The Perrin-McClintock Resolvent, Solvable Quintics and Plethysms

Frank Grosshans

In his seminal paper of 1771, Lagrange found that certain polynomials of degree 6 called resolvents could be used to determine whether a quintic polynomial was solvable in radicals. Among the various resolvents later discovered, the Perrin-McClintock resolvent has some particularly noteworthy properties. We shall discuss these properties and their application to solvable quintics. The properties suggest that the Perrin-McClintock resolvent may be unique. We discuss this question and relate it to the representation theory of the general linear group, especially zero weight spaces and plethysms of a special form.

Properties of the Perrin-McClintock Resolvent

Property 1: a polynomial function

$$
\begin{aligned}
& d=1,2, \ldots \\
& \begin{aligned}
f(x, y) & =\sum_{i=0}^{d}\binom{d}{i} a_{i} x^{d-i} y^{i}, \quad a_{i} \in \mathbb{C} \\
& =a_{0} x^{d}+\binom{d}{1} a_{1} x^{d-1} y+\binom{d}{2} a_{2} x^{d-2} y^{2}+\ldots+\binom{d}{d} a_{d} y^{d} \\
& \leftrightarrow\left(a_{0}, a_{1}, \ldots, a_{d}\right)
\end{aligned}
\end{aligned}
$$

V_{d} is vector space over \mathbb{C} spanned by all such $f(x, y)$

$$
\mathbb{A}^{2}=\mathbb{C}^{2}=\left\{\binom{\lambda}{\mu}\right\}
$$

The Perrin-McClintock resolvent
a polynomial, $K: V_{5} \times \mathbb{A}^{2} \rightarrow \mathbb{C}$

$$
K\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5} ; x, y\right)=\sum_{j=0}^{6} \kappa_{j}\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) x^{6-j} y^{j}
$$

$R_{f}(x)=K\left(f,\binom{x}{1}\right)$

Example 1: $f(x)=x^{5}+10 a_{2} x^{3}+5 a_{4} x+a_{5}$ with $a_{4}=4 a_{2}^{2}$
$K(f, v)=\left(3 a_{2}^{6}+a_{2} a_{5}^{2}\right) x^{6}-125 a_{2}^{4} a_{5} x^{5} y+\left(4080 a_{2}^{7}-15 a_{2}^{2} a_{5}^{2}\right) x^{4} y^{2}$

$$
+1000 a_{2}^{5} a_{5} x^{3} y^{3}+\left(960 a_{2}^{8}+70 a_{2}^{3} a_{5}^{2}\right) x^{2} y^{4}+\left(128 a_{2}^{6} a_{5}+a_{2} a_{5}^{3}\right) x y^{5}
$$

Example 2: $f(x)=x^{5}+5 x^{4}+9 x^{3}+5 x^{2}-4 x-5$

$$
\begin{gathered}
K(f, v)=\frac{1}{80000}\left(-498 x^{6}-5900 x^{5} y-22662 x^{4} y^{2}-41320 x^{3} y^{3}-36254 x^{2} y^{4}\right. \\
\left.-6860 x y^{5}+8150 y^{6}\right)
\end{gathered}
$$

Example 3: $f(x)=x^{5}-8 x^{4}+5 x^{3}-6 x^{2}+8 x-4$

$$
\begin{gathered}
K(f, v)=-5681513 x^{6}+22679884 x^{5} y-42714844 x^{4} y^{2}+6325088 x^{3} y^{3} \\
+16299792 x^{2} y^{4}-18575936 x y^{5}+5294016 y^{6}
\end{gathered}
$$

Properties of the Perrin-McClintock Resolvent

Property 2: a covariant

$$
\begin{aligned}
& S L(2, \mathbb{C}), g=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a d-b c=1\right\} \\
& \text { action on } V_{d} \\
& g \cdot x=d x-b y \\
& g \cdot y=-c x+a y \\
& \qquad f=\sum_{i=0}^{d}\binom{d}{i} a_{i} x^{d-i} y^{i} \rightarrow g \cdot f=\sum_{i=0}^{d}\binom{d}{i} a_{i}(d x-b y)^{d-i}(-c x+a y)^{i}
\end{aligned}
$$

action on \mathbb{A}^{2}
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot\binom{\lambda}{\mu}=\binom{a \lambda+b \mu}{c \lambda+d \mu}$

The covariant property
(1) $K(g \cdot f, g \cdot v)=K(f, v)$ for all $g \in S L(2, \mathbb{C}), f \in V_{d}, v \in \mathbb{A}^{2}$
(2) coefficients of x and y terms form irreducible representation of $S L(2, \mathbb{C})$
(3) source of covariant is $K\left(f,\binom{1}{0}\right)$
completely determines K

Properties of the Perrin-McClintock Resolvent

The Hessian cubic covariant

$$
\begin{aligned}
& g \in S L(2, \mathbb{C}), g=\left(\begin{array}{cc}
5 & 2 \\
17 & 7
\end{array}\right) \\
& \text { action on } V_{3} \\
& g \cdot x=7 x-2 y \\
& g \cdot y=-17 x+5 y \\
& \\
& \qquad=a_{0} x^{3}+3 a_{1} x^{2} y+3 a_{2} x y^{2}+a_{3} y^{3} \rightarrow \\
& g \cdot f=a_{0}(7 x-2 y)^{3}+3 a_{1}(7 x-2 y)^{2}(-17 x+5 y)+3 a_{2}(7 x-2 y)(-17 x+5 y)^{2}+a_{3}(-17 x+5 y)^{3}
\end{aligned}
$$

action on \mathbb{A}^{2}
$\left(\begin{array}{cc}5 & 2 \\ 17 & 7\end{array}\right) \cdot\binom{\lambda}{\mu}=\binom{5 \lambda+2 \mu}{17 \lambda+7 \mu}$
$H\left(a_{0}, a_{1}, a_{2}, a_{3} ; x, y\right)=\frac{1}{36} \operatorname{Det}\left(\begin{array}{cc}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}\end{array}\right)$
$=\left(a_{0} a_{2}-a_{1}^{2}\right) x^{2}+\left(a_{0} a_{3}-a_{1} a_{2}\right) x y+\left(a_{1} a_{3}-a_{2}^{2}\right) y^{2}$

$$
\begin{aligned}
& g=\left(\begin{array}{cc}
5 & 2 \\
17 & 7
\end{array}\right) \\
& f=4 x^{3}+3 \times 5 x^{2} y+3 \times(-6) x y^{2}+(-1) y^{3} \\
& g \cdot f=-42624 x^{3}+37128 x^{2} y-10779 x y^{2}+1043 y^{3} \\
& v=\binom{8}{3} ; g \cdot v=\binom{46}{157}
\end{aligned}
$$

The covariant property
(1) $H(g \cdot f, g \cdot v)=H(f, v)$ for all $g \in G, f \in V_{d}, v \in \mathbb{A}^{2}$
$H(f, v)=H(4,5,-6,-1 ; 8,3)=-2881$
$H(g \cdot f, g \cdot v)=H(-42624,12376,-3593,1043 ; 46,157)$

$$
=-2881
$$

(2) coefficients of x and y terms form irreducible representation of $S L(2, \mathbb{C})$

$$
\left(a_{0} a_{2}-a_{1}^{2}\right),\left(a_{0} a_{3}-a_{1} a_{2}\right),\left(a_{1} a_{3}-a_{2}^{2}\right)
$$

(3) source of covariant is $H\left(f,\binom{1}{0}\right)=a_{0} a_{2}-a_{1}^{2}$ completely determines H
algebraic meaning: $H(f, v)=0$ for all $v \in \mathbb{A}^{2}$ if and only if there is a linear form, say $g=a x+b y$, such that $f=g^{3}$.

For example, $f(x, y)=64 x^{3}-144 x^{2} y+108 x y^{2}-27 y^{3}$.

$$
H(f, v) \equiv 0, f(x, y)=(4 x-3 y)^{3}
$$

[Abdesselam and Chipalkatti]

Properties of the Perrin-McClintock Resolvent

Property 3: solvable quintics

Theorem. Let $f(x)=a_{0} x^{5}+5 a_{1} x^{4}+10 a_{2} x^{3}+10 a_{3} x^{2}+5 a_{4} x+a_{5}$ be an irreducible quintic polynomial in $\mathbb{Q}[x]$. Then $f(x)$ is solvable in radicals if and only if $R_{f}(x)$ has a rational root or is of degree 5 .

Example 2: $f(x)=x^{5}+5 x^{4}+9 x^{3}+5 x^{2}-4 x-5$

$$
\begin{aligned}
& K(f, v)=\frac{1}{80000}\left(-498 x^{6}-5900 x^{5} y-22662 x^{4} y^{2}-41320 x^{3} y^{3}-36254 x^{2} y^{4}\right. \\
& \left.\quad-6860 x y^{5}+8150 y^{6}\right) \\
& R_{f}(x)=\frac{1}{80000}\left(-498 x^{6}-5900 x^{5}-22662 x^{4}-41320 x^{3}-36254 x^{2}\right. \\
& \quad-6860 x+8150)
\end{aligned}
$$

Example 3: $f(x)=x^{5}-8 x^{4}+5 x^{3}-6 x^{2}+8 x-4$

$$
\begin{gathered}
K(f, v)=-5681513 x^{6}+22679884 x^{5} y-42714844 x^{4} y^{2}+6325088 x^{3} y^{3}+ \\
16299792 x^{2} y^{4}-18575936 x y^{5}+5294016 y^{6} \\
R_{f}(x)=-5681513 x^{6}+22679884 x^{5}-42714844 x^{4}+6325088 x^{3}+ \\
16299792 x^{2}-18575936 x+5294016
\end{gathered}
$$ does not have a rational root. Hence, $f(x)$ is not solvable in radicals.

Get elegant way to find solutions in radicals

Cayley to McClintock (McClintock, p.163): "McClintock completes in a very elegant manner the determination of the roots of the quintic equation"

Properties of the Perrin-McClintock Resolvent

Property 4: global information

Problem: use resolvents to obtain global information about solvable quintics

Example 1 (Perrin):

$$
\begin{aligned}
& f(x)=a_{0} x^{5}+10 a_{2} x^{3}+5 a_{4} x+a_{5} \\
& \text { with } a_{4}=4 a_{2}^{2} \\
& R_{f}(x)=\left(3 a_{2}^{6}+a_{2} a_{5}^{2}\right) x^{6}-125 a_{2}^{4} a_{5} x^{5}+\left(4080 a_{2}^{7}-15 a_{2}^{2} a_{5}^{2}\right) x^{4} \\
&+1000 a_{2}^{5} a_{5} x^{3}+\left(960 a_{2}^{8}+70 a_{2}^{3} a_{5}^{2}\right) x^{2}+\left(128 a_{2}^{6} a_{5}+a_{2} a_{5}^{3}\right) x
\end{aligned}
$$

has root 0 . Hence, $f(x)$ is solvable in radicals.

Example 2: the McClintock parametrization
Have mapping φ, a rational function,

$$
\begin{aligned}
\varphi & : \mathbb{A}_{\mathbb{Q}}^{4} \rightarrow \mathbb{A}_{\mathbb{Q}}^{4} \\
(p, r, w, t) & \rightarrow(\gamma, \delta, \varepsilon, \zeta) \\
(\gamma, \delta, \varepsilon, \zeta) \text { identified with } f(x) & =x^{5}+10 \gamma x^{3}+10 \delta x^{2}+5 \varepsilon x+\zeta
\end{aligned}
$$

The polynomial $f(x)$ is solvable (its resolvent $R_{f}(x)$ has t as a root).
inverse map exists, rational function need $R_{f}(x)$ to have rational root t
difficulty: if quintic factors, t may be complex or irrational real so don't quite parametrize all solvable quintics

Example 3: Brioschi quintics [Elia]

$$
\begin{gathered}
f(x)=x^{5}-10 z x^{3}+45 z^{2} x-z^{2} \\
\left.R_{f}(x)=\quad \begin{array}{l}
\left(-z^{5}+128 z^{6}\right) x^{6}+400 z^{6} x^{5}+\left(-15 z^{6}-46080 z^{7}\right) x^{4} \\
\\
\\
\\
\\
+40000 z^{7} x^{3}+\left(-95 z^{7}-51840 z^{8}\right) x^{2} \\
\end{array}+1872 z^{8}\right) x-25 z^{8}
\end{gathered}
$$

If z is a non-zero integer, then $f(x)$ is solvable in radicals.

Example 4: subject to certain explicitly defined polynomials not vanishing, if f_{0} is an irreducible quintic such that $R_{f_{0}}$ has a root $t_{0} \in \mathbb{R}$, then every Euclidean open neighborhood of f_{0} contains a solvable quintic.

Dickson's Factorization

Action of S_{5}

S_{5} : symmetric group on 5 letters

Action of S_{5} on polynomials

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right] \\
& \sigma \in S_{5} \\
& \sigma \cdot f=f\left(x_{\sigma 1}, x_{\sigma 2}, x_{\sigma 3}, x_{\sigma 4}, x_{\sigma 5}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& f=x_{1} x_{2}-x_{1} x_{3}+x_{2} x_{3}-x_{1} x_{4}-x_{2} x_{4}+x_{3} x_{4}+x_{1} x_{5}-x_{2} x_{5}-x_{3} x_{5}+x_{4} x_{5} \\
& \sigma=(132) \\
& \sigma \cdot f=x_{3} x_{1}-x_{3} x_{2}+x_{1} x_{2}-x_{3} x_{4}-x_{1} x_{4}+x_{2} x_{4}+x_{3} x_{5}-x_{1} x_{5}-x_{2} x_{5}+x_{4} x_{5}
\end{aligned}
$$

Dickson's Factorization

The group F_{20}

S_{5} : symmetric group on 5 letters
F_{20} : subgroup of S_{5} generated by (12345) and (2354)

$$
\begin{aligned}
& S_{5}=\bigcup_{i=1}^{6} \tau_{i} F_{20} \\
& \\
& \quad \tau_{1}=(1), \tau_{2}=(12), \tau_{3}=(13), \tau_{4}=(23), \tau_{5}=(123), \tau_{6}=(132)
\end{aligned}
$$

Theorem. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible quintic. Then $f(x)$ is solvable in radicals if and only if its Galois group is conjugate to a subgroup of F_{20}.

Problem: extend resolvent program to polynomials of higher degree. (What replaces F_{20} ?)

Dickson's Factorization

Malfatti's resolvent

$$
\begin{aligned}
\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)= & x_{1} x_{2}-x_{1} x_{3}+x_{2} x_{3}-x_{1} x_{4}-x_{2} x_{4}+x_{3} x_{4}+x_{1} x_{5}-x_{2} x_{5}-x_{3} x_{5}+x_{4} x_{5} \\
= & \left(x_{1}-x_{5}\right)\left(x_{2}-x_{5}\right)+\left(x_{2}-x_{5}\right)\left(x_{3}-x_{5}\right)+\left(x_{3}-x_{5}\right)\left(x_{4}-x_{5}\right) \\
& -\left(x_{2}-x_{5}\right)\left(x_{4}-x_{5}\right)-\left(x_{4}-x_{5}\right)\left(x_{1}-x_{5}\right)-\left(x_{1}-x_{5}\right)\left(x_{3}-x_{5}\right)
\end{aligned}
$$

Properties:
(1) homogeneous of degree 2 in $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
(2) for any $\beta \in \mathbb{C}, \Phi\left(x_{1}+\beta, x_{2}+\beta, x_{3}+\beta, x_{4}+\beta, x_{5}+\beta\right)=\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
(3) highest power to which any x_{i} appears is 1
(4) $(12345) \Phi=\Phi$
$(2354) \Phi=-\Phi$

Note: Malfatti resolvent, put $\Phi^{2}=\Theta$

$$
R(x)=(x-\Theta)\left(x-\tau_{2} \Theta\right)\left(x-\tau_{3} \Theta\right)\left(x-\tau_{4} \Theta\right)\left(x-\tau_{5} \Theta\right)\left(x-\tau_{6} \Theta\right)
$$

polynomial in $a_{i}^{\prime} s$
rational root if and only if $f(x)$ solvable in radicals for resolvents of this form, lowest possible degree in Θ rediscovered by Jacobi (1835), Cayley (1861), Dummit (1991)

Dickson's Factorization

Roots of the resolvent

$$
\begin{aligned}
& S_{5}=\bigcup_{i=1}^{6} \tau_{i} F_{20} \\
& \\
& \quad \tau_{1}=(1), \tau_{2}=(12), \tau_{3}=(13), \tau_{4}=(23), \tau_{5}=(123), \tau_{6}=(132)
\end{aligned}
$$

The Malfatti resolvent

$$
\begin{aligned}
\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)= & x_{1} x_{2}-x_{1} x_{3}+x_{2} x_{3}-x_{1} x_{4}-x_{2} x_{4}+x_{3} x_{4}+x_{1} x_{5}-x_{2} x_{5}-x_{3} x_{5}+x_{4} x_{5} \\
= & \left(x_{1}-x_{5}\right)\left(x_{2}-x_{5}\right)+\left(x_{2}-x_{5}\right)\left(x_{3}-x_{5}\right)+\left(x_{3}-x_{5}\right)\left(x_{4}-x_{5}\right) \\
& -\left(x_{2}-x_{5}\right)\left(x_{4}-x_{5}\right)-\left(x_{4}-x_{5}\right)\left(x_{1}-x_{5}\right)-\left(x_{1}-x_{5}\right)\left(x_{3}-x_{5}\right) \\
\Psi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)= & \left(x_{1} x_{2} x_{3} x_{4} x_{5}\right) \Phi\left(1 / x_{1}, 1 / x_{2}, 1 / x_{3}, 1 / x_{4}, 1 / x_{5}\right)
\end{aligned}
$$ where does Ψ come from? need highest power to which a root appears in Φ is ≤ 1 homogeneous of degree 3 in $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$

Perrin-McClintock resolvent: for $i=1,2,3,4,5,6$, put $\Phi_{i}=\tau_{i} \Phi, \Psi_{i}=\tau_{i} \Psi$

$$
\begin{aligned}
K(f ; v) & =a_{0}^{6} \prod_{i=1}^{6}\left(\left(\tau_{i} \Phi\right) x-\left(\tau_{i} \Psi\right) y\right) \\
& =a_{0}^{6}\left(\prod_{i=1}^{6}\left(\tau_{i} \Phi\right)\right) \prod_{i=1}^{6}\left(x-\left(\left(\tau_{i} \Psi\right) /\left(\tau_{i} \Phi\right)\right) y\right)
\end{aligned}
$$

Constructing resolvents

Setting I: covariants

Find covariants of the form

$$
K(f ; v)=a_{0}^{m} \prod_{i=1}^{6}\left(\left(\tau_{i} \Phi\right) x-\left(\tau_{i} \Psi\right) y\right)
$$

with
(1) $\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ homogeneous of degree $w \equiv 2(\bmod 5)$ in $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
(2) highest power to which a root appears in Φ is $\leq d=\frac{2 w+1}{5}$
(3) for any $\beta \in \mathbb{C}, \Phi\left(x_{1}+\beta, x_{2}+\beta, x_{3}+\beta, x_{4}+\beta, x_{5}+\beta\right)=\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
(4) $(12345) \Phi=\Phi$
$(2354) \Phi=-\Phi$
$\Psi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right)^{d} \Phi\left(-1 / x_{1},-1 / x_{2},-1 / x_{3},-1 / x_{4},-1 / x_{5}\right)$

Recall: source determines covariant.

$$
\text { source is } a_{0}^{m} \prod_{i=1}^{6}\left(\left(\tau_{i} \Phi\right)\right.
$$

Constructing resolvents

Setting II: polynomials in roots

For $w \equiv 2(\bmod 5)$, put $d=\frac{2 w+1}{5}$. Find $\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
(1) homogeneous of degree w in $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
(2) the highest power to which any x_{i} appears in Φ is $\leq d$
(3) for any $\beta \in \mathbb{C}, \Phi\left(x_{1}+\beta, x_{2}+\beta, x_{3}+\beta, x_{4}+\beta, x_{5}+\beta\right)=\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
(4) $(12345) \Phi=\Phi$ $(2354) \Phi=-\Phi$

For covariant, need $w \equiv 2(\bmod 5)$
Malfatti is only such polynomial of degree 2

Problems.

1. no $S L_{2}(\mathbb{C})$ action

$$
\begin{aligned}
& \left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \cdot x_{i}=\left(d x_{i}-b\right) /\left(-c x_{i}+a\right) \\
& \left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot x_{i}=-1 / x_{i}
\end{aligned}
$$

2. the highest power to which any x_{i} appears in Φ is $\leq d$

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{p}\right], f=\sum \lambda_{(a)} x_{1}^{a_{1}} \ldots x_{p}^{a_{p}} \\
& \mathcal{R}(f)=\max \left\{a_{i}: 1 \leq i \leq p, \lambda_{(a)} \neq 0\right\}
\end{aligned}
$$

If $f\left(x_{1}, \ldots, x_{p}\right)$ is symmetric in x_{1}, \ldots, x_{p}, then $f\left(x_{1}, \ldots, x_{p}\right)=\sum \tau_{(b)} \sigma_{1}^{b_{1}} \ldots \sigma_{p}^{b_{p}}$ $\sigma_{i}=i t h$ elementary symmetric function.

$$
\mathcal{D}(f)=\max \left\{b_{1}+\ldots+b_{p}: \tau_{(b)} \neq 0\right\}
$$

Theorem. If $f\left(x_{1}, \ldots, x_{p}\right)$ is symmetric in x_{1}, \ldots, x_{p}, then $\mathcal{R}(f)=\mathcal{D}(f)$.

Constructing resolvents

Setting III: matrix variables

Translation:
For $d \equiv 1(\bmod 2)$, find matrix polynomials $\widetilde{F}\left(\left(\begin{array}{ccccc}\widetilde{x}_{1} & \widetilde{x}_{2} & \widetilde{x}_{3} & \widetilde{x}_{4} & \widetilde{x}_{5} \\ \widetilde{y}_{1} & \widetilde{y}_{2} & \widetilde{y}_{3} & \widetilde{y}_{4} & \widetilde{y}_{5}\end{array}\right)\right)$,
(1) \widetilde{F} is homogenous of degree d in each column, i.e.,

$$
\widetilde{F}=\sum c_{(e)} \widetilde{x}_{1}^{e_{1}} \widetilde{y}_{1}^{d-e_{1}} \ldots \widetilde{x}_{5}^{e_{5}} \widetilde{y}_{5}^{d-e_{5}}
$$

(2) \widetilde{F} is left U-invariant, i.e.,

$$
\widetilde{F}\left(\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right)\left(\begin{array}{ccccc}
\widetilde{x}_{1} & \widetilde{x}_{2} & \widetilde{x}_{3} & \widetilde{x}_{4} & \widetilde{x}_{5} \\
\widetilde{y}_{1} & \widetilde{y}_{2} & \widetilde{y}_{3} & \widetilde{y}_{4} & \widetilde{y}_{5}
\end{array}\right)\right)=\widetilde{F}\left(\begin{array}{ccccc}
\widetilde{x}_{1} & \widetilde{x}_{2} & \widetilde{x}_{3} & \widetilde{x}_{4} & \widetilde{x}_{5} \\
\widetilde{y}_{1} & \widetilde{y}_{2} & \widetilde{y}_{3} & \widetilde{y}_{4} & \widetilde{y}_{5}
\end{array}\right)
$$

or
$\sum c_{(e)}\left(\widetilde{x}_{1}+\beta \widetilde{y}_{1}\right)^{e_{1}} \widetilde{y}_{1}^{d-e_{1}} \ldots\left(\widetilde{x}_{5}+\beta \widetilde{y}_{5}\right)^{e_{5}} \widetilde{y}_{5}^{d-e_{5}}=\sum c_{(e)} \widetilde{x}_{1}^{e_{1}} \widetilde{y}_{1}^{d-e_{1}} \ldots \widetilde{x}_{5}^{e_{5}} \widetilde{y}_{5}^{d-e_{5}}$
(3) \widetilde{F} has left T-weight 1, i.e., $5 d-2\left(e_{1}+e_{2}+e_{4}+e_{4}+e_{5}\right)=1$
or

$$
\begin{aligned}
& \widetilde{F}\left(\left(\begin{array}{cc}
\lambda & 0 \\
0 & 1 / \lambda
\end{array}\right)\left(\begin{array}{ccccc}
\widetilde{x}_{1} & \widetilde{x}_{2} & \widetilde{x}_{3} & \widetilde{x}_{4} & \widetilde{x}_{5} \\
\widetilde{y}_{1} & \widetilde{y}_{2} & \widetilde{y}_{3} & \widetilde{y}_{4} & \widetilde{y}_{5}
\end{array}\right)\right)=\frac{1}{\lambda} \widetilde{F}\left(\begin{array}{ccccc}
\widetilde{x}_{1} & \widetilde{x}_{2} & \widetilde{x}_{3} & \widetilde{x}_{4} & \widetilde{x}_{5} \\
\widetilde{y}_{1} & \widetilde{y}_{2} & \widetilde{y}_{3} & \widetilde{y}_{4} & \widetilde{y}_{5}
\end{array}\right) \\
& \quad \text { or } \\
& \sum c_{(e)}\left(\lambda \widetilde{x}_{1}+\frac{1}{\lambda} \widetilde{y}_{1}\right)^{e_{1}} \widetilde{y}_{1}^{d-e_{1}} \ldots\left(\lambda \widetilde{x}_{5}+\frac{1}{\lambda} \widetilde{y}_{5}\right)^{e_{5}} \widetilde{y}_{5}^{d-e_{5}}=\frac{1}{\lambda} \sum c_{(e)} \widetilde{x}_{1}^{e_{1}} \widetilde{y}_{1}^{d-e_{1}} \ldots \widetilde{x}_{5}^{e_{5}} \widetilde{y}_{5}^{d-e_{5}}
\end{aligned}
$$

(4) S_{5} acts on vector variables by permuting columns
$(12345) \widetilde{F}=\widetilde{F}$
$(2354) \widetilde{F}=-\widetilde{F}$

$$
\begin{gathered}
\widetilde{F}\left(\left(\begin{array}{lllll}
\widetilde{x}_{2} & \widetilde{x}_{3} & \widetilde{x}_{4} & \widetilde{x}_{5} & \widetilde{x}_{1} \\
\widetilde{y}_{2} & \widetilde{y}_{3} & \widetilde{y}_{4} & \widetilde{y}_{5} & \widetilde{y}_{1}
\end{array}\right)\right)=\widetilde{F}\left(\left(\begin{array}{lllll}
\widetilde{x}_{1} & \widetilde{x}_{2} & \widetilde{x}_{3} & \widetilde{x}_{4} & \widetilde{x}_{5} \\
\widetilde{y}_{1} & \widetilde{y}_{2} & \widetilde{y}_{3} & \widetilde{y}_{4} & \widetilde{y}_{5}
\end{array}\right)\right) \\
\\
\widetilde{F}\left(\left(\begin{array}{lllll}
\widetilde{x}_{1} & \widetilde{x}_{3} & \widetilde{x}_{5} & \widetilde{x}_{2} & \widetilde{x}_{4} \\
\widetilde{y}_{1} & \widetilde{y}_{3} & \widetilde{y}_{5} & \widetilde{y}_{2} & \widetilde{y}_{4}
\end{array}\right)\right)=-\widetilde{F}\left(\left(\begin{array}{ccccc}
\widetilde{x}_{1} & \widetilde{x}_{2} & \widetilde{x}_{3} & \widetilde{x}_{4} & \widetilde{x}_{5} \\
\widetilde{y}_{1} & \widetilde{y}_{2} & \widetilde{y}_{3} & \widetilde{y}_{4} & \widetilde{y}_{5}
\end{array}\right)\right)
\end{gathered}
$$

Constructing resolvents

equivalences

Setting I: find covariants of the form $K(f ; v)=a_{0}^{m} \prod_{i=1}^{6}\left(\left(\tau_{i} \Phi\right) x-\left(\tau_{i} \Psi\right) y\right)$
Setting II: find $\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
Setting III: find matrix polynomials \widetilde{F}

Definition. For $i=1,2$, let $K_{i}: V_{5} \times \mathbb{A}^{2} \rightarrow \mathbb{C}$ be covariants as in Setting I. Say $K_{1} \sim K_{2}$ if and only if there are $\widetilde{\mu}, \widetilde{\rho} \in \mathbb{C}\left[V_{5}\right]^{S L_{2}(\mathbb{C})}$ with $\widetilde{\mu} K_{1}(x, y)=\widetilde{\rho} K_{2}(x, y)$.

Let Φ and Φ^{\prime} be as in Setting II. Say $\Phi \sim \Phi^{\prime}$ if and only if $\frac{\Psi}{\Phi}=\frac{\Psi^{\prime}}{\Phi^{\prime}}$.

Setting I and Setting II:

$$
K=a_{0}^{m} \prod_{i=1}^{6}\left(\left(\tau_{i} \Phi\right) x-\left(\tau_{i} \Psi\right) y\right), K^{\prime}=a_{0}^{m^{\prime}} \prod_{i=1}^{6}\left(\left(\tau_{i} \Phi\right) x-\left(\tau_{i} \Psi\right) y\right)
$$

$K \sim K^{\prime}$ if and only if $\Phi \sim \Phi^{\prime}$

Setting II and Setting III: there is vector space isomorphism between

$$
\begin{aligned}
& \Phi \text { homogeneous of degree } w \\
& \widetilde{F} \text { homogeneous of degree } 2 w+1
\end{aligned}
$$

also, have algebra homomorphism

$$
\begin{aligned}
& \text { have mapping } \Omega: \mathbb{C}\left[\begin{array}{lllll}
\widetilde{x}_{1} & \widetilde{x}_{2} & \widetilde{x}_{3} & \widetilde{x}_{4} & \widetilde{x}_{5} \\
\widetilde{y}_{1} & \widetilde{y}_{2} & \widetilde{y}_{3} & \widetilde{y}_{4} & \widetilde{y}_{5}
\end{array}\right] \rightarrow \mathbb{C}\left[x_{1}, x_{2}, x_{4}, x_{4}, x_{5}\right] \\
& \quad \widetilde{x}_{i} \rightarrow x_{i}, \widetilde{y}_{i} \rightarrow 1
\end{aligned}
$$

Constructing resolvents

finitely generated modules

$R_{w} \subset \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$
For $w \equiv 0(\bmod 5), w \geq 0, R_{w}$ is vector space spanned by all linear combinations Φ of products $\left(x_{i_{1}}-x_{j_{1}}\right) \ldots\left(x_{i_{w}}-x_{j_{w}}\right)$ such that
(1) each x_{i} appears $\frac{2 w}{5}$ times in every product
(2) $(12345) \Phi=\Phi,(2354) \Phi=\Phi$
$R=\bigoplus R_{w}$
$M_{w} \subset \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$
For $w \equiv 2(\bmod 5), w \geq 0, M_{w}$ is vector space spanned by $\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
(1) homogeneous of degree w in $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
(2) the highest power to which any x_{i} appears in Φ is $\leq \frac{2 w+1}{5}$
(3) for any $\beta \in \mathbb{C}, \Phi\left(x_{1}+\beta, x_{2}+\beta, x_{3}+\beta, x_{4}+\beta, x_{5}+\beta\right)=\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
(4) $(12345) \Phi=\Phi,(2354) \Phi=-\Phi$
$M=\bigoplus M_{w}$

Theorem. (a) R is finitely generated \mathbb{C}-algebra.
(b) $\Delta=\Phi_{2} \Psi_{7}-\Phi_{7} \Psi_{2} \neq 0$ and is in R.
(c) $\Phi \in M, \Phi=\frac{r_{1}}{\Delta} \Phi_{2}+\frac{r_{2}}{\Delta} \Phi_{7}$
(d) M is finitely generated R-module
(e) $\operatorname{dim}_{Q(R)} M \otimes_{R} Q(R)=2$

Poincaré series

Hilbert - Serre theorem

Recall $R=\bigoplus R_{w}$, is finitely generated \mathbb{C}-algebra
$M=\bigoplus M_{w}, M_{w}$ polynomials as in Setting II is finitely generated R-module

Poincaré series: $P(M, t)=\sum_{w \equiv 2(\bmod 5)}^{\infty} \operatorname{dim} M_{w}$

Theorem (Hilbert, Serre, applied here). Let γ be the number of generators of R. Then

$$
P(M, t)=\frac{f(t)}{\prod_{i=1}^{\gamma}\left(1-t^{d_{i}}\right)}
$$

for suitable positive integers d_{i} and $f(t) \in \mathbb{Z}[t]$.

Problem: determine $P(M, t)$.
Determine $\operatorname{dim} M_{w}$.

Poincaré series

$$
G L_{m}-G L_{n} \text { duality }
$$

to understand:
(2) \widetilde{F} is left U-invariant
(3) \widetilde{F} has left T-weight 1
$T_{r} \subset G L_{r}$; subgroup consisting of diagonal matrices
$U_{r} \subset G L_{r}$; subgroup consisting of upper triangular matrices, 1's on diagonal

A highest weight of an irreducible polynomial representation of $G L_{r}$ with respect to the Borel subgroup $T_{r} U_{r}$ is a character of the form $\chi=e_{1} \chi_{1}+\cdots+e_{r} \chi_{r}$ where $e_{1} \geq \ldots \geq e_{r} \geq 0$. If e_{ℓ} is the last non-zero e_{i}, we say that the highest weight χ has depth ℓ.

Theorem ($G L_{m}-G L_{n}$ duality) [Howe, Section 2.1.2]. Let U and V be finite-dimensional vector spaces over \mathbb{C}. The symmetric algebra $\mathcal{S}(U \otimes V)$ is multiplicity-free as a $G L(U) \times G L(V)$ module. Precisely, we have a decomposition

$$
\mathcal{S}(U \otimes V)=\sum_{D} \rho_{U}^{D} \otimes \rho_{V}^{D}
$$

of $G L(U) \times G L(V)$-modules. Here D varies over all highest weights of depth at most $\min \{\operatorname{dim} U, \operatorname{dim} V\}$.

Translation
$M_{2,5}$: the algebra consisting of all 2×5 matrices with entries in \mathbb{C}.
$G L_{2}$ acts on $M_{2,5}$ by left multiplication: $g \cdot m=g m$ for all $g \in G L_{2}$ and $m \in$ $M_{2,5}$.
$G L_{5}$ acts on $M_{2,5}$ by right multiplication: $g \cdot m=m g^{-1}$ for all $g \in G L_{5}$ and $m \in M_{2,5}$.

These actions commute and give an action of $G=G L_{2} \times G L_{5}$ on $M_{2,5}$ and $\mathbb{C}\left[M_{2,5}\right]$.

$$
\begin{aligned}
& M_{2,5} \leftrightarrow \mathbb{A}^{2} \otimes\left(\mathbb{A}^{5}\right)^{*} \\
& \mathbb{C}\left[M_{2,5}\right] \leftrightarrow S\left(\left(\mathbb{A}^{2}\right)^{*} \otimes \mathbb{A}^{5}\right)
\end{aligned}
$$

Suppose that $d \equiv 1(\bmod 2), 5 d=2 w+1$ and that
(2) \widetilde{F} is left U-invariant
(3) \widetilde{F} has left T-weight 1
then: the terms $\widetilde{F}=\widetilde{v} \otimes V_{D}$ appear when
\widetilde{v} : highest weight vector of irreducible representation $G L_{2}$, highest weight $(w+1) \chi_{1}+w \chi_{2}$
ρ_{V}^{D} is irreducible representation of $G L_{5}$, highest weight $(w+1) \chi_{1}+w \chi_{2}$

Note. can explicitly construct the invariants \widetilde{F} in terms of determinants using Young diagrams and straightening [Pommerening].

Poincaré series

Zero weight space

to understand:
(1) \widetilde{F} is homogenous of degree d in each column
recall: $w \equiv 2(\bmod 5), 5 d=2 w+1$

$$
T_{5}=\left\{\left(\begin{array}{ccccc}
a_{1} & 0 & 0 & 0 & 0 \\
0 & a_{2} & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & a_{5}
\end{array}\right)\right\}, U_{5}:\left\{\left(\begin{array}{ccccc}
1 & a_{12} & a_{13} & a_{14} & a_{15} \\
0 & 1 & a_{23} & a_{24} & a_{25} \\
0 & 0 & 1 & a_{34} & a_{35} \\
0 & 0 & 0 & 1 & a_{45} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\right\}
$$

$\rho: G L_{5} \rightarrow G L(V)$
$V_{0}=\left\{v \in V: \rho(t) v=\left(a_{1} a_{2} a_{3} a_{4} a_{5}\right)^{e} v\right\}=0$ weight space of V
translation: $\widetilde{F} \in \mathbb{C}\left[M_{2,5}\right], t \in T_{5}, m=\left(v_{1}, \ldots, v_{5}\right) \in M_{2,5}$

$$
\begin{aligned}
(t \cdot \widetilde{F})\left(v_{1}, \ldots, v_{5}\right) & =\widetilde{F}\left(\left(v_{1}, \ldots, v_{5}\right) t\right) \\
& =\widetilde{F}\left(a_{1} v_{1}, \ldots, a_{5} v_{5}\right) \\
& =\left(a_{1} a_{2} a_{3} a_{4} a_{5}\right)^{d} \widetilde{F}\left(v_{1}, \ldots, v_{5}\right)
\end{aligned}
$$

Proposition. Let $w \equiv 2(\bmod 5)$ and $d=\frac{2 w+1}{5}$. Let $\rho: G L_{5} \rightarrow G L(V)$ be the irreducible representation having highest weight $(w+1) \chi_{1}+w \chi_{2}$. The vector space consisting of all $\widetilde{F} \in \mathbb{C}\left[M_{2,5}\right]$ such that
(1) \widetilde{F} is homogenous of degree d in each column,
(2) \widetilde{F} is left U-invariant,
(3) \widetilde{F} has left T-weight 1
is isomorphic to the 0 -weight space of V.

Poincaré series

S_{5} action on zero weight space
to understand:
(4) (12345) $\widetilde{F}=\widetilde{F},(2354) \widetilde{F}=-\widetilde{F}$
S_{5} acts on 0 -weight space, V_{0}

$$
V_{0}=\bigoplus m_{\chi} V_{\chi}
$$

V_{χ} runs over all irreducible representations of S_{5}
m_{χ} is multiplicity with which V_{χ} appears in V_{0}
S_{5} has 7 irreducible representations

$$
[5],[41],[32],\left[31^{2}\right],\left[2^{2} 1\right],\left[21^{3}\right],\left[1^{5}\right]
$$

$\widetilde{\rho}: F_{20} \rightarrow\{ \pm 1\}$
$\widetilde{\rho}(12345)=1$ $\widetilde{\rho}(2354)=-1$.
$\widetilde{\rho}$ appears with multiplicity 1 in both [32] and $\left[1^{5}\right]$. It does not appear in any of the other 5 irreducible representations.

Proposition. Let $w \equiv 2(\bmod 5)$ and $d=\frac{2 w+1}{5}$. Let $\rho: G L_{5} \rightarrow G L(V)$ be the irreducible representation having highest weight $(w+1) \chi_{1}+w \chi_{2}$. The vector space consisting of all $\widetilde{F} \in \mathbb{C}\left[M_{2,5}\right]$ such that
(1) \widetilde{F} is homogenous of degree d in each column,
(2) \widetilde{F} is left U-invariant,
(3) \widetilde{F} has left T-weight 1 ,
(4) (12345) $\widetilde{F}=\widetilde{F}$ and (2354) $\widetilde{F}=-\widetilde{F}$
is isomorphic to the vector space consisting of vectors v in the 0 -weight space of V which satisfy (12345) $v=v$ and (2354) $v=-v$.

The dimension of this vector space is the sum of the multiplicities with which [1^{5}] and [32] appear in the representation of S_{5} on the 0 -weight space of V.

Poincaré series

plethysms

[Littlewood, p. 204: "induced matrix of an invariant matrix"] $\rho: G L_{n} \rightarrow G L_{m}$ (irreducible representation) $\sigma: G L_{m} \rightarrow G L_{p}$ (irreducible representation) $(\sigma \circ \rho): G L_{n} \rightarrow G L_{p}$ (reducible representation) process to decompose into irreducibles, plethysm
[Gay, Gutkin] μ : representation of S_{5} corresponding to $\left[1^{5}\right]$ or [32].
Consider $H=S_{d} \times S_{d} \times S_{d} \times S_{d} \times S_{d}$. Then, $N_{S_{5 d}}(H) / H \simeq S_{5}$.
μ representation of S_{5}, is representation of $N_{S_{5 d}}(H)$
the multiplicity with which $\mu=\left[1^{5}\right]$ or [32] appears in the representation of S_{5} on V_{0} is the multiplicity with which $[(w+1) w]$ appears in the representation $\widehat{\mu}^{S_{5 d}}$ of $S_{5 d}$ induced from μ

This is a plethysm [Macdonald, pp.135/6] denoted by $\left[1^{5}\right] \circ[d]($ resp. $[32] \circ[d])$.

There are special features of this plethysm which greatly simplify the usual calculations. For example, we obtain the following results:

w	multiplicity of $\left[1^{5}\right]$	multiplicity of $[32]$
2	0	1
7	0	1
12	0	2
17	0	4
22	1	6
27	1	8
32	1	11
507	425	2176
10842	195843	980298

From the standpoint of solving equations, the representation $\left[1^{5}\right]$ is not interesting; the corresponding resolvent is $a(x-b y)^{6}$.

Theorem. Let $w \equiv 2(\bmod 5)$ and $d=\frac{2 w+1}{5}$. Let $\rho: G L_{5} \rightarrow G L(V)$ be the irreducible representation having highest weight $(w+1) \chi_{1}+w \chi_{2}$. The vector space consisting of all $\widetilde{F} \in \mathbb{C}\left[M_{2,5}\right]$ such that
(1) \widetilde{F} is homogenous of degree d in each column,
(2) \widetilde{F} is left U-invariant,
(3) \widetilde{F} has left T-weight 1 ,
(4) (12345) $\widetilde{F}=\widetilde{F}$ and (2354) $\widetilde{F}=-\widetilde{F}$
is isomorphic to the vector space consisting of vectors v in the 0 -weight space of V which satisfy (12345) $v=v$ and (2354) $v=-v$.

The dimension of this vector space is the sum of the multiplicities with which $\left[1^{5}\right]$ and $\left[\begin{array}{ll}3 & 2\end{array}\right]$ appear in the representation of S_{5} on the 0 -weight space of V. The dimension can be found by calculating the plethysms $\left[1^{5}\right] \circ[d]$ and $[32] \circ[d]$.

Using the Theorems and plethysm considerations, can show there are infinitely many non-equivalent covariants of Perrin-McClintock type (Setting I).

It also seems likely that there are infinitely many non-equivalent covariants of Perrin-McClintock type for which Ψ / Φ is fixed by F_{20} and not by S_{5} so we get resolvents for deciding solvability.

References

Abdesselam, Abdelmalek; Chipalkatti, Jaydeep On Hilbert covariants. Canad. J. Math. 66 (2014), no. 1, 3-30.

Dickson, L. E. Resolvent sextics of quintic equations. Bull. Amer. Math. Soc. 31 (1925), no. 9-10, 515-523.

Dummit, D. S. Solving solvable quintics. Math. Comp. 57 (1991), no. 195, 387-401

Elia, Michele Solvable Brioschi quintics over Q . JP J. Algebra Number Theory Appl. 6 (2006), no. 1, 117-127.

Gay, David A. Characters of the Weyl group of $\mathrm{SU}(\mathrm{n})$ on zero weight spaces and centralizers of permutation representations. Rocky Mountain J. Math. 6 (1976), no. 3, 449-455.

Gutkin, Eugene. Schur-Weyl duality and representations of permutation groups.(English summary) The orbit method in geometry and physics (Marseille, 2000), 147164, Progr. Math., 213, Birkhäuser Boston, Boston, MA, 2003.

Howe, Roger $\left(G L_{n}, G L_{m}\right)$-duality and symmetric plethysm. Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 85-109 (1988).

Howe, Roger Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. The Schur lectures (1992) (Tel Aviv), 1-182, Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat Gan, 1995.

Littlewood, Dudley E. The theory of group characters and matrix representations of groups. Reprint of the second (1950) edition. AMS Chelsea Publishing, Providence, RI, 2006.

Macdonald, I. G. Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.

Malfatti, G. De AEquationibus Quadrato-cubicis Disquisitio Analytica, Siena transactions 1771

McClintock, E. Analysis of quintic equations, American J Math,Vol. 8, No. 1, Sep., 1885, 45-84

McClintock, E. Further researches in the theory of quintic equations, American Journal of Math, vol. 20, No. 2, Apr., 1898, pp. 157-192

Perrin, Sur les cas de resolubilite par radicaux de l'equation du cinquieme degree Bulletin de la SMF Tome 111883 pp. 61-65

Pommerening, Klaus Ordered sets with the standardizing property and straightening laws for algebras of invariants. Adv. in Math. 63 (1987), no. 3, 271-290.

