On a recursive decoding algorithm for lattices

Annika Meyer

Workshop on lattices, codes and modular forms Aachen, 27.09.2011

Overview

(9) Introduction

2 Iterative lattice decoding
(3) Upper bounds on the number of lattice points in a small sphere
(4) Examples

Lattice Decoding: The Closest Vector Problem (CVP)

- Given a lattice L in \mathbb{R}^{n} and $x \in \mathbb{R}^{n}$, the CVP consists in finding $\ell \in L$ such that

$$
|x-\ell|=\min _{\ell^{\prime} \in L}\left|x-\ell^{\prime}\right|,
$$

where $|\cdot|$ denotes the usual Euclidian length.

Lattice Decoding: The Closest Vector Problem (CVP)

- Given a lattice L in \mathbb{R}^{n} and $x \in \mathbb{R}^{n}$, the CVP consists in finding $\ell \in L$ such that

$$
|x-\ell|=\min _{\ell^{\prime} \in L}\left|x-\ell^{\prime}\right|,
$$

where $|\cdot|$ denotes the usual Euclidian length.

- The CVP is NP hard in its exact version.

Lattice Decoding: The Closest Vector Problem (CVP)

- Given a lattice L in \mathbb{R}^{n} and $x \in \mathbb{R}^{n}$, the CVP consists in finding $\ell \in L$ such that

$$
|x-\ell|=\min _{\ell^{\prime} \in L}\left|x-\ell^{\prime}\right|
$$

where $|\cdot|$ denotes the usual Euclidian length.

- The CVP is NP hard in its exact version.
- Solving the CVP with approximation factor $\delta \geq 1 \in \mathbb{R}$ means finding $\ell \in L$ such that, for all $\ell^{\prime} \in L$,

$$
|x-\ell| \leq \delta \cdot\left|x-\ell^{\prime}\right|
$$

Lattice Decoding: The Closest Vector Problem (CVP)

- Given a lattice L in \mathbb{R}^{n} and $x \in \mathbb{R}^{n}$, the CVP consists in finding $\ell \in L$ such that

$$
|x-\ell|=\min _{\ell^{\prime} \in L}\left|x-\ell^{\prime}\right|,
$$

where $|\cdot|$ denotes the usual Euclidian length.

- The CVP is NP hard in its exact version.
- Solving the CVP with approximation factor $\delta \geq 1 \in \mathbb{R}$ means finding $\ell \in L$ such that, for all $\ell^{\prime} \in L$,

$$
|x-\ell| \leq \delta \cdot\left|x-\ell^{\prime}\right| .
$$

- The best known approximation factor for a deterministic polynomial time algorithm to solve the CVP approximately is $2^{n(\log \log n)^{2} / 2 \log n}$ (Schnorr 1985).

Babai's Nearest Plane Procedure (BNPP)

Given a basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of L and $x \in \mathbb{R}^{n}$, BNPP approximates x in L.

Babai's Nearest Plane Procedure (BNPP)

Given a basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of L and $x \in \mathbb{R}^{n}$, BNPP approximates x in L. An approximation factor $2^{n / 2}$ is achieved if \mathcal{B} is LLL reduced.

Babai's Nearest Plane Procedure (BNPP)

Given a basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of L and $x \in \mathbb{R}^{n}$, BNPP approximates x in L. An approximation factor $2^{n / 2}$ is achieved if \mathcal{B} is LLL reduced.
(1) Let $L^{\prime}=\left\langle b_{1}, \ldots, b_{n-1}\right\rangle_{\mathbb{Z}}$, then $L=\cup_{z \in \mathbb{Z}} Z \cdot b_{1}+L^{\prime}$.

Babai's Nearest Plane Procedure (BNPP)

Given a basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of L and $x \in \mathbb{R}^{n}$, BNPP approximates x in L. An approximation factor $2^{n / 2}$ is achieved if \mathcal{B} is LLL reduced.
(1) Let $L^{\prime}=\left\langle b_{1}, \ldots, b_{n-1}\right\rangle_{\mathbb{Z}}$, then $L=\cup_{z \in \mathbb{Z}} Z \cdot b_{1}+L^{\prime}$.
(2) Choose $H=z b_{2}+L^{\prime} \otimes \mathbb{R}$ closest to x and $h \in H$ closest to x.

Babai's Nearest Plane Procedure (BNPP)

Given a basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of L and $x \in \mathbb{R}^{n}$, BNPP approximates x in L. An approximation factor $2^{n / 2}$ is achieved if \mathcal{B} is LLL reduced.
(1) Let $L^{\prime}=\left\langle b_{1}, \ldots, b_{n-1}\right\rangle_{\mathbb{Z}}$, then $L=\cup_{z \in \mathbb{Z}} Z \cdot b_{1}+L^{\prime}$.
(2) Choose $H=z b_{2}+L^{\prime} \otimes \mathbb{R}$ closest to x and $h \in H$ closest to x.
(3) Iteratively, find an approximation y^{\prime} of $h-z b_{2}$ in L^{\prime}.

Babai's Nearest Plane Procedure (BNPP)

Given a basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of L and $x \in \mathbb{R}^{n}$, BNPP approximates x in L. An approximation factor $2^{n / 2}$ is achieved if \mathcal{B} is LLL reduced.
(1) Let $L^{\prime}=\left\langle b_{1}, \ldots, b_{n-1}\right\rangle_{\mathbb{Z}}$, then $L=\cup_{z \in \mathbb{Z}} Z \cdot b_{1}+L^{\prime}$.
(2) Choose $H=z b_{2}+L^{\prime} \otimes \mathbb{R}$ closest to x and $h \in H$ closest to x.
(3) Iteratively, find an approximation y^{\prime} of $h-z b_{2}$ in L^{\prime}.
(4) Output the approximation $y=y^{\prime}+z b_{2}$.

Babai's Nearest Plane Procedure (BNPP)

Given a basis $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ of L and $x \in \mathbb{R}^{n}$, BNPP approximates x in L. An approximation factor $2^{n / 2}$ is achieved if \mathcal{B} is LLL reduced.
(1) Let $L^{\prime}=\left\langle b_{1}, \ldots, b_{n-1}\right\rangle_{\mathbb{Z}}$, then $L=\cup_{z \in \mathbb{Z}} Z \cdot b_{1}+L^{\prime}$.
(2) Choose $H=z b_{2}+L^{\prime} \otimes \mathbb{R}$ closest to x and $h \in H$ closest to x.
(3) Iteratively, find an approximation y^{\prime} of $h-z b_{2}$ in L^{\prime}.
(4) Output the approximation $y=y^{\prime}+z b_{2}$.

BNPP as an iterative decoding algorithm

BNPP as an iterative decoding algorithm

Let $\mathcal{B}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi: b_{i}^{\prime} \mapsto e_{n-i+1}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbb{R}^{n}. Write

BNPP as an iterative decoding algorithm

Let $\mathcal{B}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi: b_{i}^{\prime} \mapsto e_{n-i+1}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbb{R}^{n}. Write

$$
\left(\begin{array}{c}
\varphi\left(b_{n}\right) \\
\vdots \\
\varphi\left(b_{1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \ldots & \alpha_{1, n} \\
& \ddots & \vdots \\
0 & & \alpha_{n, n}
\end{array}\right)
$$

BNPP as an iterative decoding algorithm

Let $\mathcal{B}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi: b_{i}^{\prime} \mapsto e_{n-i+1}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbb{R}^{n}. Write

$$
\left(\begin{array}{c}
\varphi\left(b_{n}\right) \\
\vdots \\
\varphi\left(b_{1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \ldots & \alpha_{1, n} \\
& \ddots & \vdots \\
0 & & \alpha_{n, n}
\end{array}\right)
$$

With $\varphi(x)=\left(u_{1}, \ldots, u_{n}\right)$, BNPP is the following:

BNPP as an iterative decoding algorithm

Let $\mathcal{B}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi: b_{i}^{\prime} \mapsto e_{n-i+1}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbb{R}^{n}. Write

$$
\left(\begin{array}{c}
\varphi\left(b_{n}\right) \\
\vdots \\
\varphi\left(b_{1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \ldots & \alpha_{1, n} \\
& \ddots & \vdots \\
0 & & \alpha_{n, n}
\end{array}\right)
$$

With $\varphi(x)=\left(u_{1}, \ldots, u_{n}\right)$, BNPP is the following:
(1) Find the optimal approximation $\ell_{1}=\boldsymbol{z} \alpha_{1,1}$ of u_{1} in $\mathbb{Z} \alpha_{1,1}$.

BNPP as an iterative decoding algorithm

Let $\mathcal{B}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi: b_{i}^{\prime} \mapsto e_{n-i+1}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbb{R}^{n}. Write

$$
\left(\begin{array}{c}
\varphi\left(b_{n}\right) \\
\vdots \\
\varphi\left(b_{1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \ldots & \alpha_{1, n} \\
& \ddots & \vdots \\
0 & & \alpha_{n, n}
\end{array}\right)
$$

With $\varphi(x)=\left(u_{1}, \ldots, u_{n}\right)$, BNPP is the following:
(1) Find the optimal approximation $\ell_{1}=z \alpha_{1,1}$ of u_{1} in $\mathbb{Z} \alpha_{1,1}$.
(2) Iteratively, approximate $\left(u_{2}-z \alpha_{1,2}, \ldots, u_{n}-z \alpha_{1, n}\right) \in \mathbb{R}^{n-1}$ in $L^{\prime}=\left\langle\varphi\left(b_{2}\right), \ldots, \varphi\left(b_{n}\right)\right\rangle_{\mathbb{Z}}$ with ℓ^{\prime}.

BNPP as an iterative decoding algorithm

Let $\mathcal{B}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi: b_{i}^{\prime} \mapsto e_{n-i+1}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbb{R}^{n}. Write

$$
\left(\begin{array}{c}
\varphi\left(b_{n}\right) \\
\vdots \\
\varphi\left(b_{1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \ldots & \alpha_{1, n} \\
& \ddots & \vdots \\
0 & & \alpha_{n, n}
\end{array}\right)
$$

With $\varphi(x)=\left(u_{1}, \ldots, u_{n}\right)$, BNPP is the following:
(1) Find the optimal approximation $\ell_{1}=z \alpha_{1,1}$ of u_{1} in $\mathbb{Z} \alpha_{1,1}$.
(2) Iteratively, approximate $\left(u_{2}-z \alpha_{1,2}, \ldots, u_{n}-z \alpha_{1, n}\right) \in \mathbb{R}^{n-1}$ in $L^{\prime}=\left\langle\varphi\left(b_{2}\right), \ldots, \varphi\left(b_{n}\right)\right\rangle_{\mathbb{Z}}$ with ℓ^{\prime}.
(3) Form $\ell=\ell^{\prime}+z\left(\alpha_{1,1}, \ldots, \alpha_{1, n}\right)$.

BNPP as an iterative decoding algorithm

Let $\mathcal{B}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi: b_{i}^{\prime} \mapsto e_{n-i+1}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbb{R}^{n}. Write

$$
\left(\begin{array}{c}
\varphi\left(b_{n}\right) \\
\vdots \\
\varphi\left(b_{1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \ldots & \alpha_{1, n} \\
& \ddots & \vdots \\
0 & & \alpha_{n, n}
\end{array}\right) .
$$

With $\varphi(x)=\left(u_{1}, \ldots, u_{n}\right)$, BNPP is the following:
(1) Find the optimal approximation $\ell_{1}=z \alpha_{1,1}$ of u_{1} in $\mathbb{Z} \alpha_{1,1}$.
(2) Iteratively, approximate $\left(u_{2}-z \alpha_{1,2}, \ldots, u_{n}-z \alpha_{1, n}\right) \in \mathbb{R}^{n-1}$ in $L^{\prime}=\left\langle\varphi\left(b_{2}\right), \ldots, \varphi\left(b_{n}\right)\right\rangle_{\mathbb{Z}}$ with ℓ^{\prime}.
(3) Form $\ell=\ell^{\prime}+z\left(\alpha_{1,1}, \ldots, \alpha_{1, n}\right)$.

Idea: Generalise BNPP, changing from lattices $\alpha \mathbb{Z}$ to higher dimensional lattices.

Iterative lattice decoding

- Let W_{i} be lattices of dimension $n_{i}, i \in\{1, \ldots, t\}$, and let $f_{i}: \mathbb{R}^{n_{1}+\cdots+n_{i}} \rightarrow \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in\{1, \ldots, t-1\}$.

Iterative lattice decoding

- Let W_{i} be lattices of dimension $n_{i}, i \in\{1, \ldots, t\}$, and let $f_{i}: \mathbb{R}^{n_{1}+\cdots+n_{i}} \rightarrow \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in\{1, \ldots, t-1\}$.
- Form a lattice $\mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t}\right)$ of dimension $n=n_{1}+\cdots+n_{t}$ by
$\left.\mathcal{L}=\left\{\left(\ell_{1}, \ldots, \ell_{t}\right) \in \mathbb{R}^{n} \mid \ell_{1} \in W_{1}, \ell_{i}-f_{i-1}\left(\ell_{1}, \ldots, \ell_{i-1}\right) \in W_{i}, i \in\{1, \ldots, t\}\right)\right\}$.

Iterative lattice decoding

- Let W_{i} be lattices of dimension $n_{i}, i \in\{1, \ldots, t\}$, and let $f_{i}: \mathbb{R}^{n_{1}+\cdots+n_{i}} \rightarrow \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in\{1, \ldots, t-1\}$.
- Form a lattice $\mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t}\right)$ of dimension $n=n_{1}+\cdots+n_{t}$ by
$\left.\mathcal{L}=\left\{\left(\ell_{1}, \ldots, \ell_{t}\right) \in \mathbb{R}^{n} \mid \ell_{1} \in W_{1}, \ell_{i}-f_{i-1}\left(\ell_{1}, \ldots, \ell_{i-1}\right) \in W_{i}, i \in\{1, \ldots, t\}\right)\right\}$.
- Decoding algorithm \mathcal{A} for \mathcal{L} : Let $x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{n}$.

Iterative lattice decoding

- Let W_{i} be lattices of dimension $n_{i}, i \in\{1, \ldots, t\}$, and let $f_{i}: \mathbb{R}^{n_{1}+\cdots+n_{i}} \rightarrow \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in\{1, \ldots, t-1\}$.
- Form a lattice $\mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t}\right)$ of dimension $n=n_{1}+\cdots+n_{t}$ by
$\left.\mathcal{L}=\left\{\left(\ell_{1}, \ldots, \ell_{t}\right) \in \mathbb{R}^{n} \mid \ell_{1} \in W_{1}, \ell_{i}-f_{i-1}\left(\ell_{1}, \ldots, \ell_{i-1}\right) \in W_{i}, i \in\{1, \ldots, t\}\right)\right\}$.
- Decoding algorithm \mathcal{A} for \mathcal{L} : Let $x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{n}$.
(1) Let $\ell_{1} \in W_{1}$ be the lattice point closest to x_{1}.

Iterative lattice decoding

- Let W_{i} be lattices of dimension $n_{i}, i \in\{1, \ldots, t\}$, and let $f_{i}: \mathbb{R}^{n_{1}+\cdots+n_{i}} \rightarrow \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in\{1, \ldots, t-1\}$.
- Form a lattice $\mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t}\right)$ of dimension $n=n_{1}+\cdots+n_{t}$ by
$\left.\mathcal{L}=\left\{\left(\ell_{1}, \ldots, \ell_{t}\right) \in \mathbb{R}^{n} \mid \ell_{1} \in W_{1}, \ell_{i}-f_{i-1}\left(\ell_{1}, \ldots, \ell_{i-1}\right) \in W_{i}, i \in\{1, \ldots, t\}\right)\right\}$.
- Decoding algorithm \mathcal{A} for \mathcal{L} : Let $x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{n}$.
(1) Let $\ell_{1} \in W_{1}$ be the lattice point closest to x_{1}.
(2) For $2 \leq i \leq t$, approximate $x_{i}-f_{i-1}\left(\ell_{1}, \ldots, \ell_{i-1}\right)$ by $w_{i} \in W_{i}$ and put $\ell_{i}:=w_{i}+f_{i-1}\left(\ell_{1}, \ldots, \ell_{i-1}\right)$.

Iterative lattice decoding

- Let W_{i} be lattices of dimension $n_{i}, i \in\{1, \ldots, t\}$, and let $f_{i}: \mathbb{R}^{n_{1}+\cdots+n_{i}} \rightarrow \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in\{1, \ldots, t-1\}$.
- Form a lattice $\mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t}\right)$ of dimension $n=n_{1}+\cdots+n_{t}$ by
$\left.\mathcal{L}=\left\{\left(\ell_{1}, \ldots, \ell_{t}\right) \in \mathbb{R}^{n} \mid \ell_{1} \in W_{1}, \ell_{i}-f_{i-1}\left(\ell_{1}, \ldots, \ell_{i-1}\right) \in W_{i}, i \in\{1, \ldots, t\}\right)\right\}$.
- Decoding algorithm \mathcal{A} for \mathcal{L} : Let $x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{n}$.
(1) Let $\ell_{1} \in W_{1}$ be the lattice point closest to x_{1}.
(2) For $2 \leq i \leq t$, approximate $x_{i}-f_{i-1}\left(\ell_{1}, \ldots, \ell_{i-1}\right)$ by $w_{i} \in W_{i}$ and put $\ell_{i}:=w_{i}+f_{i-1}\left(\ell_{1}, \ldots, \ell_{i-1}\right)$.
(3) Output the approximation $\ell=\left(\ell_{1}, \ldots, \ell_{t}\right) \in \mathcal{L}$.

Algorithm \mathcal{A}^{\prime} - some questions and remarks

- Algorithm \mathcal{A}^{\prime} depends on the chosen lattice basis.

Algorithm \mathcal{A}^{\prime} - some questions and remarks

- Algorithm \mathcal{A}^{\prime} depends on the chosen lattice basis.
- For every isometry class of lattices, there are many ways to give an upper triangular (block) basis matrix for a representative.

Algorithm \mathcal{A}^{\prime} - some questions and remarks

- Algorithm \mathcal{A}^{\prime} depends on the chosen lattice basis.
- For every isometry class of lattices, there are many ways to give an upper triangular (block) basis matrix for a representative.
- There should exist good decoding algorithms for W_{1}, \ldots, W_{t} (specific decoding algorithms exist for many well known lattices).

Algorithm \mathcal{A}^{\prime} - some questions and remarks

- Algorithm \mathcal{A}^{\prime} depends on the chosen lattice basis.
- For every isometry class of lattices, there are many ways to give an upper triangular (block) basis matrix for a representative.
- There should exist good decoding algorithms for W_{1}, \ldots, W_{t} (specific decoding algorithms exist for many well known lattices).
- When do we obtain a good approximation?

Algorithm \mathcal{A}^{\prime} - some questions and remarks

- Algorithm \mathcal{A}^{\prime} depends on the chosen lattice basis.
- For every isometry class of lattices, there are many ways to give an upper triangular (block) basis matrix for a representative.
- There should exist good decoding algorithms for W_{1}, \ldots, W_{t} (specific decoding algorithms exist for many well known lattices).
- When do we obtain a good approximation?
- What do we gain when if we consider all the elements of

$$
B_{r}\left(x_{1}\right) \cap W_{1}=\left\{w \in W_{1}| | w-x_{1} \mid \leq r\right\}
$$

in the first step of Algorithm \mathcal{A}^{\prime} ?

Algorithm \mathcal{A}^{\prime} - some questions and remarks

- Algorithm \mathcal{A}^{\prime} depends on the chosen lattice basis.
- For every isometry class of lattices, there are many ways to give an upper triangular (block) basis matrix for a representative.
- There should exist good decoding algorithms for W_{1}, \ldots, W_{t} (specific decoding algorithms exist for many well known lattices).
- When do we obtain a good approximation?
- What do we gain when if we consider all the elements of

$$
B_{r}\left(x_{1}\right) \cap W_{1}=\left\{w \in W_{1}| | w-x_{1} \mid \leq r\right\}
$$

in the first step of Algorithm \mathcal{A}^{\prime} ?

- Sphere decoding (Fincke, Pohst) can be used to compute $B_{r}\left(x_{1}\right) \cap W_{1}$.

Approximation factors for Algorithm \mathcal{A}^{\prime}

Definition

- The packing radius of a lattice L in \mathbb{R}^{n} is $\rho_{L}:=\frac{1}{2} \sqrt{\min (L)}$, where $\min (L):=\min _{0 \neq \ell \in L}|\ell|^{2}$.
- The covering radius of L is $\gamma_{L}:=\sqrt{\mu(L)}$, where $\mu(L)=\max _{v \in \mathbb{R}^{n}} \min _{\ell \in L}|v-\ell|^{2}$.

Approximation factors for Algorithm \mathcal{A}^{\prime}

Definition

- The packing radius of a lattice L in \mathbb{R}^{n} is $\rho_{L}:=\frac{1}{2} \sqrt{\min (L)}$, where $\min (L):=\min _{0 \neq \ell \in L}|\ell|^{2}$.
- The covering radius of L is $\gamma_{L}:=\sqrt{\mu(L)}$, where $\mu(L)=\max _{v \in \mathbb{R}^{n}} \min _{\ell \in L}|v-\ell|^{2}$.

Theorem

Algorithm \mathcal{A}^{\prime} achieves an approximation factor $\sqrt{\delta_{t}}$, definded recursively by

$$
\delta_{1}=4 \frac{\mu\left(W_{t}\right)}{\min \left(W_{t}\right)}, \quad \delta_{j}=\max \left\{4 \frac{\sum_{i=t-j+1}^{t} \mu\left(W_{i}\right)}{\min \left(W_{t-j+1}\right)}, \delta_{j-1}+1\right\}, \quad j=2, \ldots, t
$$

Approximation factors for Algorithm \mathcal{A}^{\prime}

Definition

- The packing radius of a lattice L in \mathbb{R}^{n} is $\rho_{L}:=\frac{1}{2} \sqrt{\min (L)}$, where $\min (L):=\min _{0 \neq \ell \in L}|\ell|^{2}$.
- The covering radius of L is $\gamma_{L}:=\sqrt{\mu(L)}$, where $\mu(L)=\max _{v \in \mathbb{R}^{n}} \min _{\ell \in L}|v-\ell|^{2}$.

Theorem

Algorithm \mathcal{A}^{\prime} achieves an approximation factor $\sqrt{\delta_{t}}$, definded recursively by

$$
\delta_{1}=4 \frac{\mu\left(W_{t}\right)}{\min \left(W_{t}\right)}, \quad \delta_{j}=\max \left\{4 \frac{\sum_{i=t-j+1}^{t} \mu\left(W_{i}\right)}{\min \left(W_{t-j+1}\right)}, \delta_{j-1}+1\right\}, \quad j=2, \ldots, t
$$

A modification of Algorithm \mathcal{A}^{\prime}

Algorithm \mathcal{A} :

A modification of Algorithm \mathcal{A}^{\prime}

```
Algorithm \(\mathcal{A}\) :
\[
\text { Let } \mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t-1}\right), x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{n} \text { and } r>0 \text {. }
\]
```


A modification of Algorithm \mathcal{A}^{\prime}

Algorithm \mathcal{A} :

Let $\mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t-1}\right), x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{n}$ and $r>0$.

- Use sphere decoding to find all the points in $W_{1} \cap B_{r}\left(x_{1}\right)$.

A modification of Algorithm \mathcal{A}^{\prime}

Algorithm \mathcal{A} :
Let $\mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t-1}\right), x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{n}$ and $r>0$.

- Use sphere decoding to find all the points in $W_{1} \cap B_{r}\left(x_{1}\right)$.
- For every point found in step 1 , perform steps 2 and 3 of Algorithm \mathcal{A}^{\prime}.

A modification of Algorithm \mathcal{A}^{\prime}

Algorithm \mathcal{A} :
Let $\mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t-1}\right), x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{n}$ and $r>0$.

- Use sphere decoding to find all the points in $W_{1} \cap B_{r}\left(x_{1}\right)$.
- For every point found in step 1, perform steps 2 and 3 of Algorithm \mathcal{A}^{\prime}.
- Among all the approximations found, choose the best one.

A modification of Algorithm \mathcal{A}^{\prime}

Algorithm \mathcal{A} :
Let $\mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t-1}\right), x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{n}$ and $r>0$.

- Use sphere decoding to find all the points in $W_{1} \cap B_{r}\left(x_{1}\right)$.
- For every point found in step 1 , perform steps 2 and 3 of Algorithm \mathcal{A}^{\prime}.
- Among all the approximations found, choose the best one.

Theorem

With $\delta_{1}, \ldots, \delta_{t-1}$ as above, Algorithm \mathcal{A} achieves an approximation factor of

$$
\max \left\{1+\delta_{t-1}, r^{-1} \sum_{i=1}^{t} \mu\left(W_{i}\right)\right\}^{\frac{1}{2}}
$$

A modification of Algorithm \mathcal{A}^{\prime}

Algorithm \mathcal{A} :
Let $\mathcal{L}=\mathcal{L}\left(W_{1}, \ldots, W_{t}, f_{2}, \ldots, f_{t-1}\right), x=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{n}$ and $r>0$.

- Use sphere decoding to find all the points in $W_{1} \cap B_{r}\left(x_{1}\right)$.
- For every point found in step 1 , perform steps 2 and 3 of Algorithm \mathcal{A}^{\prime}.
- Among all the approximations found, choose the best one.

Theorem

With $\delta_{1}, \ldots, \delta_{t-1}$ as above, Algorithm \mathcal{A} achieves an approximation factor of

$$
\max \left\{1+\delta_{t-1}, r^{-1} \sum_{i=1}^{t} \mu\left(W_{i}\right)\right\}^{\frac{1}{2}}
$$

Question: Can we upper bound $\left|B_{r}\left(x_{1}\right) \cap W_{1}\right|$?

Bounds on $\left|B_{r}(x) \cap W\right|$ via spherical codes

Bounds on $\left|B_{r}(x) \cap W\right|$ via spherical codes

Definition

A spherical code in \mathbb{R}^{s} is a set \mathcal{C} of vectors of length 1 . The minimum angle of \mathcal{C} is $\alpha_{\text {min }}(\mathcal{C}):=\min _{c \neq c^{\prime} \in \mathcal{C}} \angle\left(c, c^{\prime}\right)$.

Bounds on $\left|B_{r}(x) \cap W\right|$ via spherical codes

Definition

A spherical code in \mathbb{R}^{s} is a set \mathcal{C} of vectors of length 1 . The minimum angle of \mathcal{C} is $\alpha_{\text {min }}(\mathcal{C}):=\min _{c \neq c^{\prime} \in \mathcal{C}} \angle\left(c, c^{\prime}\right)$.

- If \mathcal{C} is a spherical code at a positive minimum angle, then $|\mathcal{C}|<\infty$.

Bounds on $\left|B_{r}(x) \cap W\right|$ via spherical codes

Definition

A spherical code in \mathbb{R}^{s} is a set \mathcal{C} of vectors of length 1 . The minimum angle of \mathcal{C} is $\alpha_{\text {min }}(\mathcal{C}):=\min _{c \neq c^{\prime} \in \mathcal{C}} \angle\left(c, c^{\prime}\right)$.

- If \mathcal{C} is a spherical code at a positive minimum angle, then $|\mathcal{C}|<\infty$.
- In this case, good upper bounds on $|\mathcal{C}|$ can be derived using linear programs, whose variables are the coefficients of the weight distribution of \mathcal{C} (Kabatiansky, Levenshtein).

Bounds on $\left|B_{r}(x) \cap W\right|$ via spherical codes

Definition

A spherical code in \mathbb{R}^{s} is a set \mathcal{C} of vectors of length 1 . The minimum angle of \mathcal{C} is $\alpha_{\text {min }}(\mathcal{C}):=\min _{c \neq c^{\prime} \in \mathcal{C}} \angle\left(c, c^{\prime}\right)$.

- If \mathcal{C} is a spherical code at a positive minimum angle, then $|\mathcal{C}|<\infty$.
- In this case, good upper bounds on $|\mathcal{C}|$ can be derived using linear programs, whose variables are the coefficients of the weight distribution of \mathcal{C} (Kabatiansky, Levenshtein).

Lattices and spherical codes

Lattices and spherical codes

Lattices and spherical codes

Theorem

Let L be a lattice in \mathbb{R}^{s}. If r is a real number with $0<r \leq 2 \rho_{L}$ then the set

$$
\left\{|x-z|^{-1}(x-z) \mid z \in B_{r}(x) \cap L\right\}
$$

is a spherical code with minimum angle $\alpha=\cos ^{-1}\left(1-\frac{\rho_{L}}{r}\right)$, for every $x \in \mathbb{R}^{s}$.

Examples: Bounds obtained for $A_{n}, E_{n}, \Lambda_{24}, \quad r=\gamma_{L}$

Type	n	θ	$A(n, \theta)$	Gaussian bound	for deep holes
A	2	$\frac{2}{3} \pi$	3	3	3
	3	$\frac{\pi}{2}$	6	7	6
	4	$\cos ^{-1}\left(\frac{1}{6}\right)$	10	12	10
	5	$\cos ^{-1}\left(\frac{1}{3}\right)$	≤ 24	26	20
	6	$\cos ^{-1}\left(\frac{5}{12}\right)$	≤ 54	47	35
	7	$\frac{\pi}{3}$	≤ 140	99	70
	8	-	-	188	126
	9	-	-	391	252
E	6	$\cos ^{-1}\left(\frac{1}{4}\right)$	27	37	27
	7	$\cos ^{-1}\left(\frac{1}{3}\right)$	56	84	56
	8	$\frac{\pi}{2}$	16	77	16
Leech	24	$\frac{\pi}{2}$	48	974	48

Example: Nebe's extremal even unimodular lattice Λ_{72}

- Λ_{72} is obtained from a polarisation $\left(\alpha\left(\Lambda_{24}\right), \beta\left(\Lambda_{24}\right)\right)$ of the Leech lattice Λ_{24}, where $\alpha, \beta \in \operatorname{End}\left(\Lambda_{24}\right)$ such that $\alpha^{2}-\alpha+2=0, \beta=1-\alpha$ and $(\alpha(x), y)=(x, \beta(y))$ for all $x, y \in \mathbb{R}^{24}$:

Example: Nebe's extremal even unimodular lattice Λ_{72}

- Λ_{72} is obtained from a polarisation $\left(\alpha\left(\Lambda_{24}\right), \beta\left(\Lambda_{24}\right)\right)$ of the Leech lattice Λ_{24}, where $\alpha, \beta \in \operatorname{End}\left(\Lambda_{24}\right)$ such that $\alpha^{2}-\alpha+2=0, \beta=1-\alpha$ and $(\alpha(x), y)=(x, \beta(y))$ for all $x, y \in \mathbb{R}^{24}$:

$$
\left.\Lambda_{72}=\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \in \perp_{i=1}^{3} \Lambda_{24} \mid \ell_{1}-\ell_{2} \in \beta\left(\Lambda_{24}\right), \ell_{2}-\beta\left(\ell_{1}\right)-\ell_{3} \in 2 \Lambda_{24}\right)\right\}
$$

Example: Nebe's extremal even unimodular lattice Λ_{72}

- Λ_{72} is obtained from a polarisation $\left(\alpha\left(\Lambda_{24}\right), \beta\left(\Lambda_{24}\right)\right)$ of the Leech lattice Λ_{24}, where $\alpha, \beta \in \operatorname{End}\left(\Lambda_{24}\right)$ such that $\alpha^{2}-\alpha+2=0, \beta=1-\alpha$ and $(\alpha(x), y)=(x, \beta(y))$ for all $x, y \in \mathbb{R}^{24}$:

$$
\left.\Lambda_{72}=\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \in \perp_{i=1}^{3} \Lambda_{24} \mid \ell_{1}-\ell_{2} \in \beta\left(\Lambda_{24}\right), \ell_{2}-\beta\left(\ell_{1}\right)-\ell_{3} \in 2 \Lambda_{24}\right)\right\}
$$

- Algorithm \mathcal{A}^{\prime} : Decoding $\left(x_{1}, x_{2}, x_{3}\right) \in \perp_{i=1}^{3} \mathbb{R}^{24}$ in Λ_{72} with approximation factor $\sqrt{14}$:

Example: Nebe's extremal even unimodular lattice Λ_{72}

- Λ_{72} is obtained from a polarisation $\left(\alpha\left(\Lambda_{24}\right), \beta\left(\Lambda_{24}\right)\right)$ of the Leech lattice Λ_{24}, where $\alpha, \beta \in \operatorname{End}\left(\Lambda_{24}\right)$ such that $\alpha^{2}-\alpha+2=0, \beta=1-\alpha$ and $(\alpha(x), y)=(x, \beta(y))$ for all $x, y \in \mathbb{R}^{24}$:

$$
\left.\Lambda_{72}=\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \in \perp_{i=1}^{3} \Lambda_{24} \mid \ell_{1}-\ell_{2} \in \beta\left(\Lambda_{24}\right), \ell_{2}-\beta\left(\ell_{1}\right)-\ell_{3} \in 2 \Lambda_{24}\right)\right\}
$$

- Algorithm \mathcal{A}^{\prime} : Decoding $\left(x_{1}, x_{2}, x_{3}\right) \in \perp_{i=1}^{3} \mathbb{R}^{24}$ in Λ_{72} with approximation factor $\sqrt{14}$:
(1) Approximate x_{1} with $y_{1} \in \Lambda_{24}$.

Example: Nebe's extremal even unimodular lattice Λ_{72}

- Λ_{72} is obtained from a polarisation $\left(\alpha\left(\Lambda_{24}\right), \beta\left(\Lambda_{24}\right)\right)$ of the Leech lattice Λ_{24}, where $\alpha, \beta \in \operatorname{End}\left(\Lambda_{24}\right)$ such that $\alpha^{2}-\alpha+2=0, \beta=1-\alpha$ and $(\alpha(x), y)=(x, \beta(y))$ for all $x, y \in \mathbb{R}^{24}$:

$$
\left.\Lambda_{72}=\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \in \perp_{i=1}^{3} \Lambda_{24} \mid \ell_{1}-\ell_{2} \in \beta\left(\Lambda_{24}\right), \ell_{2}-\beta\left(\ell_{1}\right)-\ell_{3} \in 2 \Lambda_{24}\right)\right\}
$$

- Algorithm \mathcal{A}^{\prime} : Decoding $\left(x_{1}, x_{2}, x_{3}\right) \in \perp_{i=1}^{3} \mathbb{R}^{24}$ in Λ_{72} with approximation factor $\sqrt{14}$:
(1) Approximate x_{1} with $y_{1} \in \Lambda_{24}$.
(2) Approximate $x_{2}-y_{1}$ with $y_{2} \in \beta\left(\Lambda_{24}\right)$.

Example: Nebe's extremal even unimodular lattice Λ_{72}

- Λ_{72} is obtained from a polarisation $\left(\alpha\left(\Lambda_{24}\right), \beta\left(\Lambda_{24}\right)\right)$ of the Leech lattice Λ_{24}, where $\alpha, \beta \in \operatorname{End}\left(\Lambda_{24}\right)$ such that $\alpha^{2}-\alpha+2=0, \beta=1-\alpha$ and $(\alpha(x), y)=(x, \beta(y))$ for all $x, y \in \mathbb{R}^{24}$:
$\left.\Lambda_{72}=\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \in \perp_{i=1}^{3} \Lambda_{24} \mid \ell_{1}-\ell_{2} \in \beta\left(\Lambda_{24}\right), \ell_{2}-\beta\left(\ell_{1}\right)-\ell_{3} \in 2 \Lambda_{24}\right)\right\}$
- Algorithm \mathcal{A}^{\prime} : Decoding $\left(x_{1}, x_{2}, x_{3}\right) \in \perp_{i=1}^{3} \mathbb{R}^{24}$ in Λ_{72} with approximation factor $\sqrt{14}$:
(1) Approximate x_{1} with $y_{1} \in \Lambda_{24}$.
(2) Approximate $x_{2}-y_{1}$ with $y_{2} \in \beta\left(\Lambda_{24}\right)$.
(3) Approximate $x_{3}-\alpha\left(y_{1}\right)-y_{2}$ with $y_{3} \in 2 \wedge_{24}$.

Example: Nebe's extremal even unimodular lattice Λ_{72}

- Λ_{72} is obtained from a polarisation $\left(\alpha\left(\Lambda_{24}\right), \beta\left(\Lambda_{24}\right)\right)$ of the Leech lattice Λ_{24}, where $\alpha, \beta \in \operatorname{End}\left(\Lambda_{24}\right)$ such that $\alpha^{2}-\alpha+2=0, \beta=1-\alpha$ and $(\alpha(x), y)=(x, \beta(y))$ for all $x, y \in \mathbb{R}^{24}$:

$$
\left.\Lambda_{72}=\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \in \perp_{i=1}^{3} \Lambda_{24} \mid \ell_{1}-\ell_{2} \in \beta\left(\Lambda_{24}\right), \ell_{2}-\beta\left(\ell_{1}\right)-\ell_{3} \in 2 \Lambda_{24}\right)\right\}
$$

- Algorithm \mathcal{A}^{\prime} : Decoding $\left(x_{1}, x_{2}, x_{3}\right) \in \perp_{i=1}^{3} \mathbb{R}^{24}$ in Λ_{72} with approximation factor $\sqrt{14}$:
(1) Approximate x_{1} with $y_{1} \in \Lambda_{24}$.
(2) Approximate $x_{2}-y_{1}$ with $y_{2} \in \beta\left(\Lambda_{24}\right)$.
(3) Approximate $x_{3}-\alpha\left(y_{1}\right)-y_{2}$ with $y_{3} \in 2 \wedge_{24}$.
(4) Output the approximation $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)=\left(y_{1}, y_{1}+y_{2}, \alpha\left(y_{1}\right)+y_{2}+y_{3}\right)$

Example: Nebe's extremal even unimodular lattice Λ_{72}

- Λ_{72} is obtained from a polarisation $\left(\alpha\left(\Lambda_{24}\right), \beta\left(\Lambda_{24}\right)\right)$ of the Leech lattice Λ_{24}, where $\alpha, \beta \in \operatorname{End}\left(\Lambda_{24}\right)$ such that $\alpha^{2}-\alpha+2=0, \beta=1-\alpha$ and $(\alpha(x), y)=(x, \beta(y))$ for all $x, y \in \mathbb{R}^{24}$:

$$
\left.\Lambda_{72}=\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \in \perp_{i=1}^{3} \Lambda_{24} \mid \ell_{1}-\ell_{2} \in \beta\left(\Lambda_{24}\right), \ell_{2}-\beta\left(\ell_{1}\right)-\ell_{3} \in 2 \Lambda_{24}\right)\right\}
$$

- Algorithm \mathcal{A}^{\prime} : Decoding $\left(x_{1}, x_{2}, x_{3}\right) \in \perp_{i=1}^{3} \mathbb{R}^{24}$ in Λ_{72} with approximation factor $\sqrt{14}$:
(1) Approximate x_{1} with $y_{1} \in \Lambda_{24}$.
(2) Approximate $x_{2}-y_{1}$ with $y_{2} \in \beta\left(\Lambda_{24}\right)$.
(3) Approximate $x_{3}-\alpha\left(y_{1}\right)-y_{2}$ with $y_{3} \in 2 \Lambda_{24}$.
(4) Output the approximation $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)=\left(y_{1}, y_{1}+y_{2}, \alpha\left(y_{1}\right)+y_{2}+y_{3}\right)$
- Algorithm \mathcal{A} : time increased by at most $\left|B_{\sqrt{2}}\left(x_{1}\right) \cap \Lambda_{24}\right| \leq 48$, approximation factor of $\sqrt{7}$, using sphere decoding with
$r=\sqrt{2}=\sqrt{\mu\left(\Lambda_{24}\right)}$.

Thank you very much for your attention!

