Algebraic Groups II

Summer School Representations of Algebraic Groups and Lie Algebras in Characteristic p

Sebastian Schönnenbeck September 7, 2015

Some basic structure theory

K algebraically closed field, $\mathbb{G} \leq \operatorname{GL}_n(K)$ connected linear algebraic group

Definition

- \mathbb{G} almost simple $\Leftrightarrow \mathbb{G}$ has no non-trivial connected closed normal subgroup.
- *R*(G) (the) maximal solvable connected normal subgroup, the *radical* of G.
- \mathbb{G} semisimple $\Leftrightarrow R(\mathbb{G}) = \{1\}.$
- $R_u(\mathbb{G})$ (the) maximal unipotent connected normal subgroup, the *unipotent radical* of \mathbb{G} .
- \mathbb{G} reductive $\Leftrightarrow R_u(\mathbb{G}) = \{1\}.$

Remark

 \mathbb{G} almost simple $\Rightarrow \mathbb{G}$ semisimple $\Rightarrow \mathbb{G}$ reductive

Some basic structure theory

Theorem

•
$$R(\mathbb{G}) = \left(\bigcap_{B \leq \mathbb{G} \text{ Borel }} B\right)^{o}, R_u(\mathbb{G}) = \left(\bigcap_{B \leq \mathbb{G} \text{ Borel }} B_u\right)^{o}$$

- \mathbb{G} reductive $\Rightarrow R(\mathbb{G}) = Z(\mathbb{G})^o, \mathbb{G}'$ semisimple and $\mathbb{G} = Z(G)^o \mathbb{G}'$
- G semisimple ⇒ G has finitely many connected closed normal subgroups *H*₁,...,*H_r* and is the almost direct product of these. The *H_i* are called *almost simple components* of G.

Example

- $R(\operatorname{GL}_n) \subset (\boxtimes) \cap (\nabla) = \mathbb{D}_n$ and normal $\Rightarrow R(\operatorname{GL}_n) = Z(\operatorname{GL}_n) \cong \mathbb{G}_m$. $R_u(\operatorname{GL}_n) = \{1\} \Rightarrow \operatorname{GL}_n$ reductive (but not semisimple).
- Analogous: $R(SL_n) = \{1\} \Rightarrow SL_n$ semisimple

•
$$R((\square)) = (\square), R_u((\square)) = \left\{ \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix} \right\}$$

The Lie-algebra

K algebraically closed field, $\mathbb{G} \leq \operatorname{GL}_n(K)$ linear algebraic group

Lie-algebra

```
Let R = K[\epsilon] where \epsilon^2 = 0.
```

$$\operatorname{Lie}(\mathbb{G}) := \{ A \in K^{n \times n} \mid I_n + \epsilon A \in \mathbb{G}(R) \},\$$

the Lie-algebra of G.

Remark

- $\bullet \ {\rm Lie}(\mathbb{G})$ with the matrix commutator is a Lie-algebra in the usual sense.
- $\dim(\mathbb{G}) = \dim_{\mathrm{K}}(\mathrm{Lie}(\mathbb{G})).$

Example

•
$$\operatorname{Lie}(\operatorname{GL}_n) = K^{n \times n} = \mathfrak{gl}_n(K).$$

•
$$\operatorname{Lie}(\operatorname{SL}_n) = \{A \in K^{n \times n} \mid \operatorname{Tr}(A) = 0\} = \mathfrak{sl}_n(K)$$

•
$$\operatorname{Lie}(O(F)) = \{A \in K^{n \times n} \mid AF + FA^{tr} = 0\} = \mathfrak{so}(F, K).$$

The Adjoint Representation and Root Systems

K algebraically closed field, $\mathbb{G} \leq \operatorname{GL}_n(K)$ connected reductive, $T \leq \mathbb{G}$ maximal torus

Definition

• The Lie-linearization (or adjoint representation) of G is:

$$\mathrm{Ad}: \mathbb{G} \to \mathrm{GL}(\mathrm{Lie}(\mathbb{G})), \ g \mapsto (A \mapsto g^{-1}Ag).$$

- Set $X(T) := Mor(T, \mathbb{G}_m)$ the *characters* of T.
- The non-trivial weights of T on $Lie(\mathbb{G})$ via Ad

 $\Phi = \Phi(\mathbb{G}, T) = \{ 0 \neq \chi \in X(T) \mid \exists 0 \neq v \in \operatorname{Lie}(\mathbb{G}) : \forall t \in T : \operatorname{Ad}(t)v = \chi(t)v \}$ are called the *roots* of \mathbb{G} (w.r.t. *T*).

• For $\alpha \in \Phi$ we call

$$\operatorname{Lie}(\mathbb{G})_{\alpha} = \{ v \in \operatorname{Lie}(\mathbb{G}) \mid \forall t \in T : \operatorname{Ad}(t)v = \alpha(t)v \} \quad (\neq \{0\})$$

the root space of α .

More on Root Systems

Theorem

- $\operatorname{Lie}(\mathbb{G}) = \operatorname{Lie}(T) \oplus \bigoplus_{\alpha \in \Phi} \operatorname{Lie}(\mathbb{G})_{\alpha}$
- dim_K(Lie(G)_α) = 1 and Lie(G)_α = Lie(U_α) for a unique unipotent *T*-invariant subgroup U_α (one-parameter subgroup).
- There are isomorphisms $u_{\alpha}: \mathbb{G}_a \to U_{\alpha}$ such that

$$t^{-1}u_{\alpha}(x)t = u_{\alpha}(\alpha(t)x).$$

•
$$\mathbb{G} = \langle T, U_{\alpha} \mid \alpha \in \Phi \rangle$$

• \mathbb{G} semisimple $\Rightarrow \mathbb{G} = \langle U_{\alpha} \mid \alpha \in \Phi \rangle$

Remark

- For $\chi \in X(T)$ we have $\chi \in \Phi \Leftrightarrow -\chi \in \Phi$.
- $B \leq \mathbb{G}$ Borel-subgroup yields a normalization on Φ via $\alpha > 0 \Leftrightarrow U_{\alpha} \leq B$. Positive roots: Φ^+ .

The Weyl-Group

Definition

The Weyl-group of \mathbb{G} , $W = W(\mathbb{G}, T)$, is $W = N_{\mathbb{G}}(T)/T$.

Remark

- W is a finite Coxeter-group with set of reflections {s_α | α ∈ Φ} in bijection with Φ (s_α the *reflection corresponding to* α).
- W acts faithfully on X(T) via $\chi^w(t) = \chi(t^{n-1})$ for $t \in T, \chi \in X(T)$ and $w \in W$ with representative $n \in N_{\mathbb{G}}(T)$.
- W permutes Φ .

•
$$w = nN_{\mathbb{G}}(T) \in W$$
 then $n^{-1}U_{\alpha}n = U_{\alpha^w}$ for all $\alpha \in \Phi$.

Example

- $W(GL_n) \cong S_n$ (Coxeter-type A_{n-1}).
- $W(SO_{2n+1}) \cong C_2 \wr S_n$ (Coxeter-type B_n).

The Root Datum

Definition

- $X^{\vee}(T) := \operatorname{Mor}(\mathbb{G}_m, T)$, the *cocharacters* of T.
- Identify $\operatorname{Mor}(\mathbb{G}_m, \mathbb{G}_m) \cong \mathbb{Z}$ and define $\langle -, - \rangle : X(T) \times X^{\vee}(T) \to \mathbb{Z}, (\chi, \mu) \mapsto \chi \circ \mu.$

Proposition

There are unique *coroots* $\alpha^{\vee} \in X^{\vee}(T), \ \alpha \in \Phi$ with:

•
$$\langle \alpha, \alpha^{\vee} \rangle = 2$$
.

• The action of s_{α} on X(T) is given by $\chi \mapsto \chi - \langle \chi, \alpha^{\vee} \rangle \alpha$.

•
$$s_{\alpha}^{\vee}(\Phi^{\vee}) = \Phi^{\vee}.$$

Remark

 $(X(T), \Phi, X^{\vee}(T), \Phi^{\vee})$ is an (abstract) root datum.

Theorem

The connected reductive groups are classified by their root data.

Sebastian Schönnenbeck September 7, 2015

The Root Datum

Now let \mathbb{G} be semisimple:

Definition

- $E := X(T) \otimes_{\mathbb{Z}} \mathbb{R}$.
- $Q(\Phi) := \langle \Phi \rangle.$
- $P(\Phi) := \{\lambda \in E \mid \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z} \ \forall \ \alpha \in \Phi \}.$
- \mathbb{G} adjoint $\Leftrightarrow Q(\Phi) = X(T)$.
- \mathbb{G} simply connected $\Leftrightarrow P(\Phi) = X(T)$.

Remark

 Φ is a root system. If we fix a system Φ^+ of positive roots we get a unique system Δ of simple roots.

- $|\Delta| = \dim(T)$.
- The Dynkin-diagram of G is the graph with vertices Δ, |⟨α, β[∨]⟩| · |⟨β, α[∨]⟩| edges between α and β and an arrow α → β if |⟨α, β[∨]⟩| > |⟨β, α[∨]⟩|.

The Classification

Theorem

- $\bullet\,$ The Dynkin-diagram of $\mathbb G$ is connected iff $\mathbb G$ is almost simple.
- \mathbb{G} semisimple \Rightarrow The connected components of the Dynkin-diagram correspond to the almost simple components of \mathbb{G} .
- The connected almost simple linear algebraic groups are classified by their Dynkin-diagrams and the position of X(T) in the chain $Q(\Phi) \subset X(T) \subset P(\Phi)$.

The connected almost simple linear algebraic groups

$\begin{array}{cccc} A_n, n \ge 1 & \text{SL}_{n+1} & \dots & \text{PSL}_{n+1} & \text{\# div. of } n+1 \\ B_n, n \ge 2 & \text{Spin}_{2n+1} & \text{-} & \text{SO}_{2n+1} & 2 \end{array}$	Coxeter-type	S.C.	intermed. forms	adj.	$[P(\Phi):Q(\Phi)]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$A_{n}, n \ge 1 B_{n}, n \ge 2 C_{n}, n \ge 3 D_{n}, n \ge 4 E_{n}, n = 6, 7, 8 F_{4} G_{2}$	$ \begin{array}{c} \operatorname{SL}_{n+1} \\ \operatorname{Spin}_{2n+1} \\ \operatorname{Sp}_{2n} \\ \operatorname{Spin}_{2n+1} \\ (E_n)_{sc} \end{array} $	SO _{2n} (+2 if n even) F_4 G_2	$\begin{array}{c} \operatorname{PSL}_{n+1} \\ \operatorname{SO}_{2n+1} \\ \operatorname{PGSp}_{2n} \\ \operatorname{PCSO}_{2n} \\ (E_n)_{ad} \end{array}$	# div. of $n + 1$ 2 4 3, 2, 1 1