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My Background

● In 1977 - 1987 I was working with John H 
Conway, mainly on the Atlas of Finite Groups.

● This naturally included work with the Conway 
groups (and hence the Leech Lattice).

● In particular the idea of laminated lattices I got 
from him.

● Conway also told me to study LLL.
● My knowledge of lattices generally is patchy 

and idiosynchratic.



  

What is important in maths?

● To get a job!
● To succeed where other, clever people have 

failed.
● My approach is different.
● To understand everything possible about major 

computer algorithms.
● And to extract mathematics from algorithms. . .
● Major algorithms, such as LLL!



  

What is LLL?

● It takes a (usually positive definite) lattice, and 
changes the basis to make a “better” basis.

● It is usually used to search for short vectors in 
the lattice. . . .

● But - following my principle - I want to know 
what it really does!

● I think I understand it now. 
● Worse . . . I'm going to try to tell you!



  

LLL - From the beginning

● We take a real n-space equipped with the usual 
(sum of squares) positive definite quadratic 
form.  Hence m

1
, m

2
 . . . m

n
 form an orthonormal 

basis for the model space M.
● And then we take the lattice we are 

investigating, with a given basis v
1
, v

2
, . . . v

n
, 

and find an isometric set in M

● It is natural to take v
1
 as the appropriate scalar 

multiple of m
1
, and v

2
 in the space <m

1
,m

2
> etc.



  

The LLL model for a lattice

 g 0 0 0 0 0 0 0  If |b| > a/2, we can fix that

 h i 0 0 0 0 0 0  by v
4
 = v

4
 ± v

3
.

 j k a 0 0 0 0 0    If b2 + c2 < a2, we then

 l m b c 0 0 0 0    swap v
3
 and v

4

 n p d e f 0 0 0 

 q r s t u v 0 0

 * * * * * * w 0

 * * * * * * * x



  

How is the model held?

● Personally I use double-precision floating point 
numbers.

● Once you have a reasonable basis, you seem 
to lose about one (decimal) digit of accuracy for 
each ten dimensions.

● So double precision is good up to about 150-
200 dimensions.

● If you need a proof, you get the basis right first 
and then prove it using exact methods.



  

What is LLL actually doing?

● Swapping the two vectors naturally reduces a, 
but cannot change the product a.c, which is the 
determinant of the 2-dimensional lattice.

● Hence it is reducing the “determinant product”



  

Determinant product

● Start with a positive definite lattice spanned by a 
basis v

1
, v

2
, . . . v

n

● We then define λ
i
 to be the lattice spanned by the 

first i basis vectors  λ
i
 =  <v

1
, v

2
, . . . v

i
>

● The determinant product (DP) of the basis is the 
products of the determinants of the λ

i
, so 

DP = det(λ
1
) * det(λ

2
) * . . . * det(λ

n
)

● LLL says . . . “use a basis with minimum DP”.



  

Determinant product

 g 0 0 0 0 0 0 0 Determinant product is

 h i 0 0 0 0 0 0  (g7.i6.a5.c4.f3.v2.w)2

 j k a 0 0 0 0 0 

 l m b c 0 0 0 0  

 n p d e f 0 0 0 

 q r s t u v 0 0

 * * * * * * w 0

 * * * * * * * x



  

“Improving” LLL

● Most attempts are to make it run faster.

● I have made so many “improvements” in my 
life, all of which made it slower!     :(

● But we can make an algorithm that often 
reduces the DP more than LLL does.



  

LLL - Not so much a program 
- more a way of life!

Ever noticed that often one of the later basis 
vectors has smaller norm than the first one?

● This suggests that bringing it to the front might 
reduce the DP.

● More generally, we need to understand which 
basis changes might reduce the DP, and find an 
intelligent way of looking at them.

● I tried a stupid way.  It was slow, but I think 
there is a faster way.



  

Reducing the DP

 g 0 | 0 0 0 | 0 0 0

 h i | 0 0 0 | 0 0 0

 j k | a 0 0 | 0 0 0    If we can reduce DP 

 l m | b c 0 | 0 0 0    in this 3 x 3 block, 

 n p | d e f | 0 0 0    i.e. a2c,  that

 q r | s t u | v 0 0    reduces DP overall

 * * | * * * | * w 0      (g7.i6.a5.c4.f3.v2.w)2  

 * * | * * * | * * x  



  

Look at 3 x 3 more closely

a 0 0

b c 0

d e f
● LLL gives us that a ≥ 2|b| and c ≥ 2|e|
● also b2 + c2 ≥ a2 and e2 + f2 ≥ c2.
● LLL therefore gives us that f2 ≥ 9.a2/16 (0.5625) 

but this cannot be min-DP. I suspect that f2 ≥ 
2.a2/3 (0.6667) as happens in A

3



  

Find the min-DP basis

a 0 0

b c 0

d e f
Naturally take a, c and f positive, and negating 
v

2
 and/or v

3
 if necessary, make b and e be ≤ 0.

● Hence I suspect that the only viable vectors for 
the first one are v

3
 or v

3
 + v

2
, possibly with v

1
 

added or subtracted depending on the sign of 
the first co-ordinate.



  

So LLL-3 needs

● A rapid algorithm to put a 3-dimensional lattice 
into min-DP form.

● I feel sure that some careful thinking, possibly 
backed up by some computer work with 
intervals, can provide such an algorithm.



  

And onward

● For each dimension n we are interested in two 
related things about lattices in min-DP basis.

1)  By what factor can the diagonal entries of      
     the model go down

2)  Find a very fast algorithm to put an arbitrary  
     lattice of small dimension n into a min-DP      
     basis



  

For example

● If one has a min-DP basis for a lattice in 8 
dimensions, can the bottom right entry be less 
than half the first one?

● In other words, is E
8
 the best in this sense.

● Similarly one might suspect that the Leech 
lattice is the most extreme case in 24, where 
the bottom right is 1/4 of the top left.



  

Ideas for brute-force classification of
Type-II dim-48 det-1?

● Use a min-DP basis for all the lattices we deal 
with.

● Keep some information on the theta function on 
all the points of the dual quotient.

● Go up one dimension at a time.



  

The “Gene”.

● Not sure if this is the genus.  Even if it is, my 
emphasis is completely different.

● The dual quotient is a finite Abelian group G whose 
order is the determinant of the lattice.

● The norms of elements of G are defined as rational 
numbers modulo 1 (type I) or modulo 2 (type II)

● (This norm function must satisfy certain bilinearity 
axioms not discussed further)

● The gene of a lattice is this finite abelian group G, 
and the norms of every element mod 1 (or mod 2).



  

Example - the E
6
 lattice

Determinant is 3, so the gene is a cyclic group 
of order three.   E

6
 is an even lattice, so the 

norms are defined modulo 2.

The Gene of E
6
 is this group, along with the 

norm information, namely

[0] has norm 0    (mod 2)   -  as always

[1] has norm 4/3 (mod 2)

[2] has norm 4/3 (mod 2)



  

Genetic theta function

● Take an element of the Gene group G.
● Now consider the coset consisting of the points 

of the dual lattice congruent to this element 
modulo the lattice.

● We may list, as a theta function with fractional 
exponents, how many vectors of this coset 
have each possible norm.

● We may want this theta function for every 
element of the gene group.



  

Partial Genetic Theta function.

● The entire genetic theta function is not always 
needed.

● It is often sufficient to know the minimum norm of a 
vector for each element of the gene.

● (e.g. if we want minimum norm 6). 
● Or we may be interested, for some small norms, 

how many dual lattice vectors there are in that 
coset with that norm.

● We may also hold an example vector of minimum 
norm.



  

Gluing

● Given any of these forms of partial genetic theta 
function, the same information can be readily 
made for two lattices glued together if it is 
available for the parts.

● Direct sum . . . OK
● Add some glue vectors . . . OK
● 1-dimensional lattices . . . OK.



  

So we can laminate

● Given a lattice (with its genetic theta function), 
for each point of the dual-quotient we can 
laminate above that point,

● and compute the genetic theta function of the 
result.

● By gluing with a 1-dimensional lattice.



  

A way to look for 48 dimensional 
even unimodular lattices

● Run the procedure so far described with 
minimum norm 6 and get a million or so lattices 
of moderate determinant in each dimension up 
to 24.

● Look through the pairs of 24-dimensional 
lattices for pairs with complementary gene and 
minimum norm 6.

● Will it work?    Dunno.



  

Towards a full classification of 
unimodular min-6 dim-48.

● Idea is to use the min-DP basis to specify 
properties of lattices in every dimension P(1), 
P(2), . . . P(48) such that for all lattices 
satisfying P(n) in a minimal DP basis, the first  
n-1 basis vectors span a lattice with P(n-1).

● P(48) is determinant 1, minimum norm 6.
● so what might P(24) look like, and (critically) 

how many lattices satisfy it?



  

Research Area

● We therefore seek properties of the DP basis 
that enable us to get properties in decreasing 
dimension starting at 48.

● The idea being that if you add some more 
vectors where the determinant is decreasing 
rapidly, the fact that the DP cannot be reduced 
is a property that one should be able to use. 
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