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Stating the problem

Solve the system of differential equations

x = a(x,y)
y = b(Xv.y)v

where a and b are polynomials in x and y. More concisely,
X = F(X),

where X = (x,y) and F = (a, b) is a polynomial vector field.
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What does it mean to solve an equation?
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What if the function were also known implicitly?

Suppose we know a function H = H(x,y) whose set of zeros is C.
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What does it mean to solve an equation?

What if the function were also known implicitly?

Suppose we know a function H = H(x,y) whose set of zeros is C.

Question
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What does it mean to solve an equation?

What if the function were also known implicitly?

Suppose we know a function H = H(x,y) whose set of zeros is C.

Question

How can we say that the curve is a solution of the system using H instead
of the parameterization?
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Thus,
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What does it mean to solve an equation?

By definition
H(C(t)) =0.
Thus dx OH dy OH
Ix ly _
Ea(c(t)) + E@(C(t)) =0.
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By definition
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Thus,
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What does it mean to solve an equation?

First integral
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What does it mean to solve an equation?

First integral
A function H(x, y) is a first integral of the system X = F(X) if

F(x,y)-VH =0,

as a function of x and y.
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What does it mean to solve an equation?

First integral
A function H(x, y) is a first integral of the system X = F(X) if

F(x,y)-VH =0,

as a function of x and y.

Key property
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What does it mean to solve an equation?

First integral
A function H(x, y) is a first integral of the system X = F(X) if

F(x,y)-VH =0,

as a function of x and y.

Key property

If H is a first integral of X = F(X) then every integral curve of this
system is contained in a level curve of H.
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What does it mean to solve an equation?
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What does it mean to solve an equation?

The system X = F(X), defined by the vector field
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What does it mean to solve an equation?

The system X = F(X), defined by the vector field F(x,y) = (2y,3x?)
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The problem
Given a polynomial vector field F(X),
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Stating the problem

The problem

Given a polynomial vector field F(X), compute a first integral of the
differential equation X = F(X).
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The problem

Given a polynomial vector field F(X), compute a first integral of the
differential equation X = F(X).
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Polynomial differential equations
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Polynomial differential equations

@ the Lotka-Volterra system in population dynamics;
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Polynomial differential equations

@ the Lotka-Volterra system in population dynamics;

the Lorenz system in meteorology;

the Euler equations of rigid body motion;
@ Bianchi models in cosmology;

@ etc.
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The 19th century
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C. G. J. Jacobi, 1842

1
. De integratione aequationis differentialis
(d+A'z+A"y)(@dy—yda)
— (B+B'a+B'y)dy +(C+Co+C'y)dz = 0.
(Auct. C. 6. J. Jucobi, prof. ord. Regiom.)
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1

. De integratione aequationis differentialis
(d+A'z+A"y)(@dy—yda)
— (B+B'a+B'y)dy +(C+Co+C'y)dz = 0.
(Auct. C. 6. J. Jucobi, prof. ord. Regiom.)

Solves a differential equation with linear coefficients,
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C. G. J. Jacobi, 1842

1

. De integratione aequationis differentialis
(d+A'z+A"y)(@dy—yda)
— (B+B'a+B'y)dy +(C+Co+C'y)dz = 0.
(Auct. C. 6. J. Jucobi, prof. ord. Regiom.)

Solves a differential equation with linear coefficients, with a long
calculation.
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Alfred Clebsch, 1872

Ueber eine Fundamentalaufgabe der Invarianten-
theorie.
Vo

A. Clebsch.

e Kinigl Geoelichal der Winesshafion areeicht o 3. Maes 1672,
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Alfred Clebsch, 1872

Ueber eine Fundamentalaufgabe der Invarianten-
theorie.
Vo

A. Clebsch.

Dor Rorigl. Geoellschalt dor Wintoschafen Gherricht am 9. Mies 1672,

Geometric interpretation of differential equations using homogeneous
coordinates.
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G. Darboux, 1878

MELANGES.

-mnmz snn LES EQUATIONS DIFFERENTIELLES ALGEBRIQUES
PREMIER ORDRE ET DU PREMIER DEGRE;

Paz M. G. DARBOUX.




G. Darboux, 1878

MELANGES.

lﬂlﬂlu S“l LES EQUATIONS DIFFERENTIELLES Awﬂ!ﬂlﬂﬂﬁ
PREMIER ORDRE ET DU PREMIER DEGRE;

Paz M. G. DARBOUX.

Introduces the method that defined the research line we will pursue in this
talk.
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Darboux’s key idea
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Darboux’s key idea

If C is an integral curve of X = F(X)
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Darboux’s key idea

If C is an integral curve of X = F(X) and also the set of zeroes of a
function H(x, y),
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If C is an integral curve of X = F(X) and also the set of zeroes of a
function H(x, y), then,
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Darboux’s key idea

If C is an integral curve of X = F(X) and also the set of zeroes of a
function H(x, y), then,

thus,
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Darboux’s key idea

If C is an integral curve of X = F(X) and also the set of zeroes of a
function H(x, y), then,

thus, as before,
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Darboux’s key idea

If C is an integral curve of X = F(X) and also the set of zeroes of a
function H(x,y), then,
H(C(1)) = 0;

thus, as before,
(F(x,y) - VH)(C(t)) =0.
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Darboux’s key idea

If C is an integral curve of X = F(X) and also the set of zeroes of a
function H(x,y), then,
H(C(1)) = 0;

thus, as before,
(F(x,y) - VH)(C(t)) =0.

so that,
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Darboux’s key idea

If C is an integral curve of X = F(X) and also the set of zeroes of a
function H(x,y), then,
H(C(1)) = 0;

thus, as before,
(F(x,y) - VH)(C(t)) =0.

so that,
(F(x,y)-VH)(p) =0 whenever H(p)=0.
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Darboux’s key idea

(F(x,y) - VH)(p) = 0 whenever H(p) = 0.

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential e



Darboux’s key idea

(F(x,y) - VH)(p) = 0 whenever H(p) = 0.

If H and F are polynomial, then so is

F(x,y)-VH.
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Darboux’s key idea

(F(x,y) - VH)(p) = 0 whenever H(p) = 0.

If H and F are polynomial, then so is
F(x,y)-VH.

Therefore,
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Darboux’s key idea

(F(x,y) - VH)(p) = 0 whenever H(p) = 0.

If H and F are polynomial, then so is
F(x,y)-VH.
Therefore, the conclusion above implies that,
F(x,y)-VH = GH,

for some polynomial G = G(x, y), called the co-factor of H.
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Darboux’s key idea

(F(x,y) - VH)(p) = 0 whenever H(p) = 0.

If H and F are polynomial, then so is
F(x,y)-VH.
Therefore, the conclusion above implies that,
F(x,y)-VH = GH,

for some polynomial G = G(x, y), called the co-factor of H.

Assuming that H is reduced, this follows from Hilbert’s Nullstellensatz.
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Darboux’s key idea
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Darboux’s key idea

Invariant curve
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Darboux’s key idea

Invariant curve

An algebraic curve H(x,y) = 0 is invariant under the system X = F(x,y)
if
F(x,y)-VH = GH,
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Darboux’s key Theorem
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Darboux’s key Theorem

Existence of first integral J
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Darboux’s key Theorem

Existence of first integral J

If X = F(X) has enough invariant curves, then it admits a first integral.
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Existence of first integral J

If X = F(X) has enough invariant curves, then it admits a first integral.
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Darboux’s key Theorem

Existence of first integral

If X = F(X) has enough invariant curves, then it admits a first integral. J

Degree of a vector field
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Darboux’s key Theorem

Existence of first integral

If X = F(X) has enough invariant curves, then it admits a first integral. J

Degree of a vector field

If F = (a, b), for polynomials a and b, then
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Darboux’s key Theorem

Existence of first integral

If X = F(X) has enough invariant curves, then it admits a first integral. J

Degree of a vector field

If F = (a, b), for polynomials a and b, then

deg(F) = max{deg(a), deg(b)}
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Darboux’s key Theorem

Existence of first integral

If X = F(X) has more than deg(F)(deg(F) — 1)/2 invariant curves, then
it admits a first integral.

Degree of a vector field

If F = (a, b), for polynomials a and b, then

deg(F) = max{deg(a), deg(b)}
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Where does this bound come from?
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Where does this bound come from?

If H is invariant under X = F(X) then
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,
oH

oH
deg (aax + b<9y> = deg(GH).
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

o e (521 (52)} > st

Hence,
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,

mon o+ g (22 ety (2£) > .
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,

max{deg(a) + deg(H) — 1,deg(b) + deg(H) — 1} > deg(GH).
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,
max{deg(a), deg(b)} + deg(H) — 1 > deg(GH).
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,
deg(F) + deg(H) — 1 > deg(GH).
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,
deg(F) + deg(H) — 1 > deg(G) + deg(H).
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,
deg(F) + deg(H) — 1 > deg(G) + deg(H).
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,
deg(F) — 1 > deg(G).
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,
deg(F) — 1 > deg(G).

In particular, G is an element of the subspace of polynomials of degree
< deg(F) — 1,
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Where does this bound come from?

If H is invariant under X = F(X) then
F(x,y) - VH = GH,

Hence,
deg(F) — 1 > deg(G).

In particular, G is an element of the subspace of polynomials of degree
< deg(F) — 1, which has dimension

(deg(F) — 1) deg(F)
5 :
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Proof of Darboux's key Theorem
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Proof of Darboux's key Theorem

(deg(F) — 1) deg(F)

d =
2
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Proof of Darboux's key Theorem

(deg(F) — 1) deg(F)

d =
2

pi....,px be curves invariant under X = F(X),
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Proof of Darboux's key Theorem

(deg(F) — 1) deg(F)
2

d =

Vpj-F =gjpj, where 1<j<k and deg(gj) < deg(F)—1.
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Proof of Darboux's key Theorem

(deg(F) — 1) deg(F)
2

d =

Vpj-F =gjpj, where 1<j<k and deg(gj) < deg(F)—1.

If Kk > d then g, ..., gx are linearly dependent,
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Proof of Darboux's key Theorem

(deg(F) — 1) deg(F)
2
= dimension of the space of polynomials of degree < deg(F) — 1.

d =

Vpj-F =gjpj, where 1<j<k and deg(gj) < deg(F)—1.

If Kk > d then g, ..., gx are linearly dependent,
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Proof of Darboux's key Theorem

(deg(F) — 1) deg(F)
2
= dimension of the space of polynomials of degree < deg(F) — 1.

d =

Vpj-F =gjpj, where 1<j<k and deg(gj) < deg(F)—1.

If Kk > d then g1, ..., gk are linearly dependent, so

cg1+ -+ ckgx = 0 for scalars ¢y, ..., ck.
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;

@ c1g1 + -+ ckgx = 0 for scalars ¢y, . . ., ck.
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then
F-Vh
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then

F-Vh=F-V(pi---cpg)
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then

F-Vh=F-(api " pgVp+-+pf - ckpg ' Vpx)
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then

FVh: Clpfl_]‘...psz.vPl_i_...+pf1...ckplik_lF.ka
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then

F-Vh=cpi ™ plagipr+ - +pf - cpf gpx
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then

F-Vh=cap® - pFgipi+ -+ pf - cupr™ arpr
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then

F.Vh:Clpfl...p;kgl+...+pf1...ckplikgk
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then

F-Vh=p---pr(cgr+ -+ cxgk)

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential e



Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then

F-Vh=p{---pt(cgr+ -+ ckgr) = 0.
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Proof of Darboux's key Theorem

Hypotheses:
e F-Vp;=gjpj, where 1 < j < k;
@ c1g1 + -+ ckgk = 0 for scalars ¢y, . . ., ck.
Define
h = pfl o .. plfk
then

F-Vh=pi---p’(cgr+--+ ckgk) = 0.

Hence h is a first integral of F.
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Find ¢ linear and ¢ a scalar, such that
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Find ¢ linear and ¢ a scalar, such that

F-Vi=ct.
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Find ¢ linear and ¢ a scalar, such that

ol ov
(2x+y+1)8—+(y+2)8y ct.
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Find ¢ linear and ¢ a scalar, such that

((2x +y+ 1)(% +(y+ 2);;) (0) = ct.
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Find ¢ linear and ¢ a scalar, such that

((2x+y + 1)(% +(y + 2);}/) (0) = ct.
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Find ¢ linear and ¢ a scalar, such that

((2x+y + 1)(% +(y + 2);}/) (0) = ct.

Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Find ¢ linear and ¢ a scalar, such that

((2x+y + 1)(% +(y + 2);}/) (0) = ct.

Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

20
11
1 2

o O O
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

20
11
1 2

o O O
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

20
11
1 2

o O O

Thus,

the matrix
eigenvector eigenvalue

the differential equation
l c
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

2 00
110
120
Thus,
the matrix the differential equation
eigenvector eigenvalue l c

(0,1,2)
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

2 00
110
120
Thus,
the matrix the differential equation
eigenvector eigenvalue l c

(0,1,2) 1

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential e



An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

2 00
110
120
Thus,
the matrix the differential equation
eigenvector eigenvalue l c

(0,1,2) 1 y+2
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

2 00
110
120
Thus,
the matrix the differential equation
eigenvector eigenvalue l c

(0,1,2) 1 y+2 1
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

2 00
110
120
Thus,
the matrix the differential equation
eigenvector eigenvalue l c
(0,1,2) 1 y+2 1
(2,2,3)
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

2 00
110
120
Thus,
the matrix the differential equation
eigenvector eigenvalue l c
(0,1,2) 1 y+2 1
(2,2,3) 2
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

2 00
110
120
Thus,
the matrix the differential equation
eigenvector eigenvalue l c
(0,1,2) 1 y+2 1
(2,2,3) 2 2x+2y+3
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).
Solve an eigenvalue problem for the linear operator whose matrix in the
basis {x,y, 1} is

2 00
110
120
Thus,
the matrix the differential equation
eigenvector eigenvalue l c
(0,1,2) 1 y+2 1
(2,2,3) 2 2x+2y+3 2
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).

Its invariant lines are
@ y + 2 with co-factor 1;
@ 2x + 2y + 3 with co-factor 2.
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).

Its invariant lines are

@ y + 2 with co-factor 1;

@ 2x + 2y + 3 with co-factor 2.
Since2-1+4(-1)-2=0,
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An example: the Jacobi equation

Suppose that F = (2x +y + 1,y + 2).

Its invariant lines are

@ y + 2 with co-factor 1;

@ 2x + 2y + 3 with co-factor 2.
Since2-1+4(-1)-2=0,

h=(y+2)72(2x+2y+3)7",

is a first integral of X = F(X).
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Also in Darboux’s paper
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Also in Darboux’s paper

@ solutions for some equations with quadratic coefficients;
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Also in Darboux’s paper

@ solutions for some equations with quadratic coefficients;

@ a study of the singular points of the differential equations.
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The singularities of an equation
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The singularities of an equation

Singular point
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The singularities of an equation

Singular point

The singular points of X = F (X) are the points of the plane at which F
vanishes.
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The singularities of an equation

Singular point

The singular points of X = F (X) are the points of the plane at which F
vanishes.

From now on we will assume that F = (a, b) with gcd(a, b) = 1.
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The singularities of an equation

Singular point

The singular points of X = F (X) are the points of the plane at which F
vanishes.

From now on we will assume that F = (a, b) with gcd(a, b) = 1.
Geometrically, this means that F has finitely many singularities.
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Counting singularities after Darboux
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Counting singularities after Darboux

Given a polynomial h of degree d in two variables let hy be its
homogeneous component of degree d.
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Counting singularities after Darboux

Given a polynomial h of degree d in two variables let hy be its
homogeneous component of degree d.

Theorem

S. C. Coutinho
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Counting singularities after Darboux

Given a polynomial h of degree d in two variables let hy be its
homogeneous component of degree d.
Theorem

A vector field F = (a, b) of degree n that satisfies ya, = xb, has, at most,
(n—1)2 + (n— 1) + 1 singularities.
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Counting singularities after Darboux

Given a polynomial h of degree d in two variables let hy be its
homogeneous component of degree d.
Theorem

A vector field F = (a, b) of degree n that satisfies ya, = xb, has, at most,
(n—1)2 + (n— 1) + 1 singularities.

Note for the experts

The condition ya, = xb, means that the one-dimensional direction field
that F defines in the projective plane has no singularities at infinity.
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Impact of Darboux’s paper
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Impact of Darboux’s paper

Introduction.

Pour reconnaitre si une équation ditlérenticlle du premier ovdre et du pre-
saver une

mier degré est intégrable algébriquement, il suffit évidemment de
limite supérieure du degré de l'intégrale; il ne rveste plus ensuite qu'a elfectuer
‘Ie! -Cdll"lllh I)ur(’:i]]f:"l EI[;.}I)llinl‘h‘

C’est la un probléme qui, semble-t-il, aurait di tenter les géomeétres, et ce-

pendantils s’en sont fort peu oceupés. Depuis ['wavre magistrale de M. Darboux,
publiée dans le Bulletin des Scirnces mathématiques, la question a ¢té

s ]I(:lltiillll \'ill%l ans et il a fallu, pour aturer de nouveau sur elle Patten-

tion qu’elle méritait, que I'Académie des Sciences la proposat comme sujet du
concours pour le Grand Prix des Seiences mathématigues. Deux Mémuires
furent récompensés, M. Painlevé obtint le prix et M. Autonne une mention

honorable : Pun de ces deax Mémoires a été publié dans les Annales de U Feole

Normele supériewre et Vautre dans le Jowrnal de U Ecole Pulytechnique.




Impact of Darboux’s paper

Introduction.

Pour reconnaitre si une équation ditlérenticlle du premier ovdre et du pre-
saver une

mier degré est intégrable algébriquement, il suffit évidemment de
limite supérieure du degré de l'intégrale; il ne rveste plus ensuite qu'a elfectuer
‘Ie! -Cdll"lllh I)ur(’:i]]f:"l EI[;.}I)llinl‘h‘

C’est la un probléme qui, semble-t-il, aurait di tenter les géomeétres, et ce-

pendantils s’en sont fort peu oceupés. Depuis ['wavre magistrale de M. Darboux,
publiée dans le Bulletin des Scirnces mathématiques, la question a ¢té
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tion qu’elle méritait, que I'Académie des Sciences la proposat comme sujet du
concours pour le Grand Prix des Seiences mathématigues. Deux Mémuires
furent récompensés, M. Painlevé obtint le prix et M. Autonne une mention
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Normele supériewre et Vautre dans le Jowrnal de U Ecole Pulytechnique.

H. Poincaré, 1891
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Impact of Darboux’s paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier
ordre;

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential e



Impact of Darboux’s paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier
ordre;

L. Autonne, 1891 Sur I'integration algébrique des équations differentielles
du 1°" ordre et du 1°" degré;
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Impact of Darboux’s paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier
ordre;

L. Autonne, 1891 Sur I'integration algébrique des équations differentielles
du 1°" ordre et du 1°" degré;

H. Poincaré, 1891 Sur l'integration algébrique des équations differentielles
du 1° ordre et du 1°" degré;
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Impact of Darboux’s paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier
ordre;

L. Autonne, 1891 Sur I'integration algébrique des équations differentielles
du 1°" ordre et du 1°" degré;

H. Poincaré, 1891 Sur l'integration algébrique des équations differentielles
du 1° ordre et du 1°" degré;

H. Poincaré, 1897 Sur l'integration algébrique des équations differentielles
du 1°" ordre et du 1" degré.
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Impact of Darboux’s paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier
ordre;

L. Autonne, 1891 Sur I'integration algébrique des équations differentielles
du 1°" ordre et du 1°" degré;

H. Poincaré, 1891 Sur l'integration algébrique des équations differentielles
du 1° ordre et du 1°" degré;

H. Poincaré, 1897 Sur l'integration algébrique des équations differentielles
du 1°" ordre et du 1" degré.

Also in various textbooks up to the early 20th century.
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Impact of Darboux’s paper

Introduction.

Pour reconnaitre si une équation ditlérenticlle du premier ovdre et du pre-
saver une

mier degré est intégrable algébriquement, il suffit évidemment de
limite supérieure du degré de l'intégrale; il ne rveste plus ensuite qu'a elfectuer
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furent récompensés, M. Painlevé obtint le prix et M. Autonne une mention
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Introduction.

Pour reconnaitre si une équation ditlérenticlle du premier ovdre et du pre-

ouver ung

mier degré est intégrable algébriquement, il suffit évidemment de

limite supérieure du degré de l'intéerale; il ne rveste plus ensuite qu'a elfectuer

des caleuls purement algébriques.

C’est la un probléme qui, semble-t-il, aurait di tenter les géomeétres, et ce-
pendantils s’en sont fort peu oceupés. Depuis I'wavre magisteale de M. Darboux,
publiée dans le Bulletin des Scirnces mathématiques, la question a ¢té

s ]I(:lllidlll \"tugl ans et il a fallu, pour aturer de nouveau sur elle Patten-
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concours pour le Grand Prix des Seiences mathématigues. Deux Mémuires
furent récompensés, M. Painlevé obtint le prix et M. Autonne une mention
hionorable : Pun de ces deax Mémoires a été publié dans les dnnales de U'Feole

Normele supéricwre et Vautre dans le Jowrnal de U Ecole Pulytechnique.

H. Poincaré, 1891




Impact of Darboux’s paper

Introduction.

Pour reconnaitre si une équation ditlérenticlle du premier ordre et du pre-

mier degré est intégrable algébriquement, il suffit évidemment de troaver une

limite supérieure du degré de 'intégrale; il ne reste plus ensuite qu'a elfectuer

des caleuls purement algébriques.

H. Poincaré, 1891
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Impact of Darboux’s paper

Introduction.

Pour reconnaitre si une équation diflérenticlle du premier ovdre et du pre-

mier degré est intégrable algébriquement, il suffit évidemment de troaver une

limite supérieure du degré de l'intégrale; il ne rveste plus ensuite qu'a effectuer

des caleuls purement algébriques.

“it is evidently sufficient to find an upper limit to the degree of the
integral”.
H. Poincaré, 1891
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Impact of Darboux’s paper

Introduction.

Pour reconnaitre si une équation diflérenticlle du premier ovdre et du pre-

mier degré est intégrable algébriquement, il suffit évidemment de troaver une

limite supérieure du degré de l'intégrale; il ne rveste plus ensuite qu'a effectuer

des caleuls purement algébriques.

“it is evidently sufficient to find an upper limit to the degree of the
integral”
H. Poincaré, 1891
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Impact of Darboux’s paper

Introduction.

Pour reconnaitre si une équation diflérenticlle du premier ovdre et du pre-

mier degré est intégrable algébriquement, il suffit évidemment de troaver une

limite supérieure du degré de l'intégrale; il ne rveste plus ensuite qu'a effectuer

des caleuls purement algébriques.

“it is evidently sufficient to find an upper limit to the degree of the
algebraic invariant curves”.
H. Poincaré, 1891
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One more problem

Poincaré’s problem
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One more problem

Poincaré’s problem

Given a vector field F with polynomial coefficients, find a bound on the
degree of the algebraic curves invariant under F as a function of some
numerical invariant of F.

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential e



Part IlI

The 20th century
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J.-P. Jouanolou, 1979
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J.-P. Jouanolou, 1979

Reworks Darboux’s results in the language of modern algebraic algebraic
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o detailed study of Jacobi equation in higher dimensions;

@ bound on the degree of a smooth algebraic curve invariant under a
polynomial vector field;

@ an algebraic curve invariant under a vector field must contain a
singularity at least if we include the ones at infinity;
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J.-P. Jouanolou,

Reworks Darboux’s results in the language of modern algebraic algebraic
geometry:

o detailed study of Jacobi equation in higher dimensions;

@ bound on the degree of a smooth algebraic curve invariant under a
polynomial vector field;

@ an algebraic curve invariant under a vector field must contain a
singularity at least if we include the ones at infinity;

@ a general equation of degree higher than 2 does not have any
invariant curve.
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Singularities on invariant curves

Theorem

Let F = (a, b) be a polynomial vector field of degree n for which
ya, = xb,.
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Singularities on invariant curves

Theorem

Let F = (a, b) be a polynomial vector field of degree n for which
yan = xb,. Any algebraic curve invariant under F must contain a
singularity of F.
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F
F-Vh=gh

for some polynomial g of degree at most n — 1.

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential e
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Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F

F(p) - Vh(p) = g(p)h(p)

for some polynomial g of degree at most n — 1 and all singularities p of F.
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If his invariant under F

F(p)-Vh(p) = g(p)h(p)
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for some polynomial g of degree at most n — 1 and all singularities p of F.
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Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F and h = 0 contains no singularity of F

0= g(p)h(p)

for some polynomial g of degree at most n — 1 and all singularities p of F.
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F and h = 0 contains no singularity of F

0=2g(p) h\@
#0

for some polynomial g of degree at most n — 1 and all singularities p of F.
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Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F and h = 0 contains no singularity of F

0=2g(p)

for some polynomial g of degree at most n — 1 and all singularities p of F.
Thus,
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Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F and h = 0 contains no singularity of F
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for some polynomial g of degree at most n — 1 and all singularities p of F.
Thus,
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F and h = 0 contains no singularity of F

0=2g(p)

for some polynomial g of degree at most n — 1 and all singularities p of F.
Thus,

<#({a=0}N{g=0}) < deg(a)deg(g)
—_—

Bézout’s Theorem
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F and h = 0 contains no singularity of F

0=2g(p)

for some polynomial g of degree at most n — 1 and all singularities p of F.
Thus,
<#({a=0}n{g=0})< n(n-1)
—

Bézout’s Theorem
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F and h = 0 contains no singularity of F

0=2g(p)

for some polynomial g of degree at most n — 1 and all singularities p of F.
Thus,
< =0}n{g=0}) < 2 —
<#({a=0tn{g=0})< n"—n

Bézout’s Theorem
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F and h = 0 contains no singularity of F

0=2g(p)

for some polynomial g of degree at most n — 1 and all singularities p of F.
Thus,

2 2
n“—n+1 < a=0}Nn{g=0}) < n“—n
<#({a=0;n{g=0}) <
number of singularities of F Bézout's Theorem
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If his invariant under F and h = 0 contains no singularity of F

0=2g(p)

for some polynomial g of degree at most n — 1 and all singularities p of F.
Thus,

2 2
n“—n+1 < a=0}Nn{g=0}) < n“—n
<#({a=0;n{g=0}) <
number of singularities of F Bézout's Theorem

a contradiction.
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Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;
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F = (a, b) when:

Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;

Carnicer, 1994 the field singularities are dicritical;

Soares, 1997 generalization to higher dimensions
(invariant hypersurfaces in projective space);
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Bound on the degree of algebraic invariant curves invariant under a field
F = (a, b) when:

Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;
Carnicer, 1994 the field singularities are dicritical;

Soares, 1997 generalization to higher dimensions
(invariant hypersurfaces in projective space);

Brunella and Mendes, 2000 generalization to higher dimensions
(invariant hypersurfaces in varieties with
trivial Picard group);
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The Poincaré problem in the 20th century

Bound on the degree of algebraic invariant curves invariant under a field
F = (a, b) when:

Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;

Carnicer, 1994 the field singularities are dicritical;

Soares, 1997 generalization to higher dimensions
(invariant hypersurfaces in projective space);

Brunella and Mendes, 2000 generalization to higher dimensions
(invariant hypersurfaces in varieties with
trivial Picard group);

Walcher, 2000 the field has nice singularities at infinity and
yan # xby.
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Prelle and Singer, 1983 algorithm compute elementary solutions to
X = F(X);
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Singer, 1992 caracterization of Liouvillian solutions of
X = F(X);
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Other 20th century developments

Algebraic curves invariant under a vector field are also relevant to:

Prelle and Singer, 1983 algorithm compute elementary solutions to
X = F(X);

Singer, 1992 caracterization of Liouvillian solutions of
X = F(X);

Schlomiuk, 1993 characterization of quadratic fields that have a
centre.
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The existence problem
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The existence problem

In the light of Jouanolou's result:
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The existence problem

In the light of Jouanolou's result:

before we try to find an algebraic invariant curve for a given
vector field, we should decide if such a curve exists.
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The existence problem

In the light of Jouanolou's result:

before we try to find an algebraic invariant curve for a given
vector field, we should decide if such a curve exists.

Since no efficient necessary and sufficient criterion for the existence of
such curves is known, we will settle for a probabilistic test.
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The existence problem

Theorem (with Menasché Schechter, 2006)
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The existence problem

Theorem (with Menasché Schechter, 2006)

Let F = (a, b) be a vector field with rational coefficients and degree n for
which ya, = xby,.
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The existence problem

Theorem (with Menasché Schechter, 2006)

Let F = (a, b) be a vector field with rational coefficients and degree n for
which ya, = xby,.
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The existence problem

Theorem (with Menasché Schechter, 2006)

Let F = (a, b) be a vector field with rational coefficients and degree n for
which ya, = xb,. If the generator p = p(x) of

(a,6) N Q[
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The existence problem

Theorem (with Menasché Schechter, 2006)

Let F = (a, b) be a vector field with rational coefficients and degree n for
which ya, = xb,. If the generator p = p(x) of

(a,6) N Q[

satisfies:
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The existence problem

Theorem (with Menasché Schechter, 2006)

Let F = (a, b) be a vector field with rational coefficients and degree n for
which ya, = xb,. If the generator p = p(x) of

(a,6) N Q[

satisfies:
© p has degree (n —1)2 + (n—1) + 1;
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The existence problem

Theorem (with Menasché Schechter, 2006)

Let F = (a, b) be a vector field with rational coefficients and degree n for
which ya, = xb,. If the generator p = p(x) of

(a,6) N Q[

satisfies:
© p has degree (n —1)2 + (n—1) + 1;
@ p is irreducible over Q;

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential e



The existence problem

Theorem (with Menasché Schechter, 2006)
Let F = (a, b) be a vector field with rational coefficients and degree n for
which ya, = xb,. If the generator p = p(x) of
(a,0) N Q[x]
satisfies:
© p has degree (n —1)2 + (n—1) + 1;
@ p is irreducible over Q;

then F has no invariant algebraic curves.
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The existence problem

Theorem (with Menasché Schechter, 2006)
Let F = (a, b) be a vector field with rational coefficients and degree n for

which ya, = xb,. If the generator p = p(x) of

(a,b) N Q[x]
satisfies:
© p has degree (n —1)2 + (n—1) + 1;
@ p is irreducible over Q;

then F has no invariant algebraic curves.

Key point J
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The existence problem

Theorem (with Menasché Schechter, 2006)
Let F = (a, b) be a vector field with rational coefficients and degree n for

which ya, = xb,. If the generator p = p(x) of

(a,b) NQIx]

satisfies:
© p has degree (n —1)2 + (n—1) + 1;
@ p is irreducible over Q;

then F has no invariant algebraic curves.

Key point
The x-coordinates of the singularities of F are all of them roots of p. J
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if F has an invariant curve, it must have one with rational
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Before the proof

Since we are assuming that F has rational coefficients:

if F has an invariant curve, it must have one with rational
coefficients.

We will proceed by contradiction, assuming that the field F has an
invariant algebraic curve with rational coefficients.
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@ h= h(x,y) is a polynomial with rational coefficients;

@ h =0 defines a curve invariant under X = F(X);

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential e



The proof: assumptions

F = (a, b) is a field with rational coefficients;

h = h(x,y) is a polynomial with rational coefficients;
@ h =0 defines a curve invariant under X = F(X);

e p = p(x) generates the ideal (a, b) N Q[x];

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential e



The proof: assumptions

F = (a, b) is a field with rational coefficients;

h = h(x,y) is a polynomial with rational coefficients;
@ h =0 defines a curve invariant under X = F(X);
e p = p(x) generates the ideal (a, b) N Q[x];

p is irreducible over Q of degree (n — 1)+ (n—1) +1;

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential e



The proof: assumptions

F = (a, b) is a field with rational coefficients;

h = h(x,y) is a polynomial with rational coefficients;
@ h =0 defines a curve invariant under X = F(X);
e p = p(x) generates the ideal (a, b) N Q[x];

e pis irreducible over Q of degree (n—1)2 + (n—1) + 1;
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G = Gal(p,Q) acts
transitively on the roots of p
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The proof: preliminaries

p irreducible over Q

4

G = Gal(p, Q) acts (a,b) = (p(x),y — a(x))
transitively on the roots of p for some polynomial g(x)
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The proof: preliminaries

p irreducible over Q

4

G = Gal(p, Q) acts (a,b) = (p(x),y — q(x))
transitively on the roots of p for some polynomial g(x)

Because p generates (a, b) N Q[x].
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transitively on the roots of p for some polynomial g(x)
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The proof: preliminaries

p irreducible over Q

4

G = Gal(p, Q) acts (a,b) = (p(x),y — q(x))
transitively on the roots of p for some polynomial g(x)

4

G acts transitively on the set of singularities of F:
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The proof: preliminaries

p irreducible over Q

4

G = Gal(p, Q) acts (a,b) = (p(x),y — q(x))
transitively on the roots of p for some polynomial g(x)

4

G acts transitively on the set of singularities of F:

g - (x0, 9(x0)) = (&(x0) g(g(x0))) forany geG.
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G acts transitively on the singularities and h has rational coordinates.
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The curve h = 0 and the singularities of F.

Thus, h(p) = 0 whenever F(p) =0,
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The curve h = 0 and the singularities of F.
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The proof: core argument

The curve h = 0 and the singularities of F.

Thus, h(p) = 0 whenever F(p) =0, but is this possible?
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@ h =0 is smooth;

@ h =0 is singular at all the singularities of F.
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The proof: punch line

Since G acts transitively on the singularities of F we have that either
@ h =0 is smooth;
@ h =0 is singular at all the singularities of F.

In both cases the curve cannot contain all the singularities of F,
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The proof: punch line

Since G acts transitively on the singularities of F we have that either
@ h =0 is smooth;
@ h =0 is singular at all the singularities of F.

In both cases the curve cannot contain all the singularities of F, hence the
contradiction.
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@ leads to a constructive proof that near every field there is one without
algebraic solutions;
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@ the Jacobi equation can be handled in a completely constructive way.
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Further developments

@ generalization to fields F = (a, b) for which ya, # xbp,;

@ leads to a constructive proof that near every field there is one without
algebraic solutions;

@ the Jacobi equation can be handled in a completely constructive way.

With M. da Silva Ferreira.
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