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Determine the order of a matrix

Let g ∈ GL(d, q).
Find n ≥ 1 such that gn = 1.

GL(d, q) has elements of order qd − 1, Singer cycles, . . .

so not practical to compute powers of g until we obtain the
identity.

To find |g |: probably requires factorisation of numbers of form
qi − 1, a hard problem.

Babai & Beals (1999):

Theorem

If the set of primes dividing a multiplicative upper-bound B for |g |
is known, then the precise value of |g | can be determined in
polynomial time.
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Celler & Leedham-Green (1995): compute |g | in time O(d4 log q)
subject to factorisation of qi − 1 for 1 ≤ i ≤ d .

• First compute a “good” multiplicative upper bound B for |g |.

Determine and factorise minimal polynomial for g as

m(x) =
t∏

i=1

fi (x)mi

where deg(fi ) = di and β = dlogp max mie.

B :=
∏t

i=1 lcm(qdi − 1)× pβ
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Lemma

Let B =
∏t

i=1 lcm(qdi − 1)× pβ. Then |g | divides B.

To see this, reduce g to Jordan normal form over the algebraic
closure of GF(q).

Each eigenvalue lies in an extension field of GF(q) of dimension di

and so has multiplicative order dividing qdi − 1.

If a block has size γi > 1, then the p-part of the order of the block
is pδ where δ = dlogp γie.
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Can we use B to learn |g |?

1 Factorise B =
∏m

i=1 pαi
i where the primes pi are distinct.

2 If m = 1, then calculate gpj1 for j = 1, 2, . . . , α1 − 1 until the
identity is constructed.

3 If m > 1 then express B = uv , where u, v are coprime and
have approximately the same number of distinct prime factors.
Now gu has order k dividing v and gk has order ` say dividing
u, and |g | is k`. Hence the algorithm proceeds by recursion
on m.
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Let m(x) be the minimal polynomial of g . The Fq-algebra
generated by g is isomorphic to Fq[x ]/(f (x)).

It suffices to calculate the multiplicative order of x in the ring.

Hence multiplications can be done in O(d2) field multiplications.

Celler & Leedham-Green prove the following:

Theorem

If we can compute a factorisation of B, then the cost of the
algorithm is O(d4 log q log log qd) field operations.
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If we don’t complete the factorisation, then obtain pseudo-order of
g – the order × some large primes.

Suffices for most theoretical and practical purposes.

Implementations in both GAP and Magma use databases of
factorisations of numbers of the form qi − 1, prepared as part of
the Cunningham Project.
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Example

A =


2 5 1 2
0 1 6 1
4 0 2 2
3 3 6 6


with entries in GF(7). A has minimal polynomial

m(x) = x4 + 3x3 + 6x2 + 6x + 4 = (x + 4)2(x2 + 2x + 2)

Hence e1 = 1, e2 = 2 and β = dlog7 2e = 1. Hence

B = (71 − 1)(72 − 1)71 = 336.

Now 336 = 24 · 3 · 7 = uv where u = 24 and v = 3 · 7.

Au has order dividing v . Reapply: |Au| = 21.

Av has order dividing u. Reapply: |Av | = 8.

Conclude |A| = 168.
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Even order?

Assume we know B, multiplicative upper bound to |g |.

If we just know B, then we can learn in polynomial time the exact
power of 2 (or of any specified prime) which divides |g |.

By repeated division by 2, write B = 2mb where b is odd.

Now compute h = gb, and determine (by powering) its order which
divides 2m.

In particular, can deduce in polynomial time if g has even order.
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Computing powers of matrices

We can compute large powers n of g in at most 2 blog2 nc
multiplications by the standard doubling algorithm:

I gn = gn−1g if n is odd

I gn = g (n/2)2 if n is even.

Black-box algorithm.

Eamonn O’Brien Basic concepts



logo

Frobenius normal form or . . .

Rational canonical form of a square matrix A is a canonical form
that reflects the structure of the minimal polynomial of A. Can be
constructed over given field, no need to extend field.

Definition

A is equivalent to


C1 0 . . . 0
0 C2 . . . 0
...

...
...

0 0 . . . C`

.

Each block Ci is the companion matrix of monic fi ∈ F [x ] and
fi |fi+1 for 1 ≤ i ≤ `.
The minimal polynomial of A is f` and char poly is f1 · f2 . . . f`.

Frobenius normal form N of A is sparse.

Hence multiplication by N costs just O(d2) field operations.
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A faster power algorithm

1 Construct the Frobenius normal form of g and record
change-of-basis matrix C .

2 From the Frobenius normal form, read off the minimal
polynomial m(x) of g , and factorise m(x) as a product of
irreducible polynomials.

3 Compute multiplicative upper bound, B, to the order of g .

4 If n > B, then replace n by n mod B. By repeated squaring,
calculate xn mod m(x) as a polynomial of degree k − 1, where
k is the degree of m(x).

5 Evaluate this polynomial in the Frobenius form of g to give gn

wrt Frobenius basis.

6 Now compute C−1gnC to return to the original basis.
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Complexity of this task

Lemma

Let g ∈ GL(d, q) and let 0 ≤ n < qd . This is a Las Vegas
algorithm that computes gn in O(d3 log d + d2 log d log log d log q)
field operations.
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The composition tree for G

Bäärnhielm, Leedham-Green & O’B
Neunhöffer & Seress

H

K I

I Node: section H of G .

I Image I : image under homomorphism or isomorphism.

I Kernel K .

I Leaf is “composition factor” of G : simple modulo scalars.
Cyclic not necessarily of prime order.
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Tree is constructed in right depth-first order.

If node H is not a leaf, construct recursively subtree rooted at I ,
then subtree rooted at K .

H

I1

H

I1

I2

H

I1

K2 I2

H

K1 I1

K2 I2
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Constructing kernels

Assume φ : H 7−→ I where K = ker φ.

H

K I

Sometime easy to obtain theoretically generating sets for ker φ.

Two approaches to construct kernel.

1. Construct normal generating set for K , by evaluating relators in
presentation for I and take normal closure.

So we need a presentation for I .

To obtain presentation for node: need only presentation for
associated kernel and image.

So inductively need to know presentations only for the leaves – or
composition factors.
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Random generation of the kernel

Let x1, . . . , xt be generating set for h ∈ H.

Let yj = φ(xj) for j = 1, . . . , t.

Let h ∈ H and let i = φ(h).

Write i = w(y1, . . . , yt).

Let h̄ = w(x1, . . . , xt).

Now k = hh̄−1 ∈ K := ker φ.

Choose random h ∈ H to obtain random generator k of K .

Randomised algorithm to construct the kernel – but assumes that
we can write i = w(y1, . . . , yt).
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Base cases for recursion

Classical group in natural representation or other almost
simple modulo scalars: S ≤ H/Z ≤ Aut(S)

Principal focus: matrix representations in defining characteristic.
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Constructive recognition: the main tasks

H = 〈X 〉 ≤ GL(d , q) where H is (quasi)simple.
So H is perfect and H/Z is simple.

1 Given h ∈ H, express h = w(X ).
(“Constructive membership problem”)

2 Given G = 〈Y 〉 where G is representation of H,
I solve constructive membership problem for G ;

I construct “effective” isomorphisms
φ : H 7−→ G
τ : G 7−→ H.

Key idea: standard generators.
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Using standard generators

Define standard generators S for H = 〈X 〉.

Need algorithms to:

I Construct S as words in X .

I For h ∈ H, express h as w(S) and so as w(X ).

If 〈Y 〉 = G ' H then:

I Find standard generators S̄ in G as words in Y .

I For g ∈ G , express g as w(S̄) and so as w(Y ).

Choose S so that solving for word in S is easy.

Now define isomorphism φ : H 7−→ G from S to S̄

Effective: if h = w(S) then φ(h) = w(S̄).

Similarly τ : G 7−→ H.
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Motivation

Example

H = 〈X 〉 = SL(d , q)
G = 〈Y 〉 is symmetric square repn.

H is our “gold-plated” copy in which we know information.

Examples include

I Conjugacy classes of elements.

I Maximal subgroups.

We know or can obtain these readily as words w in S .

If we know S̄ ⊂ G , we can evaluate w in S̄ .

So we now know this information in our arbitrary copy G .
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Application I: Conjugacy classes of classical groups

Example: H = 〈X 〉 = SX(d , q)
G = 〈Y 〉 is symmetric cube.

Wall (1963): description of conjugacy classes and centralisers of
elements of classical groups.

Murray: algorithm, which given d and q, constructs classes for
SX(d , q).

φ : H 7−→ G now maps class reps and centralisers to G .

Example

Higman’s (1961) count of p-groups of p-class 2.
Eick and O’B (1999): algorithm which, given d and p, counts
precisely the number of d-generator p-groups of class 2.
Critical task: for each conjugacy class rep r in G := Λ2(GL(d,p))
use Cauchy-Frobenius theorem to count fixed points for r .
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Application II: Maximal subgroups of classical groups

Kleidmann & Liebeck (1990): describe some maximal subgroups of
classical groups where d ≥ 13.

Bray, Holt & Roney-Dougal (ongoing): construct generating sets
for geometric maximal subgroups, and all maximals for d ≤ 12.

So obtain M ≤ H := SX(d , q), classical group in natural
representation.

Use φ : H 7−→ G to construct image of M in arbitrary
representation G .
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