
The Perrin-McClintock Resolvent,
Solvable Quintics and Plethysms

Frank Grosshans

In his seminal paper of 1771, Lagrange found that certain polynomials of degree
6 called resolvents could be used to determine whether a quintic polynomial
was solvable in radicals. Among the various resolvents later discovered, the
Perrin-McClintock resolvent has some particularly noteworthy properties. We
shall discuss these properties and their application to solvable quintics. The
properties suggest that the Perrin-McClintock resolvent may be unique. We
discuss this question and relate it to the representation theory of the general
linear group, especially zero weight spaces and plethysms of a special form.
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Properties of the Perrin-McClintock Resolvent

Property 1: a polynomial function

d = 1, 2, . . .

f(x, y) =

d∑
i=0

(
d

i

)
aix

d−iyi, ai ∈ C

= a0x
d +

(
d

1

)
a1x

d−1y +

(
d

2

)
a2x

d−2y2 + . . .+

(
d

d

)
ady

d

↔ (a0, a1, . . . , ad)

Vd is vector space over C spanned by all such f(x, y)

A2 = C2 =

{(
λ
µ

)}

The Perrin-McClintock resolvent

a polynomial, K : V5 × A2 → C

K(a0, a1, a2, a3, a4, a5;x, y) =

6∑
j=0

κj(a0, a1, a2, a3, a4, a5)x6−jyj

Rf (x) = K(f,

(
x
1

)
)
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Example 1: f(x) = x5 + 10a2x
3 + 5a4x+ a5 with a4 = 4a2

2

K(f, v) = (3a6
2 + a2a

2
5)x6 − 125a4

2a5x
5y + (4080a7

2 − 15a2
2a

2
5)x4y2

+1000a5
2a5x

3y3 + (960a8
2 + 70a3

2a
2
5)x2y4 + (128a6

2a5 +a2a
3
5)xy5

Example 2: f(x) = x5 + 5x4 + 9x3 + 5x2 − 4x− 5

K(f, v) = 1
80000 (−498x6 − 5900x5y − 22662x4y2 − 41320x3y3 − 36254x2y4

−6860xy5 + 8150y6)

Example 3: f(x) = x5 − 8x4 + 5x3 − 6x2 + 8x− 4

K(f, v) = −5681513x6 + 22679884x5y − 42714844x4y2 + 6325088x3y3

+16299792x2y4 − 18575936xy5 + 5294016y6
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Properties of the Perrin-McClintock Resolvent

Property 2: a covariant

SL(2,C), g =

{(
a b
c d

)
: ad− bc = 1

}
action on Vd

g·x = dx− by

g·y = −cx+ ay

f =

d∑
i=0

(
d

i

)
aix

d−iyi → g·f =

d∑
i=0

(
d

i

)
ai(dx− by)d−i(−cx+ ay)i

action on A2(
a b
c d

)
·
(
λ
µ

)
=

(
aλ+ bµ
cλ+ dµ

)

The covariant property

(1) K(g·f, g·v) = K(f, v) for all g ∈ SL(2,C), f ∈ Vd, v ∈ A2

(2) coeffi cients of x and y terms form irreducible representation of SL(2,C)

(3) source of covariant is K(f,

(
1
0

)
)

completely determines K
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Properties of the Perrin-McClintock Resolvent

The Hessian cubic covariant

g ∈ SL(2,C), g =

(
5 2
17 7

)
action on V3

g·x = 7x− 2y

g·y = −17x+ 5y

f = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3 →
g·f = a0(7x− 2y)3 + 3a1(7x− 2y)2(−17x+ 5y) + 3a2(7x− 2y)(−17x+ 5y)2 + a3(−17x+ 5y)3

action on A2(
5 2
17 7

)
·
(
λ
µ

)
=

(
5λ+ 2µ
17λ+ 7µ

)

H(a0, a1, a2, a3;x, y) = 1
36Det

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)

= (a0a2 − a2
1)x2 + (a0a3 − a1a2)xy + (a1a3 − a2

2)y2
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g =

(
5 2
17 7

)

f = 4x3 + 3× 5x2y + 3× (−6)xy2 + (−1)y3

g·f = −42624x3 + 37128x2y − 10779xy2 + 1043y3

v =

(
8
3

)
; g·v =

(
46
157

)

The covariant property

(1) H(g·f, g·v) = H(f, v) for all g ∈ G, f ∈ Vd, v ∈ A2

H(f, v) = H(4, 5,−6,−1; 8, 3) = −2881

H(g·f, g·v) = H(−42624, 12376,−3593, 1043; 46, 157)

= −2881

(2) coeffi cients of x and y terms form irreducible representation of SL(2,C)

(a0a2 − a2
1), (a0a3 − a1a2), (a1a3 − a2

2)

(3) source of covariant is H(f,

(
1
0

)
) = a0a2 − a2

1

completely determines H

algebraic meaning: H(f, v) = 0 for all v ∈ A2 if and only if there is a linear
form, say g = ax+ by, such that f = g3.

For example, f(x, y) = 64x3 − 144x2y + 108xy2 − 27y3.

H(f, v) ≡ 0, f(x, y) = (4x− 3y)3

[Abdesselam and Chipalkatti]
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Properties of the Perrin-McClintock Resolvent

Property 3: solvable quintics

Theorem. Let f(x) = a0x
5 + 5a1x

4 + 10a2x
3 + 10a3x

2 + 5a4x + a5 be an
irreducible quintic polynomial in Q[x]. Then f(x) is solvable in radicals if and
only if Rf (x) has a rational root or is of degree 5.

Example 2: f(x) = x5 + 5x4 + 9x3 + 5x2 − 4x− 5

K(f, v) = 1
80000 (−498x6 − 5900x5y − 22662x4y2 − 41320x3y3 − 36254x2y4

−6860xy5 + 8150y6)

Rf (x) = 1
80000 (−498x6 − 5900x5 − 22662x4 − 41320x3 − 36254x2

−6860x+ 8150)

has root 1/3. Hence, f(x) is solvable in radicals.

Example 3: f(x) = x5 − 8x4 + 5x3 − 6x2 + 8x− 4

K(f, v) = −5681513x6 + 22679884x5y − 42714844x4y2 + 6325088x3y3+
16299792x2y4 − 18575936xy5 + 5294016y6

Rf (x) = −5681513x6 + 22679884x5 − 42714844x4 + 6325088x3+
16299792x2 − 18575936x+ 5294016

does not have a rational root. Hence, f(x) is not solvable in radicals.

Get elegant way to find solutions in radicals

Cayley to McClintock (McClintock, p.163): "McClintock completes in a very
elegant manner the determination of the roots of the quintic equation . . . ."
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Properties of the Perrin-McClintock Resolvent

Property 4: global information

Problem: use resolvents to obtain global information about solvable quintics

Example 1 (Perrin):

f(x) = a0x
5 + 10a2x

3 + 5a4x+ a5

with a4 = 4a2
2

Rf (x) = (3a6
2 + a2a

2
5)x6 − 125a4

2a5x
5 + (4080a7

2 − 15a2
2a

2
5)x4

+1000a5
2a5x

3 + (960a8
2 + 70a3

2a
2
5)x2 + (128a6

2a5 + a2a
3
5)x

has root 0. Hence, f(x) is solvable in radicals.

Example 2: the McClintock parametrization

Have mapping ϕ, a rational function,

ϕ : A4
Q → A4

Q

(p, r, w, t) → (γ, δ, ε, ζ)

(γ, δ, ε, ζ) identified with f(x) = x5 + 10γx3 + 10δx2 + 5εx+ ζ

The polynomial f(x) is solvable (its resolvent Rf (x) has t as a root).

inverse map exists, rational function
need Rf (x) to have rational root t

diffi culty: if quintic factors, t may be complex or irrational real
so don’t quite parametrize all solvable quintics
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Example 3: Brioschi quintics [Elia]

f(x) = x5 − 10zx3 + 45z2x− z2

Rf (x) = (−z5 + 128z6)x6 + 400z6x5 + (−15z6 − 46080z7)x4

+40000z7x3 + (−95z7 − 51840z8)x2

+(z7 + 1872z8)x− 25z8

If z is a non-zero integer, then f(x) is solvable in radicals.

Example 4: subject to certain explicitly defined polynomials not vanishing, if
f0 is an irreducible quintic such that Rf0 has a root t0 ∈ R, then every Euclidean
open neighborhood of f0 contains a solvable quintic.
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Dickson’s Factorization

Action of S5

S5: symmetric group on 5 letters

Action of S5 on polynomials

f(x1, x2, x3, x4, x5) ∈ Z[x1, x2, x3, x4, x5]

σ ∈ S5

σ·f = f(xσ1, xσ2, xσ3, xσ4, xσ5)

Example

f = x1x2 − x1x3 + x2x3 − x1x4 − x2x4 + x3x4 + x1x5 − x2x5 − x3x5 + x4x5

σ = (132)

σ·f = x3x1−x3x2 +x1x2−x3x4−x1x4 +x2x4 +x3x5−x1x5−x2x5 +x4x5
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Dickson’s Factorization

The group F20

S5: symmetric group on 5 letters

F20: subgroup of S5 generated by (12345) and (2354)

S5 =
6⋃
i=1

τ iF20

τ1 = (1), τ2 = (12), τ3 = (13), τ4 = (23), τ5 = (123), τ6 = (132)

Theorem. Let f(x) ∈ Q[x] be an irreducible quintic. Then f(x) is solvable in
radicals if and only if its Galois group is conjugate to a subgroup of F20.

Problem: extend resolvent program to polynomials of higher degree. (What
replaces F20?)
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Dickson’s Factorization

Malfatti’s resolvent

Φ(x1, x2, x3, x4, x5) = x1x2 − x1x3 + x2x3 − x1x4 − x2x4 + x3x4 + x1x5 − x2x5 − x3x5 + x4x5

= (x1 − x5)(x2 − x5) + (x2 − x5)(x3 − x5) + (x3 − x5)(x4 − x5)

−(x2 − x5)(x4 − x5)− (x4 − x5)(x1 − x5)− (x1 − x5)(x3 − x5)

Properties:

(1) homogeneous of degree 2 in x1, x2, x3, x4, x5

(2) for any β ∈ C, Φ(x1+β, x2+β, x3+β, x4+β, x5+β) = Φ(x1, x2, x3, x4, x5)

(3) highest power to which any xi appears is 1

(4) (12345)Φ = Φ
(2354)Φ = −Φ

Note: Malfatti resolvent, put Φ2 = Θ

R(x) = (x−Θ)(x− τ2Θ)(x− τ3Θ)(x− τ4Θ)(x− τ5Θ)(x− τ6Θ)

polynomial in a′is
rational root if and only if f(x) solvable in radicals
for resolvents of this form, lowest possible degree in Θ
rediscovered by Jacobi (1835), Cayley (1861), Dummit (1991)
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Dickson’s Factorization

Roots of the resolvent

S5 =
6⋃
i=1

τ iF20

τ1 = (1), τ2 = (12), τ3 = (13), τ4 = (23), τ5 = (123), τ6 = (132)

The Malfatti resolvent

Φ(x1, x2, x3, x4, x5) = x1x2 − x1x3 + x2x3 − x1x4 − x2x4 + x3x4 + x1x5 − x2x5 − x3x5 + x4x5

= (x1 − x5)(x2 − x5) + (x2 − x5)(x3 − x5) + (x3 − x5)(x4 − x5)

−(x2 − x5)(x4 − x5)− (x4 − x5)(x1 − x5)− (x1 − x5)(x3 − x5)

Ψ(x1, x2, x3, x4, x5) = (x1x2x3x4x5)Φ(1/x1, 1/x2, 1/x3, 1/x4, 1/x5)

where does Ψ come from?

need highest power to which a root appears in Φ is ≤ 1

homogeneous of degree 3 in x1, x2, x3, x4, x5

Perrin-McClintock resolvent: for i = 1, 2, 3, 4, 5, 6, put Φi = τ iΦ, Ψi = τ iΨ

K(f ; v) = a6
0

6∏
i=1

((τ iΦ)x− (τ iΨ)y)

= a6
0(

6∏
i=1

(τ iΦ))

6∏
i=1

(x− ((τ iΨ)/(τ iΦ))y)
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Constructing resolvents

Setting I: covariants

Find covariants of the form

K(f ; v) = am0

6∏
i=1

((τ iΦ)x− (τ iΨ)y)

with

(1) Φ(x1, x2, x3, x4, x5) homogeneous of degree w ≡ 2(mod 5) in x1, x2, x3, x4, x5

(2) highest power to which a root appears in Φ is ≤ d = 2w+1
5

(3) for any β ∈ C, Φ(x1+β, x2+β, x3+β, x4+β, x5+β) = Φ(x1, x2, x3, x4, x5)

(4) (12345)Φ = Φ
(2354)Φ = −Φ

Ψ(x1, x2, x3, x4, x5) = (x1x2x3x4x5)dΦ(−1/x1,−1/x2,−1/x3,−1/x4,−1/x5)

Recall: source determines covariant.

source is am0
6∏
i=1

((τ iΦ)
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Constructing resolvents

Setting II: polynomials in roots

For w ≡ 2(mod 5), put d = 2w+1
5 . Find Φ(x1, x2, x3, x4, x5)

(1) homogeneous of degree w in x1, x2, x3, x4, x5

(2) the highest power to which any xi appears in Φ is ≤ d

(3) for any β ∈ C, Φ(x1+β, x2+β, x3+β, x4+β, x5+β) = Φ(x1, x2, x3, x4, x5)

(4) (12345)Φ = Φ
(2354)Φ = −Φ

For covariant, need w ≡ 2(mod 5)

Malfatti is only such polynomial of degree 2
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Problems.

1. no SL2(C) action

(
a b
c d

)
·xi = (dxi − b)/(−cxi + a)

(
0 1
−1 0

)
·xi = −1/xi

2. the highest power to which any xi appears in Φ is ≤ d

f(x1, . . . , xp) ∈ Z[x1, . . . , xp], f =
∑
λ(a)x

a1
1 . . . x

ap
p

R(f) = max{ai : 1 ≤ i ≤ p, λ(a) 6= 0}

If f(x1, . . . , xp) is symmetric in x1, . . . , xp, then f(x1, . . . , xp) =
∑
τ (b)σ

b1
1 . . . σ

bp
p

σi = ith elementary symmetric function.

D(f) = max{b1 + . . .+ bp : τ (b) 6= 0}

Theorem. If f(x1, . . . , xp) is symmetric in x1, . . . , xp, then R(f) = D(f).
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Constructing resolvents

Setting III: matrix variables

Translation:

For d ≡ 1(mod 2), find matrix polynomials F̃
((

x̃1 x̃2 x̃3 x̃4 x̃5

ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

))
,

(1) F̃ is homogenous of degree d in each column, i.e.,

F̃ =
∑

c(e)x̃
e1
1 ỹ

d−e1
1 . . . x̃e55 ỹ

d−e5
5

(2) F̃ is left U -invariant, i.e.,

F̃

((
1 β
0 1

)(
x̃1 x̃2 x̃3 x̃4 x̃5

ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

))
= F̃

(
x̃1 x̃2 x̃3 x̃4 x̃5

ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

)
or∑
c(e)(x̃1 + βỹ1)e1 ỹd−e11 . . . (x̃5 + βỹ5)e5 ỹd−e55 =

∑
c(e)x̃

e1
1 ỹ

d−e1
1 . . . x̃e55 ỹ

d−e5
5
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(3) F̃ has left T -weight 1, i.e., 5d− 2(e1 + e2 + e4 + e4 + e5) = 1

or

F̃

((
λ 0
0 1/λ

)(
x̃1 x̃2 x̃3 x̃4 x̃5

ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

))
= 1

λ F̃

(
x̃1 x̃2 x̃3 x̃4 x̃5

ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

)

or

∑
c(e)(λx̃1+

1

λ
ỹ1)e1 ỹd−e11 . . . (λx̃5+

1

λ
ỹ5)e5 ỹd−e55 =

1

λ

∑
c(e)x̃

e1
1 ỹ

d−e1
1 . . . x̃e55 ỹ

d−e5
5

(4) S5 acts on vector variables by permuting columns

(12345)F̃ = F̃

(2354)F̃ = −F̃

F̃

((
x̃2 x̃3 x̃4 x̃5 x̃1

ỹ2 ỹ3 ỹ4 ỹ5 ỹ1

))
= F̃

((
x̃1 x̃2 x̃3 x̃4 x̃5

ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

))

F̃

((
x̃1 x̃3 x̃5 x̃2 x̃4

ỹ1 ỹ3 ỹ5 ỹ2 ỹ4

))
= −F̃

((
x̃1 x̃2 x̃3 x̃4 x̃5

ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

))
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Constructing resolvents

equivalences

Setting I: find covariants of the form K(f ; v) = am0
6∏
i=1

((τ iΦ)x− (τ iΨ)y)

Setting II: find Φ(x1, x2, x3, x4, x5)

Setting III: find matrix polynomials F̃

Definition. For i = 1, 2, let Ki : V5×A2 → C be covariants as in Setting I. Say
K1 ∼ K2 if and only if there are µ̃, ρ̃ ∈ C[V5]SL2(C) with µ̃K1(x, y) = ρ̃K2(x, y).

Let Φ and Φ́ be as in Setting II. Say Φ ∼ Φ́ if and only if Ψ
Φ = Ψ́

Φ́ .

Setting I and Setting II:

K = am0
6∏
i=1

((τ iΦ)x− (τ iΨ)y), Ḱ = aḿ0
6∏
i=1

((τ iΦ́)x− (τ iΨ́)y)

K ∼ Ḱ if and only if Φ ∼ Φ́

Setting II and Setting III: there is vector space isomorphism between

Φ homogeneous of degree w

F̃ homogeneous of degree 2w + 1

also, have algebra homomorphism

have mapping Ω : C
[
x̃1 x̃2 x̃3 x̃4 x̃5

ỹ1 ỹ2 ỹ3 ỹ4 ỹ5

]
→ C[x1, x2, x4, x4, x5]

x̃i → xi, ỹi → 1
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Constructing resolvents

finitely generated modules

Rw ⊂ C[x1, x2, x3, x4, x5]

For w ≡ 0(mod 5), w ≥ 0, Rw is vector space spanned by all linear
combinations Φ of products (xi1 − xj1) . . . (xiw − xjw) such that

(1) each xi appears 2w
5 times in every product

(2) (12345)Φ = Φ, (2354)Φ = Φ

R =
⊕
Rw

Mw ⊂ C[x1, x2, x3, x4, x5]

For w ≡ 2(mod 5), w ≥ 0,Mw is vector space spanned by Φ(x1, x2, x3, x4, x5)

(1) homogeneous of degree w in x1, x2, x3, x4, x5

(2) the highest power to which any xi appears in Φ is ≤ 2w+1
5

(3) for any β ∈ C, Φ(x1+β, x2+β, x3+β, x4+β, x5+β) = Φ(x1, x2, x3, x4, x5)

(4) (12345)Φ = Φ, (2354)Φ = −Φ

M =
⊕
Mw
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Theorem. (a) R is finitely generated C-algebra.

(b) ∆ = Φ2Ψ7 − Φ7Ψ2 6= 0 and is in R.

(c) Φ ∈M,Φ = r1
∆ Φ2 + r2

∆ Φ7

(d) M is finitely generated R-module

(e) dimQ(R)M ⊗R Q(R) = 2

21



Poincaré series

Hilbert - Serre theorem

Recall R =
⊕
Rw, is finitely generated C-algebra

M =
⊕
Mw, Mw polynomials as in Setting II

is finitely generated R-module

Poincaré series: P (M, t) =
∞∑

w≡2(mod 5)

dimMw

Theorem (Hilbert, Serre, applied here). Let γ be the number of generators of
R. Then

P (M, t) =
f(t)

γ∏
i=1

(1− tdi)

for suitable positive integers di and f(t) ∈ Z[t].

Problem: determine P (M, t).

Determine dimMw.
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Poincaré series

GLm −GLn duality

to understand:

(2) F̃ is left U -invariant

(3) F̃ has left T -weight 1

Tr ⊂ GLr; subgroup consisting of diagonal matrices

Ur ⊂ GLr; subgroup consisting of upper triangular matrices, 1’s on diagonal

A highest weight of an irreducible polynomial representation ofGLr with respect
to the Borel subgroup TrUr is a character of the form χ = e1χ1 + · · · + erχr
where e1 ≥ . . . ≥ er ≥ 0. If e` is the last non-zero ei, we say that the highest
weight χ has depth `.

Theorem (GLm − GLn duality) [Howe, Section 2.1.2]. Let U and V be
finite-dimensional vector spaces over C. The symmetric algebra S(U ⊗ V ) is
multiplicity-free as a GL(U)×GL(V ) module. Precisely, we have a decomposi-
tion

S(U ⊗ V ) =
∑
D

ρDU ⊗ ρDV

of GL(U)×GL(V )-modules. Here D varies over all highest weights of depth at
most min{dimU, dimV }.
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Translation

M2,5: the algebra consisting of all 2× 5 matrices with entries in C.

GL2 acts on M2,5 by left multiplication: g·m = gm for all g ∈ GL2 and m ∈
M2,5.

GL5 acts on M2,5 by right multiplication: g·m = mg−1 for all g ∈ GL5 and
m ∈M2,5.

These actions commute and give an action of G = GL2 × GL5 on M2,5 and
C[M2,5].

M2,5 ↔ A2 ⊗ (A5)∗

C[M2,5]↔ S((A2)∗ ⊗ A5)

Suppose that d ≡ 1(mod 2), 5d = 2w + 1 and that

(2) F̃ is left U -invariant

(3) F̃ has left T -weight 1

then: the terms F̃ = ṽ ⊗ VD appear when

ṽ: highest weight vector of irreducible representation GL2, highest weight
(w + 1)χ1 + wχ2

ρDV is irreducible representation of GL5, highest weight (w + 1)χ1 + wχ2

Note. can explicitly construct the invariants F̃ in terms of determinants using
Young diagrams and straightening [Pommerening].
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Poincaré series

Zero weight space

to understand:

(1) F̃ is homogenous of degree d in each column

recall: w ≡ 2(mod 5), 5d = 2w + 1

T5 =




a1 0 0 0 0
0 a2 0 0 0
0 0 a3 0 0
0 0 0 a4 0
0 0 0 0 a5


 , U5 :




1 a12 a13 a14 a15

0 1 a23 a24 a25

0 0 1 a34 a35

0 0 0 1 a45

0 0 0 0 1


 ,

ρ : GL5 → GL(V )

V0 = {v ∈ V : ρ(t)v = (a1a2a3a4a5)ev}= 0 weight space of V

translation: F̃ ∈ C[M2,5], t ∈ T5, m = (v1, . . . , v5) ∈M2,5

(t·F̃ )(v1, . . . , v5) = F̃ ((v1, . . . , v5)t)

= F̃ (a1v1, . . . , a5v5)

= (a1a2a3a4a5)d F̃ (v1, . . . , v5)
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Proposition. Let w ≡ 2(mod 5) and d = 2w+1
5 . Let ρ : GL5 → GL(V ) be the

irreducible representation having highest weight (w + 1)χ1 + wχ2. The vector
space consisting of all F̃ ∈ C[M2,5] such that

(1) F̃ is homogenous of degree d in each column,

(2) F̃ is left U -invariant,

(3) F̃ has left T -weight 1

is isomorphic to the 0-weight space of V .
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Poincaré series

S5 action on zero weight space

to understand:

(4) (12345)F̃ = F̃ , (2354)F̃ = −F̃

S5 acts on 0−weight space, V0

V0 =
⊕

mχVχ

Vχ runs over all irreducible representations of S5

mχ is multiplicity with which Vχ appears in V0

S5 has 7 irreducible representations

[5], [41], [32], [312], [221], [213], [15]

ρ̃ : F20 → {±1}

ρ̃(12345) = 1
ρ̃(2354) = −1.

ρ̃ appears with multiplicity 1 in both [3 2] and [15]. It does not appear in any
of the other 5 irreducible representations.
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Proposition. Let w ≡ 2(mod 5) and d = 2w+1
5 . Let ρ : GL5 → GL(V ) be the

irreducible representation having highest weight (w + 1)χ1 + wχ2. The vector
space consisting of all F̃ ∈ C[M2,5] such that

(1) F̃ is homogenous of degree d in each column,

(2) F̃ is left U -invariant,

(3) F̃ has left T -weight 1,

(4) (12345)F̃ = F̃ and (2354)F̃ = −F̃

is isomorphic to the vector space consisting of vectors v in the 0-weight space
of V which satisfy (12345)v = v and (2354)v = −v.

The dimension of this vector space is the sum of the multiplicities with which
[15] and [3 2] appear in the representation of S5 on the 0-weight space of V .
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Poincaré series

plethysms

[Littlewood, p. 204: "induced matrix of an invariant matrix"]
ρ : GLn → GLm (irreducible representation)
σ : GLm → GLp (irreducible representation)
(σ ◦ ρ) : GLn → GLp (reducible representation)
process to decompose into irreducibles, plethysm

[Gay, Gutkin] µ : representation of S5 corresponding to [15] or [3 2].

Consider H = Sd × Sd × Sd × Sd × Sd. Then, NS5d(H)/H ' S5.

µ representation of S5, is representation of NS5d(H)

the multiplicity with which µ = [15] or [3 2] appears in the representation
of S5 on V0 is the multiplicity with which [(w + 1) w] appears in the
representation µ̂S5d of S5d induced from µ

This is a plethysm [Macdonald, pp.135/6] denoted by [15] ◦ [d] (resp. [3 2] ◦ [d]).
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There are special features of this plethysm which greatly simplify the usual
calculations. For example, we obtain the following results:

w multiplicity of [15] multiplicity of [3 2]
2 0 1
7 0 1
12 0 2
17 0 4
22 1 6
27 1 8
32 1 11
507 425 2176

10842 195843 980298

From the standpoint of solving equations, the representation [15] is not in-
teresting; the corresponding resolvent is a(x− by)6.

Theorem. Let w ≡ 2(mod 5) and d = 2w+1
5 . Let ρ : GL5 → GL(V ) be the

irreducible representation having highest weight (w + 1)χ1 + wχ2. The vector
space consisting of all F̃ ∈ C[M2,5] such that

(1) F̃ is homogenous of degree d in each column,

(2) F̃ is left U -invariant,

(3) F̃ has left T -weight 1,

(4) (12345)F̃ = F̃ and (2354)F̃ = −F̃

is isomorphic to the vector space consisting of vectors v in the 0-weight space
of V which satisfy (12345)v = v and (2354)v = −v.

The dimension of this vector space is the sum of the multiplicities with which
[15] and [3 2] appear in the representation of S5 on the 0-weight space of V . The
dimension can be found by calculating the plethysms [15] ◦ [d] and [3 2] ◦ [d].
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Using the Theorems and plethysm considerations, can show there are infinitely
many non-equivalent covariants of Perrin-McClintock type (Setting I).

It also seems likely that there are infinitely many non-equivalent covariants of
Perrin-McClintock type for which Ψ/Φ is fixed by F20 and not by S5 so we get
resolvents for deciding solvability.
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