \ldots,\left|\alpha_{s}\right|\right)
$$

one sees that the derivative

$$
D \Psi(0, \ldots, 0)=\left(g_{1}(v), \ldots, g_{r}(v)\right)
$$

has rank r, and therefore induces an analytic diffeomorphism from some (connected) neighborhood of 0 in \mathbb{K}^{r} to a neighborhood of v in $\epsilon_{y}\left(\mathcal{D}_{G}\right)$. By Lemma 2 this neighborhood is contained in Y.
(iii) According to (ii), Y is relatively open in Y^{*}. But the same argument shows relative openness of the complement $Y^{*} \backslash Y$, and thus $Y=Y^{*}$ since Y^{*} is connected.

Lemma 7. Let $G \subseteq G L(n, \mathbb{R})$ and $y \in \mathbb{R}^{n}$, and consider

$$
\begin{aligned}
\epsilon_{y}\left(\mathcal{D}_{G}^{\mathbb{R}}\right) & =\left\{f(y) ; f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text { is } G-\text { symmetric }\right\}, \\
\epsilon_{y}\left(\mathcal{D}_{G}^{\mathbb{C}}\right) & =\left\{h(y) ; h: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \text { is } G-\text { symmetric }\right\} .
\end{aligned}
$$

Then the complex space $\epsilon_{y}\left(\mathcal{D}_{G}^{\mathbb{C}}\right)$ is the complexification of the real space $\epsilon_{y}\left(\mathcal{D}_{G}^{\mathbb{R}}\right)$. In particular the respective dimensions are equal.

Proof. Given any complex G-symmetric vector field, its conjugate is also G symmetric. Therefore $\epsilon_{y}\left(\mathcal{D}_{G}^{\mathbb{C}}\right)$ is equal to its complex conjugate subspace, which implies that if $\epsilon_{y}\left(\mathcal{D}_{G}^{\mathbb{C}}\right)$ is spanned by w_{1}, \ldots, w_{m} then it is also spanned by the real and imaginary parts of the w_{j}. The assertion follows.

Example. Consider the "diagonal" action of $S O(3, \mathbb{R})$ on

$$
\mathbb{R}^{6}=\left\{x=\binom{u}{v}: u, v \in \mathbb{R}^{3}\right\}
$$

Thus G consists of all block diagonal matrices of the form

$$
\left(\begin{array}{cc}
C & 0 \\
0 & C
\end{array}\right), \quad C \in S O(3)
$$

According to [11], Subsection 2.5, Examples (d) and (e), the module \mathcal{D}_{G} is generated by the elements

$$
\binom{u}{0},\binom{0}{u},\binom{v}{0},\binom{0}{v},\binom{u \times v}{0},\binom{0}{u \times v} .
$$

Therefore, if u_{0} and v_{0} are linearly independent in \mathbb{R}^{3} then for $y=\binom{u_{0}}{v_{0}}$ the dimension of $\epsilon_{y}\left(\mathcal{D}_{G}\right)$ is equal to 6 . If u_{0} and v_{0} are linearly dependent but not both equal to zero then $\epsilon_{y}\left(\mathcal{D}_{G}\right)$ has dimension 2 .

This example illustrates the usefulness of Theorem 2 if the module \mathcal{D}_{G} is sufficiently well known. We note the application to $S O(3)$-symmetric secondorder systems in \mathbb{R}^{3} : The only nontrivial invariant sets forced by symmetry are defined by the condition that position and velocity have the same direction. (The six-dimensional vector fields corresponding to the second-order systems are of a particular type, but they generate the full Lie algebra \mathcal{D}_{G}, and this is the relevant structure when discussing common invariant sets.)
Remark. Most of the results obtained thus far also apply to G-symmetric discrete dynamical systems

$$
x(t+1)=h(x(t))
$$

as is to be expected, since the conditions for symmetric vector fields and for covariant maps correspond: The symmetry criterion (2) also applies to difference equations, thanks to the linearity of the group action. Thus one may consider the set of all G-symmetric maps from \mathbb{K}^{n} to itself, which is closed with respect to vector space operations and composition. Mutatis mutandis, the elementary
properties from Lemmas 2 (except for the connectedness property), 3 and 4, and from Proposition 1 and its Corollary hold. The principal result, Theorem 2 needs modification only with respect to connectedness: The minimal invariant set containing v is, in general, a union of connected components of $\epsilon_{v}\left(\mathcal{D}_{G}\right) \backslash Z_{s-1}$.

It should be emphasized that the search for arbitrary \mathcal{D}_{G}-invariant sets has been reduced to investigating the algebraic sets $\epsilon_{v}\left(\mathcal{D}_{G}\right)$ and Z_{s}. The next result elucidates the structure of G-symmetric vector fields on Z_{s}.

Theorem 3. Let $Y \subseteq Z_{s}$ be an irreducible \mathcal{D}_{G}-invariant subvariety, and $Y \cap$ $Z_{s}^{*} \neq \emptyset$. Then either $Y=\epsilon_{v}\left(\mathcal{D}_{G}\right)$ for some $v \in Y$ or there exists a nonconstant rational first integral of \mathcal{D}_{G} on Y; i.e., a nonconstant rational function ψ on Y such that

$$
L_{f}(\psi)(x)=0 \quad \text { for all } x \in Y \text { and for all } f \in \mathcal{D}_{G}
$$

whence all level sets of ψ on Y are \mathcal{D}_{G}-invariant. In particular, $Z_{n}^{*}=\emptyset$ if and only if there exists a nonconstant rational first integral for \mathcal{D}_{G} on \mathbb{K}^{n}.

Proof. If there exists a nonconstant rational first integral ψ of \mathcal{D}_{G} on Y then ψ is defined on an open and dense subset $\widetilde{Y} \subseteq Y$, and every level set $\psi=$ const. on \widetilde{Y} is \mathcal{D}_{G}-invariant. Since every level set has dimension smaller than $\operatorname{dim} Y$, we see that $\operatorname{dim} \epsilon_{y}\left(\mathcal{D}_{G}\right)<\operatorname{dim} Y$ for all $v \in \widetilde{Y}$, hence for all $v \in Y$.

To prove the reverse direction, let $v \in Y$ such that $\operatorname{dim} \epsilon_{v}\left(\mathcal{D}_{G}\right)=s$. If $\operatorname{dim} Y=s$ then $Y=\epsilon_{v}\left(\mathcal{D}_{G}\right)$ by irreducibility. In the following assume that $\operatorname{dim} Y>s$, and let $f_{1}, \ldots, f_{s} \in \mathcal{D}_{G}$ such that $f_{1}(v), \ldots, f_{s}(v)$ are linearly independent. In addition, we may take $f_{1}(x)=x$. By Cramer's rule, every $g \in \mathcal{D}_{G}$ admits a representation

$$
g=\sum_{j=1}^{s} \alpha_{j} f_{j} \quad \text { on } Y,
$$

with rational functions α_{j}.
Given a matrix with s columns $a_{1}, \ldots, a_{s} \in \mathbb{K}^{n}$, denote by $\Delta=\Delta\left(a_{1}, \ldots, a_{s}\right)$ any $s \times s$ minor of this matrix. Consider the polynomial

$$
\rho(x):=\Delta\left(f_{1}(x), \ldots, f_{s}(x)\right) \in \mathbb{K}[Y] .
$$

For any $f \in \mathcal{D}_{G}$ we have $f \bullet f_{j} \in \mathcal{D}_{G}$ by Lemma 1 , hence

$$
f \bullet f_{j}=\sum_{j=1}^{s} \alpha_{j k} f_{k} \quad \text { on } Y,
$$

with rational functions $\alpha_{j k}$. By the product rule and the alternating property of Δ one finds

$$
\begin{aligned}
L_{f}(\rho)(x) & =\sum_{j} \Delta\left(f_{1}(x), \ldots, f \bullet f_{j}(x), \ldots, f_{s}(x)\right) \\
& =\sum_{j, k} \alpha_{j k}(x) \Delta\left(f_{1}(x), \ldots, f_{k}(x), \ldots, f_{s}(x)\right) \\
& =\sum_{j} \alpha_{j j}(x) \Delta\left(f_{1}(x), \ldots, f_{j}(x), \ldots, f_{s}(x)\right) \\
& =\left(\sum_{j} \alpha_{j j}(x)\right) \rho(x), \quad \text { all } x \in Y .
\end{aligned}
$$

If Δ_{1} and Δ_{2} are minors such that $\rho_{2} \neq 0$ then

$$
L_{f}\left(\rho_{1} / \rho_{2}\right)=\frac{1}{\rho_{2}^{2}}\left(\rho_{2} L_{f}\left(\rho_{1}\right)-\rho_{1} L_{f}\left(\rho_{2}\right)\right)=0 \text { on } Y
$$

and unless ρ_{1} / ρ_{2} is constant, it is a first integral as asserted.
There remains to show that not all such quotients are constant. Assume, on the contrary, that for any choice of two $s \times s$ minors the quotient will be constant. Denote the rows of the matrix $\left(f_{1}(x), \ldots, f_{s}(x)\right)$ by $z_{1}(x), \ldots, z_{n}(x)$. We may assume that $z_{1}(v), \ldots, z_{s}(v)$ are linearly independent. Then Cramer's rule implies the existence of rational functions $\beta_{j k}$ (actually, quotients of $s \times s$ minors) such that

$$
z_{j}=\sum_{k=1}^{s} \beta_{j k} z_{k} \quad \text { on } Y ; \text { all } j>s
$$

If ρ_{1} / ρ_{2} is constant for every choice of $s \times s$ minors then all the $\beta_{j k}$ are constant. Now recall that $f_{1}(x)=x$, hence in particular

$$
x_{j}-\sum_{k=1}^{s} \beta_{j k} x_{k}=0 \text { on } Y, \quad s<j \leq n .
$$

In other words, Y is contained in an s-dimensional vector subspace of \mathbb{K}^{n}. This is a contradiction to the assumption $\operatorname{dim} Y>s$.

The assumption $Y \cap Z_{s}^{*} \neq \emptyset$ in this Theorem involves no loss of generality.

4 Diagonalizable groups

In this section we will discuss connected diagonalizable groups. It seems appropriate to fix terminology first. We call a connected algebraic group (real or complex) an algebraic torus if its complexification is isomorphic to some full group of $r \times r$ diagonal matrices. Equivalently, the complexification is connected and diagonalizable (see Humphreys [15]). A multiplicative one-parameter group $H \subseteq G L(n, \mathbb{C})$ is the image of a nontrivial homomorphism $\gamma: \mathbb{C}^{*} \rightarrow G L(n, \mathbb{C})$ of algebraic groups; thus the matrix of $\gamma(s)$ with respect to a suitable basis is diagonal with entries $s^{k_{j}}, k_{j} \in \mathbb{Z}$, not all zero. By a real (compact) torus we mean a real algebraic torus which is compact in the norm topology. (There are other characterizations; see Bröcker and tom Dieck [4].)

Let G be an algebraic torus over \mathbb{C}, with Lie algebra \mathcal{L}. Then \mathbb{C}^{n} is the direct sum of weight spaces

$$
U_{i}:=\left\{x: B x=\omega_{i}(B) \cdot x, \text { for all } B \in \mathcal{L}\right\}
$$

for suitable (pairwise distinct) weights $\omega_{1}, \ldots, \omega_{r}$. We may assume that \mathcal{L} consists of diagonal matrices, and we may furthermore assume that the elements of
U_{i} are of the form

$$
\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
z_{i} \\
0 \\
\vdots \\
0
\end{array}\right) ; \quad z_{i} \in \mathbb{C}^{d_{i}}
$$

Proposition 3. Let $G \subseteq G L(n, \mathbb{C})$ be an algebraic torus, with notation as above. Given $v \in \mathbb{C}^{n}$, let

$$
y=\sum_{i=1}^{r} y_{i} \in \epsilon_{v}\left(\mathcal{D}_{G}\right) \quad\left(y_{i} \in U_{i}\right),
$$

with a maximal number s of nonzero terms: $y_{i_{1}} \neq 0, \ldots, y_{i_{s}} \neq 0$. Then

$$
\epsilon_{v}\left(\mathcal{D}_{G}\right)=U_{i_{1}}+\cdots+U_{i_{s}} .
$$

In particular one has $Z_{n}^{*} \neq \emptyset$.
Proof. Due to Lemma 5(b) and Theorem 1(b), $f(y) \in \epsilon_{v}\left(\mathcal{D}_{G}\right)$ for all G-symmetric f. Consider, in particular, the linear vector fields that are symmetric with respect to G. According to the assumption above, these are represented by block diagonal matrices of the form

$$
C:=\left(\begin{array}{cccc}
C_{1} & 0 & \cdots & 0 \\
0 & \ddots & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & C_{r}
\end{array}\right), \quad C_{i} \in \mathbb{C}^{\left(d_{i}, d_{i}\right)} \text { arbitrary }
$$

Now for any $j \in\left\{i_{1}, \ldots, i_{s}\right\}$ and any $z_{j} \in U_{j}$ there is a matrix C_{j} such that $C_{j} y_{j}=z_{j}$. This shows that $U_{i_{1}}+\cdots+U_{i_{s}} \subseteq \epsilon_{v}\left(\mathcal{D}_{G}\right)$. Equality follows from maximality of the number of nonzero terms for y.

In view of Lemma 7 we also have:
Corollary 2. If $\widetilde{G} \subseteq G L(n, \mathbb{R})$ is an algebraic torus then the assertion holds, mutatis mutandis, for all $v \in \mathbb{R}^{n}$ and the real space

$$
\epsilon_{v}\left(\mathcal{D}_{G}\right)=\left\{f(y) ; f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text { is } G \text { - symmetric }\right\} .
$$

Moreover, in the complex setting one can easily characterize the common invariant subspaces of all G-symmetric vector fields. We keep the hypotheses and assumptions from above. The arguments in the proof are quite similar to those used for Poincaré-Dulac normal forms on invariant manifolds; see Bibikov [1], and also [22].

Proposition 4. Let $G \subseteq G L(n, \mathbb{C})$ be an algebraic torus, with further notation as in Proposition 3. Moreover, let $I=\left\{i_{1}, \ldots, i_{s}\right\}$ be a proper nonempty subset of $\{1, \ldots, r\}$. Then the subspace

$$
U_{I}:=U_{i_{1}}+\cdots+U_{i_{s}}
$$

is invariant for every G-symmetric vector field if and only if the following condition is satisfied: For every $k \in\{1, \ldots, r\} \backslash I$ one has

$$
\begin{equation*}
\sum_{j \in I} m_{j} \omega_{j} \neq \omega_{k} \tag{4}
\end{equation*}
$$

for all tuples of nonnegative integers m_{j} such that $\sum m_{j} \geq 1$.
Proof. Let e_{1}, \ldots, e_{n} denote the standard basis, with coordinates x_{1}, \ldots, x_{n}, and let χ_{j} be the character corresponding to x_{j}. We will prove the assertion for the spaces $V_{J}:=\sum_{\ell \in J} \mathbb{C} e_{\ell}$. By Proposition 3 this will suffice, since every χ_{j} is among the ω_{i} 's, and vice versa.

The G-symmetric polynomial vector fields are precisely the linear combinations of monomials

$$
\begin{equation*}
\prod_{1 \leq i \leq n} x_{i}^{m_{i}} e_{\ell} \tag{5}
\end{equation*}
$$

with nonnegative integers m_{i} and $1 \leq \ell \leq n$ satisfying

$$
\sum m_{i} \chi_{i}=\chi_{\ell}
$$

Assume that for some $k \in\{1, \ldots, n\} \backslash J$ there are nonnegative integers s_{j} such that

$$
\chi_{k}=\sum_{j \in J} s_{j} \chi_{j}, \quad \sum s_{j} \geq 1
$$

Then the polynomial vector field

$$
g(x)=\prod_{j \in J} x_{j}^{s_{j}} e_{k}
$$

is G-symmetric, but does not leave V_{J} invariant.
On the other hand, if condition (4) holds then every G-symmetric vector monomial (5) maps V_{J} to itself.

Remark. The proof provides a description of all \mathcal{D}_{G}-symmetric vector monomials, and, as noted, every G-symmetric vector field is a linear combination of these. Likewise, the G-invariants are linear combinations of those monomials $x_{1}^{d_{1}} \cdots x_{n}^{d_{n}}$ whose exponents satisfy $\sum d_{i} \chi_{i}=0$. This basic observation follows from the diagonalizability of the group action on spaces of functions resp. vector fields (see e.g. [22]), and gives rise to an iterative procedure to determine all monomial invariants and symmetric vector monomials for toral groups. This procedure is outlined in the Appendix, for the reader's convenience.

Corollary 3. Let assumptions and notation be as in Proposition 4. For $B \in \mathcal{L}$ and a linear form α on \mathcal{L} define

$$
\begin{aligned}
& I_{\alpha}^{*}(B)=\left\{j: 1 \leq j \leq r \text { and } \omega_{j}(B) \cdot \alpha(B)>0\right\} \\
& I_{\alpha}(B)=\left\{j: 1 \leq j \leq r \text { and } \omega_{j}(B) \cdot \alpha(B) \geq 0\right\} .
\end{aligned}
$$

Then U_{I} is \mathcal{D}_{G}-invariant both for $I=I_{\alpha}^{*}(B)$ and for $I=I_{\alpha}(B)$.
Proof. Let $I=I_{\alpha}^{*}(B)$ and assume that there are nonnegative integers m_{j} and some index $k \notin I$ such that $\sum m_{j} \omega_{j}=\omega_{k}$. Then

$$
\sum m_{j} \omega_{j}(B) \alpha(B)=\omega_{k}(B) \alpha(B)
$$

leads to a contradiction, as the left-hand side is >0 and the right-hand side is ≤ 0. Proposition 4 shows the first assertion. The proof of the second assertion is similar.

There are some applications which we record for later use.
Proposition 5. Let $G \subseteq G L(n, \mathbb{C})$ be a complex algebraic group.
a) The set of all v such that $\lim _{s \rightarrow 0} \gamma(s) v=0$ for some multiplicative oneparameter subgroup $H=\left\{\gamma(s) ; s \in \mathbb{C}^{*}\right\}$ is \mathcal{D}_{G}-invariant. In addition, if $\lim _{s \rightarrow 0} \gamma(s) v=0$ then $\lim _{s \rightarrow 0} \gamma(s) w=0$ for all $w \in \epsilon_{v}\left(\mathcal{D}_{G}\right)$.
b) The set of all v such that $\lim _{s \rightarrow 0} \gamma(s) v$ exists for some one-parameter subgroup $H=\left\{\gamma(s) ; s \in \mathbb{C}^{*}\right\}$ is \mathcal{D}_{G}-invariant. In addition, if $\lim _{s \rightarrow 0} \gamma(s) v$ exists then $\lim _{s \rightarrow 0} \gamma(s) w$ exists for all $w \in \epsilon_{v}\left(\mathcal{D}_{G}\right)$.

Proof. The limit $\lim _{s \rightarrow 0} s^{k}$ exists if and only if $k \geq 0$, and $\lim _{s \rightarrow 0} s^{k}=0$ if and only if $k>0$. We may assume that the matrix of $\gamma(s)$ is diagonal, and consider the generator $B=\operatorname{diag}\left(k_{1}, \ldots, k_{n}\right)$ of this one-parameter group. Then $\lim _{s \rightarrow 0} \gamma(s) v$ exists (resp., equals 0) if and only if $v \in U_{I}$ for $I=I_{\alpha}(B)$ (resp. $I=I_{\alpha}^{*}(B)$), where α sends B to 1 . By Corollary 3 and Lemma 3, the subspace U_{I} is \mathcal{D}_{H}-invariant, hence \mathcal{D}_{G}-invariant, hence contains $\epsilon_{v}\left(\mathcal{D}_{G}\right)$ by Theorem 2 , and the proof is finished.

Proposition 6. Let $G \subseteq G L(n, \mathbb{C})$ be the complexification of a real compact torus $\widetilde{G} \subseteq G L(n, \mathbb{R})$, with further notation as in Proposition 3. Then the real $\mathcal{D}_{\widetilde{G}}$-invariant subspaces $U_{I} \cap \mathbb{R}^{n}$ correspond to submodules of $\sum \mathbb{Z} \omega_{j}$ in the following sense:
$U_{I} \cap \mathbb{R}^{n}$ is $\mathcal{D}_{\widetilde{G}}$-invariant if and only if

$$
\sum_{j \in I} \mathbb{Z} \omega_{j} \cap\left\{\omega_{1}, \ldots, \omega_{r}\right\}=\left\{\omega_{j}: j \in I\right\}
$$

Proof. We may assume that $\bar{U}_{j}=U_{r+1-j}$ and

$$
-\omega_{j}=\bar{\omega}_{j}=\omega_{r+1-j}
$$

for $1 \leq j \leq r$, since all elements of the Lie algebra of \widetilde{G} have purely imaginary eigenvalues. A subspace of \mathbb{C}^{n} is the complexification of some subspace of \mathbb{R}^{n} if and only if it is pointwise invariant under conjugation. Thus nonzero weights come in pairs adding to zero, and the criterion in Proposition 4 is equivalent to

$$
\omega_{k} \notin \sum_{j \in I} \mathbb{Z} \omega_{j} \quad \text { for } k \notin I .
$$

Example. Let ℓ be any positive integer. Then

$$
B_{\ell}:=\mathrm{i} \cdot \operatorname{diag}(2 \ell, 2 \ell-2, \ldots, 2,0,-2, \ldots,-2 \ell+2,-2 \ell)
$$

spans the Lie algebra of an algebraic torus H which is the complexification of a real torus \widetilde{H}, and corresponds to a semisimple element in the complexification of the irreducible $(2 \ell+1)$-dimensional representation of $S O(3, \mathbb{R})$. According to Proposition 6, and since \mathbb{Z} is a principal ideal domain, the $\mathcal{D}_{\widetilde{H}}$-invariant subspaces of \mathbb{R}^{n} are given by

$$
V_{k}:=U_{I} \cap \mathbb{R}^{n}, \quad I=I_{k}:=\mathrm{i} \cdot 2 k \mathbb{Z} \cap\{\mathrm{i} \cdot 2 \ell, \ldots, \mathrm{i} \cdot 2,0, \mathrm{i} \cdot(-2), \ldots, \mathrm{i} \cdot(-2 \ell)\}
$$

for $0 \leq k \leq \ell$. Thus one obtains precisely ℓ proper $\mathcal{D}_{\widetilde{H}}$-invariant subspaces; viz., all V_{k} with $k \neq 1$. The dimension of V_{k} is equal to $1+2\left[\frac{\ell}{k}\right]$ if $k>0$.

5 Compact groups

In view of Proposition 1 and Theorem 2 it is natural to investigate the inclusion $\epsilon_{v}\left(\mathcal{D}_{G}\right) \subseteq \operatorname{Fix}\left(G_{v}\right)$. For real compact groups it is known that equality holds for all v. This is usually proved as a consequence of the Palais slice theorem; see e.g. Field [9], Lemma A. (The basic idea is also used in Michel [19].) We provide an elementary proof here, which takes a different approach.

Theorem 4. Let G be a compact subgroup of $G L(n, \mathbb{R})$. Then $\epsilon_{y}\left(\mathcal{D}_{G}\right)=$ $\operatorname{Fix}\left(G_{y}\right)$ for all $y \in \mathbb{R}^{n}$.

Proof. (i) We may assume that $G \subseteq O(n, \mathbb{R})$ and that the norm on \mathbb{R}^{n} is induced by the G-invariant scalar product. Moreover, let μ denote the Haar measure on G. Given any C^{∞} function ϕ on \mathbb{R}^{n} and any $w \in \mathbb{R}^{n}$, one obtains a G-symmetric C^{∞} vector field via

$$
g_{w}^{*}(x):=\int_{G} \phi(T x) T^{-1} w \mathrm{~d} \mu(T) .
$$

(ii) Let $y \in \mathbb{R}^{n}$ and $w \in \operatorname{Fix}\left(G_{y}\right)$. Then for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
\|T y-y\|<\delta \Rightarrow\|T w-w\|<\epsilon, \quad \text { all } T \in G
$$

To prove this, assume the contrary. Then there exist some $\rho>0$ and a sequence $\left(T_{\ell}\right)$ in G such that $T_{\ell} y \rightarrow y$ as $\ell \rightarrow \infty$ but all $\left\|T_{\ell} w-w\right\|>\rho$. We may assume that $\lim T_{\ell}=: T^{*}$ exists. From

$$
y=\lim T_{\ell} y=T^{*} y
$$

one sees that $T^{*} \in G_{y}$. But this implies $T^{*} w=w$; a contradiction.
(iii) Given $y \in \mathbb{R}^{n}, w \in \operatorname{Fix}\left(G_{y}\right)$ and $\epsilon>0$, there exists a G-symmetric C^{∞} vector field g_{w} such that

$$
\left\|g_{w}(y)-w\right\|<\epsilon
$$

To see this, choose $\delta>0$ so that $\|T y-y\|<\delta$ implies $\|T w-w\|<\epsilon$ for all $T \in G$, and choose ϕ as a nonnegative function with support contained in the ball $B_{\delta}(y)$, with $\phi(y)=1$. With g_{w}^{*} as in part (i), define

$$
g_{w}(x):=\frac{1}{\int_{G} \phi(T y) \mathrm{d} \mu(T)} \cdot g_{w}^{*}(x), \quad x \in \mathbb{K}^{n}
$$

Then

$$
g_{w}(y)-w=\frac{1}{\int_{G} \phi(T y) \mathrm{d} \mu(T)} \cdot \int_{G} \phi(T y)\left(T^{-1} w-w\right) \mathrm{d} \mu(T)
$$

and

$$
\left\|g_{w}(y)-w\right\| \leq \frac{1}{\int_{G} \phi(T y) \mathrm{d} \mu(T)} \cdot \int_{G} \phi(T y)\left(\left\|T^{-1} w-w\right\| \mathrm{d} \mu(T)<\epsilon\right.
$$

since $\left\|T^{-1} w-w\right\|<\epsilon$ whenever $\phi(T y) \neq 0$.
(iv) Let $\left(w_{1}, \ldots, w_{r}\right)$ be a basis of $\operatorname{Fix}\left(G_{y}\right)$. Then there exists $\epsilon>0$ such that every system $\left(v_{1}, \ldots, v_{r}\right)$ in $\operatorname{Fix}\left(G_{y}\right)$ with $\left\|v_{1}-w_{1}\right\|<\epsilon, \ldots,\left\|v_{r}-w_{r}\right\|<\epsilon$ also forms a basis of $\operatorname{Fix}\left(G_{y}\right)$. According to (iii) there exist G-symmetric C^{∞} vector fields g_{1}, \ldots, g_{r} such that the $g_{i}(y)$ span $\operatorname{Fix}\left(G_{y}\right)$.
(v) According to a theorem by Poénaru [21], the module of G-symmetric C^{∞} vector fields over the algebra of $C^{\infty} G$-invariants is generated by polynomial vector fields.

Remark. At this point it may be appropriate to sketch the relation between the familiar stratification of \mathbb{K}^{n} by the action of a compact group G and the decomposition induced by the varieties Z_{s} (see Theorems 1 and 2). For a compact group G and any $v \in \mathbb{K}^{n}$ the subspaces $\epsilon_{v}\left(\mathcal{D}_{G}\right)$ and $\operatorname{Fix}\left(G_{v}\right)$ are equal, thus the smallest Zariski-closed \mathcal{D}_{G}-invariant subset which contains v is the fixed point space of the isotropy group. (For general groups $\epsilon_{v}\left(\mathcal{D}_{G}\right)$ may be a proper subset of the fixed point space.) For compact G and $v \in \mathbb{K}^{n}$, the stratum of v is by definition the set of all $y \in \mathbb{K}^{n}$ with isotropy subgroup conjugate to G_{v}. Since two elements of \mathbb{K}^{n} have conjugate isotropy groups if they lie on the same orbit,
the stratum contains $G \cdot \operatorname{Fix}\left(G_{v}\right)$. Note that $A_{v}:=\overline{G \cdot \operatorname{Fix}\left(G_{v}\right)}$ is the smallest Zariski-closed set which contains v and is both \mathcal{D}_{G}-invariant and G-stable. By properties of algebraic group actions, $G \cdot \operatorname{Fix}\left(G_{v}\right)$ is open and dense in A_{v}. Therefore the closure of the stratum is the union of a (finite) number of sets A_{y}. On the other hand, if $\operatorname{dim}\left(\operatorname{Fix}\left(G_{v}\right)\right)=r$ then $G \cdot \operatorname{Fix}\left(G_{v}\right)$ is contained in Z_{r}^{*}, and so is the stratum. Thus the decomposition into strata may be finer than the decomposition into the Z_{s}^{*}, and the $G \cdot \operatorname{Fix}\left(G_{v}\right)$ (resp. the A_{v}) provide the most refined decomposition. (For general groups this decomposition carries over to $G \cdot \epsilon_{v}\left(\mathcal{D}_{G}\right)$ and its closure.)

We note a consequence of some practical value for a compact and connected group G. In order to search for points v with $\epsilon_{v}\left(\mathcal{D}_{G}\right) \neq \mathbb{R}^{n}$, one may restrict attention to a maximal torus of G.

Corollary 4. Let $G \subseteq G L(n, \mathbb{R})$ be compact and connected such that $Z_{n}^{*}(G) \neq \emptyset$, and let H be a maximal torus of G. If $v \in Z_{n-1}(G)$ then there exists $T \in G$ such that Tv has nontrivial isotropy in H. Conversely, if $w \in Z_{n-1}(H)$ then $T w \in Z_{n-1}(G)$ for all $T \in G$. In other words,

$$
Z_{n-1}(G)=G \cdot Z_{n-1}(H)
$$

Proof. By Theorem 4 there is an element $S \in G, S \neq \mathrm{id}$ such that $S v=v$. By Bröcker and tom Dieck [4], Theorem IV.1.6, S lies in a maximal torus, which in turn is conjugate to H. Thus $T S T^{-1} \in H$ for a suitable $T \in G$, and $T S T^{-1}$ fixes v. This proves the inclusion " \subseteq ". The reverse inclusion is elementary: For $T \in G$ and $w \in \mathbb{K}^{n}$ one has $\epsilon_{T w}=T \epsilon_{w}$, hence by Lemma 6 one finds for $w \in Z_{n-1}(H)$:

$$
\epsilon_{T w}\left(\mathcal{D}_{G}\right) \subseteq \epsilon_{T w}\left(\mathcal{D}_{H}\right) \subseteq T \epsilon_{w}\left(\mathcal{D}_{H}\right) \neq \mathbb{K}^{n}
$$

Recall that $Z_{n-1}(H)$ can be determined in a systematic and relatively easy manner (Proposition 6). But the description above does not directly provide defining equations for $Z_{n-1}(G)$.

Example. We continue the example at the end of Section 4, with the irreducible $(2 \ell+1)$-dimensional representation G of $S O(3, \mathbb{R})$. The Lie algebra of a maximal torus \widetilde{H} is spanned by

$$
B_{\ell}:=\mathrm{i} \cdot \operatorname{diag}(2 \ell, 2 \ell-2, \ldots, 2,0,-2, \ldots,-2 \ell+2,-2 \ell),
$$

and the nontrivial $\mathcal{D}_{\widetilde{H}}$-invariant subspaces are just $V_{0}, V_{2}, \ldots, V_{\ell}$. Now assume $\ell>2$. One obtains $\mathcal{D}_{G^{-}}$invariant subsets $G \cdot V_{k}$, of dimension $\leq 3+\ell$, since $\operatorname{dim} V_{k}=1+2[\ell / k], G$ is three-dimensional and the stabilizer of V_{k} contains H. Therefore $Z_{2 \ell+1}^{*} \neq \emptyset$, and by Corollary $4, Z_{2 \ell}$ is just the union of the $G \cdot V_{k}$, $k \neq 1$.

There is a shortcut to determine the varieties Z_{s} for a compact group G from those of the connected identity component G^{0}.

Proposition 7. Let $G \neq G^{0}$ be compact.
(a) There exist homogeneous polynomials $\phi_{1}, \ldots, \phi_{r}$ which generate the invariant algebra of G^{0} and are \mathbb{K}-linearly independent, such that the vector space $\mathbb{K} \phi_{1}+$ $\cdots+\mathbb{K} \phi_{r}$ is stable with respect to the G action. Define

$$
\Phi=\left(\begin{array}{c}
\phi_{1} \\
\vdots \\
\phi_{r}
\end{array}\right)
$$

Then for every $T \in G$ there exists a unique $\widetilde{T} \in G L(r, \mathbb{K})$ such that the identity

$$
\Phi(T x)=\widetilde{T} \Phi(x)
$$

holds. \widetilde{T} depends only on the class of $T \bmod G^{0}$, thus one has an induced action of G / G^{0} on \mathbb{K}^{r}.
(b) If $S v=v$ for some $S \in G$ then $\widetilde{S} \Phi(v)=\Phi(v)$, and conversely. Thus the image of $\operatorname{Fix}\left(G_{v}\right)$ is equal to the fixed point space of $\left(G / G^{0}\right)_{\Phi(v)}$.
(c) The following equality holds:

$$
\epsilon_{v}\left(\mathcal{D}_{G}\right)=\epsilon_{v}\left(\mathcal{D}_{G^{0}}\right) \cap\left\{x: \widetilde{S} \Phi(x)=\Phi(x), \text { for all } \widetilde{S} \in G_{v} /\left(G^{0} \cap G_{v}\right)\right\}
$$

Proof. For every $T \in G$ and every homogeneous G^{0}-invariant $\phi, \phi \circ T$ is a G^{0}-invariant which is homogeneous of the same degree. Given a homogeneous system of generators $\phi_{1}, \ldots, \phi_{s}$ for the invariant algebra of G^{0}, the $\phi_{j} \circ T, T \in G$ will therefore span a finite dimensional vector space. Extending the system $\phi_{1}, \ldots, \phi_{s}$ to a basis of this vector space will yield a system $\phi_{1}, \ldots, \phi_{r}$ that satisfies part (a). Moreover this system separates G^{0}-orbits, due to compactness. The nontrivial assertion of part (b) follows: If $\widetilde{S} \Phi(v)=\Phi(v)$ for some $S \in G$ then, due to the separation property, $S v$ is on the same G^{0}-orbit as v, thus $S v=T v$ for some $T \in G^{0}$, whence $S^{-1} T v=v$.

6 Reductive groups

This section is devoted to extending some of the results for compact groups to complex or real reductive groups. (Recall that the complexification of a real compact group is reductive.) For reductive groups one cannot expect the equality $\epsilon_{y}\left(\mathcal{D}_{G}\right)=\operatorname{Fix}\left(G_{y}\right)$ to hold for all y. Counterexamples exist even for algebraic tori.
Example. Let G consist of all diagonal matrices with entries a, a^{2}, a^{3}, with $a \in \mathbb{C}^{*}$. The remark following Proposition 4 shows that \mathcal{D}_{G} is generated by the vector fields

$$
\left(\begin{array}{c}
x_{1} \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
x_{2} \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
x_{1}^{2} \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
x_{3}
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
x_{1} x_{2}
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
x_{1}^{3}
\end{array}\right) .
$$

Consider $v=(0,1,1)^{\operatorname{tr}}$: Since $a^{2}=a^{3}=1$ implies $a=1$, one has $\operatorname{Fix}\left(G_{v}\right)=\mathbb{C}^{3}$, whereas the image of ϵ_{v} is two-dimensional.
But for reductive groups there exists a good criterion for surjectivity of the evaluation map.
Theorem 5. (Panyushev [20].) For a complex reductive group G, the evaluation map

$$
\epsilon_{v}: \mathcal{D}_{G} \rightarrow \operatorname{Fix}\left(G_{v}\right), \quad f \mapsto f(v)
$$

is surjective, and thus equality $\epsilon_{v}\left(\mathcal{D}_{G}\right)=\operatorname{Fix}\left(G_{v}\right)$ holds, whenever the Zariski closure of the orbit $G \cdot v$ is a normal variety and $\overline{G \cdot v} \backslash G \cdot v$ has codimension >1 in $\overline{G \cdot v}$. In particular equality holds when the orbit of v is Zariski closed.
Proposition 8. (Hilbert-Mumford criterion; Birkes [2], Theorem 4.2.) Let $G \subseteq G L(n, \mathbb{C})$ be reductive, and $v \in G$ such that the orbit $G v$ is not closed. Then there exists a nontrivial multiplicative one-parameter group $\left\{\gamma(s) ; s \in \mathbb{C}^{*}\right\}$ such that $\lim _{s \rightarrow 0} \gamma(s) v$ exists.

Remark. Due to Proposition 5 the set of all v which satisfy such a limit condition for some multiplicative one-parameter subgroup is \mathcal{D}_{G}-invariant.

We obtain a precise description of Z_{n}^{*} for complex reductive groups.
Theorem 6. Let $G \subseteq G L(n, \mathbb{C})$ be reductive, and $Z_{n}^{*} \neq \emptyset$. Then for all $v \in \mathbb{C}^{n}$ the following hold:
a) If the orbit $G \cdot v$ is closed and G_{v} is trivial then $v \in Z_{n}^{*}$.
b) If $G \subseteq S L(n, \mathbb{C})$ and $v \in Z_{n}^{*}$ then $G \cdot v$ is closed and G_{v} is trivial.

Proof. The proof of part a) is immediate from Panyushev's theorem: Since the orbit of v is closed, one has $\epsilon_{v}\left(\mathcal{D}_{G}\right)=\operatorname{Fix}\left(G_{v}\right)$, and $\epsilon_{v}\left(\mathcal{D}_{G}\right)=\mathbb{K}^{n}$ from trivial isotropy.

To prove part b), we first show that $G \cdot v$ is closed. Assume that this is not the case. Then by the Hilbert-Mumford criterion there is a nontrivial multiplicative one-parameter group $\left\{\gamma(s) ; s \in \mathbb{C}^{*}\right\}$ such that $\lim _{s \rightarrow 0} \gamma(s) v$ exists. By Proposition 5, $\lim _{s \rightarrow 0} \gamma(s) w$ exists for all $w \in \epsilon_{v}\left(\mathcal{D}_{G}\right)=\mathbb{K}^{n}$. Thus, if

$$
\gamma(s)=\operatorname{diag}\left(s^{k_{1}}, \ldots, s^{k_{n}}\right) ; \quad k_{i} \in \mathbb{Z}
$$

(as may be assumed) then all $k_{i} \geq 0$ and $\sum k_{i}>0$; a contradiction to $\gamma(s) \in$ $S L(n)$.
By Theorem 5, again, one has $\mathbb{K}^{n}=\epsilon_{v}\left(\mathcal{D}_{G}\right)=\operatorname{Fix}\left(G_{v}\right)$ and therefore G_{v} is trivial.

For real reductive groups Panyushev's theorem has the following consequence:

Theorem 7. Let $G \subseteq G L(n, \mathbb{R})$ be reductive, with complexification ${ }_{\mathbb{C}} G$, and let $y \in \mathbb{R}^{n}$ such that the G-orbit of y is closed in the norm topology. Then the ${ }_{\mathbb{C}} G$-orbit of y is Zariski closed and

$$
\epsilon_{y}\left(\mathcal{D}_{G}\right)=\operatorname{Fix}\left(\left({ }_{\mathbb{C}} G\right)_{y} \cap G\right)
$$

Proof. Zariski-closedness of the orbit follows from Birkes [2], Corollary 5.3, and then surjectivity of the map ϵ_{y} follows from Theorem 5.

Example. In general one has $G_{y} \neq\left(\left({ }_{\mathbb{C}} G\right)_{y} \cap G\right)$. Let

$$
G=\left\{\operatorname{diag}\left(a^{3}, a, a^{-1}, a^{-3}\right): a \in \mathbb{R}^{*}\right\}
$$

and $v=(1,0,0,1)^{t}$. Then $\mathbb{C} G$ is defined by the same conditions with $a \in \mathbb{C}^{*}$. The isotropy groups are defined by the condition $a^{3}=1$. This forces trivial isotropy (and $\operatorname{Fix}\left(G_{v}\right)=\mathbb{R}^{4}$) in the real case, while one may let a be a primitive third root of unity and obtain a two-dimensional fixed point space for $\mathbb{C} G$.

We close this section with some remarks on a natural extension problem: Given $G \subseteq G L(n, \mathbb{K})$ and a \mathcal{D}_{G}-invariant variety Y, under what circumstances can a polynomial vector field \tilde{f} on Y be extended to a G-symmetric vector field on \mathbb{K}^{n} ? This is of special interest for low-dimensional \mathcal{D}_{G}-invariant sets of high-dimensional systems, for which a complete discussion is not feasible.

The following necessary condition is obvious: Let $H \subseteq G$ be the stabilizer subgroup of Y. The restriction of a G-symmetric vector field on \mathbb{K}^{n} to Y has symmetry group $\left.H\right|_{Y}$, and therefore \tilde{f} must admit this symmetry group.

If G is reductive and the variety Y is also G-stable then $H=G$ and the above condition is also sufficient. See e.g. the Lemma in Panyushev [20] for the following well-known result.

Proposition 9. Let $G \subseteq G L(n, \mathbb{K})$ be reductive, and Y a G-stable subvariety of \mathbb{K}^{n}. Then every G-symmetric polynomial vector field on Y extends to $a G$ symmetric polynomial vector field on \mathbb{K}^{n}.

If Y is not G-stable then, in general, H-symmetry is not even sufficient to ensure well-definedness of an extension as a map. Let $W \subseteq \mathbb{K}^{n}$ be an irreducible affine \mathcal{D}_{G}-invariant subvariety, and $\tilde{f}: W \rightarrow \mathbb{K}^{n}$ a polynomial vector field. (Linear subspaces are of particular interest, due to Theorem 2 and Proposition 1.) Let V be the Zariski closure of $G \cdot W$ and note that $G \cdot W$ contains a Zariskiopen and dense subset of V. If there is an extension f of \tilde{f} to a G-symmetric vector field on V then necessarily the following well-definedness condition holds:
(6) If $w \in W, T \in G$ are such that $T w \in W$ then $\tilde{f}(T w)=T \tilde{f}(w)$.

As one easily verifies, this condition is necessary and sufficient for the existence of a G-symmetric extension map $f: G \cdot W \rightarrow \mathbb{K}^{n}$ of \tilde{f}, which must be given by

$$
\begin{equation*}
f(T x)=T \tilde{f}(x), \quad x \in W, T \in G \tag{7}
\end{equation*}
$$

The problem is to decide whether (7) defines a polynomial f. Without further assumptions, the following result seems to be the best possible.
Proposition 10. Let G be connected, let W be an irreducible affine subvariety, and $\tilde{f}: W \rightarrow W$ a polynomial vector field which satisfies the well-definedness condition (6). Then there exists a rational G-symmetric vector field f on the Zariski closure V of $G \cdot W$ such that $\left.f\right|_{W}=\tilde{f}$.

Proof. The map

$$
\Phi: G \times W \rightarrow V, \quad(T, x) \mapsto T x
$$

is a dominant morphism of irreducible varieties by construction. Now consider

$$
F: G \times W \rightarrow \mathbb{K}^{n}, \quad F(T, x):=T \tilde{f}(x)
$$

By the well-definedness condition (6), this map is constant on the fibers of Φ. According to a theorem by Chevalley cited by Borel [3] (Proposition on p. 43), applied to every entry of F, there exists a rational f on V such that $F=f \circ \Phi$; in other words, $T \tilde{f}(x)=f(T x)$ for all $T \in G$ and all x in a nonempty Zariski-open subset of W.

Remarks. (a) Condition (6) forces \tilde{f} to be symmetric with respect to the stabilizer subgroup H of W.
(b) Condition (6) forces all intersections of W with isotropy fixed point subspaces of \mathbb{K}^{n} to be \tilde{f}-invariant. Indeed, $T v=v$ for $T \in G, v \in W$ implies $T \tilde{f}(v)=\tilde{f}(v)$. It is not clear whether the analogous statement for the subspaces $\epsilon_{v}\left(\mathcal{D}_{G}\right)$ holds generally.
(c) In case $y \in W:=\operatorname{Fix}\left(G_{v}\right)$ for some v, one can characterize the group elements T which satisfy the premise of (6): One has $y \in W$ if and only if $G_{v} \subseteq G_{y}$. In view of $G_{T y}=T G_{y} T^{-1}$, one sees that $T y \in W$ is equivalent to

$$
T^{-1} G_{v} T \subseteq G_{y}
$$

In case $G_{y}=G_{v}$ this condition characterizes the normalizer of G_{v}, and is equivalent to $T(W)=W$.

7 Examples

7.1 Couette-Taylor symmetry

The previous sections provide, among other results, the tools to discuss groups with toral identity component, such as the symmetry group G of a CouetteTaylor system. While this system has been studied extensively, it may be of some interest to see that and how our approach facilitates computations and increases transparency. Our aim is not to discuss a particular system but to investigate the invariant sets of a general system admitting the symmetry group. (See the Remark following Proposition 2.) We will show that all the relevant information can be obtained in a few pages, starting from scratch.

The Couette-Taylor system under consideration here lives on a six-dimensional real phase space. (We follow the presentation and notation in Gatermann [12], Ch. 4.) Via complexification one turns to to \mathbb{C}^{6}, with coordinates denoted by z_{0}, \ldots, z_{5}, and the real phase space V is defined by $z_{i+3}=\bar{z}_{i}$ for $0 \leq i \leq$ 2. The connected identity component G^{0} of the symmetry group G is a twodimensional torus whose Lie algebra \mathcal{L} is spanned by $i C_{1}$ and $i C_{2}$, with

$$
\begin{aligned}
& C_{1}:=\operatorname{diag}(1,2,0,-1,-2,0) \\
& C_{2}:=\operatorname{diag}(0,1,1,0,-1,-1) .
\end{aligned}
$$

The full group is generated by G^{0} and the involution ("reflection") R which exchanges z_{0} and z_{3}, z_{1} and z_{2}, z_{4} and z_{5}, respectively. All conjugates of R are also involutions, with three-dimensional fixed point spaces.

Proposition 11. (a) The invariant algebra of G^{0} is generated by

$$
\psi_{1}=z_{1} z_{4}, \quad \psi_{2}=z_{2} z_{5}, \quad \psi_{3}=z_{0} z_{3}, \quad \psi_{4}=z_{0}^{2} z_{2} z_{4}, \quad \psi_{5}=z_{1} z_{3}^{2} z_{5}
$$

with the single relation $\psi_{4} \psi_{5}-\psi_{1} \psi_{2} \psi_{3}^{2}=0$. On the real subspace V one has

$$
\begin{aligned}
& \bar{\psi}_{k}=\psi_{k}, \quad 1 \leq k \leq 3 \\
& \bar{\psi}_{4}=\psi_{5}
\end{aligned}
$$

(b) A vector field is G^{0}-symmetric if and only if it has the form

$$
f(z)=\left(\begin{array}{cll}
\sigma_{1} \cdot z_{0} & + & \sigma_{2} \cdot z_{1} z_{3} z_{5} \\
\sigma_{3} \cdot z_{1} & + & \sigma_{4} \cdot z_{0}^{2} z_{2} \\
\sigma_{5} \cdot z_{2} & + & \sigma_{6} \cdot z_{1} z_{3}^{2} \\
\sigma_{7} \cdot z_{3} & + & \sigma_{8} \cdot z_{0} z_{2} z_{4} \\
\sigma_{9} \cdot z_{4} & + & \sigma_{10} \cdot z_{3}^{2} z_{5} \\
\sigma_{11} \cdot z_{5} & + & \sigma_{12} \cdot z_{0}^{2} z_{4}
\end{array}\right)
$$

with the σ_{j} polynomials in $\psi_{1}, \ldots, \psi_{5}$. The vector field stabilizes the real subspace V if and only if $\sigma_{6+j}=\bar{\sigma}_{j}$ on $V, 1 \leq j \leq 6$.

Proof. This is a straightforward consequence of the remark following Proposition 4 (see also the Appendix). We sketch only the computations for the invariants, starting with the invariants of C_{2}. A monomial

$$
z_{0}^{m_{0}} \cdots z_{5}^{m_{5}}
$$

is invariant for C_{2} if and only if

$$
m_{1}+m_{2}-m_{4}-m_{5}=0 .
$$

Therefore (compare the 1:1-resonance, e.g. in [22]) a generator system for the invariant algebra of C_{2} is given by

$$
\phi_{1}:=z_{0} ; \quad \phi_{2}:=z_{3} ; \quad \phi_{3}:=z_{1} z_{4} ; \quad \phi_{4}:=z_{1} z_{5} ; \quad \phi_{5}:=z_{2} z_{4} ; \quad \phi_{6}:=z_{2} z_{5}
$$

The ϕ_{j} are mapped to scalar multiples of themselves by $L_{C_{1}}$; one finds

$$
L_{C_{1}}\left(\phi_{1}^{d_{1}} \cdots \phi_{6}^{d_{6}}\right)=\left(d_{1}-d_{2}+2 d_{4}-2 d_{5}\right) \cdot \phi_{1}^{d_{1}} \cdots \phi_{6}^{d_{6}}
$$

hence G^{0}-invariant monomials in the ϕ_{j} are characterized by

$$
d_{1}-d_{2}+2 d_{4}-2 d_{5}=0
$$

(This corresponds to the 1:2-resonance; see e.g. [22]) . Thus we obtain generators

$$
\phi_{3} ; \quad \phi_{6} ; \quad \phi_{1} \phi_{2} ; \quad \phi_{1}^{2} \phi_{5} ; \quad \phi_{2}^{2} \phi_{4},
$$

since $\phi_{4} \phi_{5}=\phi_{3} \phi_{6}$ may be discarded. The remaining computations are similar. The assertion about vector fields stabilizing the real subspace V follows from the necessary and sufficient condition that any entry with index $j+3$ must have a value conjugate to the entry with index j when applied to an element of V.

Corollary 5. The nontrivial invariant subspaces of V common to all real vector fields with G^{0} symmetry are given by

$$
\begin{aligned}
& Y_{1}:=\left\{z \in V ; z_{0}=z_{3}=0\right\} ; \\
& Y_{2}:=\left\{z \in V ; z_{0}=z_{3}=z_{1}=z_{4}=0\right\} ; \\
& Y_{3}:=\left\{z \in V ; z_{0}=z_{3}=z_{2}=z_{5}=0\right\} ; \\
& Y_{4}:=\left\{z \in V ; z_{1}=z_{4}=z_{2}=z_{5}=0\right\} .
\end{aligned}
$$

Proof. We use the criterion in Proposition 6. Thus let the weights ω_{j} on \mathcal{L} be defined by

$$
\begin{array}{ll}
\omega_{1}\left(C_{1}\right)=1, & \omega_{1}\left(C_{2}\right)=0 \\
\omega_{2}\left(C_{1}\right)=2, & \omega_{2}\left(C_{2}\right)=1 \\
\omega_{3}\left(C_{1}\right)=0, & \omega_{3}\left(C_{2}\right)=1
\end{array}
$$

Since ω_{2} and ω_{3} are not contained in $\mathbb{Z} \cdot \omega_{1}$, one finds invariance of Y_{4}; and invariance of Y_{3} and Y_{2} follow by consideration of $\mathbb{Z} \cdot \omega_{2}$ and $\mathbb{Z} \cdot \omega_{3}$, respectively. The relation $2 \omega_{1}-\omega_{2}+\omega_{3}=0$ shows that $\omega_{2} \in \mathbb{Z} \cdot \omega_{1}+\mathbb{Z} \cdot \omega_{3}$ as well as $\omega_{3} \in \mathbb{Z} \cdot \omega_{1}+\mathbb{Z} \cdot \omega_{2}$; hence no nontrivial $\mathcal{D}_{G^{0}}$-invariant subspaces correspond to these submodules. But $\omega_{1} \notin \mathbb{Z} \cdot \omega_{2}+\mathbb{Z} \cdot \omega_{3}$ shows the invariance of Y_{1}.

Now we turn to the full group G. The reflection R acts on G^{0}-invariants as follows:

$$
\psi_{1} \circ R=\psi_{2} ; \quad \psi_{3} \circ R=\psi_{3} ; \quad \psi_{4} \circ R=\psi_{5} .
$$

Thus $\mathbb{K} \psi_{1}+\cdots+\mathbb{K} \psi_{5}$ is stable with respect to this action. We define for a polynomial σ in five variables:

$$
\sigma^{*}\left(\psi_{1}, \ldots, \psi_{5}\right):=\sigma\left(\psi_{2}, \psi_{1}, \psi_{3}, \psi_{5}, \psi_{4}\right)
$$

in other words, $\sigma^{*}=\sigma \circ \widetilde{R}$.
Proposition 12. A vector field is G-symmetric if and only if it has the form

$$
f(z)=\left(\begin{array}{lll}
\sigma_{1} \cdot z_{0} & +\sigma_{2} \cdot z_{1} z_{3} z_{5} \\
\sigma_{3} \cdot z_{1} & +\sigma_{4} \cdot z_{0}^{2} z_{2} \\
\sigma_{3}^{*} \cdot z_{2} & +\sigma_{4}^{*} \cdot z_{1} z_{3}^{2} \\
\sigma_{1}^{*} \cdot z_{3} & + & \sigma_{2}^{*} \cdot z_{0} z_{2} z_{4} \\
\sigma_{9} \cdot z_{4} & +\sigma_{10} \cdot z_{3}^{2} z_{5} \\
\sigma_{9}^{*} \cdot z_{5} & +\sigma_{10}^{*} \cdot z_{0}^{2} z_{4}
\end{array}\right)
$$

The vector field stabilizes the real subspace V if and only if

$$
\begin{array}{ll}
\sigma_{1}^{*}=\bar{\sigma}_{1}, & \sigma_{2}^{*}=\bar{\sigma}_{2} ; \\
\sigma_{9}=\bar{\sigma}_{3}, & \sigma_{10}=\bar{\sigma}_{4}
\end{array}
$$

hold on V.

Proof. If f is G^{0}-symmetric then $f+R^{-1} \circ f \circ R$ is G-symmetric, and every G-symmetric vector field is obtained in this way. All assertions now follow from routine calculations.

Proposition 13. The set

$$
Y_{5}:=\left\{w \in V ; \psi_{1}(w)=\psi_{2}(w) \text { and } \psi_{4}(w)=\psi_{5}(w)\right\}
$$

is invariant for every G-symmetric (real) vector field. Moreover G_{v} is not a subset of G^{0} only if $v \in Y_{5}$, which is the union of the three-dimensional fixedpoint spaces of R and its conjugates; thus $Y_{5} \subseteq Z_{3}$.

The varieties Z_{s} are determined from Y_{1}, \ldots, Y_{5} and unions and intersections of these sets.

Proof. The subspace $\mathbb{K} \psi_{1}+\cdots \mathbb{K} \psi_{5}$ is G / G^{0}-invariant; now apply Proposition 7 and Theorem 2.

The fixed point spaces of the conjugates of R and their intersections with Y_{4} resp. Y_{1} are determined by straightforward computations: For $v \in Y_{5}$ one finds

$$
\begin{aligned}
& C_{v}:=\left\{z \in V ; z_{0} v_{3}=z_{3} v_{0}, z_{1} v_{2}=z_{2} v_{1}, z_{4} v_{5}=z_{5} v_{4}\right\} \\
& B_{v}:=\left\{z \in V ; z_{0} v_{3}=z_{3} v_{0}, z_{1}=z_{2}=z_{4}=z_{5}=0\right\} \\
& A_{v}:=\left\{z \in V ; z_{0}=z_{3}=0, z_{1} v_{2}=z_{2} v_{1}, z_{4} v_{5}=z_{5} v_{4}\right\}
\end{aligned}
$$

In particular the fixed point space of R equals C_{v} with $v_{0}=\cdots v_{5}=1$.
Since Y_{1} through Y_{4} are also group invariant, the dynamics of G-symmetric vector fields on these spaces is straightforward. As for Y_{5}, the situation is different, but it is sufficient to consider $Y_{5}^{*}:=Y_{5} \backslash\left(Y_{1} \cup Y_{4}\right)$. Note that all $z_{i} \neq 0$ on Y_{5}^{*}. The following result gives a complete characterization of their structure.

Proposition 14. The restriction of every G-symmetric differential equation to $Y_{5}^{*}=Y_{5} \backslash\left(Y_{1} \cup Y_{4}\right)$ admits the first integrals $z_{3} / z_{0}, z_{2} / z_{1}$ and z_{4} / z_{5}. One may rewrite the differential equation in the form

$$
\begin{aligned}
& \dot{z}_{0}=\left(\tau_{1}+\rho_{1} \tau_{2}\right) z_{0} \\
& \dot{z}_{1}=\left(\tau_{3}+\rho_{2} \tau_{4}\right) z_{1} \\
& \dot{z}_{2}=\left(\tau_{3}+\rho_{2} \tau_{4}\right) z_{2} \\
& \dot{z}_{3}=\left(\tau_{1}+\rho_{1} \tau_{2}\right) z_{3} \\
& \dot{z}_{4}=\left(\tau_{9}+\rho_{3} \tau_{10}\right) z_{4} \\
& \dot{z}_{5}=\left(\tau_{9}+\rho_{3} \tau_{10}\right) z_{5} .
\end{aligned}
$$

with polynomials τ_{k} depending on $\psi_{1}, \psi_{3}, \psi_{4}$ only, and $\tau_{1}=\bar{\tau}_{1}, \tau_{2}=\bar{\tau}_{2}, \tau_{9}=\bar{\tau}_{3}$ and $\tau_{10}=\bar{\tau}_{4}$, and

$$
\begin{aligned}
\rho_{1} & =z_{1} z_{3} z_{5} / z_{0} \\
\rho_{2} & =z_{0}^{2} z_{2} z_{4} / z_{3} \\
z_{2} / z_{1} & =z_{1} z_{3}^{2} / z_{2} \\
\rho_{3} & =z_{3}^{2} z_{5} / z_{4}
\end{aligned}=z_{0}^{2} z_{4} / z_{5},
$$

On a level set $z_{3} / z_{0}=\alpha_{1}, z_{2} / z_{1}=\alpha_{2}$ and $z_{4} / z_{5}=\alpha_{3}$ of the first integrals one has $\psi_{4}=\alpha_{2} / \alpha_{1} \cdot \psi_{1} \psi_{3}$, and

$$
\rho_{1}=\alpha_{1} \alpha_{3} \psi_{1}, \quad \rho_{2}=\frac{\alpha_{2}}{\alpha_{1}} \psi_{3}, \quad \rho_{3}=\frac{\alpha_{3}}{\alpha_{1}} \psi_{3}
$$

which shows that the system on the level set is reducible to a two-dimensional system by $\left(\psi_{1}, \psi_{3}\right)^{\text {tr }}$.
Proof. The first integrals can be determined as in the proof of Theorem 3: From Proposition 12 one obtains, for instance, module elements

$$
\left(\begin{array}{c}
0 \\
z_{1} \\
z_{2} \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
z_{4} \\
z_{5}
\end{array}\right),\left(\begin{array}{c}
0 \\
z_{0}^{2} z_{2} \\
z_{1} z_{3}^{2} \\
0 \\
0 \\
0
\end{array}\right) .
$$

On $Y_{5} \subseteq Z_{3}$ we consider 3×3 minors of the matrix with these columns. The minor with rows 1,2 and 4 equals $z_{1}^{2} z_{3}^{2} z_{4}$, while the minor with rows 1,2 and 5 equals $z_{1}^{2} z_{3}^{2} z_{5}$. Their quotient z_{4} / z_{5} is a first integral. The remaining first integrals are obtained similarly. Moreover, on Y_{5} one has $\psi_{1}=\psi_{2}$ and $\psi_{4}=\psi_{5}$, and on Y_{5}^{*} this implies

$$
z_{1}^{2} z_{3}^{2} z_{4} z_{5}=z_{0}^{2} z_{2}^{2} z_{4} z_{5} \Rightarrow z_{1}^{2} z_{3}^{2}=z_{0}^{2} z_{2}^{2}
$$

by cancellation. By this and similar computations the identities asserted for the ρ_{i} hold.
From the first integral z_{0} / z_{3} one obtains additional conditions on the polynomials in Proposition 12: On Y_{5}^{*} one has

$$
\begin{aligned}
0 & =z_{3} \cdot\left(\sigma_{1} z_{0}+\sigma_{2} z_{1} z_{3} z_{5}\right)-z_{0}\left(\sigma_{1}^{*} z_{3}+\sigma_{2}^{*} z_{0} z_{2} z_{4}\right) \\
& =\left(\sigma_{1}-\sigma_{1}^{*}\right) z_{0} z_{3}+\left(\sigma_{2}-\sigma_{2}^{*}\right) z_{1} z_{3}^{2} z_{5}
\end{aligned}
$$

which implies $\sigma_{1}=\sigma_{1}^{*}$ and $\sigma_{2}=\sigma_{2}^{*}$ on Y_{5}^{*} and on Y_{5}. Similarly one finds $\sigma_{j}=$ σ_{j}^{*} for the remaining indices. The assertions now follow from straightforward computations.

Remark. One may compare these results to the list of isotropy fixed point spaces in Gatermann [12], Table 4.5. (This table, as usual, lists representatives modulo conjugation.) The first item in this list corresponds to $\{0\}$, the second item to B_{v} with $v=(1,1,0, \ldots, 0)^{\text {tr }}$. Item 3 corresponds to Y_{2} and Y_{3}, while item 4 corresponds to A_{v} with $v=(0,1,1,0,1,1)^{\mathrm{tr}}$. Both items 5 and 7 correspond to C_{v}, with $v=(1,1,1,1,1,1)^{\text {tr }}$ resp. $v=(i, 1,1,-i, 1,1)^{\text {tr }}$. Item 6 corresponds to Y_{1}, and the last item corresponds to V. The approach taken here seems more transparent and avoids nontrivial as well as unpleasant tasks such as the determination of all isotropy subgroups.

7.2 Representations of $S L(2)$

The representations of $S L(2)$ are well-understood: For every dimension d there is one and only one irreducible representation, up to isomorphism, which can be realized by the linear action on forms of degree $d-1$ in two variables. Elliott [8] is a classical source. We will recall some facts on irreducible representations, for the reader's convenience and also to fix notation (which is not standardized).

We consider the space of forms of degree $d-1$ in two variables u and v with basis

$$
e_{1}:=u^{d-1}, e_{2}:=u^{d-2} v, \ldots, e_{d}:=v^{d-1}
$$

(This differs from Elliott by some scaling factors, but is compatible with Cushman and Sanders [7], and also with [11], from which we will quote some results.) The action of $S L(2)$ on forms is as follows:

$$
\left(\begin{array}{ll}
a & b \tag{8}\\
c & d
\end{array}\right) \text { acts via }\left\{\begin{array}{lll}
u & \mapsto & d u-b v \\
v & \mapsto & -c u+a v
\end{array}\right.
$$

We will denote by G the group of matrices which represent this action with respect to the basis e_{1}, \ldots, e_{d}.

With increasing dimension the generators and relations even for the invariant algebra become intractable. In this subsection we will discuss low-dimensional irreducible representations, viz., the four-dimensional and the five-dimensional irreducible representation. Both of these have been thoroughly investigated by Elliott [8], p. 97 ff. and p. 213 ff.. (See also Cushman and Sanders [7], from which invariants and covariants are taken.) But some properties of symmetric vector fields, their invariant sets and the extension problem seem worth mentioning.
A. First, we consider the four-dimensional irreducible representation of $S L(2)$ (see also [11], Example 2.5 (c)). The invariant algebra is generated by

$$
\phi=18 x_{1} x_{2} x_{3} x_{4}-27 x_{1}^{2} x_{4}^{2}-4 x_{1} x_{3}^{3}+x_{2}^{2} x_{3}^{2}-4 x_{2}^{3} x_{4},
$$

and the module of symmetric vector fields is generated by

$$
f_{1}(x)=x, \quad f_{2}(x)=\left(\begin{array}{l}
\psi_{1}(x) \\
\psi_{2}(x) \\
\psi_{3}(x) \\
\psi_{4}(x)
\end{array}\right)
$$

with

$$
\begin{aligned}
\psi_{1}(x) & =-27 x_{1}^{2} x_{4}+9 x_{1} x_{2} x_{3}-2 x_{2}^{3}, \\
\psi_{2}(x) & =-27 x_{1} x_{2} x_{4}+18 x_{1} x_{3}^{2}-3 x_{2}^{2} x_{3}, \\
\psi_{3}(x) & =27 x_{1} x_{3} x_{4}+3 x_{2} x_{3}^{2}-18 x_{2}^{2} x_{4}, \\
\psi_{4}(x) & =27 x_{1} x_{4}^{2}+2 x_{3}^{3}-9 x_{2} x_{3} x_{4} .
\end{aligned}
$$

Therefore $\mathbb{C}^{4}=Z_{2}$, and from Theorem 3 one can determine rational first integrals. Computing the minors of $\left(f_{1}(x), f_{2}(x)\right)$ one obtains, for instance,

$$
\operatorname{det}\left(\begin{array}{ll}
x_{1} & \psi_{1} \\
x_{2} & \psi_{2}
\end{array}\right)=2\left(3 x_{1} x_{3}-x_{2}^{2}\right)^{2}
$$

and continuing one finds by straightforward computations that Z_{1} is the twodimensional variety defined by $\rho_{1}(x)=\rho_{2}(x)=\rho_{3}(x)=0$, with

$$
\begin{aligned}
\rho_{1}: & =3 x_{1} x_{3}-x_{2}^{2} \\
\rho_{2}: & =9 x_{1} x_{4}-x_{2} x_{3} \\
\rho_{3}: & =3 x_{2} x_{4}-x_{3}^{2}
\end{aligned}
$$

and that every G-symmetric system admits rational first integrals ρ_{i} / ρ_{j}.
By Proposition 8, Proposition 5 and the fact that all semisimple elements of \mathcal{L} are conjugate to a scalar multiple of B, the null cone (the zero set of ϕ) is equal to $\left\{G \cdot x: x_{3}=x_{4}=0\right\}$. Every element v not in the null cone has closed orbit (Proposition 8), whence the minimal \mathcal{D}_{G}-invariant subspace equals the fixed point space of G_{v} by Panyushev's theorem.

Modulo the ideal generated by the ρ_{i} one has $x_{2}^{2} \equiv 3 x_{1} x_{3}$ and $x_{3}^{2} \equiv 3 x_{2} x_{4}$, hence

$$
\begin{aligned}
\phi & \equiv 18 x_{1} x_{2} x_{3} x_{4}-27 x_{1}^{2} x_{4}^{2}-4 x_{1} x_{3}^{3}+3 x_{1} x_{3}^{3}-12 x_{1} x_{2} x_{3} x_{4} \\
& \equiv x_{1}\left(6 x_{2} x_{3} x_{4}-27 x_{1} x_{4}^{2}-x_{3}^{3}\right) \\
& \equiv x_{1}\left(3 x_{2} x_{3} x_{4}-27 x_{1} x_{4}^{2}\right) \\
& \equiv-3 x_{1} x_{4} \rho_{2} \equiv 0
\end{aligned}
$$

Therefore Z_{1} is contained in the null cone, the subspace $\epsilon_{v}\left(\mathcal{D}_{G}\right)$ is two-dimensional for every v not in the null cone, and equals the level set of ($\rho_{i-1} / \rho_{i}, \rho_{i+1} / \rho_{i}$) provided that $\rho_{i}(v) \neq 0$ (with indices modulo 3).

As a representative for a two-dimensional subspace contained in the null cone consider the \mathcal{D}_{G}-invariant space Y defined by $x_{3}=x_{4}=0$. We will discuss the well-definedness condition (6). If $0 \neq w=(\sigma, \tau, 0,0)^{\operatorname{tr}} \in Y$ and $T \in G$ then $T w \in Y$ is equivalent to

$$
b^{2}(-b \sigma+a \tau)=0 \quad \text { and } \quad 3 b^{2} d \sigma-\left(b^{2} c+2 a b d\right) \tau=0 .
$$

In any case, this forces $b=0$, and therefore $T w \in Y$ if and only if T is an element of the stabilizer \widehat{G} of Y, which is characterized by the condition $b=0$. A differential equation on Y is \widehat{G}-symmetric if and only if it is as follows, with constants α and β :

$$
\begin{aligned}
& \dot{x}_{1}=\alpha x_{1}-2 \beta x_{2}^{3} \\
& \dot{x}_{2}=\alpha x_{2}
\end{aligned}
$$

Inspection shows that every such equation can be extended to a G-symmetric differential equation on \mathbb{C}^{4}.

As a representative for a two-dimensional \mathcal{D}_{G}-invariant subspace not contained in the null cone consider the common zero set W of ρ_{1} and ρ_{3}, which is obviously determined by $x_{2}=x_{3}=0$. Again we consider the extension problem and the compatibility condition. If $0 \neq w=(\sigma, 0,0, \tau)^{\operatorname{tr}} \in W$ and $T \in G$ then $T w \in W$ is equivalent to

$$
\left(\begin{array}{cc}
-3 b d^{2} & 3 a c^{2} \\
3 b^{2} d & -3 a^{2} c
\end{array}\right)\binom{\sigma}{\tau}=\binom{0}{0} .
$$

Elements of the stabilizer \widehat{G} of W are therefore characterized by either $b=c=0$ (and $a d=1$) or $a=d=0$ (and $b c=-1$). The \widehat{G}-symmetric differential equations on W are given by

$$
\begin{aligned}
& \dot{x}_{1}=\left(\mu\left(x_{1}^{2} x_{4}^{2}\right)+x_{1} x_{4} \nu\left(x_{1}^{2} x_{4}^{2}\right)\right) x_{1} \\
& \dot{x}_{4}=\left(\mu\left(x_{1}^{2} x_{4}^{2}\right)-x_{1} x_{4} \nu\left(x_{1}^{2} x_{4}^{2}\right)\right) x_{4}
\end{aligned}
$$

with arbitrary polynomials μ and ν in one variable. In this case, there exist $T \notin \widehat{G}$ which send some nonzero element of W to W : Indeed, the determinant of the matrix in the defining condition is equal to $9 a b c d$, and therefore every T with one entry zero works. For a corresponding w, one the other hand, one always finds $\sigma=0$ or $\tau=0$, and condition (6) for such T and w turns out to be satisfied by every \widehat{G}-symmetric vector field on W. Again, inspection shows that every such vector field is the restriction of some G-symmetric vector field on \mathbb{C}^{4}.
B. Second, we consider the five-dimensional irreducible representation of $S L(2)$, using results on invariants from [7] and the procedure outlined in [11]. The invariant algebra is generated by the two polynomials

$$
\begin{aligned}
\phi_{1} & =12 x_{1} x_{5}-3 x_{2} x_{4}+x_{3}^{2} \\
\phi_{2} & =72 x_{1} x_{3} x_{5}-27 x_{1} x_{4}^{2}-2 x_{3}^{3}-27 x_{2}^{2} x_{5}+9 x_{2} x_{3} x_{4}
\end{aligned}
$$

and the module of \mathcal{D}_{G}-invariant vector fields is generated by the two elements

$$
f_{1}(x)=x ; \quad f_{2}(x)=\left(\begin{array}{c}
8 x_{1} x_{3}-3 x_{2}^{2} \\
24 x_{1} x_{4}-4 x_{2} x_{3} \\
48 x_{1} x_{5}+6 x_{2} x_{4}-4 x_{3}^{2} \\
24 x_{2} x_{5}-4 x_{3} x_{4} \\
8 x_{3} x_{5}-3 x_{4}^{2}
\end{array}\right)
$$

Therefore $\mathbb{C}^{5}=Z_{2}$. From the minors of $\left(f_{1}(x), f_{2}(x)\right)$ one finds the polynomials

$$
\begin{aligned}
& \rho_{1}(x)=4 x_{3} x_{4} x_{5}-x_{4}^{3}-8 x_{2} x_{5}^{2} \\
& \rho_{2}(x)=-2 x_{2} x_{4} x_{5}+4 x_{3}^{2} x_{5}-x_{3} x_{4}^{2}-16 x_{1} x_{5}^{2} \\
& \rho_{3}(x)=-8 x_{1} x_{4} x_{5}+4 x_{2} x_{3} x_{5}-x_{2} x_{4}^{2} \\
& \rho_{4}(x)=-x_{1} x_{4}^{2}+x_{2}^{2} x_{5} \\
& \rho_{5}(x)=8 x_{1} x_{2} x_{5}-4 x_{1} x_{3} x_{4}+x_{2}^{2} x_{4} \\
& \rho_{6}(x)=2 x_{1} x_{2} x_{4}-4 x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+16 x_{1}^{2} x_{5} \\
& \rho_{7}(x)=-4 x_{1} x_{2} x_{3}+x_{2}^{3}+8 x_{1}^{2} x_{4}
\end{aligned}
$$

whose common zero set is the three-dimensional variety Z_{1}, and which provide rational first integrals ρ_{i} / ρ_{j}. By Proposition 8, Proposition 5 and the fact that all semisimple elements of \mathcal{L} are conjugate to a scalar multiple of B, the null cone (the common zero set of ϕ_{1} and ϕ_{2}) is equal to $\left\{G \cdot x: x_{3}=x_{4}=x_{5}=0\right\}$, and the set of elements which satisfy the conclusion of Proposition 8 is equal to $\left\{G \cdot x: x_{4}=x_{5}=0\right\}$. Every element v not in this set has closed orbit, whence the minimal \mathcal{D}_{G}-invariant subspace equals the fixed point space of G_{v} by Panyushev's theorem.

We also discuss the dynamics on some \mathcal{D}_{G}-invariant subspaces. All elements on $W_{1}=\left\{x: x_{4}=x_{5}=0\right\}$ satisfy the conclusion of Proposition 8 , and the restriction of any symmetric differential equation to W_{1} is "triangular", thus

$$
\begin{aligned}
& \dot{x}_{1}=\mu_{1}\left(x_{1}, x_{2}, x_{3}\right) \\
& \dot{x}_{2}=\mu_{1}\left(x_{2}, x_{3}\right) \\
& \dot{x}_{3}=\mu_{1}\left(x_{3}\right)
\end{aligned}
$$

with suitable μ_{i}. On the other hand, the restriction of a G-symmetric differential equation to $W_{2}=\left\{x: x_{2}=x_{4}=0\right\}$ has the form

$$
\begin{aligned}
& \dot{x}_{1}=\sigma \cdot x_{1}+\tau \cdot 8 x_{3} x_{1} \\
& \dot{x}_{3}=\sigma \cdot x_{3}+\tau \cdot\left(48 x_{1} x_{5}-4 x_{3}^{2}\right) \\
& \dot{x}_{5}=\sigma \cdot x_{5}+\tau \cdot 8 x_{3} x_{5}
\end{aligned}
$$

with polynomials σ and τ in ϕ_{1} and ϕ_{2} (restricted to W_{2}). The identity component \widehat{G}_{0} of the stabilizer subgroup of W_{2} consists of all transformations induced by the $\operatorname{diag}\left(a, a^{-1}\right) \in S L(2)$, and therefore is one-dimensional. By $\left(\phi_{1}, \phi_{2}\right)$ one obtains reduction to dimension two. If one considers the minimal subspace $\epsilon_{v}\left(\mathcal{D}_{G}\right)$, e.g. for $v=e_{1}+e_{5}$, one finds that it is two-dimensional with finite stabilizer subgroup. Therefore symmetry induces no further reduction of dimension.

Finally, we look at the \mathcal{D}_{G}-invariant one-dimensional space $V=\left\langle e_{3}\right\rangle$. By a straightforward calculation, an element of G maps a nonzero element of V to V if and only if either $b=c=0$ (and $a d=1$) or $a=d=0$ (and $b c=-1$). The same condition defines the stabilizer subgroup \widehat{G} of V. Moreover the restriction of \widehat{G} acts trivially on V, whence every vector field on V is $\left.\widehat{G}\right|_{V}$-symmetric. Since nonzero constant vector fields on V cannot be extended to G-symmetic vector fields on \mathbb{C}^{5}, the symmetry condition alone on V is not sufficient for extendability. But the compatibility condition (6) also implies that $T \tilde{f}(0)=$ $\tilde{f}(0)$ for all $T \in G$, and therefore $\{0\}$ is an invariant set for every extendable vector field. Inspection shows that every vector field on V which stabilizes 0 is the restriction of some G-symmetric vector field on \mathbb{C}^{5}.

Appendix

A. Proof of Lemma 5. Given $\psi_{1}, \ldots, \psi_{r} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and $\mu_{i j} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
L_{f}\left(\psi_{j}\right)=\sum_{k} \mu_{j k} \psi_{k}, \quad 1 \leq j \leq r
$$

we have to show that the set Y of common zeros of the ψ_{j} is invariant for $\dot{x}=f(x)$. Thus let $v \in Y$, and abbreviate $z(t)=\Phi(t, v)$. Then for $1 \leq j \leq r$ one has

$$
\frac{d}{d t} \psi_{j}(z(t))=L_{f}\left(\psi_{j}\right)\left(z(t)=\sum_{k} \mu_{j k}(z(t)) \psi_{k}(z(t))\right.
$$

and thus $\left(\psi_{1}(z(t)), \ldots, \psi_{r}(z(t))\right)^{\text {tr }}$ satisfies a homogeneous linear system of differential equations with matrix $\left(\mu_{j k}(z(t))\right)$ and initial value 0 . By the uniqueness theorem, this solution is identically zero, whence $z(t) \in Y$ for all t. Part (a) is therefore proven, and one direction of part (b) is an immediate consequence. The reverse direction of part (b) follows from the expansion

$$
\Phi(t, w)=w+t \cdot f(w)+\cdots,
$$

whence $\Phi(t, w) \in W$ for all t implies $f(w) \in W$.
B. Invariants and symmetric vector monomials for algebraic tori: Let G be a complex algebraic torus, with Lie algebra \mathcal{L}.
(i) Auxiliary result: Given complex numbers $\lambda_{1}, \ldots, \lambda_{s}$ and α, consider all tuples (m_{1}, \ldots, m_{s}) of nonnegative integers such that

$$
\begin{equation*}
m_{1} \lambda_{1}+\cdots+m_{s} \lambda_{s}=0 \tag{9}
\end{equation*}
$$

and all tuples $\left(n_{1}, \ldots, n_{s}\right)$ of nonnegative integers such that

$$
\begin{equation*}
n_{1} \lambda_{1}+\cdots+n_{s} \lambda_{s}=\alpha \tag{10}
\end{equation*}
$$

For problem (9) there exist finitely many solutions such that every solution is a nonnegative integer linear combination of these. For problem (10), provided it is solvable, there exist finitely many solutions such that every solution is a sum of one of these and an arbitrary solution of Problem (9). (See [22], Proposition 1.6. This fact is related to Dickson's Lemma in Commutative Algebra; see e.g. Cox et al. [6].)
(ii) Let C_{1}, \ldots, C_{r} be a vector space basis of \mathcal{L}. From the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of C_{1} determine monomial generators for the C_{1}-invariant algebra via $\sum d_{i} \lambda_{i}=$ 0 (Problem (9)). Assuming that monomial generators $\phi_{t, 1}, \ldots, \phi_{t, \ell_{t}}$ for the invariant algebra of $\mathbb{C} C_{1}+\cdots \mathbb{C} C_{t}$ are known, these will be eigenfunctions for $L_{C_{t+1}}$ with eigenvalues $\lambda_{t+1,1}, \ldots, \lambda_{t+1, \ell_{t}}$. If a monomial $x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$ is a joint invariant of C_{1}, \ldots, C_{t+1} then, being a joint invariant of C_{1}, \ldots, C_{t}, it can be written in the form

$$
\phi_{t, 1}^{d_{1}} \ldots \phi_{t, \ell_{t}}^{d_{e_{t}}}
$$

and this is an invariant of C_{t+1} if and only if $\sum d_{i} \lambda_{t+1, i}=0$, which again leads to Problem (9). Thus one finds generating monomials for the invariant algebra. (iii) For vector monomials, consider $x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} e_{j}$, with j fixed. For C_{1} the condition is then $\sum d_{i} \lambda_{i}=\lambda_{j}$. By Problem (10) there are finitely many monomials $\psi_{1,1} e_{j}, \ldots, \psi_{1, m_{1}} e_{j}$ which generate the module over the algebra of C_{1-} invariants. Assuming that monomial generators $\phi_{t, 1}, \ldots, \phi_{t, \ell_{t}}$ for the invariant algebra and $\psi_{t, 1} e_{j}, \ldots, \psi_{t, m_{t}} e_{j}$ for the corresponding module with respect to $\mathbb{C} C_{1}+\cdots \mathbb{C} C_{t}$ are given, these will be eigenfunctions for $L_{C_{t+1}}$ with eigenvalues $\lambda_{t+1,1}, \ldots, \lambda_{t+1, \ell_{t}}$, resp. $\mu_{t+1,1}, \ldots, \mu_{t+1, m_{t}}$. Now a vector monomial

$$
\phi_{t, 1}^{d_{1}} \ldots \phi_{t, \ell_{t}}^{d_{\ell_{t}}} \psi_{t+1, k} e_{j}
$$

is symmetric for C_{1}, \ldots, C_{t+1} if and only if $\sum d_{i} \lambda_{t+1, i}=-\mu_{t+1, k}+\alpha_{t+1, j}$, with $\alpha_{t+1, j}$ the eigenvalue of C_{t+1} corresponding to e_{j}. This again leads to Problem (10).

References

[1] Yu. N. Bibikov: Local Theory of Nonlinear Analytic Ordinary Differential Equations. Lecture Notes in Mathematics 702. Springer-Verlag, Berlin (1979).
[2] D. Birkes: Orbits of linear algebraic groups. Ann. Math. 93 (1971), 459-475.
[3] A. Borel: Linear algebraic groups. Second Edition. Springer-Verlag, New York - Berlin (1992).
[4] T. Bröcker, T. tom Dieck: Representations of compact Lie groups. SpringerVerlag, New York - Berlin (1985).
[5] P. Chossat: The reduction of equivariant dynamics to the orbit space of compact group actions. Acta Appl. Math. 70 (2002), 71 - 94.
[6] D. Cox, J. Little, D. O'Shea: Ideals, varieties and algorithms. SpringerVerlag, New York (1997).
[7] R. Cushman, J. Sanders: A survey of invariant theory applied to normal forms of vector fields with nilpotent linear part. In: Invariant theory and tableaux, Minneapolis, MN 1988. IMA Vol. Math. Appl. 19, SpringerVerlag, New York (1990), pp. 82-106.
[8] E.B. Elliott: An introduction to the algebra of binary quantics. Second Edition. Reprinted. Chelsea Publ. Co., New York (1964).
[9] M.J. Field: Equivariant dynamical systems. Trans. Amer. Math. Soc. 259 (1980), 185-205.
[10] B. Fiedler, B. Sandstede, A. Scheel, C. Wulff: Bifurcation from relative equilibria of noncompact group actions: Skew products, meanders, and drifts. Documenta Math. 1 (1996), 479-505.
[11] G. Gaeta, F.D. Grosshans, J. Scheurle, S. Walcher: Reduction and reconstruction for symmetric ordinary differential equations. J. Differential Equations 244 (2008), 1810-1839.
[12] K. Gatermann: Computer algebra methods for equivariant dynamical systems. Lecture Notes in Math. 1728, Springer, Berlin (2000).
[13] M. Golubitsky, V.G. LeBlanc, I. Melbourne: Meandering of the spiral tip: An alternative approach J. Nonlinear Sci. 7 (1997), 557-586.
[14] V.G. Guillemin, S. Sternberg: Remarks on a paper of Hermann. Trans. Amer. Math. Soc. 130 (1968), 110-116.
[15] J.E. Humphreys: Linear algebraic groups. Springer-Verlag, New York Heidelberg (1975).
[16] M. Krupa: Bifurcations of relative equilibria. SIAM J. Math. Anal. 21(6) (1990), 1453-1486.
[17] A.G. Kushnirenko: An analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one. Funct. Anal. Appl. 1 (1967), 273-274.
[18] G.I. Lehrer, T.A. Springer: A note concerning fixed points of parabolic subgroups of unitary reflection groups. Indag. Math., N.S. 10, 549-553 (1999).
[19] L. Michel: Points critiques des fonctions invariantes sur une G-variété. C.R. Acad. Sc. Paris A 278, 433-436 (1971).
[20] D.I. Panyushev: On covariants of reductive algebraic groups. Indag. Math., N.S. 13, 125-129 (2002).
[21] V. Poénaru: Singularités C^{∞} en présence de symétrie. Lecture Notes in Mathematics 510. Springer-Verlag, Berlin-New York (1976)
[22] S. Walcher: On differential equations in normal form. Math. Ann. 291, 293-314 (1991).
[23] S. Walcher: Multi-parameter symmetries of first order ordinary differential equations. J. Lie Theory 9, 249-269 (1999).

