On a recursive decoding algorithm for lattices

Annika Meyer

Workshop on lattices, codes and modular forms Aachen, 27.09.2011 **Overview**

- 2) Iterative lattice decoding
- Opper bounds on the number of lattice points in a small sphere

Given a lattice *L* in ℝⁿ and *x* ∈ ℝⁿ, the CVP consists in finding ℓ ∈ *L* such that

$$|\boldsymbol{x}-\boldsymbol{\ell}| = \min_{\boldsymbol{\ell}'\in\boldsymbol{L}}|\boldsymbol{x}-\boldsymbol{\ell}'|,$$

where $|\cdot|$ denotes the usual Euclidian length.

Given a lattice *L* in ℝⁿ and *x* ∈ ℝⁿ, the CVP consists in finding ℓ ∈ *L* such that

$$|\boldsymbol{x}-\boldsymbol{\ell}| = \min_{\boldsymbol{\ell}'\in\boldsymbol{L}}|\boldsymbol{x}-\boldsymbol{\ell}'|,$$

where $|\cdot|$ denotes the usual Euclidian length.

• The CVP is NP hard in its *exact* version.

Given a lattice *L* in ℝⁿ and *x* ∈ ℝⁿ, the CVP consists in finding ℓ ∈ *L* such that

$$|\boldsymbol{x}-\boldsymbol{\ell}| = \min_{\boldsymbol{\ell}'\in\boldsymbol{L}}|\boldsymbol{x}-\boldsymbol{\ell}'|,$$

where $|\cdot|$ denotes the usual Euclidian length.

- The CVP is NP hard in its exact version.
- Solving the CVP with approximation factor δ ≥ 1 ∈ ℝ means finding ℓ ∈ L such that, for all ℓ' ∈ L,

 $|\mathbf{x} - \ell| \le \delta \cdot |\mathbf{x} - \ell'|.$

Given a lattice *L* in ℝⁿ and *x* ∈ ℝⁿ, the CVP consists in finding ℓ ∈ *L* such that

$$|\boldsymbol{x}-\boldsymbol{\ell}| = \min_{\boldsymbol{\ell}'\in\boldsymbol{L}}|\boldsymbol{x}-\boldsymbol{\ell}'|,$$

where $|\cdot|$ denotes the usual Euclidian length.

- The CVP is NP hard in its exact version.
- Solving the CVP with approximation factor δ ≥ 1 ∈ ℝ means finding ℓ ∈ L such that, for all ℓ' ∈ L,

$$|\mathbf{x} - \ell| \leq \delta \cdot |\mathbf{x} - \ell'|.$$

 The best known approximation factor for a deterministic polynomial time algorithm to solve the CVP approximately is 2^{n(log log n)²/2 log n} (Schnorr 1985).

Given a basis $\mathcal{B} = (b_1, \dots, b_n)$ of *L* and $x \in \mathbb{R}^n$, BNPP *approximates* x in *L*.

(1) Let
$$L' = \langle b_1, \ldots, b_{n-1} \rangle_{\mathbb{Z}}$$
, then $L = \bigcup_{z \in \mathbb{Z}} z \cdot b_1 + L'$.

Given a basis $\mathcal{B} = (b_1, \dots, b_n)$ of *L* and $x \in \mathbb{R}^n$, BNPP *approximates x* in *L*. An approximation factor $2^{n/2}$ is achieved if \mathcal{B} is LLL reduced.

(1) Let
$$L' = \langle b_1, \ldots, b_{n-1} \rangle_{\mathbb{Z}}$$
, then $L = \bigcup_{z \in \mathbb{Z}} z \cdot b_1 + L'$.

(2) Choose $H = zb_2 + L' \otimes \mathbb{R}$ closest to x and $h \in H$ closest to x.

- (1) Let $L' = \langle b_1, \ldots, b_{n-1} \rangle_{\mathbb{Z}}$, then $L = \bigcup_{z \in \mathbb{Z}} z \cdot b_1 + L'$.
- (2) Choose $H = zb_2 + L' \otimes \mathbb{R}$ closest to *x* and $h \in H$ closest to *x*.
- (3) Iteratively, find an approximation y' of $h zb_2$ in L'.

- (1) Let $L' = \langle b_1, \ldots, b_{n-1} \rangle_{\mathbb{Z}}$, then $L = \bigcup_{z \in \mathbb{Z}} z \cdot b_1 + L'$.
- (2) Choose $H = zb_2 + L' \otimes \mathbb{R}$ closest to x and $h \in H$ closest to x.
- (3) Iteratively, find an approximation y' of $h zb_2$ in L'.
- (4) Output the approximation $y = y' + zb_2$.

- (1) Let $L' = \langle b_1, \ldots, b_{n-1} \rangle_{\mathbb{Z}}$, then $L = \bigcup_{z \in \mathbb{Z}} z \cdot b_1 + L'$.
- (2) Choose $H = zb_2 + L' \otimes \mathbb{R}$ closest to x and $h \in H$ closest to x.
- (3) Iteratively, find an approximation y' of $h zb_2$ in L'.
- (4) Output the approximation $y = y' + zb_2$.

Let $\mathcal{B}' = (b'_1, \ldots, b'_n)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi : b'_i \mapsto e_{n-i+1}$, where (e_1, \ldots, e_n) is the standard basis of \mathbb{R}^n . Write

Let $\mathcal{B}' = (b'_1, \ldots, b'_n)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi : b'_i \mapsto e_{n-i+1}$, where (e_1, \ldots, e_n) is the standard basis of \mathbb{R}^n . Write

$$\left(\begin{array}{c}\varphi(\boldsymbol{b}_n)\\\vdots\\\varphi(\boldsymbol{b}_1)\end{array}\right) = \left(\begin{array}{ccc}\alpha_{1,1}&\ldots&\alpha_{1,n}\\&\ddots&\vdots\\0&&&\alpha_{n,n}\end{array}\right)$$

Let $\mathcal{B}' = (b'_1, \ldots, b'_n)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi : b'_i \mapsto e_{n-i+1}$, where (e_1, \ldots, e_n) is the standard basis of \mathbb{R}^n . Write

$$\left(\begin{array}{c}\varphi(b_n)\\\vdots\\\varphi(b_1)\end{array}\right) = \left(\begin{array}{ccc}\alpha_{1,1}&\ldots&\alpha_{1,n}\\&\ddots&\vdots\\0&&&\alpha_{n,n}\end{array}\right)$$

With $\varphi(\mathbf{x}) = (u_1, \ldots, u_n)$, BNPP is the following:

Let $\mathcal{B}' = (b'_1, \ldots, b'_n)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi : b'_i \mapsto e_{n-i+1}$, where (e_1, \ldots, e_n) is the standard basis of \mathbb{R}^n . Write

$$\left(\begin{array}{c}\varphi(b_n)\\\vdots\\\varphi(b_1)\end{array}\right) = \left(\begin{array}{ccc}\alpha_{1,1}&\ldots&\alpha_{1,n}\\&\ddots&\vdots\\0&&&\alpha_{n,n}\end{array}\right)$$

With $\varphi(\mathbf{x}) = (u_1, \ldots, u_n)$, BNPP is the following:

(1) Find the optimal approximation $\ell_1 = z \alpha_{1,1}$ of u_1 in $\mathbb{Z} \alpha_{1,1}$.

Let $\mathcal{B}' = (b'_1, \ldots, b'_n)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi : b'_i \mapsto e_{n-i+1}$, where (e_1, \ldots, e_n) is the standard basis of \mathbb{R}^n . Write

$$\left(\begin{array}{c}\varphi(b_n)\\\vdots\\\varphi(b_1)\end{array}\right) = \left(\begin{array}{ccc}\alpha_{1,1}&\ldots&\alpha_{1,n}\\&\ddots&\vdots\\0&&&\alpha_{n,n}\end{array}\right)$$

With $\varphi(\mathbf{x}) = (u_1, \ldots, u_n)$, BNPP is the following:

- (1) Find the optimal approximation $\ell_1 = z\alpha_{1,1}$ of u_1 in $\mathbb{Z}\alpha_{1,1}$.
- (2) Iteratively, approximate $(u_2 z\alpha_{1,2}, \ldots, u_n z\alpha_{1,n}) \in \mathbb{R}^{n-1}$ in $L' = \langle \varphi(b_2), \ldots, \varphi(b_n) \rangle_{\mathbb{Z}}$ with ℓ' .

Let $\mathcal{B}' = (b'_1, \ldots, b'_n)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi : b'_i \mapsto e_{n-i+1}$, where (e_1, \ldots, e_n) is the standard basis of \mathbb{R}^n . Write

$$\left(\begin{array}{c}\varphi(b_n)\\\vdots\\\varphi(b_1)\end{array}\right) = \left(\begin{array}{ccc}\alpha_{1,1}&\ldots&\alpha_{1,n}\\&\ddots&\vdots\\0&&&\alpha_{n,n}\end{array}\right)$$

With $\varphi(\mathbf{x}) = (u_1, \ldots, u_n)$, BNPP is the following:

- (1) Find the optimal approximation $\ell_1 = z\alpha_{1,1}$ of u_1 in $\mathbb{Z}\alpha_{1,1}$.
- (2) Iteratively, approximate (u₂ − zα_{1,2},..., u_n − zα_{1,n}) ∈ ℝⁿ⁻¹ in L' = ⟨φ(b₂),...,φ(b_n)⟩_ℤ with ℓ'.
 (3) Form ℓ = ℓ' + z(α_{1,1},...,α_{1,n}).

Let $\mathcal{B}' = (b'_1, \ldots, b'_n)$ be the Gram Schmidt orthonormalisation of \mathcal{B} and define an isometry $\varphi : b'_i \mapsto e_{n-i+1}$, where (e_1, \ldots, e_n) is the standard basis of \mathbb{R}^n . Write

$$\left(\begin{array}{c}\varphi(b_n)\\\vdots\\\varphi(b_1)\end{array}\right) = \left(\begin{array}{ccc}\alpha_{1,1}&\ldots&\alpha_{1,n}\\&\ddots&\vdots\\0&&&\alpha_{n,n}\end{array}\right)$$

With $\varphi(\mathbf{x}) = (u_1, \ldots, u_n)$, BNPP is the following:

- (1) Find the optimal approximation $\ell_1 = z \alpha_{1,1}$ of u_1 in $\mathbb{Z} \alpha_{1,1}$.
- (2) Iteratively, approximate $(u_2 z\alpha_{1,2}, \ldots, u_n z\alpha_{1,n}) \in \mathbb{R}^{n-1}$ in $L' = \langle \varphi(b_2), \ldots, \varphi(b_n) \rangle_{\mathbb{Z}}$ with ℓ' .

(3) Form
$$\ell = \ell' + z(\alpha_{1,1}, \ldots, \alpha_{1,n}).$$

Idea: Generalise BNPP, changing from lattices $\alpha \mathbb{Z}$ to higher dimensional lattices.

• Let W_i be lattices of dimension n_i , $i \in \{1, ..., t\}$, and let $f_i : \mathbb{R}^{n_1 + \dots + n_i} \to \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in \{1, \dots, t-1\}$.

- Let W_i be lattices of dimension n_i , $i \in \{1, ..., t\}$, and let $f_i : \mathbb{R}^{n_1 + \dots + n_i} \to \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in \{1, \dots, t-1\}$.
- Form a lattice $\mathcal{L} = \mathcal{L}(W_1, \dots, W_t, f_2, \dots, f_t)$ of dimension $n = n_1 + \dots + n_t$ by

$$\mathcal{L} = \{ (\ell_1, \ldots, \ell_t) \in \mathbb{R}^n \mid \ell_1 \in W_1, \ell_i - f_{i-1}(\ell_1, \ldots, \ell_{i-1}) \in W_i, i \in \{1, \ldots, t\}) \}.$$

- Let W_i be lattices of dimension n_i , $i \in \{1, ..., t\}$, and let $f_i : \mathbb{R}^{n_1 + \dots + n_i} \to \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in \{1, \dots, t-1\}$.
- Form a lattice $\mathcal{L} = \mathcal{L}(W_1, \dots, W_t, f_2, \dots, f_t)$ of dimension $n = n_1 + \dots + n_t$ by

$$\mathcal{L} = \{ (\ell_1, \ldots, \ell_t) \in \mathbb{R}^n \mid \ell_1 \in W_1, \ell_i - f_{i-1}(\ell_1, \ldots, \ell_{i-1}) \in W_i, i \in \{1, \ldots, t\}) \}.$$

• Decoding algorithm \mathcal{A} for \mathcal{L} : Let $x = (x_1, \dots, x_t) \in \mathbb{R}^n$.

- Let W_i be lattices of dimension n_i , $i \in \{1, ..., t\}$, and let $f_i : \mathbb{R}^{n_1 + \dots + n_i} \to \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in \{1, \dots, t-1\}$.
- Form a lattice $\mathcal{L} = \mathcal{L}(W_1, \dots, W_t, f_2, \dots, f_t)$ of dimension $n = n_1 + \dots + n_t$ by

$$\mathcal{L} = \{ (\ell_1, \ldots, \ell_t) \in \mathbb{R}^n \mid \ell_1 \in W_1, \ell_i - f_{i-1}(\ell_1, \ldots, \ell_{i-1}) \in W_i, i \in \{1, \ldots, t\}) \}.$$

Decoding algorithm A for L: Let x = (x₁,..., x_t) ∈ ℝⁿ.
 (1) Let ℓ₁ ∈ W₁ be the lattice point closest to x₁.

- Let W_i be lattices of dimension n_i , $i \in \{1, ..., t\}$, and let $f_i : \mathbb{R}^{n_1 + \dots + n_i} \to \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in \{1, \dots, t-1\}$.
- Form a lattice $\mathcal{L} = \mathcal{L}(W_1, \dots, W_t, f_2, \dots, f_t)$ of dimension $n = n_1 + \dots + n_t$ by

$$\mathcal{L} = \{ (\ell_1, \ldots, \ell_t) \in \mathbb{R}^n \mid \ell_1 \in W_1, \ell_i - f_{i-1}(\ell_1, \ldots, \ell_{i-1}) \in W_i, i \in \{1, \ldots, t\}) \}.$$

- Decoding algorithm \mathcal{A} for \mathcal{L} : Let $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_t) \in \mathbb{R}^n$.
 - (1) Let $\ell_1 \in W_1$ be the lattice point closest to x_1 .
 - (2) For $2 \le i \le t$, approximate $x_i f_{i-1}(\ell_1, ..., \ell_{i-1})$ by $w_i \in W_i$ and put $\ell_i := w_i + f_{i-1}(\ell_1, ..., \ell_{i-1})$.

- Let W_i be lattices of dimension n_i , $i \in \{1, ..., t\}$, and let $f_i : \mathbb{R}^{n_1 + \dots + n_i} \to \mathbb{R}^{n_{i+1}}$ linear maps, for $i \in \{1, \dots, t-1\}$.
- Form a lattice $\mathcal{L} = \mathcal{L}(W_1, \dots, W_t, f_2, \dots, f_t)$ of dimension $n = n_1 + \dots + n_t$ by

$$\mathcal{L} = \{ (\ell_1, \ldots, \ell_t) \in \mathbb{R}^n \mid \ell_1 \in W_1, \ell_i - f_{i-1}(\ell_1, \ldots, \ell_{i-1}) \in W_i, i \in \{1, \ldots, t\}) \}.$$

- Decoding algorithm \mathcal{A} for \mathcal{L} : Let $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_t) \in \mathbb{R}^n$.
 - (1) Let $\ell_1 \in W_1$ be the lattice point closest to x_1 .
 - (2) For $2 \le i \le t$, approximate $x_i f_{i-1}(\ell_1, ..., \ell_{i-1})$ by $w_i \in W_i$ and put $\ell_i := w_i + f_{i-1}(\ell_1, ..., \ell_{i-1})$.
 - (3) Output the approximation $\ell = (\ell_1, \ldots, \ell_t) \in \mathcal{L}$.

- Algorithm \mathcal{A}^\prime depends on the chosen lattice basis.

- Algorithm \mathcal{A}' depends on the chosen lattice basis.
- For every isometry class of lattices, there are many ways to give an upper triangular (block) basis matrix for a representative.

- Algorithm \mathcal{A}' depends on the chosen lattice basis.
- For every isometry class of lattices, there are many ways to give an upper triangular (block) basis matrix for a representative.
 - There should exist good decoding algorithms for W_1, \ldots, W_t (specific decoding algorithms exist for many well known lattices).

- Algorithm \mathcal{A}' depends on the chosen lattice basis.
- For every isometry class of lattices, there are many ways to give an upper triangular (block) basis matrix for a representative.
 - There should exist good decoding algorithms for W_1, \ldots, W_t (specific decoding algorithms exist for many well known lattices).
 - When do we obtain a good approximation?

- Algorithm \mathcal{A}' depends on the chosen lattice basis.
- For every isometry class of lattices, there are many ways to give an upper triangular (block) basis matrix for a representative.
 - There should exist good decoding algorithms for W_1, \ldots, W_t (specific decoding algorithms exist for many well known lattices).
 - When do we obtain a good approximation?
- What do we gain when if we consider all the elements of

$$B_r(x_1) \cap W_1 = \{ w \in W_1 \mid |w - x_1| \leq r \}$$

in the first step of Algorithm \mathcal{A}' ?

- Algorithm \mathcal{A}' depends on the chosen lattice basis.
- For every isometry class of lattices, there are many ways to give an upper triangular (block) basis matrix for a representative.
 - There should exist good decoding algorithms for W_1, \ldots, W_t (specific decoding algorithms exist for many well known lattices).
 - When do we obtain a good approximation?
- What do we gain when if we consider all the elements of

$$B_r(x_1) \cap W_1 = \{ w \in W_1 \mid |w - x_1| \le r \}$$

in the first step of Algorithm \mathcal{A}' ?

• Sphere decoding (Fincke, Pohst) can be used to compute $B_r(x_1) \cap W_1$.

Approximation factors for Algorithm \mathcal{A}'

Definition

- The *packing radius* of a lattice *L* in \mathbb{R}^n is $\rho_L := \frac{1}{2}\sqrt{\min(L)}$, where $\min(L) := \min_{0 \neq \ell \in L} |\ell|^2$.
- The covering radius of L is $\gamma_L := \sqrt{\mu(L)}$, where $\mu(L) = \max_{v \in \mathbb{R}^n} \min_{\ell \in L} |v \ell|^2$.

Approximation factors for Algorithm \mathcal{A}^\prime

Definition

- The *packing radius* of a lattice *L* in \mathbb{R}^n is $\rho_L := \frac{1}{2}\sqrt{\min(L)}$, where $\min(L) := \min_{0 \neq \ell \in L} |\ell|^2$.
- The covering radius of L is $\gamma_L := \sqrt{\mu(L)}$, where $\mu(L) = \max_{v \in \mathbb{R}^n} \min_{\ell \in L} |v \ell|^2$.

Theorem

Algorithm \mathcal{A}' achieves an approximation factor $\sqrt{\delta_t}$, definded recursively by

$$\delta_1 = 4 \frac{\mu(W_t)}{\min(W_t)}, \ \delta_j = \max\{4 \frac{\sum_{i=t-j+1}^t \mu(W_i)}{\min(W_{t-j+1})}, \delta_{j-1} + 1\}, \ j = 2, \dots, t.$$

Approximation factors for Algorithm \mathcal{A}^\prime

Definition

- The *packing radius* of a lattice *L* in \mathbb{R}^n is $\rho_L := \frac{1}{2}\sqrt{\min(L)}$, where $\min(L) := \min_{0 \neq \ell \in L} |\ell|^2$.
- The covering radius of L is $\gamma_L := \sqrt{\mu(L)}$, where $\mu(L) = \max_{v \in \mathbb{R}^n} \min_{\ell \in L} |v \ell|^2$.

Theorem

Algorithm \mathcal{A}' achieves an approximation factor $\sqrt{\delta_t}$, definded recursively by

$$\delta_1 = 4 \frac{\mu(W_t)}{\min(W_t)}, \ \delta_j = \max\{4 \frac{\sum_{i=t-j+1}^t \mu(W_i)}{\min(W_{t-j+1})}, \delta_{j-1} + 1\}, \ j = 2, \dots, t.$$

Algorithm \mathcal{A} :

Algorithm \mathcal{A} : Let $\mathcal{L} = \mathcal{L}(W_1, \dots, W_t, f_2, \dots, f_{t-1}), x = (x_1, \dots, x_t) \in \mathbb{R}^n$ and r > 0.

Algorithm \mathcal{A} :

Let $\mathcal{L} = \mathcal{L}(W_1, \ldots, W_t, f_2, \ldots, f_{t-1}), x = (x_1, \ldots, x_t) \in \mathbb{R}^n$ and r > 0.

• Use sphere decoding to find all the points in $W_1 \cap B_r(x_1)$.

Algorithm \mathcal{A} :

Let $\mathcal{L} = \mathcal{L}(W_1, \ldots, W_t, f_2, \ldots, f_{t-1}), x = (x_1, \ldots, x_t) \in \mathbb{R}^n$ and r > 0.

- Use sphere decoding to find all the points in $W_1 \cap B_r(x_1)$.
- For every point found in step 1, perform steps 2 and 3 of Algorithm \mathcal{A}' .

Algorithm \mathcal{A} :

Let $\mathcal{L} = \mathcal{L}(W_1, \ldots, W_t, f_2, \ldots, f_{t-1}), x = (x_1, \ldots, x_t) \in \mathbb{R}^n$ and r > 0.

- Use sphere decoding to find all the points in $W_1 \cap B_r(x_1)$.
- For every point found in step 1, perform steps 2 and 3 of Algorithm \mathcal{A}' .
- Among all the approximations found, choose the best one.

Algorithm \mathcal{A} :

Let $\mathcal{L} = \mathcal{L}(W_1, \ldots, W_t, f_2, \ldots, f_{t-1}), x = (x_1, \ldots, x_t) \in \mathbb{R}^n$ and r > 0.

- Use sphere decoding to find all the points in $W_1 \cap B_r(x_1)$.
- For every point found in step 1, perform steps 2 and 3 of Algorithm \mathcal{A}' .
- Among all the approximations found, choose the best one.

Theorem

With $\delta_1, \ldots, \delta_{t-1}$ as above, Algorithm \mathcal{A} achieves an approximation factor of

$$\max\{1+\delta_{t-1}, r^{-1}\sum_{i=1}^t \mu(W_i)\}^{\frac{1}{2}}.$$

Algorithm \mathcal{A} :

Let $\mathcal{L} = \mathcal{L}(W_1, \ldots, W_t, f_2, \ldots, f_{t-1})$, $\mathbf{x} = (\mathbf{x}_1, \ldots, \mathbf{x}_t) \in \mathbb{R}^n$ and r > 0.

- Use sphere decoding to find all the points in $W_1 \cap B_r(x_1)$.
- For every point found in step 1, perform steps 2 and 3 of Algorithm \mathcal{A}' .
- Among all the approximations found, choose the best one.

Theorem

With $\delta_1, \ldots, \delta_{t-1}$ as above, Algorithm \mathcal{A} achieves an approximation factor of

$$\max\{1+\delta_{t-1}, r^{-1}\sum_{i=1}^t \mu(W_i)\}^{\frac{1}{2}}.$$

Question: Can we upper bound $|B_r(x_1) \cap W_1|$?

Definition

A spherical code in \mathbb{R}^s is a set C of vectors of length 1. The minimum angle of C is $\alpha_{\min}(C) := \min_{c \neq c' \in C} \angle (c, c')$.

Definition

A spherical code in \mathbb{R}^s is a set C of vectors of length 1. The minimum angle of C is $\alpha_{\min}(C) := \min_{c \neq c' \in C} \angle (c, c')$.

• If C is a spherical code at a positive minimum angle, then $|C| < \infty$.

Definition

A spherical code in \mathbb{R}^s is a set \mathcal{C} of vectors of length 1. The minimum angle of \mathcal{C} is $\alpha_{\min}(\mathcal{C}) := \min_{c \neq c' \in \mathcal{C}} \angle (c, c')$.

- If C is a spherical code at a positive minimum angle, then $|C| < \infty$.
- In this case, good upper bounds on |C| can be derived using *linear* programs, whose variables are the coefficients of the *weight distribution* of C (Kabatiansky, Levenshtein).

Definition

A spherical code in \mathbb{R}^s is a set \mathcal{C} of vectors of length 1. The minimum angle of \mathcal{C} is $\alpha_{\min}(\mathcal{C}) := \min_{c \neq c' \in \mathcal{C}} \angle (c, c')$.

- If C is a spherical code at a positive minimum angle, then $|C| < \infty$.
- In this case, good upper bounds on |C| can be derived using *linear* programs, whose variables are the coefficients of the *weight distribution* of C (Kabatiansky, Levenshtein).

Lattices and spherical codes

Lattices and spherical codes

Lattices and spherical codes

Theorem

Let L be a lattice in \mathbb{R}^s . If r is a real number with $0 < r \leq 2\rho_L$ then the set

$$\{|x-z|^{-1} (x-z) | z \in B_r(x) \cap L\}$$

is a spherical code with minimum angle $\alpha = \cos^{-1}(1 - \frac{\rho_L}{r})$, for every $x \in \mathbb{R}^s$.

Examples: Bounds obtained for A_n , E_n , Λ_{24} , $r = \gamma_L$

Туре	n	heta	$A(n, \theta)$	Gaussian bound	for deep holes
A	2	$\frac{2}{3}\pi$	3	3	3
	3	$\frac{\pi}{2}$	6	7	6
	4	$\cos^{-1}(\frac{1}{6})$	10	12	10
	5	$\cos^{-1}(\frac{1}{3})$	\leq 24	26	20
	6	$\cos^{-1}(\frac{5}{12})$	\leq 54	47	35
	7	$\frac{\pi}{3}$	\leq 140	99	70
	8	-	-	188	126
	9	-	-	391	252
E	6	$\cos^{-1}(\frac{1}{4})$	27	37	27
	7	$\cos^{-1}(\frac{1}{3})$	56	84	56
	8	$\frac{\pi}{2}$	16	77	16
Leech	24	$\frac{\pi}{2}$	48	974	48

Example: Nebe's extremal even unimodular lattice Λ_{72}

Λ₇₂ is obtained from a polarisation (α(Λ₂₄), β(Λ₂₄)) of the Leech lattice Λ₂₄, where α, β ∈ End(Λ₂₄) such that α² − α + 2 = 0, β = 1 − α and (α(x), y) = (x, β(y)) for all x, y ∈ ℝ²⁴:

Example: Nebe's extremal even unimodular lattice Λ_{72}

Λ₇₂ is obtained from a polarisation (α(Λ₂₄), β(Λ₂₄)) of the Leech lattice Λ₂₄, where α, β ∈ End(Λ₂₄) such that α² − α + 2 = 0, β = 1 − α and (α(x), y) = (x, β(y)) for all x, y ∈ ℝ²⁴:

 $\Lambda_{72} = \{ (\ell_1, \ell_2, \ell_3) \in \perp_{i=1}^3 \Lambda_{24} \mid \ell_1 - \ell_2 \in \beta(\Lambda_{24}), \ \ell_2 - \beta(\ell_1) - \ell_3 \in 2\Lambda_{24}) \}$

Example: Nebe's extremal even unimodular lattice Λ_{72}

Λ₇₂ is obtained from a polarisation (α(Λ₂₄), β(Λ₂₄)) of the Leech lattice Λ₂₄, where α, β ∈ End(Λ₂₄) such that α² − α + 2 = 0, β = 1 − α and (α(x), y) = (x, β(y)) for all x, y ∈ ℝ²⁴:

 $\Lambda_{72} = \{ (\ell_1, \ell_2, \ell_3) \in \perp_{i=1}^3 \Lambda_{24} \mid \ell_1 - \ell_2 \in \beta(\Lambda_{24}), \ \ell_2 - \beta(\ell_1) - \ell_3 \in 2\Lambda_{24}) \}$

Algorithm A': Decoding (x₁, x₂, x₃) ∈⊥³_{i=1} ℝ²⁴ in Λ₇₂ with approximation factor √14:

Example: Nebe's extremal even unimodular lattice Λ_{72}

Λ₇₂ is obtained from a polarisation (α(Λ₂₄), β(Λ₂₄)) of the Leech lattice Λ₂₄, where α, β ∈ End(Λ₂₄) such that α² − α + 2 = 0, β = 1 − α and (α(x), y) = (x, β(y)) for all x, y ∈ ℝ²⁴:

 $\Lambda_{72} = \{ (\ell_1, \ell_2, \ell_3) \in \perp_{i=1}^3 \Lambda_{24} \mid \ell_1 - \ell_2 \in \beta(\Lambda_{24}), \ \ell_2 - \beta(\ell_1) - \ell_3 \in 2\Lambda_{24}) \}$

Algorithm A': Decoding (x₁, x₂, x₃) ∈⊥³_{i=1} ℝ²⁴ in Λ₇₂ with approximation factor √14:

(1) Approximate x_1 with $y_1 \in \Lambda_{24}$.

Example: Nebe's extremal even unimodular lattice Λ_{72}

Λ₇₂ is obtained from a polarisation (α(Λ₂₄), β(Λ₂₄)) of the Leech lattice Λ₂₄, where α, β ∈ End(Λ₂₄) such that α² − α + 2 = 0, β = 1 − α and (α(x), y) = (x, β(y)) for all x, y ∈ ℝ²⁴:

 $\Lambda_{72} = \{ (\ell_1, \ell_2, \ell_3) \in \perp_{i=1}^3 \Lambda_{24} \mid \ell_1 - \ell_2 \in \beta(\Lambda_{24}), \ \ell_2 - \beta(\ell_1) - \ell_3 \in 2\Lambda_{24}) \}$

- Algorithm A': Decoding (x₁, x₂, x₃) ∈⊥³_{i=1} ℝ²⁴ in Λ₇₂ with approximation factor √14:
 - (1) Approximate x_1 with $y_1 \in \Lambda_{24}$.
 - (2) Approximate $x_2 y_1$ with $y_2 \in \beta(\Lambda_{24})$.

Example: Nebe's extremal even unimodular lattice Λ_{72}

Λ₇₂ is obtained from a polarisation (α(Λ₂₄), β(Λ₂₄)) of the Leech lattice Λ₂₄, where α, β ∈ End(Λ₂₄) such that α² − α + 2 = 0, β = 1 − α and (α(x), y) = (x, β(y)) for all x, y ∈ ℝ²⁴:

 $\Lambda_{72} = \{ (\ell_1, \ell_2, \ell_3) \in \perp_{i=1}^3 \Lambda_{24} \mid \ell_1 - \ell_2 \in \beta(\Lambda_{24}), \ \ell_2 - \beta(\ell_1) - \ell_3 \in 2\Lambda_{24}) \}$

- Algorithm A': Decoding (x₁, x₂, x₃) ∈⊥³_{i=1} ℝ²⁴ in Λ₇₂ with approximation factor √14:
 - (1) Approximate x_1 with $y_1 \in \Lambda_{24}$.
 - (2) Approximate $x_2 y_1$ with $y_2 \in \beta(\Lambda_{24})$.
 - (3) Approximate $x_3 \alpha(y_1) y_2$ with $y_3 \in 2\Lambda_{24}$.

Example: Nebe's extremal even unimodular lattice Λ_{72}

Λ₇₂ is obtained from a polarisation (α(Λ₂₄), β(Λ₂₄)) of the Leech lattice Λ₂₄, where α, β ∈ End(Λ₂₄) such that α² − α + 2 = 0, β = 1 − α and (α(x), y) = (x, β(y)) for all x, y ∈ ℝ²⁴:

 $\Lambda_{72} = \{ (\ell_1, \ell_2, \ell_3) \in \perp_{i=1}^3 \Lambda_{24} \mid \ell_1 - \ell_2 \in \beta(\Lambda_{24}), \ \ell_2 - \beta(\ell_1) - \ell_3 \in 2\Lambda_{24}) \}$

- Algorithm A': Decoding (x₁, x₂, x₃) ∈⊥³_{i=1} ℝ²⁴ in Λ₇₂ with approximation factor √14:
 - (1) Approximate x_1 with $y_1 \in \Lambda_{24}$.
 - (2) Approximate $x_2 y_1$ with $y_2 \in \beta(\Lambda_{24})$.
 - (3) Approximate $x_3 \alpha(y_1) y_2$ with $y_3 \in 2\Lambda_{24}$.
 - (4) Output the approximation $(\ell_1, \ell_2, \ell_3) = (y_1, y_1 + y_2, \alpha(y_1) + y_2 + y_3)$

Example: Nebe's extremal even unimodular lattice Λ_{72}

Λ₇₂ is obtained from a polarisation (α(Λ₂₄), β(Λ₂₄)) of the Leech lattice Λ₂₄, where α, β ∈ End(Λ₂₄) such that α² − α + 2 = 0, β = 1 − α and (α(x), y) = (x, β(y)) for all x, y ∈ ℝ²⁴:

 $\Lambda_{72} = \{ (\ell_1, \ell_2, \ell_3) \in \perp_{i=1}^3 \Lambda_{24} \mid \ell_1 - \ell_2 \in \beta(\Lambda_{24}), \ \ell_2 - \beta(\ell_1) - \ell_3 \in 2\Lambda_{24}) \}$

- Algorithm A': Decoding (x₁, x₂, x₃) ∈⊥³_{i=1} ℝ²⁴ in Λ₇₂ with approximation factor √14:
 - (1) Approximate x_1 with $y_1 \in \Lambda_{24}$.
 - (2) Approximate $x_2 y_1$ with $y_2 \in \beta(\Lambda_{24})$.
 - (3) Approximate $x_3 \alpha(y_1) y_2$ with $y_3 \in 2\Lambda_{24}$.
 - (4) Output the approximation $(\ell_1, \ell_2, \ell_3) = (y_1, y_1 + y_2, \alpha(y_1) + y_2 + y_3)$
- Algorithm A: time increased by at most |B_{√2}(x₁) ∩ Λ₂₄| ≤ 48, approximation factor of √7, using sphere decoding with r = √2 = √μ(Λ₂₄).

Thank you very much for your attention!