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Definition

Let F be a field, A = (A;)) € F**™ and B = (B,) € F™". Then the
matrix product C = (C;,) € Fk*" is the matrix defined by

m
C,-,E=ZA,-,,(-BK,£ fori<i<kand1<¢<n.
=1
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Definition

Let F be a field, A = (A;;) € F**™ and B = (B,,) € F™". Then the
matrix product C = (C;,) € Fk*" is the matrix defined by

m
Cie=) Aik-By fort<i<kandi=<tx<n
j=1

Proposition

Evaluating C = A- B needs k - m- n multiplicationsand k- (m—1) - n
additions in F. For d = k = m = n this is about 20° elementary field
operations.
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Definition

Let F be a field, A = (A;;) € F**™ and B = (B,,) € F™". Then the
matrix product C = (C;,) € Fk*" is the matrix defined by

m
C,-,E:ZA,-,,(-BK,Z fori<i<kand1<¢<n.
=1

Proposition

Evaluating C = A- B needs k - m- n multiplicationsand k- (m—1) - n
additions in F. For d = k = m = n this is about 20° elementary field
operations.

Similarly: Inversion, Gaussian elimination.

Max Neunhoffer (University of St Andrews) Matrices 8.-12.8.2011 2/13



Matrices Compressed vectors and matrices

For IF,, we need [log,(p)] bits of memory to store one field element.
For Fq = Fpe, we need e - [log,(p)] bits of memory.
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Idea (Compressed vectors)
Pack for small p some field elements in the same machine word.
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For IF,, we need [log,(p)] bits of memory to store one field element.
For Fq = Fpe, we need e - [log,(p)] bits of memory.

Idea (Compressed vectors)

Pack for small p some field elements in the same machine word.
@ Reduces memory usage
@ Use processor word operations for vector operations
@ Memory access is often a bottleneck, since operations are simple
@ Improve cache-locality

— Increases performance
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Matrices Compressed vectors and matrices

For IF,, we need [log,(p)] bits of memory to store one field element.
For Fq = Fpe, we need e - [log,(p)] bits of memory.

Idea (Compressed vectors)

Pack for small p some field elements in the same machine word.
@ Reduces memory usage
@ Use processor word operations for vector operations
@ Memory access is often a bottleneck, since operations are simple
@ Improve cache-locality

— Increases performance

Arithmetic can be done table driven or machine word-wise.

Operation Time Memory

cC | U c | U
Mult. in F3370**370 1 320 ms | 1335s | 2.3 MB | 152 MB
Add. in F, <70 240ns | 209 us | 550B | 35kB
Mult. in F3°0°% | 50 ms [ 2140ms | 78kB | 2MB
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Matrices Grease

Idea (Grease)

Over a (small) finite field Fy, k rows have only g~ different linear
combinations.
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Matrices Grease

Idea (Grease)

Over a (small) finite field Fy, k rows have only g~ different linear
combinations. If you need more than g* linear combinations of them,
then make them all beforehand and just look up.
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Matrices Grease

Idea (Grease)

Over a (small) finite field Fy, k rows have only g~ different linear
combinations. If you need more than g* linear combinations of them,
then make them all beforehand and just look up.

In matrix multiplication, you do need many linear combinations of the
rows of the right hand factor:
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Matrices Grease

Idea (Grease)

Over a (small) finite field Fy, k rows have only g~ different linear
combinations. If you need more than g* linear combinations of them,
then make them all beforehand and just look up.

In matrix multiplication, you do need many linear combinations of the
rows of the right hand factor:

k rows

k rows

)\ k rows

o o o [ )
k' k' k *
[ ]
[ ]
up to k rows
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Can we do better than 2d° for one matrix multiplication?
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Can we do better than 24d° for one matrix multiplication?

Strassen/Winograd multiplication

A B E F] [AE+BG AF+BH| [X Y
C D||GH| |CE+DG CF+DH |T| VvV W

— needs 8 multiplications and 4 additions

v
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Can we do better than 24d° for one matrix multiplication?

Strassen/Winograd multiplication

A B E F] [AE+BG AF+BH| [X Y
C D||GH| |CE+DG CF+DH |T| VvV W

— needs 8 multiplications and 4 additions of d/2 x d/2-matrices.

v
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Can we do better than 24d° for one matrix multiplication?

Strassen/Winograd multiplication

A B E F| | AE+BG AF+BH | [ X Y
C D||GH| |CE+DG CF+DH |~ |V W
— needs 8 multiplications and 4 additions of d/2 x d/2-matrices.

Sq 2=C+D‘322=S1—A‘S3:=A—C‘S4:=B—Sg
S52=F—E‘SGZZH—Ss‘S72=H—F‘882=SG—G

v
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Can we do better than 24d° for one matrix multiplication?

Strassen/Winograd multiplication

A B E F| | AE+BG AF+BH | [ X Y
C D||GH| |CE+DG CF+DH |~ |V W
— needs 8 multiplications and 4 additions of d/2 x d/2-matrices.

Sq 2=C+D‘322=S1—A‘S3:=A—C‘S4:=B—Sg
S52=F—E‘SGZZH—Ss‘S72=H—F‘882=SG—G

M1 :=82'86‘ M21=A-E ‘ M31=B-G‘M4:=S3-S7

v
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Can we do better than 24d° for one matrix multiplication?

Strassen/Winograd multiplication

A B E F] [AE+BG AF+BH| [X Y
C D||GH| |CE+DG CF+DH |T| VvV W

— needs 8 multiplications and 4 additions of d/2 x d/2-matrices.

Sq 2=C+D‘322=S1—A‘S3:=A—C‘S4:=B—Sg
S52=F—E‘SGZZH—Ss‘S72=H—F‘882=SG—G

)

M1I=SQ-SG M21=A-E M31=B-G M4:=S3-S7
M52:S1-S5 M6:=S4-H M7Z=D-Sg ®)
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Can we do better than 24d° for one matrix multiplication?

Strassen/Winograd multiplication
A B|[E F|_| AE+BG AF+BH | _| X Y
CcC D G H| | CE+DG CF+DH | |V W
— needs 8 multiplications and 4 additions of d/2 x d/2-matrices.

Sq 2=C+D‘822=S1—A‘S32=A—C‘S4:=B—Sg
S52=F—E‘SGZZH—Ss‘S72=H—F‘882=SG—G

M1I=SQ'SG M21=A-E M31=B-G M4:=S3-S7
M52:S1-S5 M6:=S4-H M7Z=D-Sg ®)
X =M + M | Y =M + M+ Ms + Ms

VI:M1+M2+M4—M7‘ W:.=M + M+ My + Ms
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Can we do better than 24d° for one matrix multiplication?

Strassen/Winograd multiplication

A B E F| | AE+BG AF+BH | [ X Y
C D||GH| |CE+DG CF+DH |~ |V W
— needs 8 multiplications and 4 additions of d/2 x d/2-matrices.

Sq 2=C+D‘822=S1—A‘S3:=A—C‘S4:=B—Sg
S52=F—E‘SGZZH—Ss‘S72=H—F‘882=SG—G

M1I=SQ-SG M21=A-E M31=B-G M4:=S3-S7
M52:S1-S5 M6:=S4-H M7Z=D-Sg ®)
X =M + M | Y =M + M+ Ms + Ms

V=M + M+ M, — M ‘ W:.=M + M+ My + Ms
— needs 7 multiplications and 15 additions of d/2 x d/2-matrices.

v
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Analysis of complexity:

Let f(d) be the number of elementary field operations needed to
multiply two (d x d)-matrices.
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Analysis of complexity:

Let f(d) be the number of elementary field operations needed to
multiply two (d x d)-matrices.

f2 = 7-f@")+15. (2k1)°
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Analysis of complexity:

Let f(d) be the number of elementary field operations needed to
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Analysis of complexity:

Let f(d) be the number of elementary field operations needed to
multiply two (d x d)-matrices.

f2f = 7-f(2k‘1)+15-(2k‘1)2=7.f(2k—1)+15.4k—1
= 7K1 F@Y +15. 4k 474k 2 7h2 4T
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Analysis of complexity:

Let f(d) be the number of elementary field operations needed to
multiply two (d x d)-matrices.
f2) = 7-f@")+15. (251 =7.f(2K ") +15. 4k~
= 7K1 f@Y +15. (45T 7. 4k2 L 7R2 4T
= 12.7K1 4 15. 761, ((4/7)"—1 ot (4/7)1)
1— @4/

= 12.71415.4/7).- 751
+15-@/0 1-4/7
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Analysis of complexity:

Let f(d) be the number of elementary field operations needed to
multiply two (d x d)-matrices.

f2f = 7-f(2k‘1)+15-(2k‘1)2=7.f(2k—1)+15.4k—1
= 7K1 f@Y 115 4k 1 7. 4k2 L 7k-2 gt
= 127415 7K (@1 e @)
1—(4/7)!
1-4/7

7
7k (12+$.§) =32. 7K1

= 12.7"4+15.(4/7) . 7%".

A
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Analysis of complexity:

Let f(d) be the number of elementary field operations needed to
multiply two (d x d)-matrices.

feky =

fd)y <

7.1y 415 (261)° = 7. f(2KT) 4 15 4k~
7K@Y 415 @k 474k 7Rk 4T
12. 7K1 4 15.7k1. ((4/7)"—1 ot (4/7)1)
1— @4/

1_4/7
60

7
7K1, (12+7-§) =32. 7K1

12. 761 4 15.(4/7) - 7% 1.

32. 70gz(d)1-1
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Analysis of complexity:

Let f(d) be the number of elementary field operations needed to
multiply two (d x d)-matrices.

feky =

fd)y <

where d = 2k

7.1y 415 (261)° = 7. f(2KT) 4 15 4k~
7K@Y 415 @k 474k 7Rk 4T
12. 7K1 4 15.7k1. ((4/7)"—1 ot (4/7)1)
1— @4/

1_4/7
60

7
7K1, (12+7-§) =32. 7K1

12. 761 4 15.(4/7) - 7% 1.

32 . 7M1092()1-1 _ 3o, o(10g2(7))-logz(d)]
32. alog2(7) ~ 32. 82.807
if 2k-1 < d < 2k,
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Analysis of complexity:

Let f(d) be the number of elementary field operations needed to
multiply two (d x d)-matrices.

feky =

fd)y <

where d = 2k

7.1y 415 (261)° = 7. f(2KT) 4 15 4k~
7K@Y 415 @k 474k 7Rk 4T
12. 7K1 4 15.7k1. ((4/7)"—1 ot (4/7)1)
1— @4/

1_4/7
60

7K1, (12+7-§) =32. 7K1

12. 761 4 15.(4/7) - 7% 1.

32 . 7M1092()1-1 _ 3o, o(10g2(7))-logz(d)]
32. alog2(7) ~ 32. 82.807
if 2k-1 < d < 2k,

The best known exponent is 2.3, that is totally useless in practice.

Max Neunhoffer (University of St Andrews) Matrices 8.-12.8.2011

6/13



Characteristic and Minimal Polynomials Fundamentals

Definition (Characteristic polynomial)

Let M e F9x9 then the characteristic polynomial xy € F[x] of M is
xm = det(x -1 — M).
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Characteristic and Minimal Polynomials Fundamentals

Definition (Characteristic polynomial)

Let M e F9x9 then the characteristic polynomial xy € F[x] of M is
xm = det(x -1 — M).

Definition (Minimal polynomial)

Let M € F9<9, then the minimal polynomial of M is the monic
polynomial uy € F[x] of least degree for which (M) = 0 holds.
wum divides every polynomial f € F[x] with f(M) = 0.
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Characteristic and Minimal Polynomials Fundamentals

Definition (Characteristic polynomial)

Let M e F9x9 then the characteristic polynomial xy € F[x] of M is
XM = det(x -1 - M).

v

Definition (Minimal polynomial)

Let M e F9%9, then the minimal polynomial of M is the monic
polynomial wp € F[x] of least degree for which (M) = 0 holds.
wum divides every polynomial f € F[x] with f(M) = 0.

V.

Proposition (Invariant factors)

Let A:= x-1— M e F[x]9%9. Then there are matrices S, T e F[x]9*¢
with determinant 1 and

S-A-T=diag(1,...,1,p1,P2, ..., Px)
with py [ p2 | - - | k.

v
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polynomial wp € F[x] of least degree for which (M) = 0 holds.
wum divides every polynomial f € F[x] with f(M) = 0.
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Proposition (Invariant factors)

Let A:= x-1— M e F[x]9%9. Then there are matrices S, T e F[x]9*¢
with determinant 1 and

S-A-T=diag(1,...,1,p1,P2, ..., Px)
with py | p2 | --- | px. The p; are uniquely determined (up to scalars)
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Characteristic and Minimal Polynomials Fundamentals

Definition (Characteristic polynomial)

Let M e F9x9 then the characteristic polynomial xy € F[x] of M is
XM = det(x -1 - M).

v

Definition (Minimal polynomial)

Let M e F9%9, then the minimal polynomial of M is the monic
polynomial wp € F[x] of least degree for which (M) = 0 holds.
wum divides every polynomial f € F[x] with f(M) = 0.

V.

Proposition (Invariant factors)

Let A:= x-1— M e F[x]9%9. Then there are matrices S, T e F[x]9*¢
with determinant 1 and

S-A-T=diag(1,...,1,p1,P2, ..., Px)
with py | p2 | --- | px. The p; are uniquely determined (up to scalars)
and the matrices S and T can be computed explicitly.
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Characteristic and Minimal Polynomials Fundamentals

Definition (Characteristic polynomial)

Let M e F9x9 then the characteristic polynomial xy € F[x] of M is
XM = det(x -1 - M).

v

Definition (Minimal polynomial)

Let M e F9%9, then the minimal polynomial of M is the monic
polynomial wp € F[x] of least degree for which (M) = 0 holds.
wum divides every polynomial f € F[x] with f(M) = 0.

V.

Proposition (Invariant factors)

Let A:= x-1— M e F[x]9%9. Then there are matrices S, T e F[x]9*¢
with determinant 1 and

S-A-T=diag(,...,1,p1,p2, ..., Px)

with py | p2 | --- | px. The p; are uniquely determined (up to scalars)
and the matrices S and T can be computed explicitly.
We have uy = prand xy =pi----- Pk-

v
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Characteristic and Minimal Polynomials Order polynomials

Definition (Order polynomial)

F field, 4 f.d. F-algebra, V € mod—, v e V, M € A.

Then the order polynomial g := ordy(v) € F[x] is the monic polynomial
of least degree such that v - g(M) = 0.
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Characteristic and Minimal Polynomials Order polynomials

Definition (Order polynomial)

F field, 4 f.d. F-algebra, V € mod—A, v € V, M € .
Then the order polynomial g := ordy(v) € F[x] is the monic polynomial
of least degree such that v - g(M) = 0.

Definition (Relative order polynomial)

If additionally W < V is M-invariant, then we call ordy (v + W) the
relative order polynomial of v+ W € V/W.
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Characteristic and Minimal Polynomials Order polynomials

Definition (Order polynomial)

F field, 4 f.d. F-algebra, V € mod—A, v € V, M € .
Then the order polynomial g := ordy(v) € F[x] is the monic polynomial
of least degree such that v - g(M) = 0.

Definition (Relative order polynomial)

If additionally W < V is M-invariant, then we call ordy (v + W) the
relative order polynomial of v+ W € V/W.

Lemma (Generator of annihilator)

The order polynomial ordy(v) divides every polynomial g € F[x] with
v-q(M) =0.

Max Neunhoffer (University of St Andrews) Matrices 8.-12.8.2011 8/13



The characteristic polynomial
Let M e F¥*%and vq,...,v; e Vand V; := (v, ..., Vi) the F[M]-span.
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The characteristic polynomial
Let M e F¥*%and vq,...,v; e Vand V; := (v, ..., Vi) the F[M]-span.
Find smallest dy € N such that (vy, viM, viM?, ..., viM%) is linearly
dependent.
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The characteristic polynomial
Let M e F¥*%and vq,...,v; e Vand V; := (v, ..., Vi) the F[M]-span.
Find smallest dy € N such that (vy, viM, viM?, ..., viM%) is linearly
dependent. If

dy—1 ai—1
ViM% = Z aiviM’ then ordy(vy) = x% — Z aix'.
i—0 i—0
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The characteristic polynomial
Let M e F¥*%and vq,...,v; e Vand V; := (v, ..., Vi) the F[M]-span.
Find smallest dy € N such that (vy, viM, viM?, ..., viM%) is linearly
dependent. If

dy—1 ai—1
ViM% = Z aiviM’ then ordy(vy) = x% — Z aix'.
i—0 i—0

Choose some v»> € V'\ (vq), and find smallest db € N, such that
(vi, viM, ..., viM%=1 vo  voM, ..., voM®) is linearly dependent.
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The characteristic polynomial
Let M e F¥*%and vq,...,v; e Vand V; := (v, ..., Vi) the F[M]-span.
Find smallest dy € N such that (vy, viM, viM?, ..., viM%) is linearly
dependent. If

dy—1 ai—1
ViM% = Z aiviM’  then ordy(vy) = x¥ Z aix
i=0

Choose some v»> € V'\ (vq), and find smallest db € N, such that
(vi, viM, ..., viM%=1 vo, voM, ..., voM®) is linearly dependent. If

ady—1 ao—1
V2Md2 = Z bjvy M + Z C,'VQMi then
i=0 i=0

orduy(v + (vi)y) = x% Zc,
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The characteristic polynomial
Let M e F¥*%and vq,...,v; e Vand V; := (v, ..., v;) the F[M]-span.
Find smallest dy € N such that (vy, viM, viM?, ..., viM%) is linearly
dependent. If

dy—1 ai—1
ViM% = Z aiviM’  then ordy(vy) = x¥ Z aix
i=0

Choose some v> € V' \ (vq), and find smallest d> € N, such that
(vi, viM, ..., viM%=1 vo, voM, ..., voM®) is linearly dependent. If

ady—1 ao—1
V2Md2 = Z bjvy M + Z C,'VQMi then
i=0 i=0

orduy(v + (vi)y) = x% Zc,

Going on like this we find an F-basis Y of V:

Y =W, uyM, ..., v1d‘_1,..., Vi, kM, . . ., ka,f"_1).
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Characteristic and Minimal Polynomials The characteristic polynomial

01
o1 O
d,
0 .
01
EES . ok ok O _
01
o1 O
0 d,
0 01
* ok - % % | % % o oo B
Y M.Y 1=
01
o1 O
0 0 RSP PN
0 .
01
d dy di

@ Block lower-triangular
@ with companion matrices along diagonal
@ some sparse garbage below the diagonal
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Characteristic and Minimal Polynomials The minimal polynomial

The minimal polynomial

— compute the absolute order polynomials ordy(v;)
instead of the relative ones ordy(v; + (v, ..., Vi_1)m.
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Characteristic and Minimal Polynomials The minimal polynomial

The minimal polynomial

— compute the absolute order polynomials ordy(v;)
instead of the relative ones ordy(v; + (v, ..., Vi_1)m.

Lemma (Minimal polynomial)

IfV=(vw,..., Vi) then
um = lem(ordy(vq), ..., ordp(vy)).
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Characteristic and Minimal Polynomials The minimal polynomial

The minimal polynomial

— compute the absolute order polynomials ordy(v;)
instead of the relative ones ordy(v; + (v, ..., Vi_1)m.

Lemma (Minimal polynomial)

IfV=(vw,..., Vi) then
um = lem(ordy(vq), ..., ordp(vy)).

Problem:
@ dimp(V;) — dimg(V;_1) might be small
@ even if dimg(V)) is big.

(set Vi:=(vy,..., Vily)
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Characteristic and Minimal Polynomials The minimal polynomial

The minimal polynomial

— compute the absolute order polynomials ordy(v;)
instead of the relative ones ordy(v; + (v, ..., Vi_1)m.

Lemma (Minimal polynomial)

IfV=(vw,..., Vi) then
um = lem(ordy(vq), ..., ordp(vy)).

Problem:
@ dimp(V;) — dimg(V;_1) might be small
@ even if dimg(V)) is big.

(set Vi:=(vy,..., Vily)

Characteristic polynomial: asymptotically < 5n° field ops.
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Characteristic and Minimal Polynomials The minimal polynomial

The minimal polynomial

— compute the absolute order polynomials ordy(v;)
instead of the relative ones ordy(v; + (v, ..., Vi_1)m.

Lemma (Minimal polynomial)

IfV=(vw,..., Vi) then
um = lem(ordy(vq), ..., ordp(vy)).

Problem:
@ dimp(V;) — dimg(V;_1) might be small
@ even if dimg(V)) is big.
(set Vi:=(vi,...,vilm)
Characteristic polynomial: asymptotically < 5n° field ops.
Minimal polynomial: asymptotically ~ n* field ops.
(both worst case analysis)
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Characteristic and Minimal Polynomials The minimal polynomial

The minimal polynomial

— compute the absolute order polynomials ordy(v;)
instead of the relative ones ordy(v; + (v, ..., Vi_1)m.

Lemma (Minimal polynomial)

IfV=(vw,..., Vi) then
um = lem(ordy(vq), ..., ordp(vy)).

Problem:

@ dimp(V;) — dimg(V;_1) might be small

@ even if dimg(V)) is big.
(set Vi:=(vi,...,vilm)
Characteristic polynomial: asymptotically < 5n° field ops.
Minimal polynomial: asymptotically ~ n* field ops.

(both worst case analysis)

Minimal polynomial: can be done in asymptotically ~ n®.
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Characteristic and Minimal Polynomials A Monte Carlo algorithm

Proposition (N., Praeger (2008))
Let F = g, randomise vi, ..., v, € V independently and uniformly
distributed, xu = [1_; q7. Then:

Prob (lcm(ordy (v1), ..., ordpy(Vy)) = wm)

t
is at least 1_[(1 — g~udea@y,
i1
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Characteristic and Minimal Polynomials A Monte Carlo algorithm

Proposition (N., Praeger (2008))
Let F = g, randomise vi, ..., v, € V independently and uniformly
distributed, xu = [1_; q7. Then:

Prob (lcm(ordy (v1), ..., ordpy(Vy)) = wm)

t
is at least 1_[(1 — q~Y9ea@y,
i1

Algorithm MINIMALPOLYNOMIALMC: Input M, 0 <€ < 1/2
@ Compute xu, Y, ordy(v;+ Vi_q) for1 <i<k
@ Determine least u, such that probability > 1 — ¢
@ Compute ordy(v4), ..., ordy(vy)
@ Return least common multiple
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Characteristic and Minimal Polynomials A Monte Carlo algorithm

Proposition (N., Praeger (2008))
Let F = g, randomise vi, ..., v, € V independently and uniformly
distributed, xu = [1_; q7. Then:

Prob (lcm(ordy (v1), ..., ordpy(Vy)) = wm)

t
is at least 1_[(1 — q~Y9ea@y,
i1

Algorithm MINIMALPOLYNOMIALMC: Input M, 0 <€ < 1/2
@ Compute xu, Y, ordy(v;+ Vi_q) for1 <i<k
@ Determine least u, such that probability > 1 — ¢
@ Compute ordy(v4), ..., ordy(vy)
@ Return least common multiple

Needs asymptotically < 5n° 4 Factorisation(n) field ops.
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Involution centralisers Bray’s trick

How can we compute the centraliser of an involution?

Max Neunhoffer (University of St Andrews) Matrices 8.-12.8.2011 13/13



Involution centralisers Bray’s trick

How can we compute the centraliser of an involution?
The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G= (g4, ..., gk) and an involution x € G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)

c:=x"'y 'xy and 0:= ORDER(C)
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Involution centralisers Bray’s trick

How can we compute the centraliser of an involution?
The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G= (g4, ..., gk) and an involution x € G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)
c:=x"'y 'xy and 0:= ORDER(C)
if o is even then
append ¢ and (x~'yxy—")°/2 to gens
else
append z := y - ¢°~P/2 t0 gens

Max Neunhoffer (University of St Andrews) Matrices 8.-12.8.2011 13/13



Involution centralisers Bray’s trick

How can we compute the centraliser of an involution?
The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G= (g4, ..., gk) and an involution x € G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)
c:=x"'y 'xy and 0:= ORDER(C)
if o is even then
append ¢ and (x~'yxy—")°/2 to gens
else
append z := y - ¢°~P/2 t0 gens
until o was odd often enough or gens long enough
return gens
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Involution centralisers Bray’s trick

How can we compute the centraliser of an involution?
The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G= (g4, ..., gk) and an involution x € G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)
c:=x"'y 'xy and 0:= ORDER(C)
if o is even then
append ¢ and (x~'yxy—")°/2 to gens
else
append z := y - ¢°~P/2 t0 gens
until o was odd often enough or gens long enough
return gens

Note: If xy = yxthenc=1gando=1and z = y.
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How can we compute the centraliser of an involution?
The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G= (g4, ..., gk) and an involution x € G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)
c:=x"'y 'xy and 0:= ORDER(C)
if o is even then
append ¢ and (x~'yxy—")°/2 to gens
else
append z := y - ¢°~P/2 t0 gens
until o was odd often enough or gens long enough
return gens

Note: If xy = yxthenc=1gando=1and z = y.
And: If o is odd, then z is uniformly distributed in Cg(x).
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