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Introduction

Lattice Decoding: The Closest Vector Problem (CVP)

r Given a lattice L in R
n and x ∈ R

n, the CVP consists in finding ℓ ∈ L such
that

|x − ℓ| = min
ℓ′∈L

|x − ℓ′|,

where | · | denotes the usual Euclidian length.
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that

|x − ℓ| = min
ℓ′∈L

|x − ℓ′|,

where | · | denotes the usual Euclidian length.
r The CVP is NP hard in its exact version.
r Solving the CVP with approximation factor δ ≥ 1 ∈ R means finding ℓ ∈ L

such that, for all ℓ′ ∈ L,
|x − ℓ| ≤ δ · |x − ℓ′|.
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|x − ℓ′|,

where | · | denotes the usual Euclidian length.
r The CVP is NP hard in its exact version.
r Solving the CVP with approximation factor δ ≥ 1 ∈ R means finding ℓ ∈ L

such that, for all ℓ′ ∈ L,
|x − ℓ| ≤ δ · |x − ℓ′|.

r The best known approximation factor for a deterministic polynomial time
algorithm to solve the CVP approximately is 2n(log log n)2/2 log n (Schnorr
1985).
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Iterative lattice decoding

Babai’s Nearest Plane Procedure (BNPP)

Given a basis B = (b1, . . . ,bn) of L and x ∈ R
n, BNPP approximates x in L.

Annika Meyer ( Workshop on lattices, codes and modular forms Aachen, 27.09.2011)On a recursive decoding algorithm for lattices 4 / 14



Iterative lattice decoding

Babai’s Nearest Plane Procedure (BNPP)

Given a basis B = (b1, . . . ,bn) of L and x ∈ R
n, BNPP approximates x in L.

An approximation factor 2n/2 is achieved if B is LLL reduced.

Annika Meyer ( Workshop on lattices, codes and modular forms Aachen, 27.09.2011)On a recursive decoding algorithm for lattices 4 / 14



Iterative lattice decoding

Babai’s Nearest Plane Procedure (BNPP)

Given a basis B = (b1, . . . ,bn) of L and x ∈ R
n, BNPP approximates x in L.

An approximation factor 2n/2 is achieved if B is LLL reduced.

(1) Let L′ = 〈b1, . . . ,bn−1〉Z, then L = ∪z∈Zz · b1 + L′.
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With ϕ(x) = (u1, . . . ,un), BNPP is the following:
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With ϕ(x) = (u1, . . . ,un), BNPP is the following:
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...
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With ϕ(x) = (u1, . . . ,un), BNPP is the following:

(1) Find the optimal approximation ℓ1 = zα1,1 of u1 in Zα1,1.

(2) Iteratively, approximate (u2 − zα1,2, . . . ,un − zα1,n) ∈ R
n−1 in

L′ = 〈ϕ(b2), . . . , ϕ(bn)〉Z with ℓ′.

(3) Form ℓ = ℓ′ + z(α1,1, . . . , α1,n).

Idea: Generalise BNPP, changing from lattices αZ to higher dimensional latti-
ces.
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Iterative lattice decoding

Iterative lattice decoding

r Let Wi be lattices of dimension ni , i ∈ {1, . . . , t}, and let
fi : Rn1+···+ni → R

ni+1 linear maps, for i ∈ {1, . . . , t − 1}.
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Iterative lattice decoding

Algorithm A′ - some questions and remarks

r Algorithm A′ depends on the chosen lattice basis.
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triangular (block) basis matrix for a representative.
r There should exist good decoding algorithms for W1, . . . ,Wt

(specific decoding algorithms exist for many well known lattices).
r When do we obtain a good approximation?

r What do we gain when if we consider all the elements of

Br (x1) ∩ W1 = {w ∈ W1 | |w − x1| ≤ r}

in the first step of Algorithm A′?
r Sphere decoding (Fincke, Pohst) can be used to compute Br (x1) ∩ W1.
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Iterative lattice decoding

Approximation factors for Algorithm A′

Definition

The packing radius of a lattice L in R
n is ρL := 1

2

√

min(L), where
min(L) := min0 6=ℓ∈L |ℓ|2.

The covering radius of L is γL :=
√

µ(L), where
µ(L) = maxv∈Rn minℓ∈L |v − ℓ|2.
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Theorem
Algorithm A′ achieves an approximation factor

√
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, δj = max{4
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Iterative lattice decoding

A modification of Algorithm A′

Algorithm A:
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A modification of Algorithm A′

Algorithm A:
Let L = L(W1, . . . ,Wt , f2, . . . , ft−1), x = (x1, . . . , xt) ∈ R

n and r > 0.
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Let L = L(W1, . . . ,Wt , f2, . . . , ft−1), x = (x1, . . . , xt) ∈ R

n and r > 0.
r Use sphere decoding to find all the points in W1 ∩ Br (x1).
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r Use sphere decoding to find all the points in W1 ∩ Br (x1).
r For every point found in step 1, perform steps 2 and 3 of Algorithm A′.

Annika Meyer ( Workshop on lattices, codes and modular forms Aachen, 27.09.2011)On a recursive decoding algorithm for lattices 9 / 14



Iterative lattice decoding

A modification of Algorithm A′

Algorithm A:
Let L = L(W1, . . . ,Wt , f2, . . . , ft−1), x = (x1, . . . , xt) ∈ R

n and r > 0.
r Use sphere decoding to find all the points in W1 ∩ Br (x1).
r For every point found in step 1, perform steps 2 and 3 of Algorithm A′.
r Among all the approximations found, choose the best one.

Annika Meyer ( Workshop on lattices, codes and modular forms Aachen, 27.09.2011)On a recursive decoding algorithm for lattices 9 / 14



Iterative lattice decoding

A modification of Algorithm A′

Algorithm A:
Let L = L(W1, . . . ,Wt , f2, . . . , ft−1), x = (x1, . . . , xt) ∈ R

n and r > 0.
r Use sphere decoding to find all the points in W1 ∩ Br (x1).
r For every point found in step 1, perform steps 2 and 3 of Algorithm A′.
r Among all the approximations found, choose the best one.

Theorem
With δ1, . . . , δt−1 as above, Algorithm A achieves an approximation factor of

max{1 + δt−1, r−1
t

∑

i=1

µ(Wi)}
1
2 .
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Iterative lattice decoding

A modification of Algorithm A′

Algorithm A:
Let L = L(W1, . . . ,Wt , f2, . . . , ft−1), x = (x1, . . . , xt) ∈ R

n and r > 0.
r Use sphere decoding to find all the points in W1 ∩ Br (x1).
r For every point found in step 1, perform steps 2 and 3 of Algorithm A′.
r Among all the approximations found, choose the best one.

Theorem
With δ1, . . . , δt−1 as above, Algorithm A achieves an approximation factor of

max{1 + δt−1, r−1
t

∑

i=1

µ(Wi)}
1
2 .

Question: Can we upper bound |Br (x1) ∩ W1|?
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Upper bounds on the number of lattice points in a small sphere

Bounds on |Br(x) ∩ W | via spherical codes
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Definition
A spherical code in R

s is a set C of vectors of length 1. The minimum angle of
C is αmin(C) := minc 6=c′∈C ∠(c, c′).
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Upper bounds on the number of lattice points in a small sphere

Lattices and spherical codes

Theorem
Let L be a lattice in R

s. If r is a real number with 0 < r ≤ 2ρL then the set

{|x − z|−1 (x − z) | z ∈ Br (x) ∩ L}

is a spherical code with minimum angle α = cos−1(1 − ρL
r ), for every x ∈ R

s.

Annika Meyer ( Workshop on lattices, codes and modular forms Aachen, 27.09.2011)On a recursive decoding algorithm for lattices 11 / 14



Upper bounds on the number of lattice points in a small sphere

Examples: Bounds obtained for An, En, Λ24, r = γL

Type n θ A(n, θ) Gaussian bound for deep holes

A

2 2
3π 3 3 3

3 π
2 6 7 6

4 cos−1( 1
6 ) 10 12 10

5 cos−1( 1
3 ) ≤ 24 26 20

6 cos−1( 5
12 ) ≤ 54 47 35

7 π
3 ≤ 140 99 70

8 - - 188 126

9 - - 391 252

E
6 cos−1( 1

4 ) 27 37 27

7 cos−1( 1
3 ) 56 84 56

8 π
2 16 77 16

Leech 24 π
2 48 974 48
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Examples

Example: Nebe’s extremal even unimodular lattice Λ72

r Λ72 is obtained from a polarisation (α(Λ24), β(Λ24)) of the Leech lattice Λ24,
where α, β ∈ End(Λ24) such that α2 − α+ 2 = 0, β = 1 − α and
(α(x), y) = (x , β(y)) for all x , y ∈ R

24:
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where α, β ∈ End(Λ24) such that α2 − α+ 2 = 0, β = 1 − α and
(α(x), y) = (x , β(y)) for all x , y ∈ R

24:

Λ72 = {(ℓ1, ℓ2, ℓ3) ∈⊥3
i=1 Λ24 | ℓ1 − ℓ2 ∈ β(Λ24), ℓ2 − β(ℓ1)− ℓ3 ∈ 2Λ24)}
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i=1 Λ24 | ℓ1 − ℓ2 ∈ β(Λ24), ℓ2 − β(ℓ1)− ℓ3 ∈ 2Λ24)}

r Algorithm A′: Decoding (x1, x2, x3) ∈⊥3
i=1 R

24 in Λ72 with approximation
factor

√
14:
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24 in Λ72 with approximation
factor

√
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√
14:

(1) Approximate x1 with y1 ∈ Λ24.
(2) Approximate x2 − y1 with y2 ∈ β(Λ24).
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14:
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(2) Approximate x2 − y1 with y2 ∈ β(Λ24).
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14:

(1) Approximate x1 with y1 ∈ Λ24.
(2) Approximate x2 − y1 with y2 ∈ β(Λ24).
(3) Approximate x3 − α(y1)− y2 with y3 ∈ 2Λ24.
(4) Output the approximation (ℓ1, ℓ2, ℓ3) = (y1, y1 + y2, α(y1) + y2 + y3)
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r Algorithm A′: Decoding (x1, x2, x3) ∈⊥3
i=1 R

24 in Λ72 with approximation
factor

√
14:

(1) Approximate x1 with y1 ∈ Λ24.
(2) Approximate x2 − y1 with y2 ∈ β(Λ24).
(3) Approximate x3 − α(y1)− y2 with y3 ∈ 2Λ24.
(4) Output the approximation (ℓ1, ℓ2, ℓ3) = (y1, y1 + y2, α(y1) + y2 + y3)

r Algorithm A: time increased by at most |B√
2(x1) ∩ Λ24| ≤ 48,

approximation factor of
√

7, using sphere decoding with
r =

√
2 =

√

µ(Λ24).
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Examples

Thank you very much for your attention!
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