Computing with Laminated Integral Lattices.

Richard Parker

Aachen Sept 272011

My Background

- In 1977-1987 I was working with John H Conway, mainly on the Atlas of Finite Groups.
- This naturally included work with the Conway groups (and hence the Leech Lattice).
- In particular the idea of laminated lattices I got from him.
- Conway also told me to study LLL.
- My knowledge of lattices generally is patchy and idiosynchratic.

What is important in maths?

- To get a job!
- To succeed where other, clever people have failed.
- My approach is different.
- To understand everything possible about major computer algorithms.
- And to extract mathematics from algorithms. . .
- Major algorithms, such as LLL!

What is LLL?

- It takes a (usually positive definite) lattice, and changes the basis to make a "better" basis.
- It is usually used to search for short vectors in the lattice. . . .
- But - following my principle - I want to know what it really does!
- I think I understand it now.
- Worse . . . I'm going to try to tell you!

LLL - From the beginning

- We take a real n-space equipped with the usual (sum of squares) positive definite quadratic form. Hence $m_{1}, m_{2} \ldots m_{n}$ form an orthonormal basis for the model space M.
- And then we take the lattice we are investigating, with a given basis $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$, and find an isometric set in M
- It is natural to take v_{1} as the appropriate scalar multiple of m_{1}, and v_{2} in the space $<m_{1}, m_{2}>$ etc.

The LLL model for a lattice

g 0000000 If $|\mathrm{b}|>\mathrm{a} / 2$, we can fix that hi 000000 by $\mathrm{v}_{4}=\mathrm{v}_{4} \pm \mathrm{v}_{3}$.
$\mathrm{jk} \mathbf{a} 00000$ If $\mathrm{b}^{2}+\mathrm{c}^{2}<\mathrm{a}^{2}$, we then
Imbc 0000 swap v_{3} and v_{4} npdef000
qrstuv00
******w 0

How is the model held?

- Personally I use double-precision floating point numbers.
- Once you have a reasonable basis, you seem to lose about one (decimal) digit of accuracy for each ten dimensions.
- So double precision is good up to about 150200 dimensions.
- If you need a proof, you get the basis right first and then prove it using exact methods.

What is LLL actually doing?

- Swapping the two vectors naturally reduces a, but cannot change the product a.c, which is the determinant of the 2-dimensional lattice.
- Hence it is reducing the "determinant product"

Determinant product

- Start with a positive definite lattice spanned by a basis $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$
- We then define λ_{i} to be the lattice spanned by the first i basis vectors $\lambda_{i}=\left\langle v_{1}, v_{2}, \ldots v_{i}\right\rangle$
- The determinant product (DP) of the basis is the products of the determinants of the λ_{i}, so
$D P=\operatorname{det}\left(\lambda_{1}\right) * \operatorname{det}\left(\lambda_{2}\right) * \ldots * \operatorname{det}\left(\lambda_{n}\right)$
- LLL says . . . "use a basis with minimum DP".

Determinant product

g 0000000 Determinant product is
hi000000 ($\left.\mathrm{g}^{7} \cdot \mathrm{i}^{6} \cdot \mathrm{a}^{5} \cdot \mathrm{c}^{4} \cdot \mathrm{f}^{3} \cdot \mathrm{v}^{2} \cdot \mathrm{w}\right)^{2}$
jka 00000
Imbco000
npdef000
qrstuv00

* * * * * * W 0
******* X

"Improving" LLL

- Most attempts are to make it run faster.
- I have made so many "improvements" in my life, all of which made it slower! :(
- But we can make an algorithm that often reduces the DP more than LLL does.

LLL - Not so much a program - more a way of life!

Ever noticed that often one of the later basis vectors has smaller norm than the first one?

- This suggests that bringing it to the front might reduce the DP.
- More generally, we need to understand which basis changes might reduce the DP, and find an intelligent way of looking at them.
- I tried a stupid way. It was slow, but I think there is a faster way.

Reducing the DP

g 0|000|000
hil000|000
$\mathrm{jk}|\mathrm{a} 00| 000$ If we can reduce DP
$1 \mathrm{~m}|\mathrm{bc} 0| 000$ in this 3×3 block, np|defl000 i.e. $a^{2} c$, that qr|stu|v00 reduces DP overall
** $\left.\left.\right|^{* * *}\right|^{*} w 0 \quad\left(g^{7} . \mathrm{i}^{6} \cdot \mathrm{a}^{5} \cdot \mathrm{C}^{4} \cdot \mathrm{~s}^{3} \cdot \mathrm{v}^{2} \cdot \mathrm{w}\right)^{2}$

$* * |$| $*$ | $* *$ |
| :--- | :--- | :--- |

Look at 3×3 more closely

a 00
b c 0
def

- LLL gives us that $a \geq 2|b|$ and $c \geq 2|e|$
- also $b^{2}+c^{2} \geq a^{2}$ and $e^{2}+f^{2} \geq c^{2}$.
- LLL therefore gives us that $\mathrm{f}^{2} \geq 9 . \mathrm{a}^{2} / 16$ (0.5625) but this cannot be min-DP. I suspect that $\mathrm{f}^{2} \geq$ $2 . a^{2} / 3(0.6667)$ as happens in A_{3}

Find the min-DP basis

a 00
b c 0
def
Naturally take a, c and f positive, and negating v_{2} and/or v_{3} if necessary, make b and e be ≤ 0.

- Hence I suspect that the only viable vectors for the first one are v_{3} or $v_{3}+v_{2}$, possibly with v_{1} added or subtracted depending on the sign of the first co-ordinate.

So LLL-3 needs

- A rapid algorithm to put a 3-dimensional lattice into min-DP form.
- I feel sure that some careful thinking, possibly backed up by some computer work with intervals, can provide such an algorithm.

And onward

- For each dimension n we are interested in two related things about lattices in min-DP basis.

1) By what factor can the diagonal entries of the model go down
2) Find a very fast algorithm to put an arbitrary lattice of small dimension n into a min-DP basis

For example

- If one has a min-DP basis for a lattice in 8 dimensions, can the bottom right entry be less than half the first one?
- In other words, is E_{8} the best in this sense.
- Similarly one might suspect that the Leech lattice is the most extreme case in 24 , where the bottom right is $1 / 4$ of the top left.

Ideas for brute-force classification of Type-II dim-48 det-1?

- Use a min-DP basis for all the lattices we deal with.
- Keep some information on the theta function on all the points of the dual quotient.
- Go up one dimension at a time.

The "Gene".

- Not sure if this is the genus. Even if it is, my emphasis is completely different.
- The dual quotient is a finite Abelian group G whose order is the determinant of the lattice.
- The norms of elements of G are defined as rational numbers modulo 1 (type I) or modulo 2 (type II)
- (This norm function must satisfy certain bilinearity axioms not discussed further)
- The gene of a lattice is this finite abelian group G, and the norms of every element mod 1 (or mod 2).

Example - the E_{6} lattice

Determinant is 3 , so the gene is a cyclic group of order three. E_{6} is an even lattice, so the norms are defined modulo 2.
The Gene of E_{6} is this group, along with the norm information, namely
[0] has norm $0 \quad(\bmod 2)$ - as always
[1] has norm $4 / 3(\bmod 2)$
[2] has norm 4/3 $(\bmod 2)$

Genetic theta function

- Take an element of the Gene group G.
- Now consider the coset consisting of the points of the dual lattice congruent to this element modulo the lattice.
- We may list, as a theta function with fractional exponents, how many vectors of this coset have each possible norm.
- We may want this theta function for every element of the gene group.

Partial Genetic Theta function.

- The entire genetic theta function is not always needed.
- It is often sufficient to know the minimum norm of a vector for each element of the gene.
- (e.g. if we want minimum norm 6).
- Or we may be interested, for some small norms, how many dual lattice vectors there are in that coset with that norm.
- We may also hold an example vector of minimum norm.

Gluing

- Given any of these forms of partial genetic theta function, the same information can be readily made for two lattices glued together if it is available for the parts.
- Direct sum . . . OK
- Add some glue vectors . . . OK
- 1-dimensional lattices . . . OK.

So we can laminate

- Given a lattice (with its genetic theta function), for each point of the dual-quotient we can laminate above that point,
- and compute the genetic theta function of the result.
- By gluing with a 1-dimensional lattice.

A way to look for 48 dimensional even unimodular lattices

- Run the procedure so far described with minimum norm 6 and get a million or so lattices of moderate determinant in each dimension up to 24 .
- Look through the pairs of 24-dimensional lattices for pairs with complementary gene and minimum norm 6.
- Will it work? Dunno.

Towards a full classification of unimodular min-6 dim-48.

- Idea is to use the min-DP basis to specify properties of lattices in every dimension $\mathrm{P}(1)$, $P(2), \ldots P(48)$ such that for all lattices satisfying $P(n)$ in a minimal DP basis, the first $n-1$ basis vectors span a lattice with $P(n-1)$.
- $P(48)$ is determinant 1 , minimum norm 6.
- so what might $P(24)$ look like, and (critically) how many lattices satisfy it?

Research Area

- We therefore seek properties of the DP basis that enable us to get properties in decreasing dimension starting at 48.
- The idea being that if you add some more vectors where the determinant is decreasing rapidly, the fact that the DP cannot be reduced is a property that one should be able to use.

