## Computing with Laminated Integral Lattices.

## **Richard Parker**

## Aachen Sept 27 2011

## My Background

- In 1977 1987 I was working with John H Conway, mainly on the Atlas of Finite Groups.
- This naturally included work with the Conway groups (and hence the Leech Lattice).
- In particular the idea of laminated lattices I got from him.
- Conway also told me to study LLL.
- My knowledge of lattices generally is patchy and idiosynchratic.

## What is important in maths?

- To get a job!
- To succeed where other, clever people have failed.
- My approach is different.
- To understand everything possible about major computer algorithms.
- And to extract mathematics from algorithms. . .
- Major algorithms, such as LLL!

## What is LLL?

- It takes a (usually positive definite) lattice, and changes the basis to make a "better" basis.
- It is usually used to search for short vectors in the lattice....
- But following my principle I want to know what it *really* does!
- I think I understand it now.
- Worse . . . I'm going to try to tell you!

## LLL - From the beginning

- We take a real n-space equipped with the usual (sum of squares) positive definite quadratic form. Hence m<sub>1</sub>, m<sub>2</sub>...m<sub>n</sub> form an orthonormal basis for the model space M.
- And then we take the lattice we are investigating, with a given basis v<sub>1</sub>, v<sub>2</sub>, ... v<sub>n</sub>, and find an isometric set in M
- It is natural to take  $v_1$  as the appropriate scalar multiple of  $m_1$ , and  $v_2$  in the space  $< m_1, m_2 >$  etc.

#### The LLL model for a lattice

g 0 0 0 0 0 0 0 If |b| > a/2, we can fix that hi00000 by  $v_4 = v_4 \pm v_3$ . i k a 0 0 0 0 0 If  $b^2 + c^2 < a^2$ , we then Im b c 0 0 0 0 swap  $v_3$  and  $v_4$ npdef000 qrstuv00 \*\*\*\*\*w0 \* \* \* \* \* \* \* X

## How is the model held?

- Personally I use double-precision floating point numbers.
- Once you have a reasonable basis, you seem to lose about one (decimal) digit of accuracy for each ten dimensions.
- So double precision is good up to about 150-200 dimensions.
- If you need a proof, you get the basis right first and then prove it using exact methods.

### What is LLL actually doing?

• Swapping the two vectors naturally reduces a, but cannot change the product a.c, which is the determinant of the 2-dimensional lattice.

• Hence it is reducing the "determinant product"

#### Determinant product

- Start with a positive definite lattice spanned by a basis  $v_1, v_2, \ldots v_n$
- We then define  $\lambda_i$  to be the lattice spanned by the first i basis vectors  $\lambda_i = \langle v_1, v_2, \dots v_i \rangle$
- The determinant product (DP) of the basis is the products of the determinants of the  $\lambda_i$ , so

 $DP = det(\lambda_1) * det(\lambda_2) * \dots * det(\lambda_n)$ 

• LLL says . . . "use a basis with minimum DP".

#### Determinant product

```
g 0 0 0 0 0 0 0 Determinant product is
h i 0 0 0 0 0 0 (g^7.i^6.a^5.c^4.f^3.v^2.w)<sup>2</sup>
jka00000
lmbc0000
npdef000
qrstuv00
*****w0
* * * * * * * X
```

## "Improving" LLL

• Most attempts are to make it run faster.

• I have made so many "improvements" in my life, all of which made it slower! :(

• But we **can** make an algorithm that often reduces the DP more than LLL does.

#### LLL - Not so much a program - more a way of life!

Ever noticed that often one of the later basis vectors has smaller norm than the first one?

- This suggests that bringing it to the front might reduce the DP.
- More generally, we need to understand which basis changes might reduce the DP, and find an intelligent way of looking at them.
- I tried a stupid way. It was slow, but I think there is a faster way.

#### Reducing the DP

- g 0 | 0 0 0 | 0 0 0
- hi|000|000
- jk|a00|000 If we can reduce DP
- Im | bc0 | 000 in this 3 x 3 block,
- np|def|000 i.e.  $a^2c$ , that
- qr|stu|v00 reduces DP overall
- \*\* | \* \* \* | \* w 0  $(g^7.i^6.a^5.c^4.f^3.v^2.w)^2$

\* \* | \* \* \* | \* \* X

#### Look at 3 x 3 more closely

- a 0 0
- bc0

def

- LLL gives us that  $a \ge 2|b|$  and  $c \ge 2|e|$
- also  $b^2 + c^2 \ge a^2$  and  $e^2 + f^2 \ge c^2$ .
- LLL therefore gives us that  $f^2 \ge 9.a^2/16$  (0.5625) but this cannot be min-DP. I suspect that  $f^2 \ge 2.a^2/3$  (0.6667) as happens in A<sub>3</sub>

#### Find the min-DP basis

- a 0 0
- bc0

def

Naturally take a, c and f positive, and negating  $v_2$  and/or  $v_3$  if necessary, make b and e be  $\leq 0$ .

 Hence I suspect that the only viable vectors for the first one are v<sub>3</sub> or v<sub>3</sub> + v<sub>2</sub>, possibly with v<sub>1</sub> added or subtracted depending on the sign of the first co-ordinate.

#### So LLL-3 needs

• A rapid algorithm to put a 3-dimensional lattice into min-DP form.

• I feel sure that some careful thinking, possibly backed up by some computer work with intervals, can provide such an algorithm.

#### And onward

• For each dimension n we are interested in two related things about lattices in min-DP basis.

- 1) By what factor can the diagonal entries of the model go down
- 2) Find a very fast algorithm to put an arbitrary lattice of small dimension n into a min-DP basis

#### For example

- If one has a min-DP basis for a lattice in 8 dimensions, can the bottom right entry be less than half the first one?
- In other words, is  $E_8$  the best in this sense.
- Similarly one might suspect that the Leech lattice is the most extreme case in 24, where the bottom right is 1/4 of the top left.

# Ideas for brute-force classification of Type-II dim-48 det-1?

• Use a min-DP basis for all the lattices we deal with.

• Keep some information on the theta function on all the points of the dual quotient.

• Go up one dimension at a time.

#### The "Gene".

- Not sure if this is the genus. Even if it is, my emphasis is completely different.
- The dual quotient is a finite Abelian group G whose order is the determinant of the lattice.
- The norms of elements of G are defined as rational numbers modulo 1 (type I) or modulo 2 (type II)
- (This norm function must satisfy certain bilinearity axioms not discussed further)
- The **gene** of a lattice is this finite abelian group G, and the norms of every element mod 1 (or mod 2).

### Example - the E<sub>6</sub> lattice

Determinant is 3, so the gene is a cyclic group of order three.  $E_6$  is an even lattice, so the norms are defined modulo 2.

- The Gene of  $E_6$  is this group, along with the norm information, namely
- [0] has norm 0 (mod 2) as always
- [1] has norm 4/3 (mod 2)
- [2] has norm 4/3 (mod 2)

#### Genetic theta function

- Take an element of the Gene group G.
- Now consider the coset consisting of the points of the dual lattice congruent to this element modulo the lattice.
- We may list, as a theta function with fractional exponents, how many vectors of this coset have each possible norm.
- We may want this theta function for every element of the gene group.

### Partial Genetic Theta function.

- The entire genetic theta function is not always needed.
- It is often sufficient to know the minimum norm of a vector for each element of the gene.
- (e.g. if we want minimum norm 6).
- Or we may be interested, for some small norms, how many dual lattice vectors there are in that coset with that norm.
- We may also hold an example vector of minimum norm.

## Gluing

- Given any of these forms of partial genetic theta function, the same information can be readily made for two lattices glued together if it is available for the parts.
- Direct sum . . . OK
- Add some glue vectors . . . OK
- 1-dimensional lattices . . . OK.

#### So we can laminate

- Given a lattice (with its genetic theta function), for each point of the dual-quotient we can laminate above that point,
- and compute the genetic theta function of the result.
- By gluing with a 1-dimensional lattice.

# A way to look for 48 dimensional even unimodular lattices

- Run the procedure so far described with minimum norm 6 and get a million or so lattices of moderate determinant in each dimension up to 24.
- Look through the pairs of 24-dimensional lattices for pairs with complementary gene and minimum norm 6.

• Will it work? Dunno.

## Towards a full classification of unimodular min-6 dim-48.

- Idea is to use the min-DP basis to specify properties of lattices in every dimension P(1), P(2), ... P(48) such that for all lattices satisfying P(n) in a minimal DP basis, the first n-1 basis vectors span a lattice with P(n-1).
- P(48) is determinant 1, minimum norm 6.
- so what might P(24) look like, and (critically) how many lattices satisfy it?

#### **Research Area**

- We therefore seek properties of the DP basis that enable us to get properties in decreasing dimension starting at 48.
- The idea being that if you add some more vectors where the determinant is decreasing rapidly, the fact that the DP cannot be reduced is a property that one should be able to use.