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Part I

The problem
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Stating the problem

Solve the system of differential equations

ẋ = a(x , y)

ẏ = b(x , y),

where a and b are polynomials in x and y . More concisely,

Ẋ = F (X ),

where X = (x , y) and F = (a, b) is a polynomial vector field.
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What does it mean to solve an equation?

The canonical definition

Find a curve C (t) such that
Ċ =
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Ċ = F (C (t)).

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential equations



What does it mean to solve an equation?

The canonical definition

Find a parameterized curve C (t) such that
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What does it mean to solve an equation?

What if the function were also known implicitly?

Suppose we know a function H = H(x , y) whose set of zeros is C .

Question

How can we say that the curve is a solution of the system using H instead
of the parameterization?
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What does it mean to solve an equation?

By definition
H(C (t)) = 0.

Thus, (
a
∂H

∂x
+ b

∂H

∂y

)
(C (t)) = 0;

which is equivalent to

(F · ∇H)(C (t)) = 0.
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What does it mean to solve an equation?

First integral

A function H(x , y) is a first integral of the system Ẋ = F (X ) if

F (x , y) · ∇H = 0,

as a function of x and y.

Key property

If H is a first integral of Ẋ = F (X ) then every integral curve of this
system is contained in a level curve of H.
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What does it mean to solve an equation?

The system Ẋ = F (X ), defined by the vector field F (x , y) = (2y , 3x2)
has first integral H(x , y) = y 2 − x3. Two of its level curves are

H(x , y) = 0

and H(x , y) = 1.
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Stating the problem

The problem

Given a vector field F (X ), compute a first integral of the differential
equation Ẋ = F (X ).
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Stating the problem

The problem

Given a polynomial vector field F (X ),

compute a first integral of the
differential equation Ẋ = F (X ).
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Polynomial differential equations

the Lotka-Volterra system in population dynamics;

the Lorenz system in meteorology;

the Euler equations of rigid body motion;

Bianchi models in cosmology;

etc.
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Part II

The 19th century
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C. G. J. Jacobi, 1842

Solves a differential equation with linear coefficients, with a long
calculation.
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Alfred Clebsch, 1872

Geometric interpretation of differential equations using homogeneous
coordinates.
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G. Darboux, 1878

Introduces the method that defined the research line we will pursue in this
talk.
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Darboux’s key idea

If C is an integral curve of Ẋ = F (X ) and also the set of zeroes of a
function H(x , y), then,

H(C (t)) = 0;

thus, as before,
(F (x , y) · ∇H)(C (t)) = 0.

so that,
(F (x , y) · ∇H)(p) = 0 whenever H(p) = 0.
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Darboux’s key idea

(F (x , y) · ∇H)(p) = 0 whenever H(p) = 0.

If H and F are polynomial, then so is

F (x , y) · ∇H.

Therefore, the conclusion above implies that,

F (x , y) · ∇H = GH,

for some polynomial G = G (x , y), called the co-factor of H.

Assuming that H is reduced, this follows from Hilbert’s Nullstellensatz.
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Darboux’s key idea

Invariant curve

An algebraic curve H(x , y) = 0 is invariant under the system Ẋ = F (x , y)
if

F (x , y) · ∇H = GH,
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Darboux’s key Theorem

Existence of first integral

If Ẋ = F (X ) has invariant curves, then it admits a first integral.

Degree of a vector field

If F = (a, b), for polynomials a and b, then

deg(F ) =

max{deg(a), deg(b)}
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F (x , y) · ∇H = GH,

Hence,

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential equations



Where does this bound come from?

If H is invariant under Ẋ = F (X ) then
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Where does this bound come from?
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(
∂H

∂y

)}
≥ deg(GH).
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Where does this bound come from?

If H is invariant under Ẋ = F (X ) then

F (x , y) · ∇H = GH,

Hence,

max{deg(a) + deg(H)− 1, deg(b) + deg(H)− 1} ≥ deg(GH).
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Where does this bound come from?

If H is invariant under Ẋ = F (X ) then

F (x , y) · ∇H = GH,

Hence,
max{deg(a), deg(b)}+ deg(H)− 1 ≥ deg(GH).
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Where does this bound come from?

If H is invariant under Ẋ = F (X ) then

F (x , y) · ∇H = GH,

Hence,
deg(F )− 1 ≥ deg(G ).

In particular, G is an element of the subspace of polynomials of degree
≤ deg(F )− 1,
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Where does this bound come from?

If H is invariant under Ẋ = F (X ) then

F (x , y) · ∇H = GH,

Hence,
deg(F )− 1 ≥ deg(G ).

In particular, G is an element of the subspace of polynomials of degree
≤ deg(F )− 1, which has dimension

(deg(F )− 1) deg(F )

2
.
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Proof of Darboux’s key Theorem

d =
(deg(F )− 1) deg(F )

2

= dimension of the space of polynomials of degree ≤ deg(F )− 1.
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Proof of Darboux’s key Theorem

d =
(deg(F )− 1) deg(F )

2

= dimension of the space of polynomials of degree ≤ deg(F )− 1.

p1, . . . , pk be curves invariant under Ẋ = F (X );
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Proof of Darboux’s key Theorem

d =
(deg(F )− 1) deg(F )

2
= dimension of the space of polynomials of degree ≤ deg(F )− 1.

∇pj · F = gjpj , where 1 ≤ j ≤ k and deg(gj) ≤ deg(F )− 1.

If k > d then g1, . . . , gk are linearly dependent, so

c1g1 + · · ·+ ckgk = 0 for scalars c1, . . . , ck .
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Proof of Darboux’s key Theorem

Hypotheses:

F · ∇pj = gjpj , where 1 ≤ j ≤ k ;

c1g1 + · · ·+ ckgk = 0 for scalars c1, . . . , ck .

Define
h = pc1

1 · · · p
ck
k

then
F · ∇h = pc1

1 · · · p
ck
k (c1g1 + · · ·+ ckgk)

= 0.

Hence h is a first integral of F .
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An example: the Jacobi equation

Its invariant lines are

y + 2 with co-factor 1;

2x + 2y + 3 with co-factor 2.

Since 2 · 1 + (−1) · 2 = 0,

h = (y + 2)2(2x + 2y + 3)−1,

is a first integral of Ẋ = F (X ).
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Suppose that F = (2x + y + 1, y + 2).
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1 2 0


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Also in Darboux’s paper

solutions for some equations with quadratic coefficients;

a study of the singular points of the differential equations.
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The singularities of an equation

Singular point

The singular points of Ẋ = F (X ) are the points of the plane at which F
vanishes.

From now on we will assume that F = (a, b) with gcd(a, b) = 1.
Geometrically, this means that F has finitely many singularities.
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Counting singularities after Darboux

Given a polynomial h of degree d in two variables let hd be its
homogeneous component of degree d .

Theorem

A vector field F = (a, b) of degree n that satisfies yan = xbn has, at most,
(n − 1)2 + (n − 1) + 1 singularities.

Note for the experts

The condition yan = xbn means that the one-dimensional direction field
that F defines in the projective plane has no singularities at infinity.
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Impact of Darboux’s paper

P. Painlevé, 1891 Mémoire sur les équations différentielles du premier
ordre;

L. Autonne, 1891 Sur l’integration algébrique des équations differentielles
du 1er ordre et du 1er degré;

H. Poincaré, 1891 Sur l’integration algébrique des équations differentielles
du 1er ordre et du 1er degré;

H. Poincaré, 1897 Sur l’integration algébrique des équations differentielles
du 1er ordre et du 1er degré.

Also in various textbooks up to the early 20th century.
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du 1er ordre et du 1er degré.
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ordre;

L. Autonne, 1891 Sur l’integration algébrique des équations differentielles
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Impact of Darboux’s paper

“it is evidently sufficient to find an upper limit to the degree of the
integral”.

H. Poincaré, 1891
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Impact of Darboux’s paper

“it is evidently sufficient to find an upper limit to the degree of the
algebraic invariant curves”.

H. Poincaré, 1891
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One more problem

Poincaré’s problem

Given a vector field F with polynomial coefficients, find a bound on the
degree of the algebraic curves invariant under F as a function of some
numerical invariant of F .
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Poincaré’s problem

Given a vector field F with polynomial coefficients, find a bound on the
degree of the algebraic curves invariant under F as a function of some
numerical invariant of F .

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential equations



One more problem
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Part III

The 20th century
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J.-P. Jouanolou, 1979

Reworks Darboux’s results in the language of modern algebraic algebraic
geometry:

detailed study of Jacobi equation in higher dimensions;

bound on the degree of a smooth algebraic curve invariant under a
polynomial vector field;

an algebraic curve invariant under a vector field must contain a
singularity ;

a general equation of degree higher than 2 does not have any
invariant curve.
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Reworks Darboux’s results in the language of modern algebraic algebraic
geometry:

detailed study of Jacobi equation in higher dimensions;

bound on the degree of a smooth algebraic curve invariant under a
polynomial vector field;
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Singularities on invariant curves

Theorem

Let F = (a, b) be a polynomial vector field of degree n for which
yan = xbn. Any algebraic curve invariant under F must contain a
singularity of F .
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Theorem

Let F = (a, b) be a polynomial vector field of degree n for which
yan = xbn.

Any algebraic curve invariant under F must contain a
singularity of F .
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Let F = (a, b) be a polynomial vector field of degree n for which
yan = xbn. Any algebraic curve invariant under F must contain a
singularity of F .

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential equations



Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If h is invariant under F

F · ∇h = gh

for some polynomial g of degree at most n − 1.
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If h is invariant under F

F (p) · ∇h(p) = g(p)h(p)

for some polynomial g of degree at most n− 1 and all singularities p of F .
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Let h be the reduced polynomial in x and y that defines the curve.
If h is invariant under F

F (p)︸︷︷︸
=0

·∇h(p) = g(p)h(p)

for some polynomial g of degree at most n− 1 and all singularities p of F .
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Let h be the reduced polynomial in x and y that defines the curve.
If h is invariant under F and h = 0 contains no singularity of F

0 = g(p)h(p)

for some polynomial g of degree at most n− 1 and all singularities p of F .
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Let h be the reduced polynomial in x and y that defines the curve.
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for some polynomial g of degree at most n− 1 and all singularities p of F .
Thus,
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If h is invariant under F and h = 0 contains no singularity of F

0 = g(p)

for some polynomial g of degree at most n− 1 and all singularities p of F .
Thus,

≤ #({a = 0} ∩ {g = 0}) ≤ deg(a) deg(g)︸ ︷︷ ︸
Bézout’s Theorem

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential equations



Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If h is invariant under F and h = 0 contains no singularity of F

0 = g(p)

for some polynomial g of degree at most n− 1 and all singularities p of F .
Thus,

≤ #({a = 0} ∩ {g = 0}) ≤ n(n − 1)︸ ︷︷ ︸
Bézout’s Theorem
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If h is invariant under F and h = 0 contains no singularity of F

0 = g(p)

for some polynomial g of degree at most n− 1 and all singularities p of F .
Thus,

≤ #({a = 0} ∩ {g = 0}) ≤ n2 − n︸ ︷︷ ︸
Bézout’s Theorem

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential equations



Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If h is invariant under F and h = 0 contains no singularity of F

0 = g(p)

for some polynomial g of degree at most n− 1 and all singularities p of F .
Thus,

n2 − n + 1︸ ︷︷ ︸
number of singularities of F

≤ #({a = 0} ∩ {g = 0}) ≤ n2 − n︸ ︷︷ ︸
Bézout’s Theorem
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Singularities on invariant curves

Let h be the reduced polynomial in x and y that defines the curve.
If h is invariant under F and h = 0 contains no singularity of F

0 = g(p)

for some polynomial g of degree at most n− 1 and all singularities p of F .
Thus,

n2 − n + 1︸ ︷︷ ︸
number of singularities of F

≤ #({a = 0} ∩ {g = 0}) ≤ n2 − n︸ ︷︷ ︸
Bézout’s Theorem

a contradiction.
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The Poincaré problem in the 20th century

Bound on the degree of algebraic invariant curves invariant under a field
F = (a, b) when:

Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;

Carnicer, 1994 the field singularities are dicritical;

Soares, 1997 generalization to higher dimensions
(invariant hypersurfaces in projective space);

Brunella and Mendes, 2000 generalization to higher dimensions
(invariant hypersurfaces in varieties with
trivial Picard group);

Walcher, 2000 the field has nice singularities at infinity and
yan 6= xbn.
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The Poincaré problem in the 20th century

Bound on the degree of algebraic invariant curves invariant under a field
F = (a, b) when:

Cerveau and Lins Neto, 1991 the curve singularities are normal crossings;

Carnicer, 1994 the field singularities are dicritical;

Soares, 1997 generalization to higher dimensions
(invariant hypersurfaces in projective space);

Brunella and Mendes, 2000 generalization to higher dimensions
(invariant hypersurfaces in varieties with
trivial Picard group);

Walcher, 2000 the field has nice singularities at infinity and
yan 6= xbn.

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential equations
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Other 20th century developments

Algebraic curves invariant under a vector field are also relevant to:

Prelle and Singer, 1983 algorithm compute elementary solutions to
Ẋ = F (X );

Singer, 1992 caracterization of Liouvillian solutions of
Ẋ = F (X );

Schlomiuk, 1993 characterization of quadratic fields that have a
centre.
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Ẋ = F (X );

Singer, 1992 caracterization of Liouvillian solutions of
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The existence problem
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In the light of Jouanolou’s result:

before we try to find an algebraic invariant curve for a given
vector field, we should decide if such a curve exists.

Since no efficient necessary and sufficient criterion for the existence of
such curves is known, we will settle for a probabilistic test.
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The existence problem

Theorem (with Menasché Schechter, 2006)

Let F = (a, b) be a vector field with coefficients and degree n for which
yan = xbn. If the generator p = p(x) of

(a, b) ∩Q[x ]

satisfies:

1 p has degree (n − 1)2 + (n − 1) + 1;

2 p is irreducible over Q;

then F has no invariant algebraic curves.

Key point

The x-coordinates of the singularities of F are all of them roots of p.
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Let F = (a, b) be a vector field with rational coefficients and degree n for
which yan = xbn. If the generator p = p(x) of

(a, b) ∩Q[x ]

satisfies:

1 p has degree (n − 1)2 + (n − 1) + 1;

2 p is irreducible over Q;

then F has no invariant algebraic curves.

Key point

The x-coordinates of the singularities of F are all of them roots of p.

S. C. Coutinho Proving the nonexistence of algebraic solutions of differential equations



The existence problem

Theorem (with Menasché Schechter, 2006)
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satisfies:
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Before the proof

Since we are assuming that F has coefficients:

if F has an invariant curve, it must have one with coefficients.

We will proceed by contradiction, assuming that the field F has an
invariant algebraic curve with rational coefficients.
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Since we are assuming that F has rational coefficients:

if F has an invariant curve, it must have one with rational
coefficients.

We will proceed by contradiction, assuming that the field F has an
invariant algebraic curve with rational coefficients.
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The proof: assumptions

F = (a, b) is a field with coefficients;

h = h(x , y) is a polynomial with coefficients;

h = 0 defines a curve invariant under Ẋ = F (X );

p = p(x) generates the ideal (a, b) ∩Q[x ];

p is of degree (n − 1)2 + (n − 1) + 1;
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The proof: preliminaries

p irreducible over Q
⇓

G = Gal(p,Q) acts (a, b) = (p(x), y − q(x))
transitively on the roots of p for some polynomial q(x)

Because p generates (a, b) ∩Q[x ].
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p irreducible over Q
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p irreducible over Q
⇓

G = Gal(p,Q) acts (a, b) = (p(x), y − q(x))
transitively on the roots of p for some polynomial q(x)

⇓
G acts transitively on the set of singularities of F :

g · (x0, q(x0)) = (g(x0), q(g(x0))) for any g ∈ G .
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The proof: core argument

The curve h = 0 and the singularities of F .
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Jouanolou’s theorem: h = 0 must contain a singularity of F .
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G acts transitively on the singularities and h has rational coordinates.
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The proof: core argument

The curve h = 0 and the singularities of F .

.....................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................
.............

......................................................................................................................................................................................................................................

.......................

........................

........................

........................

........................

........................

........................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

.....

...........................................................................................................................................................................................................................................................................................................................................
..........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
.............
••••

•

•

•

••

G acts transitively on the singularities and h has rational coordinates.
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The proof: core argument

The curve h = 0 and the singularities of F .
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Thus, h(p) = 0 whenever F (p) = 0,
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Thus, h(p) = 0 whenever F (p) = 0, but is this possible?
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The proof: punch line

Since G acts transitively on the singularities of F we have that either

h = 0 is smooth;

h = 0 is singular at all the singularities of F .

In both cases the curve cannot contain all the singularities of F , hence the
contradiction.
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Further developments

generalization to fields F = (a, b) for which yan 6= xbn;

leads to a constructive proof that near every field there is one without
algebraic solutions;

the Jacobi equation can be handled in a completely constructive way.
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leads to a constructive proof that near every field there is one without
algebraic solutions;

the Jacobi equation can be handled in a completely constructive way.
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