What can we do with matrices (over finite fields)?

Max Neunhöffer

University of St Andrews

Kirchberg/Hunsrück, 8.-12.8.2011

Definition

Let \mathbb{F} be a field, $A = (A_{i,j}) \in \mathbb{F}^{k \times m}$ and $B = (B_{j,\ell}) \in \mathbb{F}^{m \times n}$. Then the matrix product $C = (C_{i,\ell}) \in \mathbb{F}^{k \times n}$ is the matrix defined by

$$C_{i,\ell} = \sum_{j=1}^m A_{i,k} \cdot B_{k,\ell}$$
 for $1 \le i \le k$ and $1 \le \ell \le n$.

Definition

Let \mathbb{F} be a field, $A = (A_{i,j}) \in \mathbb{F}^{k \times m}$ and $B = (B_{j,\ell}) \in \mathbb{F}^{m \times n}$. Then the matrix product $C = (C_{i,\ell}) \in \mathbb{F}^{k \times n}$ is the matrix defined by

$$C_{i,\ell} = \sum_{j=1}^m A_{i,k} \cdot B_{k,\ell}$$
 for $1 \le i \le k$ and $1 \le \ell \le n$.

Proposition

Evaluating $C = A \cdot B$ needs $k \cdot m \cdot n$ multiplications and $k \cdot (m-1) \cdot n$ additions in \mathbb{F} . For d = k = m = n this is about $2d^3$ elementary field operations.

Definition

Let \mathbb{F} be a field, $A=(A_{i,j})\in\mathbb{F}^{k\times m}$ and $B=(B_{j,\ell})\in\mathbb{F}^{m\times n}$. Then the matrix product $C=(C_{i,\ell})\in\mathbb{F}^{k\times n}$ is the matrix defined by

$$C_{i,\ell} = \sum_{j=1}^m A_{i,k} \cdot B_{k,\ell}$$
 for $1 \le i \le k$ and $1 \le \ell \le n$.

Proposition

Evaluating $C = A \cdot B$ needs $k \cdot m \cdot n$ multiplications and $k \cdot (m-1) \cdot n$ additions in \mathbb{F} . For d = k = m = n this is about $2d^3$ elementary field operations.

Similarly: Inversion, Gaussian elimination.

Max Neunhöffer (University of St Andrews)

For \mathbb{F}_p , we need $\lceil \log_2(p) \rceil$ bits of memory to store one field element.

For $\mathbb{F}_q = \mathbb{F}_{p^e}$, we need $e \cdot \lceil \log_2(p) \rceil$ bits of memory.

Idea (Compressed vectors)

Pack for small p some field elements in the same machine word.

Idea (Compressed vectors)

Pack for small *p* some field elements in the same machine word.

Reduces memory usage

Idea (Compressed vectors)

Pack for small *p* some field elements in the same machine word.

- Reduces memory usage
- Use processor word operations for vector operations

Idea (Compressed vectors)

Pack for small *p* some field elements in the same machine word.

- Reduces memory usage
- Use processor word operations for vector operations
- Memory access is often a bottleneck, since operations are simple

Idea (Compressed vectors)

Pack for small *p* some field elements in the same machine word.

- Reduces memory usage
- Use processor word operations for vector operations
- Memory access is often a bottleneck, since operations are simple
- Improve cache-locality

⇒ Increases performance

Idea (Compressed vectors)

Pack for small p some field elements in the same machine word.

- Reduces memory usage
- Use processor word operations for vector operations
- Memory access is often a bottleneck, since operations are simple
- Improve cache-locality
- ⇒ Increases performance

Arithmetic can be done table driven or machine word-wise.

Operation	Time		Memory	
	С	U	С	U
Mult. in $\mathbb{F}_2^{4370\times4370}$	320 ms	1335 s	2.3 MB	152 MB
Add. in $\mathbb{F}_2^{1 \times 4370}$	240 ns	209 μ s	550 B	35 kB
Mult. in $\mathbb{F}_3^{500 \times 500}$	50 ms	2140 ms	78 kB	2 MB

Over a (small) finite field \mathbb{F}_q , k rows have only q^k different linear combinations.

Over a (small) finite field \mathbb{F}_q , k rows have only q^k different linear combinations. If you need more than q^k linear combinations of them, then make them all beforehand and just look up.

Over a (small) finite field \mathbb{F}_q , k rows have only q^k different linear combinations. If you need more than q^k linear combinations of them, then make them all beforehand and just look up.

In matrix multiplication, you do need many linear combinations of the rows of the right hand factor:

Over a (small) finite field \mathbb{F}_q , k rows have only q^k different linear combinations. If you need more than q^k linear combinations of them, then make them all beforehand and just look up.

In matrix multiplication, you do need many linear combinations of the rows of the right hand factor:

Strassen/Winograd multiplication

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix} = \begin{bmatrix} X & Y \\ V & W \end{bmatrix}$$

→ needs 8 multiplications and 4 additions

Strassen/Winograd multiplication

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix} = \begin{bmatrix} X & Y \\ V & W \end{bmatrix}$$

Strassen/Winograd multiplication

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix} = \begin{bmatrix} X & Y \\ V & W \end{bmatrix}$$

$$S_1 := C + D \mid S_2 := S_1 - A \mid S_3 := A - C \mid S_4 := B - S_2$$

 $S_5 := F - E \mid S_6 := H - S_5 \mid S_7 := H - F \mid S_8 := S_6 - G$

Strassen/Winograd multiplication

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix} = \begin{bmatrix} X & Y \\ V & W \end{bmatrix}$$

$$S_1 := C + D \mid S_2 := S_1 - A \mid S_3 := A - C \mid S_4 := B - S_2$$

 $S_5 := F - E \mid S_6 := H - S_5 \mid S_7 := H - F \mid S_8 := S_6 - G$
 $M_1 := S_2 \cdot S_6 \mid M_2 := A \cdot E \mid M_3 := B \cdot G \mid M_4 := S_3 \cdot S_7$

Strassen/Winograd multiplication

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix} = \begin{bmatrix} X & Y \\ V & W \end{bmatrix}$$

$$S_1 := C + D \mid S_2 := S_1 - A \mid S_3 := A - C \mid S_4 := B - S_2$$
 $S_5 := F - E \mid S_6 := H - S_5 \mid S_7 := H - F \mid S_8 := S_6 - G$
 $M_1 := S_2 \cdot S_6 \mid M_2 := A \cdot E \mid M_3 := B \cdot G \mid M_4 := S_3 \cdot S_7$
 $M_5 := S_1 \cdot S_5 \mid M_6 := S_4 \cdot H \mid M_7 := D \cdot S_8 \mid$

Strassen/Winograd multiplication

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix} = \begin{bmatrix} X & Y \\ V & W \end{bmatrix}$$

$$S_{1} := C + D \mid S_{2} := S_{1} - A \mid S_{3} := A - C \mid S_{4} := B - S_{2}$$

$$S_{5} := F - E \mid S_{6} := H - S_{5} \mid S_{7} := H - F \mid S_{8} := S_{6} - G$$

$$M_{1} := S_{2} \cdot S_{6} \mid M_{2} := A \cdot E \mid M_{3} := B \cdot G \mid M_{4} := S_{3} \cdot S_{7}$$

$$M_{5} := S_{1} \cdot S_{5} \mid M_{6} := S_{4} \cdot H \mid M_{7} := D \cdot S_{8} \mid \oplus$$

$$X := M_{2} + M_{3} \quad Y := M_{1} + M_{2} + M_{5} + M_{6}$$

$$V := M_{1} + M_{2} + M_{4} - M_{7} \mid W := M_{1} + M_{2} + M_{4} + M_{5}$$

Strassen/Winograd multiplication

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix} = \begin{bmatrix} X & Y \\ V & W \end{bmatrix}$$

 \implies needs 8 multiplications and 4 additions of $d/2 \times d/2$ -matrices.

$$X := M_2 + M_3$$
 $Y := M_1 + M_2 + M_5 + M_6$
 $V := M_1 + M_2 + M_4 - M_7$ $W := M_1 + M_2 + M_4 + M_5$

$$f(2^k) = 7 \cdot f(2^{k-1}) + 15 \cdot (2^{k-1})^2$$

$$f(2^k) = 7 \cdot f(2^{k-1}) + 15 \cdot (2^{k-1})^2 = 7 \cdot f(2^{k-1}) + 15 \cdot 4^{k-1}$$

$$f(2^{k}) = 7 \cdot f(2^{k-1}) + 15 \cdot (2^{k-1})^{2} = 7 \cdot f(2^{k-1}) + 15 \cdot 4^{k-1}$$
$$= 7^{k-1} \cdot f(2^{1}) + 15 \cdot (4^{k-1} + 7 \cdot 4^{k-2} + \dots + 7^{k-2} \cdot 4^{1})$$

$$f(2^{k}) = 7 \cdot f(2^{k-1}) + 15 \cdot (2^{k-1})^{2} = 7 \cdot f(2^{k-1}) + 15 \cdot 4^{k-1}$$

$$= 7^{k-1} \cdot f(2^{1}) + 15 \cdot (4^{k-1} + 7 \cdot 4^{k-2} + \dots + 7^{k-2} \cdot 4^{1})$$

$$= 12 \cdot 7^{k-1} + 15 \cdot 7^{k-1} \cdot \left((4/7)^{k-1} + \dots + (4/7)^{1} \right)$$

$$= 12 \cdot 7^{k-1} + 15 \cdot (4/7) \cdot 7^{k-1} \cdot \frac{1 - (4/7)^{k-1}}{1 - 4/7}$$

$$f(2^{k}) = 7 \cdot f(2^{k-1}) + 15 \cdot \left(2^{k-1}\right)^{2} = 7 \cdot f(2^{k-1}) + 15 \cdot 4^{k-1}$$

$$= 7^{k-1} \cdot f(2^{1}) + 15 \cdot \left(4^{k-1} + 7 \cdot 4^{k-2} + \dots + 7^{k-2} \cdot 4^{1}\right)$$

$$= 12 \cdot 7^{k-1} + 15 \cdot 7^{k-1} \cdot \left(\left(4/7\right)^{k-1} + \dots + \left(4/7\right)^{1}\right)$$

$$= 12 \cdot 7^{k-1} + 15 \cdot \left(4/7\right) \cdot 7^{k-1} \cdot \frac{1 - \left(4/7\right)^{k-1}}{1 - 4/7}$$

$$\leq 7^{k-1} \cdot \left(12 + \frac{60}{7} \cdot \frac{7}{3}\right) = 32 \cdot 7^{k-1}$$

$$f(2^{k}) = 7 \cdot f(2^{k-1}) + 15 \cdot \left(2^{k-1}\right)^{2} = 7 \cdot f(2^{k-1}) + 15 \cdot 4^{k-1}$$

$$= 7^{k-1} \cdot f(2^{1}) + 15 \cdot \left(4^{k-1} + 7 \cdot 4^{k-2} + \dots + 7^{k-2} \cdot 4^{1}\right)$$

$$= 12 \cdot 7^{k-1} + 15 \cdot 7^{k-1} \cdot \left(\left(4/7\right)^{k-1} + \dots + \left(4/7\right)^{1}\right)$$

$$= 12 \cdot 7^{k-1} + 15 \cdot \left(4/7\right) \cdot 7^{k-1} \cdot \frac{1 - \left(4/7\right)^{k-1}}{1 - 4/7}$$

$$\leq 7^{k-1} \cdot \left(12 + \frac{60}{7} \cdot \frac{7}{3}\right) = 32 \cdot 7^{k-1}$$

$$f(d) < 32 \cdot 7^{\lceil \log_{2}(d) \rceil - 1}$$

$$\begin{split} f(2^k) &= 7 \cdot f(2^{k-1}) + 15 \cdot \left(2^{k-1}\right)^2 = 7 \cdot f(2^{k-1}) + 15 \cdot 4^{k-1} \\ &= 7^{k-1} \cdot f(2^1) + 15 \cdot \left(4^{k-1} + 7 \cdot 4^{k-2} + \dots + 7^{k-2} \cdot 4^1\right) \\ &= 12 \cdot 7^{k-1} + 15 \cdot 7^{k-1} \cdot \left(\left(4/7\right)^{k-1} + \dots + \left(4/7\right)^1\right) \\ &= 12 \cdot 7^{k-1} + 15 \cdot \left(4/7\right) \cdot 7^{k-1} \cdot \frac{1 - \left(4/7\right)^{k-1}}{1 - 4/7} \\ &\leq 7^{k-1} \cdot \left(12 + \frac{60}{7} \cdot \frac{7}{3}\right) = 32 \cdot 7^{k-1} \end{split}$$

$$f(d) \leq 32 \cdot 7^{\lceil \log_2(d) \rceil - 1} = 32 \cdot 2^{(\log_2(7)) \cdot \lceil \log_2(d) \rceil}$$

$$\begin{split} f(2^k) &= 7 \cdot f(2^{k-1}) + 15 \cdot \left(2^{k-1}\right)^2 = 7 \cdot f(2^{k-1}) + 15 \cdot 4^{k-1} \\ &= 7^{k-1} \cdot f(2^1) + 15 \cdot \left(4^{k-1} + 7 \cdot 4^{k-2} + \dots + 7^{k-2} \cdot 4^1\right) \\ &= 12 \cdot 7^{k-1} + 15 \cdot 7^{k-1} \cdot \left(\left(4/7\right)^{k-1} + \dots + \left(4/7\right)^1\right) \\ &= 12 \cdot 7^{k-1} + 15 \cdot \left(4/7\right) \cdot 7^{k-1} \cdot \frac{1 - \left(4/7\right)^{k-1}}{1 - 4/7} \\ &\leq 7^{k-1} \cdot \left(12 + \frac{60}{7} \cdot \frac{7}{3}\right) = 32 \cdot 7^{k-1} \end{split}$$

$$f(d) \leq 32 \cdot 7^{\lceil \log_2(d) \rceil - 1} = 32 \cdot 2^{(\log_2(7)) \cdot \lceil \log_2(d) \rceil} \\ &= 32 \cdot \tilde{d}^{\lceil \log_2(7) \rceil} \approx 32 \cdot \tilde{d}^{2.807} \end{split}$$
 where $\tilde{d} = 2^k$ if $2^{k-1} < d < 2^k$.

Let f(d) be the number of elementary field operations needed to multiply two $(d \times d)$ -matrices.

$$f(2^{k}) = 7 \cdot f(2^{k-1}) + 15 \cdot \left(2^{k-1}\right)^{2} = 7 \cdot f(2^{k-1}) + 15 \cdot 4^{k-1}$$

$$= 7^{k-1} \cdot f(2^{1}) + 15 \cdot \left(4^{k-1} + 7 \cdot 4^{k-2} + \dots + 7^{k-2} \cdot 4^{1}\right)$$

$$= 12 \cdot 7^{k-1} + 15 \cdot 7^{k-1} \cdot \left(\left(4/7\right)^{k-1} + \dots + \left(4/7\right)^{1}\right)$$

$$= 12 \cdot 7^{k-1} + 15 \cdot \left(4/7\right) \cdot 7^{k-1} \cdot \frac{1 - \left(4/7\right)^{k-1}}{1 - 4/7}$$

$$\leq 7^{k-1} \cdot \left(12 + \frac{60}{7} \cdot \frac{7}{3}\right) = 32 \cdot 7^{k-1}$$

$$f(d) \leq 32 \cdot 7^{\lceil \log_{2}(d) \rceil - 1} = 32 \cdot 2^{(\log_{2}(7)) \cdot \lceil \log_{2}(d) \rceil}$$

$$= 32 \cdot \tilde{d}^{\lceil \log_{2}(7) \rceil} \approx 32 \cdot \tilde{d}^{2.807}$$

where $\tilde{d} = 2^k$ if $2^{k-1} < d \le 2^k$.

The best known exponent is 2.3, that is totally useless in practice.

Definition (Characteristic polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the characteristic polynomial $\chi_M \in \mathbb{F}[x]$ of M is $\chi_M := \det(x \cdot \mathbf{1} - M)$.

Definition (Characteristic polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the characteristic polynomial $\chi_M \in \mathbb{F}[x]$ of M is $\chi_M := \det(x \cdot \mathbf{1} - M)$.

Definition (Minimal polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the minimal polynomial of M is the monic polynomial $\mu_M \in \mathbb{F}[x]$ of least degree for which $\mu_M(M) = 0$ holds. μ_M divides every polynomial $f \in \mathbb{F}[x]$ with f(M) = 0.

Definition (Characteristic polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the characteristic polynomial $\chi_M \in \mathbb{F}[x]$ of M is $\chi_M := \det(x \cdot \mathbf{1} - M)$.

Definition (Minimal polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the minimal polynomial of M is the monic polynomial $\mu_M \in \mathbb{F}[x]$ of least degree for which $\mu_M(M) = 0$ holds. μ_M divides every polynomial $f \in \mathbb{F}[x]$ with f(M) = 0.

Proposition (Invariant factors)

Let $A := x \cdot \mathbf{1} - M \in \mathbb{F}[x]^{d \times d}$. Then there are matrices $S, T \in \mathbb{F}[x]^{d \times d}$ with determinant 1 and

$$S \cdot A \cdot T = diag(1, \ldots, 1, p_1, p_2, \ldots, p_k)$$

with $p_1 \mid p_2 \mid \cdots \mid p_k$.

Definition (Characteristic polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the characteristic polynomial $\chi_M \in \mathbb{F}[x]$ of M is $\chi_M := \det(x \cdot \mathbf{1} - M)$.

Definition (Minimal polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the minimal polynomial of M is the monic polynomial $\mu_M \in \mathbb{F}[x]$ of least degree for which $\mu_M(M) = 0$ holds. μ_M divides every polynomial $f \in \mathbb{F}[x]$ with f(M) = 0.

Proposition (Invariant factors)

Let $A := x \cdot \mathbf{1} - M \in \mathbb{F}[x]^{d \times d}$. Then there are matrices $S, T \in \mathbb{F}[x]^{d \times d}$ with determinant 1 and

$$S \cdot A \cdot T = \operatorname{diag}(1, \ldots, 1, p_1, p_2, \ldots, p_k)$$

with $p_1 \mid p_2 \mid \cdots \mid p_k$. The p_i are uniquely determined (up to scalars)

Definition (Characteristic polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the characteristic polynomial $\chi_M \in \mathbb{F}[x]$ of M is $\chi_M := \det(x \cdot \mathbf{1} - M)$.

Definition (Minimal polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the minimal polynomial of M is the monic polynomial $\mu_M \in \mathbb{F}[x]$ of least degree for which $\mu_M(M) = 0$ holds. μ_M divides every polynomial $f \in \mathbb{F}[x]$ with f(M) = 0.

Proposition (Invariant factors)

Let $A := x \cdot \mathbf{1} - M \in \mathbb{F}[x]^{d \times d}$. Then there are matrices $S, T \in \mathbb{F}[x]^{d \times d}$ with determinant 1 and

$$S \cdot A \cdot T = diag(1, \ldots, 1, p_1, p_2, \ldots, p_k)$$

with $p_1 \mid p_2 \mid \cdots \mid p_k$. The p_i are uniquely determined (up to scalars) and the matrices S and T can be computed explicitly.

Definition (Characteristic polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the characteristic polynomial $\chi_M \in \mathbb{F}[x]$ of M is $\chi_M := \det(x \cdot \mathbf{1} - M)$.

Definition (Minimal polynomial)

Let $M \in \mathbb{F}^{d \times d}$, then the minimal polynomial of M is the monic polynomial $\mu_M \in \mathbb{F}[x]$ of least degree for which $\mu_M(M) = 0$ holds. μ_M divides every polynomial $f \in \mathbb{F}[x]$ with f(M) = 0.

Proposition (Invariant factors)

Let $A := x \cdot \mathbf{1} - M \in \mathbb{F}[x]^{d \times d}$. Then there are matrices $S, T \in \mathbb{F}[x]^{d \times d}$ with determinant 1 and

$$S \cdot A \cdot T = diag(1, \ldots, 1, p_1, p_2, \ldots, p_k)$$

with $p_1 \mid p_2 \mid \cdots \mid p_k$. The p_i are uniquely determined (up to scalars) and the matrices S and T can be computed explicitly.

We have $\mu_M = p_r$ and $\chi_M = p_1 \cdot \cdots \cdot p_k$.

Definition (Order polynomial)

 \mathbb{F} field, \mathcal{A} f.d. \mathbb{F} -algebra, $V \in \text{mod}-\mathcal{A}$, $v \in V$, $M \in \mathcal{A}$.

Then the order polynomial $q := \operatorname{ord}_{M}(v) \in \mathbb{F}[x]$ is the monic polynomial of least degree such that $v \cdot q(M) = 0$.

Definition (Order polynomial)

 \mathbb{F} field, \mathcal{A} f.d. \mathbb{F} -algebra, $V \in \text{mod}-\mathcal{A}$, $v \in V$, $M \in \mathcal{A}$.

Then the order polynomial $q := \operatorname{ord}_{M}(v) \in \mathbb{F}[x]$ is the monic polynomial of least degree such that $v \cdot q(M) = 0$.

Definition (Relative order polynomial)

If additionally W < V is M-invariant, then we call $\operatorname{ord}_{M}(v + W)$ the relative order polynomial of $v + W \in V/W$.

Definition (Order polynomial)

 \mathbb{F} field, \mathcal{A} f.d. \mathbb{F} -algebra, $V \in \text{mod} - \mathcal{A}$, $v \in V$, $M \in \mathcal{A}$.

Then the order polynomial $q := \operatorname{ord}_{M}(v) \in \mathbb{F}[x]$ is the monic polynomial of least degree such that $v \cdot q(M) = 0$.

Definition (Relative order polynomial)

If additionally W < V is M-invariant, then we call $\operatorname{ord}_{M}(v + W)$ the relative order polynomial of $v + W \in V/W$.

Lemma (Generator of annihilator)

The order polynomial $\operatorname{ord}_M(v)$ divides every polynomial $q \in \mathbb{F}[x]$ with $v \cdot q(M) = 0$.

Let $M \in \mathbb{F}^{d \times d}$ and $v_1, \ldots, v_i \in V$ and $V_i := \langle v_1, \ldots, v_i \rangle_M$ the $\mathbb{F}[M]$ -span.

Let $M \in \mathbb{F}^{d \times d}$ and $v_1, \ldots, v_i \in V$ and $V_i := \langle v_1, \ldots, v_i \rangle_M$ the $\mathbb{F}[M]$ -span. Find smallest $d_1 \in \mathbb{N}$ such that $(v_1, v_1 M, v_1 M^2, \ldots, v_1 M^{d_1})$ is linearly dependent.

Let $M \in \mathbb{F}^{d \times d}$ and $v_1, \ldots, v_i \in V$ and $V_i := \langle v_1, \ldots, v_i \rangle_M$ the $\mathbb{F}[M]$ -span. Find smallest $d_1 \in \mathbb{N}$ such that $(v_1, v_1 M, v_1 M^2, \dots, v_1 M^{d_1})$ is linearly dependent. If

$$v_1 M^{d_1} = \sum_{i=0}^{d_1-1} a_i v_1 M^i$$
 then $\operatorname{ord}_M(v_1) = x^{d_1} - \sum_{i=0}^{d_1-1} a_i x^i$.

Let $M \in \mathbb{F}^{d \times d}$ and $v_1, \ldots, v_i \in V$ and $V_i := \langle v_1, \ldots, v_i \rangle_M$ the $\mathbb{F}[M]$ -span. Find smallest $d_1 \in \mathbb{N}$ such that $(v_1, v_1 M, v_1 M^2, \dots, v_1 M^{d_1})$ is linearly dependent. If

$$v_1 M^{d_1} = \sum_{i=0}^{d_1-1} a_i v_1 M^i$$
 then $\operatorname{ord}_M(v_1) = x^{d_1} - \sum_{i=0}^{d_1-1} a_i x^i$.

Choose some $v_2 \in V \setminus \langle v_1 \rangle_M$ and find smallest $d_2 \in \mathbb{N}$, such that $(v_1, v_1 M, \dots, v_1 M^{d_1-1}, v_2, v_2 M, \dots, v_2 M^{d_2})$ is linearly dependent. Let $M \in \mathbb{F}^{d \times d}$ and $v_1, \ldots, v_i \in V$ and $V_i := \langle v_1, \ldots, v_i \rangle_M$ the $\mathbb{F}[M]$ -span. Find smallest $d_1 \in \mathbb{N}$ such that $(v_1, v_1 M, v_1 M^2, \dots, v_1 M^{d_1})$ is linearly dependent. If

$$v_1 M^{d_1} = \sum_{i=0}^{d_1-1} a_i v_1 M^i$$
 then $\operatorname{ord}_M(v_1) = x^{d_1} - \sum_{i=0}^{d_1-1} a_i x^i$.

Choose some $v_2 \in V \setminus \langle v_1 \rangle_M$ and find smallest $d_2 \in \mathbb{N}$, such that $(v_1, v_1 M, \dots, v_1 M^{d_1-1}, v_2, v_2 M, \dots, v_2 M^{d_2})$ is linearly dependent. If

$$v_2 M^{d_2} = \sum_{i=0}^{d_1-1} b_i v_1 M^i + \sum_{i=0}^{d_2-1} c_i v_2 M^i$$
 then

$$\operatorname{ord}_{M}(v + \langle v_{1} \rangle_{M}) = X^{d_{2}} - \sum_{i=0}^{n} c_{i} X^{i}.$$

Let $M \in \mathbb{F}^{d \times d}$ and $v_1, \ldots, v_i \in V$ and $V_i := \langle v_1, \ldots, v_i \rangle_M$ the $\mathbb{F}[M]$ -span. Find smallest $d_1 \in \mathbb{N}$ such that $(v_1, v_1 M, v_1 M^2, \ldots, v_1 M^{d_1})$ is linearly dependent. If

$$v_1 M^{d_1} = \sum_{i=0}^{d_1-1} a_i v_1 M^i$$
 then $\operatorname{ord}_M(v_1) = x^{d_1} - \sum_{i=0}^{d_1-1} a_i x^i$.

Choose some $v_2 \in V \setminus \langle v_1 \rangle_M$ and find smallest $d_2 \in \mathbb{N}$, such that $(v_1, v_1 M, \dots, v_1 M^{d_1-1}, v_2, v_2 M, \dots, v_2 M^{d_2})$ is linearly dependent. If

$$v_2 M^{d_2} = \sum_{i=0}^{d_1-1} b_i v_1 M^i + \sum_{i=0}^{d_2-1} c_i v_2 M^i$$
 then

$$\operatorname{ord}_{M}(v + \langle v_{1} \rangle_{M}) = X^{d_{2}} - \sum_{i=0}^{\infty} c_{i} X^{i}.$$

Going on like this we find an \mathbb{F} -basis Y of V:

$$Y := (v_1, v_1 M, \dots, v_1^{d_1-1}, \dots, v_k, v_k M, \dots, v_k M_k^{d_k-1}).$$

- Block lower-triangular
- with companion matrices along diagonal
- some sparse garbage below the diagonal

 \rightarrow compute the absolute order polynomials $\operatorname{ord}_M(v_i)$ instead of the relative ones $\operatorname{ord}_M(v_i + \langle v_1, \dots, v_{i-1} \rangle)_M$.

 \rightarrow compute the absolute order polynomials $\operatorname{ord}_M(v_i)$ instead of the relative ones $\operatorname{ord}_M(v_i + \langle v_1, \dots, v_{i-1} \rangle)_M$.

Lemma (Minimal polynomial)

If
$$V = \langle v_1, \dots, v_k \rangle_M$$
 then
$$\mu_M = \operatorname{lcm}(\operatorname{ord}_M(v_1), \dots, \operatorname{ord}_M(v_k)).$$

 \rightarrow compute the absolute order polynomials $\operatorname{ord}_M(v_i)$ instead of the relative ones $\operatorname{ord}_M(v_i + \langle v_1, \dots, v_{i-1} \rangle)_M$.

Lemma (Minimal polynomial)

```
If V = \langle v_1, \dots, v_k \rangle_M then
\mu_M = \operatorname{lcm}(\operatorname{ord}_M(v_1), \dots, \operatorname{ord}_M(v_k)).
```

Problem:

- $\dim_{\mathbb{F}}(V_i) \dim_{\mathbb{F}}(V_{i-1})$ might be small
- even if $\dim_{\mathbb{F}}(V_i)$ is big.

(set
$$V_i := \langle v_1, \ldots, v_i \rangle_M$$
)

 \rightarrow compute the absolute order polynomials $\operatorname{ord}_M(v_i)$ instead of the relative ones $\operatorname{ord}_M(v_i + \langle v_1, \dots, v_{i-1} \rangle)_M$.

Lemma (Minimal polynomial)

If
$$V = \langle v_1, \dots, v_k \rangle_M$$
 then
$$\mu_M = \operatorname{lcm}(\operatorname{ord}_M(v_1), \dots, \operatorname{ord}_M(v_k)).$$

Problem:

- $\dim_{\mathbb{F}}(V_i) \dim_{\mathbb{F}}(V_{i-1})$ might be small
- even if $\dim_{\mathbb{F}}(V_i)$ is big.

(set
$$V_i := \langle v_1, \ldots, v_i \rangle_M$$
)

Characteristic polynomial: asymptotically $\leq 5n^3$ field ops.

 \rightarrow compute the absolute order polynomials $\operatorname{ord}_M(v_i)$ instead of the relative ones $\operatorname{ord}_M(v_i + \langle v_1, \dots, v_{i-1} \rangle)_M$.

Lemma (Minimal polynomial)

```
If V = \langle v_1, \dots, v_k \rangle_M then
\mu_M = \operatorname{lcm}(\operatorname{ord}_M(v_1), \dots, \operatorname{ord}_M(v_k)).
```

Problem:

- $\dim_{\mathbb{F}}(V_i) \dim_{\mathbb{F}}(V_{i-1})$ might be small
- even if $\dim_{\mathbb{F}}(V_i)$ is big.

(set
$$V_i := \langle v_1, \ldots, v_i \rangle_M$$
)

Characteristic polynomial: asymptotically $\leq 5n^3$ field ops.

Minimal polynomial: asymptotically $\sim n^4$ field ops.

(both worst case analysis)

 \rightarrow compute the absolute order polynomials $\operatorname{ord}_M(v_i)$ instead of the relative ones $\operatorname{ord}_M(v_i + \langle v_1, \dots, v_{i-1} \rangle)_M$.

Lemma (Minimal polynomial)

```
If V = \langle v_1, \dots, v_k \rangle_M then
\mu_M = \operatorname{lcm}(\operatorname{ord}_M(v_1), \dots, \operatorname{ord}_M(v_k)).
```

Problem:

- $\dim_{\mathbb{F}}(V_i) \dim_{\mathbb{F}}(V_{i-1})$ might be small
- even if $\dim_{\mathbb{F}}(V_i)$ is big.

(set
$$V_i := \langle v_1, \ldots, v_i \rangle_M$$
)

Characteristic polynomial: asymptotically $\leq 5n^3$ field ops.

Minimal polynomial: asymptotically $\sim n^4$ field ops.

(both worst case analysis)

Minimal polynomial: can be done in asymptotically $\sim n^3$.

Proposition (N., Praeger (2008))

Let $\mathbb{F} = \mathbb{F}_q$, randomise $v_1, \ldots, v_u \in V$ independently and uniformly distributed, $\chi_M = \prod_{i=1}^t q_i^{e_i}$. Then:

Prob (lcm(ord_M(
$$v_1$$
), ..., ord_M(v_u)) = μ_M)

is at least
$$\prod_{i=1}^{t} (1 - q^{-u \deg(q_i)}).$$

Proposition (N., Praeger (2008))

Let $\mathbb{F} = \mathbb{F}_q$, randomise $v_1, \ldots, v_u \in V$ independently and uniformly distributed, $\chi_M = \prod_{i=1}^t q_i^{e_i}$. Then:

Prob (lcm(ord_M(
$$v_1$$
), ..., ord_M(v_u)) = μ_M)

is at least
$$\prod_{i=1}^{\iota} (1 - q^{-u \deg(q_i)}).$$

Algorithm MINIMALPOLYNOMIALMC: Input M, $0 < \epsilon < 1/2$

- Compute χ_M , Y, ord_M($v_i + V_{i-1}$) for 1 < i < k
- Determine least u, such that probability $> 1 \epsilon$
- Compute $\operatorname{ord}_{M}(v_1), \ldots, \operatorname{ord}_{M}(v_{\mu})$
- Return least common multiple

Proposition (N., Praeger (2008))

Let $\mathbb{F} = \mathbb{F}_q$, randomise $v_1, \ldots, v_u \in V$ independently and uniformly distributed, $\chi_M = \prod_{i=1}^t q_i^{e_i}$. Then:

Prob (lcm(ord_M(
$$v_1$$
), ..., ord_M(v_u)) = μ_M)

is at least
$$\prod_{i=1}^{t} (1 - q^{-u \deg(q_i)}).$$

Algorithm MINIMALPOLYNOMIALMC: Input M, $0 < \epsilon < 1/2$

- Compute χ_M , Y, ord_M($v_i + V_{i-1}$) for 1 < i < k
- Determine least u, such that probability $> 1 \epsilon$
- Compute $\operatorname{ord}_{M}(v_1), \ldots, \operatorname{ord}_{M}(v_{\mu})$
- Return least common multiple

Needs asymptotically $< 5n^3 + Factorisation(n)$ field ops.

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

```
Input: G = \langle g_1, \dots, g_k \rangle and an involution x \in G.
initialise gens := [x]
repeat
y := \text{RANDOMELEMENT}(G)
c := x^{-1}y^{-1}xy and o := \text{ORDER}(c)
```

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

```
Input: G = \langle g_1, \dots, g_k \rangle and an involution x \in G. initialise gens := [x]
repeat
y := \mathsf{RANDOMELEMENT}(G)
c := x^{-1}y^{-1}xy \text{ and } o := \mathsf{ORDER}(c)
if o is even then
append \ c^{o/2} \ \text{and} \ (x^{-1}yxy^{-1})^{o/2} \ \text{to} \ gens
else
append \ z := y \cdot c^{(o-1)/2} \ \text{to} \ gens
```

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

```
Input: G = \langle g_1, \dots, g_k \rangle and an involution x \in G.
initialise gens := [x]
repeat
      y := RANDOMELEMENT(G)
      c := x^{-1}y^{-1}xy and o := ORDER(c)
      if o is even then
             append c^{o/2} and (x^{-1}yxy^{-1})^{o/2} to gens
      else
             append z := y \cdot c^{(o-1)/2} to gens
until o was odd often enough or gens long enough
return gens
```

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

```
Input: G = \langle g_1, \dots, g_k \rangle and an involution x \in G.
initialise gens := [x]
repeat
      y := RANDOMELEMENT(G)
      c := x^{-1}y^{-1}xy and o := ORDER(c)
      if o is even then
             append c^{o/2} and (x^{-1}yxy^{-1})^{o/2} to gens
      else
             append z := y \cdot c^{(o-1)/2} to gens
until o was odd often enough or gens long enough
return gens
```

Note: If xy = yx then $c = 1_G$ and o = 1 and z = y.

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

```
Input: G = \langle g_1, \dots, g_k \rangle and an involution x \in G.
initialise gens := [x]
repeat
      y := RANDOMELEMENT(G)
      c := x^{-1}y^{-1}xy and o := ORDER(c)
      if o is even then
             append c^{o/2} and (x^{-1}yxy^{-1})^{o/2} to gens
      else
             append z := y \cdot c^{(o-1)/2} to gens
until o was odd often enough or gens long enough
return
        gens
```

Note: If xy = yx then $c = 1_G$ and o = 1 and z = y.

And: If o is odd, then z is uniformly distributed in $C_G(x)$.