Algebraic Groups I

Summer School

Representations of Algebraic Groups and Lie Algebras in Characteristic p

Oliver Braun September 7, 2015

Affine algebraic sets

Let K be a field.

Definition

•
$$\mathbb{A}^n(K) := \{(\alpha_1, ..., \alpha_n) \in K^n\}$$
 affine *n*-space.

- $f \in K[x_1, ..., x_n]$, $V(f) := \{ \alpha \in \mathbb{A}^n(K) \mid f(\alpha) = 0 \}$ zero locus of f.
- $S \subset K[x_1, ..., x_n]$, $V(S) := \bigcap_{f \in S} V(f)$ an affine algebraic set.

Examples

Let $K = \mathbb{R}$.

•
$$f = x_1^2 + x_2^2 - 1$$
, $V(f)$ is a circle in $\mathbb{A}^2(\mathbb{R})$.

•
$$f = x_1 x_4 - x_2 x_3 - 1$$
, $V(f) = SL_2(\mathbb{R})$.

Remark

•
$$S \subseteq K[x_1, ..., x_n], V(\langle S \rangle) = V(S).$$

• Hilbert's Basis Theorem: $K[x_1, ..., x_n]$ is Noetherian.

Definition

 $\mathfrak{X} \subseteq \mathbb{A}^n(K)$, *R* comm. ring, $A \trianglelefteq R$.

- $I(\mathfrak{X}) := \{ f \in K[x_1, ..., x_n] \mid f(\alpha) = 0 \forall \alpha \in \mathfrak{X} \} \trianglelefteq K[x_1, ..., x_n].$
- $\mathcal{K}[\mathfrak{X}] := \mathcal{K}[x_1, ..., x_n] / I(\mathfrak{X})$ coordinate ring of \mathfrak{X} .

Zariski topology

The affine algebraic sets are the closed sets of the Zariski topology.

Regular functions

$$\begin{split} \mathfrak{X} &\subseteq \mathbb{A}^n \text{ affine, } \mathcal{Y} \subseteq \mathfrak{X} \text{ open.} \\ f : \mathcal{Y} \to \mathcal{K} \text{ is called regular in } \alpha \in \mathcal{Y} \text{ if:} \\ \exists \ \mathcal{U} \subseteq \mathcal{Y} \text{ open s.t. } \alpha \in \mathcal{U}, \\ \exists \ g, h \in \mathcal{K}[\mathfrak{X}] : \forall \ \beta \in \mathcal{U} : f(\beta) = \frac{g(\beta)}{h(\beta)}, \ h(\beta) \neq 0. \\ \mathcal{O}(\mathcal{Y}) &:= \{f : \mathcal{Y} \to \mathcal{K} \mid f \text{ regular in } \mathcal{Y}\}. \\ \mathcal{O}(\mathfrak{X}) \cong \mathcal{K}[\mathfrak{X}]. \end{split}$$

Affine varieties

- $\mathfrak{X} \subseteq \mathbb{A}^n$ affine, $(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}(\))$ is called an **affine variety**.
- $\mathfrak{X}, \mathcal{Y}$ affine varieties, $\phi \ : \ \mathfrak{X} \to \mathcal{Y}$ is a **morphism** of affine varieties, if
 - ϕ is Zariski-continuous.

Remark

Affine varieties form a category which is anti-equivalent to the category of finitely generated reduced K-algebras if $K = \overline{K}$.

The category of affine varieties has finite products defined in the usual category-theoretic sense.

Linear algebraic groups

A linear algebraic group is an affine variety G with morphisms

$$m : G \times G \rightarrow G, \quad i : G \rightarrow G$$

such that G becomes a group by putting $\sigma \cdot \tau := m(\sigma, \tau)$ and $\sigma^{-1} := i(\sigma)$.

Theorem

Any linear algebraic group admits a faithful linear representation ρ : $G \to GL_n(K)$ for some $n \in \mathbb{N}$ which is a morphism of algebraic groups.

Remark

A linear algebraic group G can be considered as a functor $K - \text{CommAlg} \rightarrow \text{Grp}$ such that

$$K - \operatorname{CommAlg} \xrightarrow{G} \operatorname{Grp} \xrightarrow{\operatorname{forget}} \operatorname{Set}$$

is affine, i.e. representable by a finitely generated commutative K-algebra. R-rational points: G(R).

Example

Consider $\mu_n : \mathbb{Q} - \text{CommAlg} \to \text{Grp}, R \mapsto \{r \in R \mid r^n = 1\}$ and compare $\mu_4(\mathbb{Q})$ with $\mu_4(\mathbb{C})$.

Oliver Braun September 7, 2015

Definition

Let G be irreducible. dim(G) := Krull-dim(K[G]) = top.dim(G).

Example

- GL_n(K) := {(d, X_{i,j}) ∈ K^{n²+1} | d · det(X) = 1} is an algebraic group.
 dim(GL_n) = n².
- Consider GL_n as an algebraic group defined over \mathbb{F}_p .
- GL_n(F_p) is locally finite: (x_{i,j})_{1≤i,j,≤n} ∈ GL_n(F_p[x_{i,j}]).
 GL_n(F_p) = ⋃_{i=1}[∞] GL_n(F_{pⁱ¹}).

Definition

Let (G, m, i) be an algebraic group. If $U \subseteq G$ is a Zariski-closed subset of G such that $(U, m|_{U \times U}, i_U)$ is a group, then we call U an (algebraic) subgroup of G. U is an algebraic group in its own right.

Connectedness

Definition

G alg. group over *K*. *G* is **connected** if its underlying topological space is connected, i.e. $G = U_1 \cup U_2$ with U_i closed and $U_1 \cap U_2 = \emptyset$ implies $U_1 = \emptyset$ or $U_2 = \emptyset$.

G is **irreducible** if its underlying affine variety is not the union of two proper closed subsets.

Theorem

An affine algebraic group is connected if and only if it is irreducible.

Remark

G is irreducible if and only if K[G] is an integral domain.

Definition: identity component

 $G^0 :=$ connected component of $1 \in G$ is a closed normal subgroup of finite index.

Oliver Braun September 7, 2015

Semisimple and unipotent elements

Let ρ : $G \hookrightarrow GL(V)$ be a faithful representation with $\dim_{\mathcal{K}}(V) < \infty$.

Definition

 $g \in G$ is called

- semisimple if $\rho(g)$ is diagonalizable,
- **unipotent** if $\rho(g) 1$ is nilpotent.

Remark

The above properties are intrinsic of g, i.e. they are independent of the choice of ρ .

Example

Consider $\mathbb{G}_m := \mathsf{GL}_1$ and \mathbb{G}_a , defined by $\mathbb{G}_a(k) := (k, +)$.

• \mathbb{G}_m consists of semisimple elements.

• G_a consists of unipotent elements, cf. $x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$.

Jordan Decomposition

Remark

Let V be a finite dimensional vector space over a perfect field. Let $x \in End(V)$ be invertible. Then we can write

$$x = x_s x_u,$$

where x_s is semisimple, x_u is unipotent and $x_s x_u = x_u x_s$. This decomposition is **unique**.

If the underlying field is not perfect, such a decomposition may not exist.

Definition

Let ρ : $G \hookrightarrow GL_n(K)$ be a faithful representation. For every $g \in G$ there is a Jordan decomposition $g = g_s g_u$ defined by

$$\rho(g_s) = \rho(g)_s, \ \rho(g_u) = \rho(g)_u. \tag{\dagger}$$

(†) is satisfied for every faithful representation.

Definition

- A maximal closed connected solvable subgroup B ≤ G is called a Borel subgroup.
- A subgroup $P \leq G$ s.t. $B \subseteq P$ is called **parabolic**.

Example

The invertible upper triangular matrices $(\neg)_n$ are a Borel subgroup of GL_n . $(\neg)_n \cap SL_n$ is a Borel subgroup of SL_n .

Definition

$$T \leq G$$
 is called a **torus** if $T(\overline{K}) \cong \mathbb{G}_m^r(\overline{K})$ for some $r \geq 1$.
 T is called **split** if $T(K) \cong \mathbb{G}_m^r(K)$.

Example

 SO_2 is a torus, but not a split torus: $SO_2(\mathbb{C}) \cong \mathbb{C}^{\times}$, $SO_2(\mathbb{R}) \cong S^1$.