Proving the nonexistence of algebraic solutions of differential equations

S. C. Coutinho
Universidade Federal do Rio de Janeiro

RWTH-Aachen-2011

Part I

The problem

Stating the problem

Stating the problem

Solve the system of differential equations

Stating the problem

Solve the system of differential equations

$$
\begin{aligned}
& \dot{x}=a(x, y) \\
& \dot{y}=b(x, y)
\end{aligned}
$$

Stating the problem

Solve the system of differential equations

$$
\begin{aligned}
& \dot{x}=a(x, y) \\
& \dot{y}=b(x, y)
\end{aligned}
$$

where a and b are polynomials in x and y.

Stating the problem

Solve the system of differential equations

$$
\begin{aligned}
& \dot{x}=a(x, y) \\
& \dot{y}=b(x, y)
\end{aligned}
$$

where a and b are polynomials in x and y. More concisely,

Stating the problem

Solve the system of differential equations

$$
\begin{aligned}
& \dot{x}=a(x, y) \\
& \dot{y}=b(x, y)
\end{aligned}
$$

where a and b are polynomials in x and y. More concisely,

$$
\dot{X}=F(X)
$$

where $X=(x, y)$ and $F=(a, b)$ is a polynomial vector field.

What does it mean to solve an equation?

What does it mean to solve an equation?

The canonical definition

What does it mean to solve an equation?

The canonical definition
Find a parameterized curve $C(t)$ such that

What does it mean to solve an equation?

The canonical definition
Find a parameterized curve $C(t)$ such that

$$
\dot{C}=
$$

What does it mean to solve an equation?

The canonical definition
Find a parameterized curve $C(t)$ such that

$$
\dot{C}=F(C(t)) .
$$

What does it mean to solve an equation?

The canonical definition

Find a parameterized curve $C(t)$ such that

$$
\dot{C}=F(C(t)) .
$$

What does it mean to solve an equation?

What does it mean to solve an equation?

What if the function were also known implicitly?

What does it mean to solve an equation?

What if the function were also known implicitly?

Suppose we know a function $H=H(x, y)$ whose set of zeros is C.

What does it mean to solve an equation?

What if the function were also known implicitly?

Suppose we know a function $H=H(x, y)$ whose set of zeros is C.

Question

What does it mean to solve an equation?

What if the function were also known implicitly?

Suppose we know a function $H=H(x, y)$ whose set of zeros is C.

Question

How can we say that the curve is a solution of the system using H instead of the parameterization?

What does it mean to solve an equation?

What does it mean to solve an equation?

By definition

What does it mean to solve an equation?

By definition

$$
H(C(t))=0 .
$$

What does it mean to solve an equation?

By definition

$$
H(C(t))=0 .
$$

Thus,

What does it mean to solve an equation?

By definition

$$
H(C(t))=0
$$

Thus,

$$
\frac{d}{d t} H(C(t))=0
$$

What does it mean to solve an equation?

By definition

$$
H(C(t))=0 .
$$

Thus,

$$
\frac{d x}{d t} \frac{\partial H}{\partial x}(C(t))+\frac{d y}{d t} \frac{\partial H}{\partial y}(C(t))=0 .
$$

What does it mean to solve an equation?

By definition

$$
H(C(t))=0 .
$$

Thus,

$$
a(C(t)) \frac{\partial H}{\partial x}(C(t))+b(C(t)) \frac{\partial H}{\partial y}(C(t))=0 .
$$

What does it mean to solve an equation?

By definition

$$
H(C(t))=0
$$

Thus,

$$
\left(a \frac{\partial H}{\partial x}+b \frac{\partial H}{\partial y}\right)(C(t))=0 ;
$$

What does it mean to solve an equation?

By definition

$$
H(C(t))=0
$$

Thus,

$$
\left(a \frac{\partial H}{\partial x}+b \frac{\partial H}{\partial y}\right)(C(t))=0
$$

which is equivalent to

What does it mean to solve an equation?

By definition

$$
H(C(t))=0
$$

Thus,

$$
\left(a \frac{\partial H}{\partial x}+b \frac{\partial H}{\partial y}\right)(C(t))=0
$$

which is equivalent to

$$
(F \cdot \nabla H)(C(t))=0
$$

What does it mean to solve an equation?

First integral

What does it mean to solve an equation?

First integral

A function $H(x, y)$ is a first integral of the system $\dot{X}=F(X)$ if

$$
F(x, y) \cdot \nabla H=0
$$

as a function of x and y.

What does it mean to solve an equation?

First integral

A function $H(x, y)$ is a first integral of the system $\dot{X}=F(X)$ if

$$
F(x, y) \cdot \nabla H=0,
$$

as a function of x and y.

Key property

What does it mean to solve an equation?

First integral

A function $H(x, y)$ is a first integral of the system $\dot{X}=F(X)$ if

$$
F(x, y) \cdot \nabla H=0,
$$

as a function of x and y.

Key property

If H is a first integral of $\dot{X}=F(X)$ then every integral curve of this system is contained in a level curve of H.

What does it mean to solve an equation?

What does it mean to solve an equation?

The system $\dot{X}=F(X)$, defined by the vector field

What does it mean to solve an equation?

The system $\dot{X}=F(X)$, defined by the vector field $F(x, y)=\left(2 y, 3 x^{2}\right)$

What does it mean to solve an equation?

The system $\dot{X}=F(X)$, defined by the vector field $F(x, y)=\left(2 y, 3 x^{2}\right)$

What does it mean to solve an equation?

The system $\dot{X}=F(X)$, defined by the vector field $F(x, y)=\left(2 y, 3 x^{2}\right)$ has first integral $H(x, y)=y^{2}-x^{3}$.

What does it mean to solve an equation?

The system $\dot{X}=F(X)$, defined by the vector field $F(x, y)=\left(2 y, 3 x^{2}\right)$ has first integral $H(x, y)=y^{2}-x^{3}$. Two of its level curves are

What does it mean to solve an equation?

The system $\dot{X}=F(X)$, defined by the vector field $F(x, y)=\left(2 y, 3 x^{2}\right)$ has first integral $H(x, y)=y^{2}-x^{3}$. Two of its level curves are

$$
H(x, y)=0
$$

What does it mean to solve an equation?

The system $\dot{X}=F(X)$, defined by the vector field $F(x, y)=\left(2 y, 3 x^{2}\right)$ has first integral $H(x, y)=y^{2}-x^{3}$. Two of its level curves are

$$
H(x, y)=0 \text { and }
$$

What does it mean to solve an equation?

The system $\dot{X}=F(X)$, defined by the vector field $F(x, y)=\left(2 y, 3 x^{2}\right)$ has first integral $H(x, y)=y^{2}-x^{3}$. Two of its level curves are

$$
H(x, y)=0 \text { and } \quad H(x, y)=1
$$

Stating the problem

Stating the problem

The problem
S. C. Coutinho

Proving the nonexistence of algebraic solutions of differential e

Stating the problem

The problem
Given a polynomial vector field $F(X)$,

Stating the problem

The problem

Given a polynomial vector field $F(X)$, compute a first integral of the differential equation $\dot{X}=F(X)$.

Stating the problem

The problem

Given a polynomial vector field $F(X)$, compute a first integral of the differential equation $\dot{X}=F(X)$.

Polynomial differential equations

Polynomial differential equations

- the Lotka-Volterra system in population dynamics;

Polynomial differential equations

- the Lotka-Volterra system in population dynamics;
- the Lorenz system in meteorology;

Polynomial differential equations

- the Lotka-Volterra system in population dynamics;
- the Lorenz system in meteorology;
- the Euler equations of rigid body motion;

Polynomial differential equations

- the Lotka-Volterra system in population dynamics;
- the Lorenz system in meteorology;
- the Euler equations of rigid body motion;
- Bianchi models in cosmology;

Polynomial differential equations

- the Lotka-Volterra system in population dynamics;
- the Lorenz system in meteorology;
- the Euler equations of rigid body motion;
- Bianchi models in cosmology;
- etc.

Part II

The 19th century

C. G. J. Jacobi, 1842

C. G. J. Jacobi, 1842

S. C. Coutinho

C. G. J. Jacobi, 1842

1.

- De integratione aequationis differentialis $\left(A+A^{\prime} x+A^{\prime \prime} y\right)(x d y-y d x)$
$-\left(B+B^{\prime} x+B^{\prime \prime} y\right) d y+\left(C+C^{v} x+C^{\prime \prime} y\right) d x=0$.
(Auct. C. G. J. Jacobi, prof ord. Regiom.)

C. G. J. Jacobi, 1842

1.

- De integratione aequationis differentialis $\left(A+A^{\prime} x+A^{\prime \prime} y\right)(x d y-y d x)$
$-\left(B+B^{\prime} x+B^{\prime \prime} y\right) d y+\left(C+C^{v} x+C^{\prime \prime} y\right) d x=0$.
(Auct. C. G. J. Jacobi, proL ord. Regiom.)

Solves a differential equation with linear coefficients,

C. G. J. Jacobi, 1842

1.

- De integratione aequationis differentialis $\left(A+A^{\prime} x+A^{\prime \prime} y\right)(x d y-y d x)$
$-\left(B+B^{\prime} x+B^{\prime \prime} y\right) d y+\left(C+C^{v} x+C^{\prime \prime} y\right) d x=0$.
(Auct. C. G. J. Jacobi, proL ord. Regiom.)

Solves a differential equation with linear coefficients, with a long calculation.

Alfred Clebsch, 1872

Alfred Clebsch, 1872

Alfred Clebsch, 1872

Ueber eine Fundamentalaufgabe der Invariantentheorie.

Von
A. Clebseh.

Der Körigh. Gesellishaft der Wisensehnten tiberreight am 2. Mirr 1872.

Alfred Clebsch, 1872

Ueber eine Fundamentalaufgabe der Invariantentheorie.

Geometric interpretation of differential equations using homogeneous coordinates.

G. Darboux, 1878

G. Darboux, 1878

G. Darboux, 1878

Mélanges.
memoire sur les equations differentielles algebriques dU PREMIER ORDRE ET DU PREMIER DEGRE;
par m. g. darboux.

G. Darboux, 1878

MÉLANGES.

Par m. G. darboux.

Introduces the method that defined the research line we will pursue in this talk.

Darboux's key idea

Darboux's key idea

If C is an integral curve of $\dot{X}=F(X)$

Darboux's key idea

If C is an integral curve of $\dot{X}=F(X)$ and also the set of zeroes of a function $H(x, y)$,

Darboux's key idea

If C is an integral curve of $\dot{X}=F(X)$ and also the set of zeroes of a function $H(x, y)$, then,

$$
H(C(t))=0 ;
$$

Darboux's key idea

If C is an integral curve of $\dot{X}=F(X)$ and also the set of zeroes of a function $H(x, y)$, then,

$$
H(C(t))=0 ;
$$

thus,

Darboux's key idea

If C is an integral curve of $\dot{X}=F(X)$ and also the set of zeroes of a function $H(x, y)$, then,

$$
H(C(t))=0 ;
$$

thus, as before,

Darboux's key idea

If C is an integral curve of $\dot{X}=F(X)$ and also the set of zeroes of a function $H(x, y)$, then,

$$
H(C(t))=0 ;
$$

thus, as before,

$$
(F(x, y) \cdot \nabla H)(C(t))=0 .
$$

Darboux's key idea

If C is an integral curve of $\dot{X}=F(X)$ and also the set of zeroes of a function $H(x, y)$, then,

$$
H(C(t))=0 ;
$$

thus, as before,

$$
(F(x, y) \cdot \nabla H)(C(t))=0 .
$$

so that,

Darboux's key idea

If C is an integral curve of $\dot{X}=F(X)$ and also the set of zeroes of a function $H(x, y)$, then,

$$
H(C(t))=0 ;
$$

thus, as before,

$$
(F(x, y) \cdot \nabla H)(C(t))=0 .
$$

so that,

$$
(F(x, y) \cdot \nabla H)(p)=0 \text { whenever } H(p)=0
$$

Darboux's key idea

$$
(F(x, y) \cdot \nabla H)(p)=0 \text { whenever } H(p)=0 .
$$

Darboux's key idea

$$
(F(x, y) \cdot \nabla H)(p)=0 \text { whenever } H(p)=0
$$

If H and F are polynomial, then so is

$$
F(x, y) \cdot \nabla H .
$$

Darboux's key idea

$$
(F(x, y) \cdot \nabla H)(p)=0 \text { whenever } H(p)=0
$$

If H and F are polynomial, then so is

$$
F(x, y) \cdot \nabla H .
$$

Therefore,

Darboux's key idea

$$
(F(x, y) \cdot \nabla H)(p)=0 \text { whenever } H(p)=0
$$

If H and F are polynomial, then so is

$$
F(x, y) \cdot \nabla H .
$$

Therefore, the conclusion above implies that,

$$
F(x, y) \cdot \nabla H=G H
$$

for some polynomial $G=G(x, y)$, called the co-factor of H.

Darboux's key idea

$$
(F(x, y) \cdot \nabla H)(p)=0 \text { whenever } H(p)=0
$$

If H and F are polynomial, then so is

$$
F(x, y) \cdot \nabla H .
$$

Therefore, the conclusion above implies that,

$$
F(x, y) \cdot \nabla H=G H
$$

for some polynomial $G=G(x, y)$, called the co-factor of H.

Assuming that H is reduced, this follows from Hilbert's Nullstellensatz.

Darboux's key idea

Darboux's key idea

Invariant curve

Darboux's key idea

Invariant curve

An algebraic curve $H(x, y)=0$ is invariant under the system $\dot{X}=F(x, y)$ if

$$
F(x, y) \cdot \nabla H=G H,
$$

Darboux's key Theorem

Darboux's key Theorem

Existence of first integral

Darboux's key Theorem

Existence of first integral

If $\dot{X}=F(X)$ has enough invariant curves, then it admits a first integral.

Darboux's key Theorem

Existence of first integral

If $\dot{X}=F(X)$ has enough invariant curves, then it admits a first integral.

Darboux's key Theorem

Existence of first integral

If $\dot{X}=F(X)$ has enough invariant curves, then it admits a first integral.

Degree of a vector field

Darboux's key Theorem

Existence of first integral

If $\dot{X}=F(X)$ has enough invariant curves, then it admits a first integral.

Degree of a vector field
If $F=(a, b)$, for polynomials a and b, then

Darboux's key Theorem

Existence of first integral

If $\dot{X}=F(X)$ has enough invariant curves, then it admits a first integral.

Degree of a vector field
If $F=(a, b)$, for polynomials a and b, then

$$
\operatorname{deg}(F)=\max \{\operatorname{deg}(a), \operatorname{deg}(b)\}
$$

Darboux's key Theorem

Existence of first integral

If $\dot{X}=F(X)$ has more than $\operatorname{deg}(F)(\operatorname{deg}(F)-1) / 2$ invariant curves, then it admits a first integral.

Degree of a vector field If $F=(a, b)$, for polynomials a and b, then

$$
\operatorname{deg}(F)=\max \{\operatorname{deg}(a), \operatorname{deg}(b)\}
$$

Where does this bound come from?

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
a \frac{\partial H}{\partial x}+b \frac{\partial H}{\partial y}=G H .
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
\operatorname{deg}\left(a \frac{\partial H}{\partial x}+b \frac{\partial H}{\partial y}\right)=\operatorname{deg}(G H)
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
\max \left\{\operatorname{deg}\left(a \frac{\partial H}{\partial x}\right),\left(b \frac{\partial H}{\partial y}\right)\right\} \geq \operatorname{deg}(G H)
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
\max \left\{\operatorname{deg}(a)+\operatorname{deg}\left(\frac{\partial H}{\partial x}\right), \operatorname{deg}(b)+\left(\frac{\partial H}{\partial y}\right)\right\} \geq \operatorname{deg}(G H) .
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
\max \{\operatorname{deg}(a)+\operatorname{deg}(H)-1, \operatorname{deg}(b)+\operatorname{deg}(H)-1\} \geq \operatorname{deg}(G H)
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H,
$$

Hence,

$$
\max \{\operatorname{deg}(a), \operatorname{deg}(b)\}+\operatorname{deg}(H)-1 \geq \operatorname{deg}(G H)
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
\operatorname{deg}(F)+\operatorname{deg}(H)-1 \geq \operatorname{deg}(G H)
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
\operatorname{deg}(F)+\operatorname{deg}(H)-1 \geq \operatorname{deg}(G)+\operatorname{deg}(H)
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
\operatorname{deg}(F)+\operatorname{deg}(H)-1 \geq \operatorname{deg}(G)+\operatorname{deg}(H)
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
\operatorname{deg}(F)-1 \geq \operatorname{deg}(G)
$$

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
\operatorname{deg}(F)-1 \geq \operatorname{deg}(G)
$$

In particular, G is an element of the subspace of polynomials of degree $\leq \operatorname{deg}(F)-1$,

Where does this bound come from?

If H is invariant under $\dot{X}=F(X)$ then

$$
F(x, y) \cdot \nabla H=G H
$$

Hence,

$$
\operatorname{deg}(F)-1 \geq \operatorname{deg}(G)
$$

In particular, G is an element of the subspace of polynomials of degree $\leq \operatorname{deg}(F)-1$, which has dimension

$$
\frac{(\operatorname{deg}(F)-1) \operatorname{deg}(F)}{2}
$$

Proof of Darboux's key Theorem

Proof of Darboux's key Theorem

$$
d=\frac{(\operatorname{deg}(F)-1) \operatorname{deg}(F)}{2}
$$

Proof of Darboux's key Theorem

$$
d=\frac{(\operatorname{deg}(F)-1) \operatorname{deg}(F)}{2}
$$

p_{1}, \ldots, p_{k} be curves invariant under $\dot{X}=F(X) ;$

Proof of Darboux's key Theorem

$$
d=\frac{(\operatorname{deg}(F)-1) \operatorname{deg}(F)}{2}
$$

$\nabla p_{j} \cdot F=g_{j} p_{j}$, where $1 \leq j \leq k$ and $\quad \operatorname{deg}\left(g_{j}\right) \leq \operatorname{deg}(F)-1$.

Proof of Darboux's key Theorem

$$
d=\frac{(\operatorname{deg}(F)-1) \operatorname{deg}(F)}{2}
$$

$\nabla p_{j} \cdot F=g_{j} p_{j}$, where $1 \leq j \leq k$ and $\quad \operatorname{deg}\left(g_{j}\right) \leq \operatorname{deg}(F)-1$. If $k>d$ then g_{1}, \ldots, g_{k} are linearly dependent,

Proof of Darboux's key Theorem

$$
d=\frac{(\operatorname{deg}(F)-1) \operatorname{deg}(F)}{2}
$$

$=$ dimension of the space of polynomials of degree $\leq \operatorname{deg}(F)-1$.
$\nabla p_{j} \cdot F=g_{j} p_{j}$, where $1 \leq j \leq k$ and $\quad \operatorname{deg}\left(g_{j}\right) \leq \operatorname{deg}(F)-1$.
If $k>d$ then g_{1}, \ldots, g_{k} are linearly dependent,

Proof of Darboux's key Theorem

$$
d=\frac{(\operatorname{deg}(F)-1) \operatorname{deg}(F)}{2}
$$

$=$ dimension of the space of polynomials of degree $\leq \operatorname{deg}(F)-1$.

$$
\nabla p_{j} \cdot F=g_{j} p_{j}, \text { where } 1 \leq j \leq k \text { and } \quad \operatorname{deg}\left(g_{j}\right) \leq \operatorname{deg}(F)-1
$$

If $k>d$ then g_{1}, \ldots, g_{k} are linearly dependent, so

$$
c_{1} g_{1}+\cdots+c_{k} g_{k}=0 \text { for scalars } c_{1}, \ldots, c_{k}
$$

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

$$
F \cdot \nabla h
$$

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

$$
F \cdot \nabla h=F \cdot \nabla\left(p_{1}^{c_{1}} \cdots c_{k} p_{k}^{c_{k}}\right)
$$

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

$$
F \cdot \nabla h=F \cdot\left(c_{1} p_{1}^{c_{1}-1} \cdots p_{k}^{c_{k}} \nabla p_{1}+\cdots+p_{1}^{c_{1}} \cdots c_{k} p_{k}^{c_{k}-1} \nabla p_{k}\right)
$$

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

$$
F \cdot \nabla h=c_{1} p_{1}^{c_{1}-1} \cdots p_{k}^{c_{k}} F \cdot \nabla p_{1}+\cdots+p_{1}^{c_{1}} \cdots c_{k} p_{k}^{c_{k}-1} F \cdot \nabla p_{k}
$$

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

$$
F \cdot \nabla h=c_{1} p_{1}^{c_{1}-1} \cdots p_{k}^{c_{k}} g_{1} p_{1}+\cdots+p_{1}^{c_{1}} \cdots c_{k} p_{k}^{c_{k}-1} g_{k} p_{k}
$$

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

$$
F \cdot \nabla h=c_{1} p_{1}^{c_{1}-1} \cdots p_{k}^{c_{k}} g_{1} p_{1}+\cdots+p_{1}^{c_{1}} \cdots c_{k} p_{k}^{c_{k}-1} g_{k} p_{k}
$$

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

$$
F \cdot \nabla h=c_{1} p_{1}^{c_{1}} \cdots p_{k}^{c_{k}} g_{1}+\cdots+p_{1}^{c_{1}} \cdots c_{k} p_{k}^{c_{k}} g_{k}
$$

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

$$
F \cdot \nabla h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}\left(c_{1} g_{1}+\cdots+c_{k} g_{k}\right)
$$

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

$$
F \cdot \nabla h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}\left(c_{1} g_{1}+\cdots+c_{k} g_{k}\right)=0
$$

Proof of Darboux's key Theorem

Hypotheses:

- $F \cdot \nabla p_{j}=g_{j} p_{j}$, where $1 \leq j \leq k$;
- $c_{1} g_{1}+\cdots+c_{k} g_{k}=0$ for scalars c_{1}, \ldots, c_{k}.

Define

$$
h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}
$$

then

$$
F \cdot \nabla h=p_{1}^{c_{1}} \cdots p_{k}^{c_{k}}\left(c_{1} g_{1}+\cdots+c_{k} g_{k}\right)=0
$$

Hence h is a first integral of F.

An example: the Jacobi equation

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Find ℓ linear and c a scalar, such that

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Find ℓ linear and c a scalar, such that

$$
F \cdot \nabla \ell=c \ell .
$$

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Find ℓ linear and c a scalar, such that

$$
(2 x+y+1) \frac{\partial \ell}{\partial x}+(y+2) \frac{\partial \ell}{\partial y}=c \ell .
$$

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Find ℓ linear and c a scalar, such that

$$
\left((2 x+y+1) \frac{\partial}{\partial x}+(y+2) \frac{\partial}{\partial y}\right)(\ell)=c \ell
$$

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Find ℓ linear and c a scalar, such that

$$
\left((2 x+y+1) \frac{\partial}{\partial x}+(y+2) \frac{\partial}{\partial y}\right)(\ell)=c \ell .
$$

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Find ℓ linear and c a scalar, such that

$$
\left((2 x+y+1) \frac{\partial}{\partial x}+(y+2) \frac{\partial}{\partial y}\right)(\ell)=c \ell .
$$

Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Find ℓ linear and c a scalar, such that

$$
\left((2 x+y+1) \frac{\partial}{\partial x}+(y+2) \frac{\partial}{\partial y}\right)(\ell)=c \ell .
$$

Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

Thus,

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

Thus,

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

Thus,

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

Thus,

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

Thus,

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

Thus,

the matrix eigenvector	eigenvalue	the differential equation	
	ℓ	c	
$(0,1,2)$	1	$y+2$	1
$(2,2,3)$			

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

Thus,

the matrix eigenvector	eigenvalue	the differential equation	
$(0,1,2)$	1	ℓ	c
$(2,2,3)$	2	$y+2$	1

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

Thus,

the matrix eigenvector	eigenvalue	the differential equation	
$(0,1,2)$	1	ℓ	c
$(2,2,3)$	2	$2 x+2 y+3$	1

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Solve an eigenvalue problem for the linear operator whose matrix in the basis $\{x, y, 1\}$ is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

Thus,

the matrix eigenvector	eigenvalue	the differential equation	
$(0,1,2)$	1	ℓ	c
$(2,2,3)$	2	$2 x+2 y+3$	2

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Its invariant lines are

- $y+2$ with co-factor 1 ;
- $2 x+2 y+3$ with co-factor 2 .

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Its invariant lines are

- $y+2$ with co-factor 1 ;
- $2 x+2 y+3$ with co-factor 2 .

Since $2 \cdot 1+(-1) \cdot 2=0$,

An example: the Jacobi equation

Suppose that $F=(2 x+y+1, y+2)$.
Its invariant lines are

- $y+2$ with co-factor 1 ;
- $2 x+2 y+3$ with co-factor 2 .

Since $2 \cdot 1+(-1) \cdot 2=0$,

$$
h=(y+2)^{2}(2 x+2 y+3)^{-1}
$$

is a first integral of $\dot{X}=F(X)$.

Also in Darboux's paper

Also in Darboux's paper

- solutions for some equations with quadratic coefficients;

Also in Darboux's paper

- solutions for some equations with quadratic coefficients;
- a study of the singular points of the differential equations.

The singularities of an equation

The singularities of an equation

Singular point

The singularities of an equation

Singular point

The singular points of $\dot{X}=F(X)$ are the points of the plane at which F vanishes.

The singularities of an equation

Singular point

The singular points of $\dot{X}=F(X)$ are the points of the plane at which F vanishes.

From now on we will assume that $F=(a, b)$ with $\operatorname{gcd}(a, b)=1$.

The singularities of an equation

Singular point

The singular points of $\dot{X}=F(X)$ are the points of the plane at which F vanishes.

From now on we will assume that $F=(a, b)$ with $\operatorname{gcd}(a, b)=1$. Geometrically, this means that F has finitely many singularities.

Counting singularities after Darboux

Counting singularities after Darboux

Given a polynomial h of degree d in two variables let h_{d} be its homogeneous component of degree d.

Counting singularities after Darboux

Given a polynomial h of degree d in two variables let h_{d} be its homogeneous component of degree d.

Theorem

Counting singularities after Darboux

Given a polynomial h of degree d in two variables let h_{d} be its homogeneous component of degree d.

Theorem

A vector field $F=(a, b)$ of degree n that satisfies $y a_{n}=x b_{n}$ has, at most, $(n-1)^{2}+(n-1)+1$ singularities.

Counting singularities after Darboux

Given a polynomial h of degree d in two variables let h_{d} be its homogeneous component of degree d.

Theorem

A vector field $F=(a, b)$ of degree n that satisfies $y a_{n}=x b_{n}$ has, at most, $(n-1)^{2}+(n-1)+1$ singularities.

Note for the experts

The condition $y a_{n}=x b_{n}$ means that the one-dimensional direction field that F defines in the projective plane has no singularities at infinity.

Impact of Darboux's paper

Impact of Darboux's paper

Introduction.

Pour reconnaître si une équation diflérentielle du premier ordre et du premier degré est intégrable algébriquement, it suffit évidemment de trouver une limite supérieure du degré de l'intégrale; il ne reste plus ensuite qu’à effectuer des calculs purement algébriques.

C'est là un problème qui, semble-t-il, aurait dù̀ tenter les géomètres, et cependant ils s'en sout fort peu occupés. Depuis l'euvre magistrale de M. Darboux, publiée dans le Bulletin des Scipnces mathématiques, la question a été négligée pendant vingt ans et il a fallu, pour attirer de noureau sur elle l'attention qu'elle méritait, que l'Académie des Sciences la proposât comme sujet du concours pour le (irand Prix des Sciences mathématiques. Deux Mémoires furent récompensés, M. Painlevé obtint le prix et M. Autonne une mention honorable : I'un de ces deux Mémoires a été publié dans les Annales de l'École Normale supérieure et l'autre dans le Journal dé l'École Polytechnique.

Impact of Darboux's paper

Introduction.

Pour reconnaître si une équation diflérentielle du premier ordre et du premier degré est intégrable algébriqurment, il suffit évidemment de trouver une limite supérieure du degré de l'intégrale; il ne reste plus ensuite qu'à effectuer des calculs purement algébriques.

C'est là un problème qui, semble-t-il, aurait dù̀ tenter les géomètres, et cependant ils s'en sout fort peu occupés. Depuis l'œuvre magistrale de M. Darboux, publiée dans le Bulletin des Scipnces mathématiques, la question a été négligée pendant vingt ans et il a fallu, pour attirer de noureau sur elle l'attention qu'elle méritait, que l'Académie des Sciences la proposât comme sujet du concours pour le (irand Prix des Sciences mathématiques. Deux Mémoires furent récompensés, M. Painlevé obtint le prix et M. Autonne une mention honorable : I'un de ces deux Mémoires a été publié dans les Annales dr l'École Normule supérieure et l'autre dans le Journal de l'École Polytechnigue.

H. Poincaré, 1891

Impact of Darboux's paper

Impact of Darboux's paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier ordre;

Impact of Darboux's paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier ordre;
L. Autonne, 1891 Sur l'integration algébrique des équations differentielles du 1^{er} ordre et du $1^{\text {er }}$ degré;

Impact of Darboux's paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier ordre;
L. Autonne, 1891 Sur l'integration algébrique des équations differentielles du 1^{er} ordre et du $1^{\text {er }}$ degré;
H. Poincaré, 1891 Sur l'integration algébrique des équations differentielles du 1^{er} ordre et du $1^{\text {er }}$ degré;

Impact of Darboux's paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier ordre;
L. Autonne, 1891 Sur l'integration algébrique des équations differentielles du 1^{er} ordre et du 1^{er} degré;
H. Poincaré, 1891 Sur l'integration algébrique des équations differentielles du 1^{er} ordre et du $1^{\text {er }}$ degré;
H. Poincaré, 1897 Sur l'integration algébrique des équations differentielles du 1^{er} ordre et du $1^{\text {er }}$ degré.

Impact of Darboux's paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier ordre;
L. Autonne, 1891 Sur l'integration algébrique des équations differentielles du 1^{er} ordre et du $1^{\text {er }}$ degré;
H. Poincaré, 1891 Sur l'integration algébrique des équations differentielles du 1^{er} ordre et du $1^{\text {er }}$ degré;
H. Poincaré, 1897 Sur l'integration algébrique des équations differentielles du 1^{er} ordre et du $1^{\text {er }}$ degré.

Also in various textbooks up to the early 20th century.

Impact of Darboux's paper

Introduction.

Pour reconnaître si une équation diflérentielle du premier ordre et du premier degré est intégrable algébriqurment, il suffit évidemment de trouver une limite supérieure du degré de l'intégrale; il ne reste plus ensuite qu'à effectuer des calculs purement algébriques.

C'est là un problème qui, semble-t-il, aurait dù̀ tenter les géomètres, et cependant ils s'en sout fort peu occupés. Depuis l'œuvre magistrale de M. Darboux, publiée dans le Bulletin des Scipnces mathématiques, la question a été négligée pendant vingt ans et il a fallu, pour attirer de noureau sur elle l'attention qu'elle méritait, que l'Académie des Sciences la proposât comme sujet du concours pour le (irand Prix des Sciences mathématiques. Deux Mémoires furent récompensés, M. Painlevé obtint le prix et M. Autonne une mention honorable : I'un de ces deux Mémoires a été publié dans les Annales dr l'École Normule supérieure et l'autre dans le Journal de l'École Polytechnigue.

H. Poincaré, 1891

Impact of Darboux's paper

Introduction.

Pour reconnaître si une équation diflérentielle du premier ordre et du premier degré est intégrable algébriqurment, il suffit évidemment de trouver une limite supérieure du degré de l'intégrale; il ne reste plus ensuite qu'à effectuer des calculs purement algébriques.

C'est là un problème qui, semble-t-il, aurait dù̀ tenter les géomètres, et cependant ils s'eu sont fort peu occupés. Depuis l'euvre magistrale de M. Darboux, publiée dans le Bulletin des Scipnces mathématiques, la question a été négligée pendant vingt ans et il a fallu, pour attirer de noureau sur elle l'attention qu'elle méritait, que l'Académie des Sciences la proposât comme sujet du concours pour le (irand Prix des Sciences mathématiques. Deux Mémoires furent récompensés, M. Painlevé obtint le prix et M. Autonne une mention honorable : I'un de ces deux Mémoires a été publié dans les Annales de l'École Normule supérieure et l'autre dans le Journal de l'École Polytechnigue.

H. Poincaré, 1891

Impact of Darboux's paper

Introduction.

Pour reconnaître si une équation diflérentielle du premier ordre et du premier degré est intégrable algèbriquement, il suffit évidemment de trouver une limite supérieure du degré de l'intégrale; il ne reste plus ensuite qu'à effectuer des calculs purement algébriques.

H. Poincaré, 1891

Impact of Darboux's paper

Introduction.

Pour reconnaître si une équation diflérentielle du premier ordre et du premier degré est intégrable algébriquement, il suffit évidemment de trouver une limite supérieure du degré de l'intégrale; il ne reste plus ensuite qu'à effectuer des calculs purement alsébriques.
"it is evidently sufficient to find an upper limit to the degree of the integral".
H. Poincaré, 1891

Impact of Darboux's paper

Introduction.

Pour reconnaître si une équation diflérentielle du premier ordre et du premier degré est intégrable algèbriquement, il suffit évidemment de trouver une limite supérieure du degré de l'intégrale; il ne reste plus ensuite qu'à effectuer des calculs purement algébriques.
"it is evidently sufficient to find an upper limit to the degree of the integral"
H. Poincaré, 1891

Impact of Darboux's paper

"it is evidently sufficient to find an upper limit to the degree of the algebraic invariant curves".
H. Poincaré, 1891

One more problem

One more problem

Poincaré's problem

One more problem

Poincaré's problem
 Given a vector field F with polynomial coefficients, find a bound on the degree of the algebraic curves invariant under F as a function of some numerical invariant of F.

Part III

The 20th century

J.-P. Jouanolou, 1979

J.-P. Jouanolou, 1979

Reworks Darboux's results in the language of modern algebraic algebraic geometry:

J.-P. Jouanolou, 1979

Reworks Darboux's results in the language of modern algebraic algebraic geometry:

- detailed study of Jacobi equation in higher dimensions;

J.-P. Jouanolou, 1979

Reworks Darboux's results in the language of modern algebraic algebraic geometry:

- detailed study of Jacobi equation in higher dimensions;
- bound on the degree of a smooth algebraic curve invariant under a polynomial vector field;

J.-P. Jouanolou, 1979

Reworks Darboux's results in the language of modern algebraic algebraic geometry:

- detailed study of Jacobi equation in higher dimensions;
- bound on the degree of a smooth algebraic curve invariant under a polynomial vector field;
- an algebraic curve invariant under a vector field must contain a singularity ;

J.-P. Jouanolou, 1979

Reworks Darboux's results in the language of modern algebraic algebraic geometry:

- detailed study of Jacobi equation in higher dimensions;
- bound on the degree of a smooth algebraic curve invariant under a polynomial vector field;
- an algebraic curve invariant under a vector field must contain a singularity at least if we include the ones at infinity;

J.-P. Jouanolou, 1979

Reworks Darboux's results in the language of modern algebraic algebraic geometry:

- detailed study of Jacobi equation in higher dimensions;
- bound on the degree of a smooth algebraic curve invariant under a polynomial vector field;
- an algebraic curve invariant under a vector field must contain a singularity at least if we include the ones at infinity;
- a general equation of degree higher than 2 does not have any invariant curve.

Singularities on invariant curves

Singularities on invariant curves

Theorem
S. C. Coutinho

Proving the nonexistence of algebraic solutions of differential e

Singularities on invariant curves

Theorem
Let $F=(a, b)$ be a polynomial vector field of degree n for which $y a_{n}=x b_{n}$.

Singularities on invariant curves

Theorem

Let $F=(a, b)$ be a polynomial vector field of degree n for which $y a_{n}=x b_{n}$. Any algebraic curve invariant under F must contain a singularity of F.

Singularities on invariant curves

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F

$$
F \cdot \nabla h=g h
$$

for some polynomial g of degree at most $n-1$.

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F

$$
F(p) \cdot \nabla h(p)=g(p) h(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F.

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F

$$
\underbrace{F(p)}_{=0} \cdot \nabla h(p)=g(p) h(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F.

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p) h(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F.

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p) h(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F.

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p) \underbrace{h(p)}_{\neq 0}
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F.

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F.

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F. Thus,

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F. Thus,

$$
\leq \#(\{a=0\} \cap\{g=0\}) \leq
$$

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F. Thus,

$$
\leq \#(\{a=0\} \cap\{g=0\}) \leq \underbrace{\operatorname{deg}(a) \operatorname{deg}(g)}_{\text {Bézout's Theorem }}
$$

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F. Thus,

$$
\leq \#(\{a=0\} \cap\{g=0\}) \leq \underbrace{n(n-1)}_{\text {Bézout's Theorem }}
$$

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F. Thus,

$$
\leq \#(\{a=0\} \cap\{g=0\}) \leq \underbrace{n^{2}-n}_{\text {Bézout's Theorem }}
$$

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F. Thus,

$$
\underbrace{n^{2}-n+1} \leq \#(\{a=0\} \cap\{g=0\}) \leq \underbrace{n^{2}-n}
$$

number of singularities of F
Bézout's Theorem

Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve. If h is invariant under F and $h=0$ contains no singularity of F

$$
0=g(p)
$$

for some polynomial g of degree at most $n-1$ and all singularities p of F. Thus,

$$
\underbrace{n^{2}-n+1}_{\text {number of singularities of } F} \leq \#(\{a=0\} \cap\{g=0\}) \leq \underbrace{n^{2}-n}_{\text {Bézout's Theorem }}
$$

a contradiction.

The Poincaré problem in the 20th century

The Poincaré problem in the 20th century

Bound on the degree of algebraic invariant curves invariant under a field $F=(a, b)$ when:

The Poincaré problem in the 20th century

Bound on the degree of algebraic invariant curves invariant under a field $F=(a, b)$ when:

Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;

The Poincaré problem in the 20th century

Bound on the degree of algebraic invariant curves invariant under a field $F=(a, b)$ when:

Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;
Carnicer, 1994 the field singularities are dicritical;

The Poincaré problem in the 20th century

Bound on the degree of algebraic invariant curves invariant under a field $F=(a, b)$ when:

Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;
Carnicer, 1994 the field singularities are dicritical;
Soares, 1997 generalization to higher dimensions (invariant hypersurfaces in projective space);

The Poincaré problem in the 20th century

Bound on the degree of algebraic invariant curves invariant under a field $F=(a, b)$ when:

Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;
Carnicer, 1994 the field singularities are dicritical;
Soares, 1997 generalization to higher dimensions (invariant hypersurfaces in projective space);

Brunella and Mendes, 2000 generalization to higher dimensions (invariant hypersurfaces in varieties with trivial Picard group);

The Poincaré problem in the 20th century

Bound on the degree of algebraic invariant curves invariant under a field $F=(a, b)$ when:

Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;
Carnicer, 1994 the field singularities are dicritical;
Soares, 1997 generalization to higher dimensions (invariant hypersurfaces in projective space);

Brunella and Mendes, 2000 generalization to higher dimensions (invariant hypersurfaces in varieties with trivial Picard group);

Walcher, 2000 the field has nice singularities at infinity and $y a_{n} \neq x b_{n}$.

Other 20th century developments

Other 20th century developments

Algebraic curves invariant under a vector field are also relevant to:

Other 20th century developments

Algebraic curves invariant under a vector field are also relevant to:
Prelle and Singer, 1983 algorithm compute elementary solutions to $\dot{X}=F(X) ;$

Other 20th century developments

Algebraic curves invariant under a vector field are also relevant to:
Prelle and Singer, 1983 algorithm compute elementary solutions to

$$
\dot{X}=F(X)
$$

Singer, 1992 caracterization of Liouvillian solutions of $\dot{X}=F(X) ;$

Other 20th century developments

Algebraic curves invariant under a vector field are also relevant to:
Prelle and Singer, 1983 algorithm compute elementary solutions to $\dot{X}=F(X)$;

Singer, 1992 caracterization of Liouvillian solutions of $\dot{X}=F(X) ;$

Schlomiuk, 1993 characterization of quadratic fields that have a centre.

Part IV

The existence problem

The existence problem

The existence problem

In the light of Jouanolou's result:

The existence problem

In the light of Jouanolou's result: before we try to find an algebraic invariant curve for a given vector field, we should decide if such a curve exists.

The existence problem

In the light of Jouanolou's result: before we try to find an algebraic invariant curve for a given vector field, we should decide if such a curve exists.

Since no efficient necessary and sufficient criterion for the existence of such curves is known, we will settle for a probabilistic test.

The existence problem

The existence problem

Theorem (with Menasché Schechter, 2006)

The existence problem

Theorem (with Menasché Schechter, 2006)

Let $F=(a, b)$ be a vector field with rational coefficients and degree n for which $y a_{n}=x b_{n}$.

The existence problem

Theorem (with Menasché Schechter, 2006)

Let $F=(a, b)$ be a vector field with rational coefficients and degree n for which $y a_{n}=x b_{n}$.

The existence problem

Theorem (with Menasché Schechter, 2006)

Let $F=(a, b)$ be a vector field with rational coefficients and degree n for which $y a_{n}=x b_{n}$. If the generator $p=p(x)$ of

$$
(a, b) \cap \mathbb{Q}[x]
$$

The existence problem

Theorem (with Menasché Schechter, 2006)

Let $F=(a, b)$ be a vector field with rational coefficients and degree n for which $y a_{n}=x b_{n}$. If the generator $p=p(x)$ of

$$
(a, b) \cap \mathbb{Q}[x]
$$

satisfies:

The existence problem

Theorem (with Menasché Schechter, 2006)

Let $F=(a, b)$ be a vector field with rational coefficients and degree n for which $y a_{n}=x b_{n}$. If the generator $p=p(x)$ of

$$
(a, b) \cap \mathbb{Q}[x]
$$

satisfies:
(1) p has degree $(n-1)^{2}+(n-1)+1$;

The existence problem

Theorem (with Menasché Schechter, 2006)

Let $F=(a, b)$ be a vector field with rational coefficients and degree n for which $y a_{n}=x b_{n}$. If the generator $p=p(x)$ of

$$
(a, b) \cap \mathbb{Q}[x]
$$

satisfies:
(1) p has degree $(n-1)^{2}+(n-1)+1$;
(2) p is irreducible over \mathbb{Q};

The existence problem

Theorem (with Menasché Schechter, 2006)

Let $F=(a, b)$ be a vector field with rational coefficients and degree n for which $y a_{n}=x b_{n}$. If the generator $p=p(x)$ of

$$
(a, b) \cap \mathbb{Q}[x]
$$

satisfies:
(1) p has degree $(n-1)^{2}+(n-1)+1$;
(2) p is irreducible over \mathbb{Q};
then F has no invariant algebraic curves.

The existence problem

Theorem (with Menasché Schechter, 2006)

Let $F=(a, b)$ be a vector field with rational coefficients and degree n for which $y a_{n}=x b_{n}$. If the generator $p=p(x)$ of

$$
(a, b) \cap \mathbb{Q}[x]
$$

satisfies:
(1) p has degree $(n-1)^{2}+(n-1)+1$;
(2) p is irreducible over \mathbb{Q};
then F has no invariant algebraic curves.

Key point

The existence problem

Theorem (with Menasché Schechter, 2006)

Let $F=(a, b)$ be a vector field with rational coefficients and degree n for which $y a_{n}=x b_{n}$. If the generator $p=p(x)$ of

$$
(a, b) \cap \mathbb{Q}[x]
$$

satisfies:
(1) p has degree $(n-1)^{2}+(n-1)+1$;
(2) p is irreducible over \mathbb{Q};
then F has no invariant algebraic curves.

Key point

The x-coordinates of the singularities of F are all of them roots of p.

Before the proof

Before the proof

Since we are assuming that F has rational coefficients:

Before the proof

Since we are assuming that F has rational coefficients:
if F has an invariant curve, it must have one with rational coefficients.

Before the proof

Since we are assuming that F has rational coefficients:
if F has an invariant curve, it must have one with rational coefficients.

Before the proof

Since we are assuming that F has rational coefficients: if F has an invariant curve, it must have one with rational coefficients.

Before the proof

Since we are assuming that F has rational coefficients: if F has an invariant curve, it must have one with rational coefficients.

We will proceed by contradiction, assuming that the field F has an invariant algebraic curve with rational coefficients.

The proof: assumptions

The proof: assumptions

- $F=(a, b)$ is a field with rational coefficients;

The proof: assumptions

- $F=(a, b)$ is a field with rational coefficients;
- $h=h(x, y)$ is a polynomial with rational coefficients;

The proof: assumptions

- $F=(a, b)$ is a field with rational coefficients;
- $h=h(x, y)$ is a polynomial with rational coefficients;

The proof: assumptions

- $F=(a, b)$ is a field with rational coefficients;
- $h=h(x, y)$ is a polynomial with rational coefficients;
- $h=0$ defines a curve invariant under $\dot{X}=F(X)$;

The proof: assumptions

- $F=(a, b)$ is a field with rational coefficients;
- $h=h(x, y)$ is a polynomial with rational coefficients;
- $h=0$ defines a curve invariant under $\dot{X}=F(X)$;
- $p=p(x)$ generates the ideal $(a, b) \cap \mathbb{Q}[x]$;

The proof: assumptions

- $F=(a, b)$ is a field with rational coefficients;
- $h=h(x, y)$ is a polynomial with rational coefficients;
- $h=0$ defines a curve invariant under $\dot{X}=F(X)$;
- $p=p(x)$ generates the ideal $(a, b) \cap \mathbb{Q}[x]$;
- p is irreducible over \mathbb{Q} of degree $(n-1)^{2}+(n-1)+1$;

The proof: assumptions

- $F=(a, b)$ is a field with rational coefficients;
- $h=h(x, y)$ is a polynomial with rational coefficients;
- $h=0$ defines a curve invariant under $\dot{X}=F(X)$;
- $p=p(x)$ generates the ideal $(a, b) \cap \mathbb{Q}[x]$;
- p is irreducible over \mathbb{Q} of degree $(n-1)^{2}+(n-1)+1$;

The proof: preliminaries

The proof: preliminaries

p irreducible over \mathbb{Q}

The proof: preliminaries

p irreducible over \mathbb{Q}
 \Downarrow

The proof: preliminaries

$$
\begin{aligned}
& \quad p \text { irreducible over } \mathbb{Q} \\
& \Downarrow \\
& G=\operatorname{Gal}(p, \mathbb{Q}) \text { acts } \\
& \text { transitively on the roots of } p
\end{aligned}
$$

The proof: preliminaries

p irreducible over \mathbb{Q}
 \Downarrow

$$
G=\operatorname{Gal}(p, \mathbb{Q}) \text { acts }
$$

transitively on the roots of p
$(a, b)=(p(x), y-q(x))$ for some polynomial $q(x)$

The proof: preliminaries

p irreducible over \mathbb{Q}
 \Downarrow

$$
\begin{aligned}
& G=\operatorname{Gal}(p, \mathbb{Q}) \text { acts } \\
& \text { transitively on the roots of } p
\end{aligned}
$$

$(a, b)=(p(x), y-q(x))$
for some polynomial $q(x)$

Because p generates $(a, b) \cap \mathbb{Q}[x]$.

The proof: preliminaries

p irreducible over \mathbb{Q}
 \Downarrow

$$
\begin{aligned}
& G=\operatorname{Gal}(p, \mathbb{Q}) \text { acts } \\
& \text { transitively on the roots of } p
\end{aligned}
$$

$(a, b)=(p(x), y-q(x))$ for some polynomial $q(x)$

The proof: preliminaries

p irreducible over \mathbb{Q}

\Downarrow

$$
G=\operatorname{Gal}(p, \mathbb{Q}) \text { acts }
$$

transitively on the roots of p
$(a, b)=(p(x), y-q(x))$
for some polynomial $q(x)$
\Downarrow
G acts transitively on the set of singularities of F :

The proof: preliminaries

p irreducible over \mathbb{Q}
 \Downarrow

$$
G=\operatorname{Gal}(p, \mathbb{Q}) \text { acts }
$$

transitively on the roots of p

$$
\begin{aligned}
& (a, b)=(p(x), y-q(x)) \\
& \text { for some polynomial } q(x)
\end{aligned}
$$

\Downarrow
G acts transitively on the set of singularities of F :

$$
g \cdot\left(x_{0}, q\left(x_{0}\right)\right)=\left(g\left(x_{0}\right), q\left(g\left(x_{0}\right)\right)\right) \text { for any } g \in G
$$

The proof: core argument

The proof: core argument

The curve $h=0$ and the singularities of F.

The proof: core argument

The curve $h=0$ and the singularities of F.

The proof: core argument

The curve $h=0$ and the singularities of F.

Jouanolou's theorem: $h=0$ must contain a singularity of F.

The proof: core argument

The curve $h=0$ and the singularities of F.

Jouanolou's theorem: $h=0$ must contain a singularity of F.

The proof: core argument

The curve $h=0$ and the singularities of F.

G acts transitively on the singularities and h has rational coordinates.

The proof: core argument

The curve $h=0$ and the singularities of F.

G acts transitively on the singularities and h has rational coordinates.

The proof: core argument

The curve $h=0$ and the singularities of F.

Thus, $h(p)=0$ whenever $F(p)=0$,

The proof: core argument

The curve $h=0$ and the singularities of F.

Thus, $h(p)=0$ whenever $F(p)=0$, but

The proof: core argument

The curve $h=0$ and the singularities of F.

Thus, $h(p)=0$ whenever $F(p)=0$, but is this possible?

The proof: punch line

The proof: punch line

Since G acts transitively on the singularities of F we have that either

The proof: punch line

Since G acts transitively on the singularities of F we have that either

- $h=0$ is smooth;

The proof: punch line

Since G acts transitively on the singularities of F we have that either

- $h=0$ is smooth;
- $h=0$ is singular at all the singularities of F.

The proof: punch line

Since G acts transitively on the singularities of F we have that either

- $h=0$ is smooth;
- $h=0$ is singular at all the singularities of F.

In both cases the curve cannot contain all the singularities of F,

The proof: punch line

Since G acts transitively on the singularities of F we have that either

- $h=0$ is smooth;
- $h=0$ is singular at all the singularities of F.

In both cases the curve cannot contain all the singularities of F, hence the contradiction.

Further developments

Further developments

- generalization to fields $F=(a, b)$ for which $y a_{n} \neq x b_{n}$;

Further developments

- generalization to fields $F=(a, b)$ for which $y a_{n} \neq x b_{n}$;

With Menasché Schechter

Further developments

- generalization to fields $F=(a, b)$ for which $y a_{n} \neq x b_{n}$;
- leads to a constructive proof that near every field there is one without algebraic solutions;

Further developments

- generalization to fields $F=(a, b)$ for which $y a_{n} \neq x b_{n}$;
- leads to a constructive proof that near every field there is one without algebraic solutions;
- the Jacobi equation can be handled in a completely constructive way.

Further developments

- generalization to fields $F=(a, b)$ for which $y a_{n} \neq x b_{n}$;
- leads to a constructive proof that near every field there is one without algebraic solutions;
- the Jacobi equation can be handled in a completely constructive way.

With M. da Silva Ferreira.

Part V

Bibliografia

㞒 J.-P. Jouanolou,
Equations de Pfaff algébriques,
Lect. Notes in Math. 708 (1979).
D. Cerveau and A. Lins Neto

Holomorphic foliations in $\mathbf{C P}(2)$ having an invariant algebraic curve, Ann. Sc. de I'Institute Fourier 41 (1991), 883-903.
目 S. C. Coutinho and L. Menasché Schechter,
Algebraic solutions of Holomorphic Foliations: an Algorithmic Approach,
Journal of Symbolic Computation, 41 (2006), 603-618.
(1) S. C. Coutinho and L. Menasché Schechter,

Algebraic solutions of plane vector fields, Journal of Pure and Applied Algebra, 213 (2009), 144-153.

R S. C. Coutinho and M. Ferreira da Silva,
Algebraic solutions of Jacobi equations, Math. Comp. 78 (2009), 2427-2433.

