Basic concepts

Eamonn O'Brien

University of Auckland

August 2011

Eamonn O'Brien Basic concepts

Determine the order of a matrix

Let g € GL(d, q).
Find n > 1 such that g” = 1.

GL(d, q) has elements of order g¢ — 1, Singer cycles, . ..

so not practical to compute powers of g until we obtain the
identity.

To find |g|: probably requires factorisation of numbers of form
qg' — 1, a hard problem.

Babai & Beals (1999):

If the set of primes dividing a multiplicative upper-bound B for |g|
is known, then the precise value of |g| can be determined in
polynomial time.

Eamonn O'Brien Basic concepts

Celler & Leedham-Green (1995): compute |g| in time O(d*log q)
subject to factorisation of ¢/ — 1 for 1 < i < d.

e First compute a “good” multiplicative upper bound B for |g]|.

Determine and factorise minimal polynomial for g as

where deg(f;) = d; and 3 = [log, max m;].
B = [1._, lem(q® — 1) x p°

Eamonn O'Brien Basic concepts

Let B =[]t lem(q% — 1) x p?. Then |g| divides B.
i=1

To see this, reduce g to Jordan normal form over the algebraic
closure of GF(q).

Each eigenvalue lies in an extension field of GF(q) of dimension d;
and so has multiplicative order dividing g% — 1.

If a block has size 7; > 1, then the p-part of the order of the block
is p® where ¢ = [log,, il

Eamonn O'Brien Basic concepts

Can we use B to learn |g]|?

©® Factorise B =[], pi"" where the primes p; are distinct.

® If m=1, then calculate g”i forj=1,2,...,a1 — 1 until the
identity is constructed.

© If m > 1 then express B = uv, where u, v are coprime and
have approximately the same number of distinct prime factors.
Now g has order k dividing v and g¥ has order ¢ say dividing
u, and |g| is kf. Hence the algorithm proceeds by recursion
on m.

Eamonn O'Brien Basic concepts

Let m(x) be the minimal polynomial of g. The F,-algebra
generated by g is isomorphic to Fg[x]/(f(x)).

It suffices to calculate the multiplicative order of x in the ring.
Hence multiplications can be done in O(d?) field multiplications.

Celler & Leedham-Green prove the following:

If we can compute a factorisation of B, then the cost of the
algorithm is O(d*log qloglog q?) field operations.

Eamonn O'Brien Basic concepts

If we don't complete the factorisation, then obtain pseudo-order of
g — the order x some large primes.

Suffices for most theoretical and practical purposes.

Implementations in both GAP and Magma use databases of
factorisations of numbers of the form q' — 1, prepared as part of
the Cunningham Project.

Eamonn O'Brien Basic concepts

2 51 2
01 6 1
o 4 0 2 2
3 3 6 6

with entries in GF(7). A has minimal polynomial

m(x) = x* 4+ 3x3 +6x% +6x +4 = (x +4)*(x®> + 2x + 2)

Hence e = 1,e; =2 and § = [log; 2] = 1. Hence

B = (7' —1)(7? — 1)7! = 336.

Now 336 =2%-3.7 = uv where u =2%and v =3 - 7.
AY has order dividing v. Reapply: |AY| = 21.

AV has order dividing u. Reapply: |AY| = 8.

Conclude |A| = 168.

Assume we know B, multiplicative upper bound to |g|.

If we just know B, then we can learn in polynomial time the exact
power of 2 (or of any specified prime) which divides |g|.

By repeated division by 2, write B = 2™b where b is odd.

Now compute h = g?, and determine (by powering) its order which
divides 2.

In particular, can deduce in polynomial time if g has even order.

Eamonn O'Brien Basic concepts

Computing powers of matrices

We can compute large powers n of g in at most 2 |log, n|
multiplications by the standard doubling algorithm:

» g" =g g if nis odd
n/2)2

» g" =gl if nis even.

Black-box algorithm.

Eamonn O'Brien Basic concepts

Frobenius normal form or ...

Rational canonical form of a square matrix A is a canonical form
that reflects the structure of the minimal polynomial of A. Can be
constructed over given field, no need to extend field.

G 0 ... 0

_) 0 & ... 0
A is equivalent to . :
o 0 ... &

Each block C; is the companion matrix of monic f; € F[x] and
filfizq for 1 < i < ¢,
The minimal polynomial of A is f; and char poly is f; - f5.. . f;.

Frobenius normal form N of A is sparse.

Hence multiplication by N costs just O(d?) field operations.

Eamonn O'Brien Basic concepts

A faster power algorithm

@ Construct the Frobenius normal form of g and record
change-of-basis matrix C.

® From the Frobenius normal form, read off the minimal
polynomial m(x) of g, and factorise m(x) as a product of
irreducible polynomials.

©® Compute multiplicative upper bound, B, to the order of g.

O If n > B, then replace n by n mod B. By repeated squaring,
calculate x"” mod m(x) as a polynomial of degree k — 1, where
k is the degree of m(x).

® Evaluate this polynomial in the Frobenius form of g to give g”
wrt Frobenius basis.

® Now compute C~1g"C to return to the original basis.

Eamonn O'Brien Basic concepts

Complexity of this task

Let g € GL(d,q) and let 0 < n < q?. This is a Las Vegas
algorithm that computes g" in O(d? logd + d? log d log log d log q)
field operations.

Eamonn O'Brien Basic concepts

The composition tree for G

Baarnhielm, Leedham-Green & O'B
Neunhoffer & Seress

H
P
K |
» Node: section H of G.
» Image /: image under homomorphism or isomorphism.
> Kernel K.
> Leaf is “composition factor” of G: simple modulo scalars.

Cyclic not necessarily of prime order.

Eamonn O'Brien Basic concepts

Tree is constructed in right depth-first order.

If node H is not a leaf, construct recursively subtree rooted at /,
then subtree rooted at K.

H H H H

| | | N

I I I K1 I
‘ PN PN
I Ky b Ky b

Eamonn O'Brien Basic concepts

Constructing kernels

Assume ¢ : H — | where K = ker ¢.
H

PSS

K |
Sometime easy to obtain theoretically generating sets for ker ¢.
Two approaches to construct kernel.

1. Construct normal generating set for K, by evaluating relators in
presentation for / and take normal closure.

So we need a presentation for /.

To obtain presentation for node: need only presentation for
associated kernel and image.

So inductively need to know presentations only for the leaves — or
composition factors.

Eamonn O'Brien Basic concepts

Random generation of the kernel

Let x1,...,x: be generating set for h € H.

Let yj = ¢(xj) for j=1,...,t.

Let h € H and let i = ¢(h).

Write i = w(y1, ..., Yt).

Let h = w(x,...,x).

Now k = hh™! € K := ker ¢.

Choose random h € H to obtain random generator k of K.

Randomised algorithm to construct the kernel — but assumes that
we can write i = w(y1, ..., yt)-

Eamonn O'Brien Basic concepts

Base cases for recursion

Classical group in natural representation or other almost
simple modulo scalars: S < H/Z < Aut(S)

Principal focus: matrix representations in defining characteristic.

Eamonn O'Brien Basic concepts

Constructive recognition: the main tasks

H = (X) < GL(d, q) where H is (quasi)simple.
So H is perfect and H/Z is simple.
@ Given h € H, express h = w(X).

(“Constructive membership problem™)

@® Given G = (Y) where G is representation of H,
» solve constructive membership problem for G;

» construct “effective” isomorphisms
¢:H— G
7:Gr— H.

Key idea: standard generators.

Eamonn O'Brien Basic concepts

Using standard generators

Define standard generators S for H = (X).

Need algorithms to:

» Construct S as words in X.
» For h € H, express h as w(S) and so as w(X).
If (Y) =G ~ H then:

» Find standard generators S in G as words in Y.
» For g € G, express g as w(S) and so as w(Y).

Choose S so that solving for word in S is easy.
Now define isomorphism ¢ : H — G from S to S
Effective: if h = w(S) then ¢(h) = w(S).

Similarly 7: G — H.

Eamonn O'Brien Basic concepts

H = (X) = SL(d,)
G = (Y) is symmetric square repn.

H is our “gold-plated” copy in which we know information.
Examples include

» Conjugacy classes of elements.

» Maximal subgroups.

We know or can obtain these readily as words w in S.
If we know S C G, we can evaluate w in S.

So we now know this information in our arbitrary copy G.

Eamonn O'Brien Basic concepts

Application |: Conjugacy classes of classical groups

Example: H = (X) = SX(d, q)
G = (Y) is symmetric cube.

Wall (1963): description of conjugacy classes and centralisers of
elements of classical groups.

Murray: algorithm, which given d and g, constructs classes for
SX(d, q).

¢ : H— G now maps class reps and centralisers to G.

Higman's (1961) count of p-groups of p-class 2.

Eick and O'B (1999): algorithm which, given d and p, counts
precisely the number of d-generator p-groups of class 2.

Critical task: for each conjugacy class rep r in G := A?(GL(d, p))
use Cauchy-Frobenius theorem to count fixed points for r.

Eamonn O'Brien Basic concepts

Application Il: Maximal subgroups of classical groups

Kleidmann & Liebeck (1990): describe some maximal subgroups of
classical groups where d > 13.

Bray, Holt & Roney-Dougal (ongoing): construct generating sets
for geometric maximal subgroups, and all maximals for d < 12.

So obtain M < H := SX(d, q), classical group in natural
representation.

Use ¢ : H — G to construct image of M in arbitrary
representation G.

Eamonn O'Brien Basic concepts

