
ANUPQ
—

A GAP4 Package
Version 3.0

An interface to the

ANU pq Standalone Version 1.8
by

Eamonn O’Brien

Department of Mathematics

University of Auckland

Private Bag 92019, Auckland, New Zealand

e-mail: obrien@math.auckland.ac.nz

GAP interface code by

Werner Nickel

AG 2, Fachbereich Mathematik, TU Darmstadt

Schlossgartenstr. 7, 64289 Darmstadt, Germany

email: nickel@mathematik.tu-darmstadt.de

and

Greg Gamble

Lehrstuhl D für Mathematik, RWTH Aachen

Templergraben 64, 52062 Aachen, Germany

email: gregg@math.rwth-aachen.de

January 2006

Contents

1 Introduction 3

1.1 Authors and Acknowledgements . 4

1.2 Change history 4

2 Mathematical Background and
Terminology 6

2.1 Basic notions 6

2.2 The p-quotient Algorithm 8

2.3 The p-group generation Algorithm,
Standard Presentation, Isomorphism
Testing 9

3 Infrastructure 10

3.1 Loading the ANUPQ Package . . 10

3.2 The ANUPQData Record 11

3.3 Setting the Verbosity of ANUPQ via
Info and InfoANUPQ 13

3.4 Utility Functions 14

3.5 Attributes and a Property for fp and pc
p-groups 15

3.6 Hints and Warnings regarding the use of
Options 16

4 Non-interactive ANUPQ
functions 19

4.1 Computing p-Quotients 19

4.2 Computing Standard Presentations 23

4.3 Testing p-Groups for Isomorphism . 25

4.4 Computing Descendants of a p-Group 26

5 Interactive ANUPQ functions 29

5.1 Starting and Stopping Interactive
ANUPQ Processes 29

5.2 Interactive ANUPQ Process Utility
Functions 30

5.3 Interactive Versions of Non-interactive
ANUPQ Functions 31

5.4 Low-level Interactive ANUPQ Functions
based on menu items of the pq program 38

5.5 Primitive Interactive ANUPQ Process
Read/Write Functions 51

6 ANUPQ Options 53

6.1 Detailed descriptions of ANUPQ
Options 54

7 Installing the ANUPQ Package 60

7.1 Testing your ANUPQ installation . 62

7.2 Running the pq program as a
standalone 63

7.3 Setting the Verbosity of ANUPQ via
Info and InfoANUPQ 63

7.4 Utility Functions 64

A Examples 65

A.1 The Relators Option 67

A.2 The Identities Option and
PqEvaluateIdentities Function . . 68

A.3 A Large Example 71

A.4 Developing descendants trees . . . 73

Bibliography 78

Index 79

1 Introduction

The GAP 4 package ANUPQ provides an interface to the ANU pq C progam written by Eamonn O’Brien,
making the functionality of the C program available to GAP. Henceforth, we shall refer to the ANUPQ
package when referring to the GAP interface, and to the ANU pq program or just pq when referring to that
C program.

The pq program consists of implementations of the following algorithms:

1. A p-quotient algorithm to compute pc-presentations for p-factor groups of finitely presented groups.

2. A p-group generation algorithm to generate pc presentations of groups of prime power order.

3. A standard presentation algorithm used to compute a canonical pc-presentation of a p-group.

4. An algorithm which can be used to compute the automorphism group of a p-group.

This part of the pq program is not accessible through the ANUPQ package. Instead, users are advised
to consider the GAP 4 package AutPGrp by Bettina Eick and Eamonn O’Brien, which implements a
better algorithm in GAP for the computation of automorphism groups of p-groups.

The current version of the ANUPQ package requires GAP 4.4, and version 1.2 of the AutPGrp package. All
code that made the package compatible with earlier versions of GAP has been removed. If you still have
GAP 4.3 (at least fix4), then you must use ANUPQ 2.2, and AutPGrp 1.1. You should not use earlier versions
of the ANUPQ package since they are known to have bugs.

How to read this manual

It is not expected that readers of this manual will read it in a linear fashion from cover to cover; some
sections contain material that is far too technical to be absorbed on a first reading.

Firstly, installers of the ANUPQ package will need to read Chapter 7, if they have not already gleaned these
details from the README file.

Once the ANUPQ package is installed, users of the ANUPQ package will benefit most by first reading
Chapter 2, which gives a brief description of the background and terminology used (this chapter also cites
a number of references for further reading), and the introduction of Chapter 3 (skip the remainder of the
chapter on a first reading).

Then the user/reader should pursue Chapter 4 in detail, delving into Chapter 6 as necessary for the options
of the functions that are described. The user will become best acquainted with the ANUPQ package by trying
the examples. This chapter describes the non-interactive functions of the ANUPQ package, i.e. “one-shot”
functions that invoke the pq program in such a way that once GAP has got what it needs, the pq is allowed
to exit. It is expected that most of the time, users will only need these functions.

Advanced users will want to explore Chapter 5 which describes all the interactive functions of the ANUPQ
package; these are functions that extract information via a dialogue with a running pq process. Occasionally,
a user needs the “next step”; the functions provided in this chapter make use of data from previous steps
retained by the pq program, thus allowing the user to interact with the pq program like one can when one
uses the pq program as a stand-alone (see guide.dvi in the standalone-doc directory).

After having read Chapters 4 and 5, cross-references will have taken the reader into Chapter 6; by this stage,
the reader need only read the introduction of Chapter 6.

4 Chapter 1. Introduction

After the reader has developed some facility with the ANUPQ package, she should explore the examples
described in Appendix A.

If you run into trouble using the ANUPQ functions, some troubleshooting hints are given in Section 3.6. If the
troubleshooting hints don’t help, Section 1.1 below, gives contact details for the authors of the components
of the ANUPQ package.

1.1 Authors and Acknowledgements

The C implementation of the ANU pq standalone was developed by

Eamonn O’Brien
Department of Mathematics
University of Auckland
Private Bag 92019
Auckland
New Zealand

email: obrien@math.auckland.ac.nz

The GAP 4 version of this package was adapted from the GAP 3 version by

Werner Nickel
AG 2, Fachbereich Mathematik, TU Darmstadt
Schlossgartenstr. 7, 64289 Darmstadt, Germany

email: nickel@mathematik.tu-darmstadt.de

An interactive interface using iostreams was developed with the assistance of Werner Nickel by

Greg Gamble
Lehrstuhl D für Mathematik, RWTH Aachen
Templergraben 64, 52062 Aachen, Germany

email: gregg@math.rwth-aachen.de

The authors would like to thank Joachim Neubüser for his careful proof-reading and advice, and for formu-
lating Chapter 2.

We would also like to thank Bettina Eick who by her testing and provision of examples helped us to eliminate
a number of bugs and who provided a number of valuable suggestions for extensions of the package beyond
the GAP 3 capabilities.

If you find a bug, the last section of ANUPQ’s README describes the information we need and where to send
us a bug report; please take the time to read this (i.e. help us to help you).

1.2 Change history

Below we list the main changes between versions of the ANUPQ package.

3.0 Backward compatibility code for pre-4.4 versions of GAP removed. The ANUPQ package now requires
at least GAP 4.4 and version 1.2 of the AutPGrp package, and the AutPGrp package is now essential.

Deprecated commands replaced by GAP 4.4 commands, e.g. PrimeOfPGroup replaced by PrimePGroup,
ReadPkg replaced by ReadPackage, including in the pq program code (so pq program is now version
1.8).

Improved non-isomorphism test in IsPqIsomorphicPGroup using suggestion made by Marco Costantini
(thanks Marco).

Removed pkgbanner option that used to control how the ANUPQ package banner was displayed.

Section 2. Change history 5

2.2 Corrected a typo. in PackageInfo.g.

2.1 Binomial coefficient algorithm in pq program (now version 1.7) modified to avoid overflow.

A bug discovered by Tobias Roßmann was fixed. It was caused in the ANUPQ package’s interface by not
passing on the parameter StepSize to the pq program properly. This bug could result in computing
the wrong number of descendants if a StepSize different from 1 was chosen.

Changes suggested by Gary Zablackis were implemented in order to make the package run under
Windows with cygwin:

– use [grp] as default filename instead of <grp>,

– add target to the makefile for compiling the pq program with cygwin, and

– run PqQuitAll() more often in test examples. This reduces the number of simultaneously running
processes and avoids bumping into system limits.

2.0 Changes to pq program (now version 1.6) and GAP code to fix bug reported by Boris Girnat (thanks
Boris!) where too many descendants were generated for a group of class more than 1 with insoluble
automorphism group. Also more changes for GAP 4.4, for which

– option pkgbanner for suppression of the package banner is deprecated (now does nothing); its
function is now provided by an optional argument of the LoadPackage; see Section 75.2.1 in the
GAP Reference Manual); and

– the package banner is no longer Info-ed at InfoANUPQ level 1, and so cannot be suppressed by
setting the InfoANUPQ level to 0.

For GAP 4.3fix4, the previous behaviour for the display/suppression and Info-ing of the banner is
unchanged, and RequirePackage must be used rather than the new command LoadPackage.

PqSupplementInnerAutomorphisms now returns a record analogous to the AutomorphismGroupPGroup
function of the AutPGrp package, and AutomorphismGroupPGroup rather than PqSupplementInner-
Automorphisms is now used to generate the required automorphism group data in descendant calcula-
tions. The corresponding PqExample example has similarly been modified.

1.5 Fixed bug in the filtering of ones from input to pq program (thanks to Robert Morse again for the fix).
Some preparatory changes made for GAP 4.4.

1.4 Removed an unnecessary file and line from a file in the src directory.

1.3 Efficiency improvements: in particular, the use of IsSyllableWordsFamily as first argument of some
FreeGroup commands.

1.2 Fixed some inefficiencies in transmission of relators to the pq program (thanks to Robert Morse for
identifying the problem). Updated for bugfixes in fix4 of GAP 4.3, which required some usages of Pcgs
to be replaced by GeneralizedPcgs. Requires at least GAP 4.3fix4 and an updated AutPGrp package
that uses SetGeneralizedPcgs in lieu of SetPcgs in its definition of ConvertHybridAutGroup.

1.1 First GAP 4 release. Requires at least GAP 4.2, but GAP 4.3 recommended. Supersedes the earlier
GAP 3 version (1.0) in many ways; in particular, it provides an interactive interface using the IOStream
technology introduced in GAP 4.2.

2

Mathematical
Background and

Terminology

In this chapter we will give a brief description of the mathematical notions used in the algorithms imple-
mented in the ANU pq program that are made accessible from GAP through this package. For proofs and
details we will point to relevant places in the published literature. Also we will try to give some explanation
of terminology that may help to use the “low-level” interactive functions described in Section 5.4. However,
users who intend to use these functions are strongly advised to acquire a thorough understanding of the
algorithms from the quoted literature. There is little or no checking done in these functions and naive use
may result in incorrect results.

2.1 Basic notions

pc Presentations and Consistency

For details, see e.g. [NNN98].

Every finite p-group G has a presentation of the form:

{a1, . . . , an | ap
i = vii , 1 ≤ i ≤ n, [ak , aj] = vjk , 1 ≤ j < k ≤ n}·

where vjk is a word in the elements ak+1, . . . , an for 1 ≤ j ≤ k ≤ n.

This is called a power-commutator presentation (or pc presentation or pcp) of G , generators from such
a presentation will be referred to as pc generators. In terms of such pc generators every element of G can
be written in a “normal form” ae1

1 . . . aen
n with 0 ≤ ei < p. Moreover any given product of the generators

can be brought into such a normal form using the defining relations in the above presentation as rewrite
rules. Any such process is called collection. For the discussion of various collection methods see [LGS90]
and [VL90a].

Every p-group of order pn has such a pcp on n generators and conversely every such presentation defines a
p-group. However a p-group defined by a pcp on n generators can be of smaller order pm with m < n. A
pcp on n generators that does in fact define a p-group of order pn is called consistent in this manual, in
line with most of the literature on the algorithms occurring here. A consistent pcp determines a confluent
rewriting system (see 36.1.5 of the GAP Reference Manual) for the group it defines and for this reason
often (in particular in the GAP Reference Manual) such a pcp presentation is also called confluent.

Consistency of a pcp is tantamount to the fact that for any given word in the generators any two collections
will yield the same normal form.

Consistency of a pcp can be checked by a finite set of consistency conditions, demanding that collection
of the left hand side and of the right hand side of certain equations, starting with subproducts indicated by

Section 1. Basic notions 7

bracketing, will result in the same normal form. There are 3 types of such equations (that will be referred
to in the manual):

(an)a = a(an) (Type 1)
(bn)a = b(n−1)(ba), b(an) = (ba)a(n−1) (Type 2)
c(ba) = (cb)a (Type 3)

See [VL84] for a description of a sufficient set of consistency conditions in the context of the p-quotient
algorithm.

Exponent-p Central Series and Weighted pc Presentations

For details, see [NNN98].

The (descending or lower) (exponent-)p-central series of an arbitrary group G is defined by

P0(G) := G ,Pi (G) := [G ,Pi−1(G)]Pi−1(G)p .

For a p-group G this series terminates with the trivial group. G has p-class c if c is the smallest integer
such that Pc(G) is the trivial group. In this manual, as well as in much of the literature about the pq- and
related algorithms, the p-class is often referred to simply by class.

Let the p-group G have a consistent pcp as above. Then the subgroups

〈1〉 < 〈an〉 < 〈an , an−1〉 < . . . < 〈an , . . . , ai 〉 < . . . < G

form a central series of G . If this refines the p-central series, we can define the weight function w for the
pc generators by w(ai) = k , if ai is contained in Pk−1(G) but not in Pk (G).

The pair of such a weight function and a pcp allowing it, is called a weighted pcp.

p-Cover, p-Multiplicator

For details, see [NNN98].

Let d be the minimal number of generators of the p-group G of p-class c. Then G is isomorphic to a factor
group F/R of a free group F of rank d . We denote [F ,R]Rp by R∗. It can be proved (see e.g. [O’B90]) that
the isomorphism type of G∗ := F/R∗ depends only on G . G∗ is called the p-covering group or p-cover of
G , and R/R∗ the p-multiplicator of G . The p-multiplicator is, of course, an elementary abelian p-group;
its minimal number of generators is called the (p-)multiplicator rank.

Descendants, Capable, Terminal, Nucleus

For details, see [New77] and [O’B90].

Let again G be a p-group of p-class c and d the minimal number of generators of G . A p-group H is a
descendant of G if the minimal number of generators of H is d and H /Pc(H) is isomorphic to G . A
descendant H of G is an immediate descendant if it has p-class c + 1. G is called capable if it has
immediate descendants; otherwise it is terminal.

Let G∗ = F/R∗ again be the p-cover of G . Then the group Pc(G∗) is called the nucleus of G . Note that
Pc(G∗) is contained in the p-multiplicator R/R∗.

It is proved (e.g. in [O’B90]) that the immediate descendants of G are obtained as factor groups of the
p-cover by (proper) supplements of the nucleus in the (elementary abelian) p-multiplicator. These are also
called allowable.

It is further proved there that every automorphism α of F/R extends to an automorphism α∗ of the p-cover
F/R∗ and that the restriction of α∗ to the multiplicator R/R∗ is uniquely determined by α. Each extended
automorphism α∗ induces a permutation of the allowable subgroups. Thus the extended automorphisms
determine a group P of permutations on the set A of allowable subgroups (The group P of permutations
will appear in the description of some interactive functions). Choosing a representative S from each orbit of
P on A, the set of factor groups F/S contains each (isomorphism type of) immediate descendant of G exactly

8 Chapter 2. Mathematical Background and Terminology

once. For each immediate descendant, the procedure of computing the p-cover, extending the automorphisms
and computing the orbits on allowable subgroups can be repeated. Iteration of this procedure can in principle
be used to determine all descendants of a p-group.

Laws

Let l(x1, . . . , xn) be a word in the free generators x1, . . . , xn of a free group of rank n. Then l(x1, . . . , xn) = 1
is called a law or identical relation in a group G if l(g1, . . . , gn) = 1 for any choice of elements g1, . . . , gn
in G . In particular, x e = 1 is called an exponent law, [[x , y], [u, v]] = 1 the metabelian law, and
[. . . [[x1, x2], x2], . . . , x2] = 1 an Engel identity.

2.2 The p-quotient Algorithm

For details, see [HN80], [NO96] and [VL84]. Other descriptions of the algorithm are given in [Sim94].

The pq algorithm successively determines the factor groups of the groups of the p-central series of a finitely
presented (fp) group G . If a bound b for the p-class is given, the algorithm will determine those factor groups
up to at most p-class b. If the p-central series terminates with a subgroup Pk (G) with k < b, the algorithm
will stop with that group. If no such bound is given, it will try to find the biggest such factor group.

G/P1(G) is the largest elementary abelian p-factor group of G and this can be found from the relation
matrix of G using matrix diagonalisation modulo p. So it suffices to explain how G/Pi+1(G) is found from
G and G/Pi (G) for some i ≥ 1.

This is done, in principle, in two steps: first the p-cover of Gi := G/Pi (G) is determined (which depends
only on Gi , not on G) and then G/Pi+1(G) as a factor group of this p-cover.

Finding the p-cover

A very detailed description of the first step is given in [NNN98], from which we just extract some passages
in order to point to some terms occurring in this manual.

Let H be a p-group and pd(b) be the order of H /Pb(H). So d := d(1) is the minimal number of generators
of H . A weighted pcp of H will be called labelled if for each generator ak , k > d one relation, having this
generator as its right hand side, is marked as definition of this generator.

As described in [NNN98], a weighted labelled pcp of a p-group can be obtained stepping down its p-central
series.

So let us assume that a weighted labelled pcp of Gi is given. A straightforward way of of writing down a
(not necessarily consistent) pcp for its p-cover is to add generators, one for each relation which is not a
definition, and modify the right hand side of each such relation by multiplying it on the right by one of the
new generators – a different generator for each such relation. Further relations are then added to make the
new generators central and of order p. This procedure is called adding tails. A more formal description of
it is again given in [NNN98].

It is important to realise that the “new” generators will generate an elementary abelian group, that is, in
additive notation, a vector space over the field of p elements. As said, the pcp of the p-cover obtained in
this way need not be consistent. Since the pcp of Gi was consistent, applying the consistency conditions to
the pcp of the p-cover, in case the presentation obtained for p-cover is not consistent, will produce a set
of equations between the new generators, that, written additively, are linear equations over the field of p
elements and can hence be used to remove redundant generators until a consistent pcp is obtained.

In reality, to follow this straightforward procedure would be forbiddingly inefficient except for very small
examples. There are many ways of a priori reducing the number of “new generators” to be introduced, using
e.g. the weights attached to the generators, and the main part of [NNN98] is devoted to a detailed discussion
with proofs of these possibilities.

Section 3. The p-group generation Algorithm, Standard Presentation, Isomorphism Testing 9

Imposing the Relations of the fp Group

In order to obtain G/Pi+1(G) from the pcp of the p-cover of Gi = G/Pi (G), the defining relations from the
original presentation of G must be imposed. Since Gi is a homomorphic image of G , these relations again
yield relations between the “new generators” in the presentation of the p-cover of Gi .

Imposing Laws

While we have so far only considered the computation of the factor groups of a given fp group by the groups
of its descending p-central series, the p-quotient algorithm allows a very important variant of this idea:
laws can be prescribed that should be fulfilled by the p-factor groups computed by the algorithm. The key
observation here is the fact that at each step down the descending p-central series it suffices to impose these
laws only for a finite number of words. Again for efficiency of the method it is crucial to keep the number of
such words small, and much of [NO96] and the literature quoted in this paper is devoted to this problem.

In this form, starting with a free group and imposing an exponent law (also referred to as an exponent
check) the pq program has, in fact, found its most noted application in the determination of (restricted)
Burnside groups (as reported in e.g. [HN80], [NO96] and [VL90b]).

Via a GAP program using the “local” interactive functions of the pq program made available through this
interface also arbitrary laws can be imposed via the option Identities (see 6.1.8).

2.3 The p-group generation Algorithm, Standard Presentation, Isomorphism Testing

For details, see [New77] and [O’B90].

The p-group generation algorithm determines the immediate descendants of a given p-group G up to iso-
morphism. From what has been explained in Section 2.1, it is clear that this amounts to the construction
of the p-cover, the extension of the automorphisms of G to the p-cover and the determination of represen-
tatives of the orbits of the action of these automorphisms on the set of supplements of the nucleus in the
p-multiplicator.

The main practical problem here is the determination of these representatives. [O’B90] describes methods
for this and the pq program allows choices according to whether space or time limitations must be met.

Along with the descendants of G , the pq program also determines their automorphism groups from that of
G (see [O’B95]), which is important for an iteration of the process; this has been used by Eamonn O’Brien,
e.g. in the classification of the 2-groups that are now also part of the Small Groups library available
through GAP.

A variant of the p-group generation algorithm is also used to define a standard presentation of a given
p-group. This is done by constructing an isomorphic copy of the given group through a chain of descendants
and at each step making a choice of a particular representative for the respective orbit of capable groups.
In a fairly delicate process, subgroups of the p-multiplicator are represented by echelonised matrices and
a first among the labels for standard matrices is chosen (this is described in detail in [O’B94]).

Finally, the standard presentation provides a way of testing if two given p-groups are isomorphic: the standard
presentations of the groups are computed, for practical purposes compacted and the results compared for
being identical, i.e. the groups are isomorphic if and only if their standard presentations are identical.

3 Infrastructure

Most of the details in this chapter are of a technical nature; the user need only skim over this chapter on a
first reading. Mostly, it is enough to know that

• you must do a LoadPackage("anupq"); before you can expect to use a command defined by the ANUPQ
package (details are in Section 3.1);

• partial results of ANUPQ commands and some other data are stored in the ANUPQData global variable
(details are in Section 3.2);

• doing SetInfoLevel(InfoANUPQ, n); for n greater than the default value 1 will give progressively
more information of what is going on “behind the scenes” (details are in Section 7.3);

• in Section 7.4 we describe some utility functions and functions that run examples from the collection
of examples of this package;

• in Section 3.5 we describe the attributes and property NuclearRank, MultiplicatorRank and Is-
Capable; and

• in Section 3.6 we describe some troubleshooting strategies. Also this section describes how setting
ANUPQWarnOfOtherOptions := true; may be useful (particularly for novice users) for detecting mis-
spelt options and diagnosing other option usage problems.

3.1 Loading the ANUPQ Package

To use the ANUPQ package, as with any GAP package, it must be requested explicitly. This is done by
calling

gap> LoadPackage("anupq");

Loading ANUPQ 3.0 (ANU p-Quotient package)
C code by Eamonn O’Brien <obrien@math.auckland.ac.nz>

(ANU pq binary version: 1.8)
GAP code by Werner Nickel <nickel@mathematik.tu-darmstadt.de>

and Greg Gamble <gregg@math.rwth-aachen.de>

For help, type: ?ANUPQ

true

In version 2.2 of the ANUPQ package there was an option pkgbanner that allowed the user some control
on how the banner above was displayed. This only worked with GAP 4.3. Since, the ANUPQ package now
requires at least GAP 4.4, this option has been removed. If you still have GAP 4.3 (at least fix4), you will
need to use ANUPQ 2.2.

Note that since the ANUPQ package uses the AutomorphimGroupPGroup function of the AutPGrp package
and, in any case, often needs other AutPGrp functions when computing descendants, the user must ensure

Section 2. The ANUPQData Record 11

that the AutPGrp package is also installed, at least version 1.2. If the AutPGrp package is not installed, the
ANUPQ package will fail to load.

Also, if GAP cannot find a working pq binary, the call to LoadPackage will return fail.

If you want to load the ANUPQ package by default, you can put the LoadPackage command into your
.gaprc file (see Section 3.4 in the GAP Reference Manual). By the way, the novice user of the ANUPQ
package should probably also append the line

ANUPQWarnOfOtherOptions := true;

to their .gaprc file, somewhere after the LoadPackage("anupq"); command (see 3.6.1).

3.2 The ANUPQData Record

This section contains fairly technical details which may be skipped on an initial reading.

1I ANUPQData V

is a GAP record in which the essential data for an ANUPQ session within GAP is stored; its fields are:

binary
the path of the pq binary;

tmpdir
the path of the temporary directory used by the pq binary and GAP (i.e. the directory in which all
the pq’s temporary files are created) (also see 3.2.2 below);

outfile
the full path of the default pq output file;

SPimages
the full path of the file GAP library to which the pq program writes its Standard Presentation
images;

version
the version of the current pq binary;

ni
a data record used by non-interactive functions (see below and Chapter 4);

io
list of data records for PqStart (see below and 5.1.1) processes;

topqlogfile
name of file logged to by ToPQLog (see 3.4.7); and

logstream
stream of file logged to by ToPQLog (see 3.4.7).

Each time an interactive ANUPQ process is initiated via PqStart (see 5.1.1), an identifying number ioIndex is
generated for the interactive process and a record ANUPQData.io[ioIndex] with some or all of the fields listed
below is created. Whenever a non-interactive function is called (see Chapter 4), the record ANUPQData.ni is
updated with fields that, if bound, have exactly the same purpose as for a ANUPQData.io[ioIndex] record.

stream
the IOStream opened for interactive ANUPQ process ioIndex or non-interactive ANUPQ function;

group
the group given as first argument to PqStart, Pq, PqEpimorphism, PqDescendants or PqStandard-
Presentation (or any synonymous methods);

12 Chapter 3. Infrastructure

haspcp
is bound and set to true when a pc presentation is first set inside the pq program (e.g. by PqPcP-
resentation or PqRestorePcPresentation or a higher order function like Pq, PqEpimorphism,
PqPCover, PqDescendants or PqStandardPresentation that does a PqPcPresentation operation,
but not PqStart which only starts up an interactive ANUPQ process);

gens
a list of the generators of the group group as strings (the same as those passed to the pq program);

rels
a list of the relators of the group group as strings (the same as those passed to the pq program);

name
the name of the group whose pc presentation is defined by a call to the pq program (according to
the pq program – unless you have used the GroupName option (see e.g. 4.1.1) or applied the function
SetName (see 12.8.1) to the group, the “generic” name "[grp]" is set as a default);

gpnum
if not a null string, the “number” (i.e. the unique label assigned by the pq program) of the last
descendant processed;

class
the largest lower exponent-p central class of a quotient group of the group (usually group) found
by a call to the pq program;

forder
the factored order of the quotient group of largest lower exponent-p central class found for the group
(usually group) by a call to the pq program (this factored order is given as a list [p, n], indicating
an order of pn);

pcoverclass
the lower exponent-p central class of the p-covering group of a p-quotient of the group (usually
group) found by a call to the pq program;

workspace
the workspace set for the pq process (either given as a second argument to PqStart, or set by default
to 10000000);

menu
the current menu of the pq process (the pq program is managed by various menus, the details of
which the user shouldn’t normally need to know about – the menu field remembers which menu the
pq process is currently “in”);

outfname
is the file to which pq output is directed, which is always ANUPQData.outfile, except when option
SetupFile is used with a non-interactive function, in which case outfname is set to "PQ OUTPUT";

pQuotient
is set to the value returned by Pq (see 4.1.1) (the field pQepi is also set at the same time);

pQepi
is set to the value returned by PqEpimorphism (see 4.1.2) (the field pQuotient is also set at the
same time);

pCover
is set to the value returned by PqPCover (see 4.1.3);

SP
is set to the value returned by PqStandardPresentation or StandardPresentation (see 5.3.4)
when called interactively, for process i (the field SPepi is also set at the same time);

Section 3. Setting the Verbosity of ANUPQ via Info and InfoANUPQ 13

SPepi
is set to the value returned by EpimorphismPqStandardPresentation or EpimorphismStandardP-
resentation (see 5.3.5) when called interactively, for process i (the field SP is also set at the same
time);

descendants
is set to the value returned by PqDescendants (see 4.4.1);

treepos
if set by a call to PqDescendantsTreeCoclassOne (see A.4.1), it contains a record with fields class,
node and ndes being the information that determines the last descendant with a non-zero number
of descendants processed;

xgapsheet
if set by a call to PqDescendantsTreeCoclassOne (see A.4.1) during an XGAP session, it contains
the XGAP Sheet on which the descendants tree is displayed; and

nextX
if set by a call to PqDescendantsTreeCoclassOne (see A.4.1) during an XGAP session, it contains a
list of integers, the ith entry of which is the x -coordinate of the next node (representing a descendant)
for the ith class.

2I ANUPQDirectoryTemporary(dir) F

calls the UNIX command mkdir to create dir , which must be a string, and if successful a directory object
for dir is both assigned to ANUPQData.tmpdir and returned. The field ANUPQData.outfile is also set to
be a file in ANUPQData.tmpdir, and on exit from GAP dir is removed. Most users will never need this
command; by default, GAP typically chooses a “random” subdirectory of /tmp for ANUPQData.tmpdir which
may occasionally have limits on what may be written there. ANUPQDirectoryTemporary permits the user
to choose a directory (object) where one is not so limited.

3.3 Setting the Verbosity of ANUPQ via Info and InfoANUPQ

1I InfoANUPQ V

The input to and the output from the pq program is, by default, not displayed. However the user may choose
to see some, or all, of this input/output. This is done via the Info mechanism (see Chapter 7.4 in the GAP
Reference Manual). For this purpose, there is the InfoClass InfoANUPQ. If the InfoLevel of InfoANUPQ is
high enough each line of pq input/output is directed to a call to Info and will be displayed for the user to
see. By default, the InfoLevel of InfoANUPQ is 1, and it is recommended that you leave it at this level, or
higher. Messages that the user should presumably want to see and output from the pq program influenced
by the value of the option OutputLevel (see the options listed in Section 4.1.1), other than timing and
memory usage are directed to Info at InfoANUPQ level 1.

To turn off all InfoANUPQ messaging, set the InfoANUPQ level to 0.

There are five other user-intended InfoANUPQ levels: 2, 3, 4, 5 and 6.

gap> SetInfoLevel(InfoANUPQ, 2);

enables the display of most timing and memory usage data from the pq program, and also the number of
identity instances when the Identities option is used. (Some timing and memory usage data, particularly
when profuse in quantity, is Info-ed at InfoANUPQ level 3 instead.) Note that the the GAP functions time
and Runtime (see 7.6.2 in the GAP Reference Manual) count the time spent by GAP and not the time spent
by the (external) pq program.

14 Chapter 3. Infrastructure

gap> SetInfoLevel(InfoANUPQ, 3);

enables the display of output of the nature of the first two InfoANUPQ that was not directly invoked by
the user (e.g. some commands require GAP to discover something about the current state known to the pq
program). The identity instances processed under the Identities option are also displayed at this level. In
some cases, the pq program produces a lot of output despite the fact that the OutputLevel (see 6.1.9) is
unset or is set to 0; such output is also Info-ed at InfoANUPQ level 3.

gap> SetInfoLevel(InfoANUPQ, 4);

enables the display of all the commands directed to the pq program, behind a “ToPQ> ” prompt (so that
you can distinguish it from the output from the pq program). See Section 3.6 for an example of how this
can be a useful troubleshooting tool.

gap> SetInfoLevel(InfoANUPQ, 5);

enables the display of the pq program’s prompts for input. Finally,

gap> SetInfoLevel(InfoANUPQ, 6);

enables the display of all other output from the pq program, namely the banner and menus. However, the
timing data printed when the pq program exits can never be observed.

3.4 Utility Functions

1I PqLeftNormComm(elts) F

returns for a list of elements of some group (e.g. elts may be a list of words in the generators of a free or
fp group) the left normed commutator of elts, e.g. if w1 , w2 , w3 are such elements then PqLeftNormComm(
[w1, w2, w3]); is equivalent to Comm(Comm(w1, w2), w3);.

Note: elts must contain at least two elements.

2I PqGAPRelators(group, rels) F

returns a list of words that GAP understands, given a list rels of strings in the string representations of the
generators of the fp group group prepared as a list of relators for the pq program.

Note: The pq program does not use / to indicate multiplication by an inverse and uses square brackets to
represent (left normed) commutators. Also, even though the pq program accepts relations, all elements of
rels must be in relator form, i.e. a relation of form w1 = w2 must be written as w1*(w2)^-1.

Here is an example:

gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> PqGAPRelators(F, ["a*b^2", "[a,b]^2*a", "([a,b,a,b,b]*a*b)^2*a"]);
[a*b^2, a^-1*b^-1*a*b*a^-1*b^-1*a*b*a, b^-1*a^-1*b^-1*a^-1*b*a*b^-1*a*b*a^

-1*b*a^-1*b^-1*a*b*a*b^-1*a^-1*b^-1*a^-1*b*a*b^-1*a*b^-1*a^-1*b*a^-1*b^
-1*a*b*a*b*a^-1*b*a*b^-1*a*b*a^-1*b*a^-1*b^-1*a*b*a*b^-1*a^-1*b^-1*a^
-1*b*a*b^-1*a*b^-1*a^-1*b*a^-1*b^-1*a*b*a*b^2*a*b*a]

3I PqParseWord(word, n) F

parses a word , a string representing a word in the pc generators x1,...,xn, through GAP. This function is
provided as a rough-and-ready check of word for syntax errors. A syntax error will cause the entering of a
break-loop, in which the error message may or may not be meaningful (depending on whether the syntax
error gets caught at the GAP or kernel level).

Section 5. Attributes and a Property for fp and pc p-groups 15

Note: The reason the generators must be x1,...,xn is that these are the pc generator names used by the
pq program (as distinct from the generator names for the group provided by the user to a function like Pq
that invokes the pq program).

4I PqExample() F
I PqExample(example[, PqStart][, Display]) F
I PqExample(example[, PqStart][, filename]) F

With no arguments, or with single argument "index", or a string example that is not the name of a file in
the examples directory, an index of available examples is displayed.

With just the one argument example that is the name of a file in the examples directory, the example
contained in that file is executed in its simplest form. Some examples accept options which you may use to
modify some of the options used in the commands of the example. To find out which options an example
accepts, use one of the mechanisms for displaying the example described below.

Some examples have both non-interactive and interactive forms; those that are non-interactive only have a
name ending in -ni; those that are interactive only have a name ending in -i; examples with names ending
in .g also have only one form; all other examples have both non-interactive and interactive forms and for
these giving PqStart as second argument invokes PqStart initially and makes the appropriate adjustments
so that the example is executed or displayed using interactive functions.

If PqExample is called with last (second or third) argument Display then the example is displayed without
being executed. If the last argument is a non-empty string filename then the example is also displayed without
being executed but is also written to a file with that name. Passing an empty string as last argument has
the same effect as passing Display.

Note: The variables used in PqExample are local to the running of PqExample, so there’s no danger of
having some of your variables over-written. However, they are not completely lost either. They are saved
to a record ANUPQData.examples.vars, i.e. if F is a variable used in the example then you will be able to
access it after PqExample has finished as ANUPQData.examples.vars.F.

5I AllPqExamples() F

returns a list of all currently available examples in default UNIX-listing (i.e. alphabetic) order.

6I GrepPqExamples(string) F

runs the UNIX command grep string over the ANUPQ examples and returns the list of examples for which
there is a match. The actual matches are Info-ed at InfoANUPQ level 2.

7I ToPQLog([filename]) F

With string argument filename, ToPQLog opens the file with name filename for logging; all commands written
to the pq binary (that are Info-ed behind a “ToPQ> ” prompt at InfoANUPQ level 4) are then also written
to that file (but without prompts). With no argument, ToPQLog stops logging to whatever file was being
logged to. If a file was already being logged to, that file is closed and the file with name filename is opened
for logging.

3.5 Attributes and a Property for fp and pc p-groups

1I NuclearRank(G) A
I MultiplicatorRank(G) A
I IsCapable(G) P

return the nuclear rank of G , p-multiplicator rank of G , and whether G is capable (i.e. true if it is, or
false if it is not), respectively.

These attributes and property are set automatically if G is one of the following:

16 Chapter 3. Infrastructure

– an fp group returned by PqStandardPresentation or StandardPresentation (see 4.2.1);

– the image (fp group) of the epimorphism returned by an EpimorphismPqStandardPresentation or
EpimorphismStandardPresentation call (see 4.2.2); or

– one of the pc groups of the list of descendants returned by PqDescendants (see 4.4.1).

If G is an fp group or a pc p-group and not one of the above and the attribute or property has not otherwise
been set for G , then PqStandardPresentation is called to set all three of NuclearRank, MultiplicatorRank
and IsCapable, before returning the value of the attribute or property actually called. Such a group G must
know in advance that it is a p-group; this is the case for the groups returned by the functions Pq and
PqPCover, and the image group of the epimorphism returned by PqEpimorphism. Otherwise, if you know
the group to be a p-group, then this can be set by typing

SetFeatureObj(G, IsPGroup, true);

or by invoking IsPGroup(G). Note that for an fp group G , the latter may result in a coset enumeration
which might not terminate in a reasonable time.

Note: For G such that HasNuclearRank(G) = true, IsCapable(G) is equivalent to (the truth or falsity
of) NuclearRank(G) = 0.

3.6 Hints and Warnings regarding the use of Options

On a first reading we recommend you skip this section and come back to it if and when you run into trouble.

Note: By “options” we refer to GAP options. The pq program also uses the term “option”; to distinguish
the two usages of “option”, in this manual we use the term menu item to refer to what the pq program
refers to as an “option”.

Options are passed to the ANUPQ interface functions in either of the two usual mechanisms provided by
GAP, namely:

– options may be set globally using the function PushOptions (see Chapter 8 in the GAP Reference
Manual); or

– options may be appended to the argument list of any function call, separated by a colon from the
argument list (see Chapter 4.10 in the GAP Reference Manual), in which case they are then passed on
recursively to any subsequent inner function call, which may in turn have options of their own.

Particularly, when one is using the interactive functions of Chapter 5, one should, in general, avoid using the
global method of passing options. In fact, it is recommended that prior to calling PqStart the OptionsStack
be empty. The essential problem with setting options globally using the function PushOptions is that options
pushed onto OptionsStack, in this way, (generally) remain there until an explicit PopOptions() call is made.

In contrast, options passed in the usual way behind a colon following a function’s arguments (see 4.10 in
the GAP Reference Manual) are local, and disappear from OptionsStack after the function has executed
successfully. If the function does not execute successfully, i.e. it runs into error and the user quits the
resulting break loop (see Section 6.3 in the Reference Manual) rather than attempting to repair the problem
and typing return; then (since version GAP 4.3), unless the error at the kernel level, the OptionsStack is
reset. If an error is detected inside the kernel (hopefully, this should occur only rarely, if at all) then the
options of that function will not be cleared from OptionsStack; in such cases:

gap> ResetOptionsStack();
#I Options stack is already empty

is usually necessary (see Chapter 8 in the GAP Reference Manual), which recursively calls PopOptions()
until OptionsStack is empty, or as in the above case warns you that the OptionsStack is already empty.

Section 6. Hints and Warnings regarding the use of Options 17

Note that a function, that is passed options after the colon, will also see any global options or any options
passed down recursively from functions calling that function, unless those options are over-ridden by options
passed via the function. Also, note that duplication of option names for different programs may lead to
misinterpretations, and mis-spelled options will not be “seen”.

The non-interactive functions of Chapter 4 that have Pq somewhere in their name provide an alternative
method of passing options as additional arguments. This has the advantages that options can be abbreviated
and mis-spelled options will be trapped.

1I ANUPQWarnOfOtherOptions V

is a global variable that is by default false. If it is set to true then any function provided by the ANUPQ
function that recognises at least one option, will warn you of “other” options, i.e. options that the function
does not recognise. These warnings are emitted at InfoWarning or InfoANUPQ level 1. This is useful for
detecting mis-spelled options. Here is an example using the function Pq (first described in Chapter 4):

gap> SetInfoLevel(InfoANUPQ, 1); # Set InfoANUPQ to default level
gap> ANUPQWarnOfOtherOptions := true;;
gap> # The following makes entry into break loops very ‘‘quiet’’ ...
gap> OnBreak := function() Where(0); end;;
gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> Pq(F : Prime := 2, Classbound := 1);
#I ANUPQ Warning: Options: ["Classbound"] ignored
#I (invalid for generic function: ‘Pq’).
user interrupt at
moreOfline := ReadLine(iostream);
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

Here we mistyped ClassBound as Classbound, and after seeing the Info-ed warning that Classbound was
ignored, we typed a control -C (that’s the “user interrupt at” message) which took us into a break loop.
Since the Pq command was not able to finish, the options Prime and Classbound, in particular, will still be
on the OptionsStack:

brk> OptionsStack;
[rec(Prime := 2, Classbound := 1),
rec(Prime := 2, Classbound := 1, PqEpiOrPCover := "pQuotient")]

The option PqEpiOrPCover is a behind-the-scenes option that need not concern the user. Since GAP 4.3, on
quitting the break-loop the OptionsStack is reset and a warning telling you this is emitted:

brk> quit; # to get back to the ‘gap>’ prompt
#I Options stack has been reset

Above, we altered OnBreak (see 6.3.3 in the Reference manual) to reduce the back-tracing on entry into a
break loop. We now restore OnBreak to its usual value.

gap> OnBreak := Where;;

Notes

In cases where functions recursively call others with options (e.g. when using PqExample with options),
setting ANUPQWarnOfOtherOptions := true may give rise to spurious “other” option detections.

It is recommended that the novice user set ANUPQWarnOfOtherOptions to true in their .gaprc file (see
Section 3.1).

18 Chapter 3. Infrastructure

Other Troubleshooting Strategies

There are some other strategies which may have helped us to see our error above. The function Pq recognises
the option OutputLevel (see 6.1.9); if this option is set to at least 1, the pq program provides information
on each class quotient as it is generated:

gap> ANUPQWarnOfOtherOptions := false;; # Set back to normal
gap> F := FreeGroup("a", "b");;
gap> Pq(F : Prime := 2, Classbound := 1, OutputLevel := 1);
#I Lower exponent-2 central series for [grp]
#I Group: [grp] to lower exponent-2 central class 1 has order 2^2
#I Group: [grp] to lower exponent-2 central class 2 has order 2^5
#I Group: [grp] to lower exponent-2 central class 3 has order 2^10
#I Group: [grp] to lower exponent-2 central class 4 has order 2^18
#I Group: [grp] to lower exponent-2 central class 5 has order 2^32
#I Group: [grp] to lower exponent-2 central class 6 has order 2^55
#I Group: [grp] to lower exponent-2 central class 7 has order 2^96
#I Group: [grp] to lower exponent-2 central class 8 has order 2^167
#I Group: [grp] to lower exponent-2 central class 9 has order 2^294
#I Group: [grp] to lower exponent-2 central class 10 has order 2^520
#I Group: [grp] to lower exponent-2 central class 11 has order 2^932
#I Group: [grp] to lower exponent-2 central class 12 has order 2^1679
[... output truncated ...]

After seeing the information for the class 2 quotient we may have got the idea that the Classbound option
was not recognised and may have realised that this was due to a mis-spelling. The above will ordinarily
cause the available space to be exhausted, necessitating user-intervention by typing control -C and quit; (to
escape the break loop); otherwise Pq terminates when the class reaches 63 (the default value of ClassBound).

If you have some familiarity with “keyword” command input to the pq binary, then setting the level of
InfoANUPQ to 4 would also have indicated a problem:

gap> ResetOptionsStack(); # Necessary, if a break-loop was entered above
gap> SetInfoLevel(InfoANUPQ, 4);
gap> Pq(F : Prime := 2, Classbound := 1);
#I ToPQ> 7 #to (Main) p-Quotient Menu
#I ToPQ> 1 #define group
#I ToPQ> name [grp]
#I ToPQ> prime 2
#I ToPQ> class 63
#I ToPQ> exponent 0
#I ToPQ> output 0
#I ToPQ> generators { a,b }
#I ToPQ> relators { };
[... output truncated ...]

Here the line “#I ToPQ> class 63” indicates that a directive to set the classbound to 63 was sent to the
pq program.

4

Non-interactive
ANUPQ functions

Here we describe all the non-interactive functions of the ANUPQ package; i.e. “one-shot” functions that
invoke the pq program in such a way that once GAP has got what it needs, the pq program is allowed to
exit. It is expected that most of the time users will only need these functions. The functions interface with
three of the four algorithms (see Chapter 1) provided by the ANU pq C program, and are mainly grouped
according to the algorithm of the pq program they relate to.

In Section 4.1, we describe the functions that give access to the p-quotient algorithm.

Section 4.2 describe functions that give access to the standard presentation algorithm.

Section 4.3 describe functions that implement an isomorphism test for p-groups using the standard presen-
tation algorithm.

In Section 4.4, we describe functions that give access to the p-group generation algorithm.

To use any of the functions one must have at some stage previously typed:

gap> LoadPackage("anupq");

(the response of which we have omitted; see 3.1).

It is strongly recommended that the user try the examples provided. To save typing there is a PqExample
equivalent for each manual example. We also suggest that to start with you may find the examples more
instructive if you set the InfoANUPQ level to 2 (see 7.3.1).

4.1 Computing p-Quotients

1I Pq(F : options) F

returns for the fp or pc group F , the p-quotient of F specified by options, as a pc group. Following the colon,
options is a selection of the options from the following list, separated by commas like record components
(see Section 4.10.2 in the GAP Reference Manual). As a minimum the user must supply a value for the
Prime option. Below we list the options recognised by Pq (see Chapter 6 for detailed descriptions).

Prime := p

ClassBound := n

Exponent := n

Relators := rels

Metabelian

Identities := funcs

GroupName := name

OutputLevel := n

SetupFile := filename

PqWorkspace := workspace

20 Chapter 4. Non-interactive ANUPQ functions

Notes: Pq may also be called with no arguments or one integer argument, in which case it is being used
interactively (see 5.3.1); the same options may be used, except that SetupFile and PqWorkspace are ignored
by the interactive Pq function.

See Section 3.5 for the attributes and property NuclearRank, MultiplicatorRank and IsCapable which
may be applied to the group returned by Pq.

See also PqEpimorphism (4.1.2).

We now give a few examples of the use of Pq. Except for the addition of a few comments and the non-
suppression of output (by not using duplicated semicolons) the next 3 examples may be run by typing:
PqExample("Pq"); (see 3.4.4).

gap> LoadPackage("anupq");; # does nothing if ANUPQ is already loaded
gap> # First we get a p-quotient of a free group of rank 2
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> Pq(F : Prime := 2, ClassBound := 3);
<pc group of size 1024 with 10 generators>
gap> # Now let us get a p-quotient of an fp group
gap> G := F / [a^4, b^4];
<fp group on the generators [a, b]>
gap> Pq(G : Prime := 2, ClassBound := 3);
<pc group of size 256 with 8 generators>
gap> # Now let’s get a different p-quotient of the same group
gap> Pq(G : Prime := 2, ClassBound := 3, Exponent := 4);
<pc group of size 128 with 7 generators>
gap> # Now we’ll get a p-quotient of another fp group
gap> # which we will redo using the ‘Relators’ option
gap> R := [a^25, Comm(Comm(b, a), a), b^5];
[a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5]
gap> H := F / R;
<fp group on the generators [a, b]>
gap> Pq(H : Prime := 5, ClassBound := 5, Metabelian);
<pc group of size 78125 with 7 generators>

Now we redo the last example to show how one may use the Relators option. Observe that Comm(Comm(b,
a), a) is a left normed commutator which must be written in square bracket notation for the pq program
and embedded in a pair of double quotes. The function PqGAPRelators (see 7.4.2) can be used to translate
a list of strings prepared for the Relators option into GAP format. Below we use it. Observe that the value
of R is the same as before.

gap> F := FreeGroup("a", "b");;
gap> # ‘F’ was defined for ‘Relators’. We use the same strings that GAP uses
gap> # for printing the free group generators. It is *not* necessary to
gap> # predefine: a := F.1; etc. (as it was above).
gap> rels := ["a^25", "[b, a, a]", "b^5"];
["a^25", "[b, a, a]", "b^5"]
gap> R := PqGAPRelators(F, rels);
[a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5]
gap> H := F / R;
<fp group on the generators [a, b]>
gap> Pq(H : Prime := 5, ClassBound := 5, Metabelian,
> Relators := rels);
<pc group of size 78125 with 7 generators>

In fact, above we could have just passed F (rather than H), i.e. we could have done:

Section 1. Computing p-Quotients 21

gap> F := FreeGroup("a", "b");;
gap> rels := ["a^25", "[b, a, a]", "b^5"];
["a^25", "[b, a, a]", "b^5"]
gap> Pq(F : Prime := 5, ClassBound := 5, Metabelian,
> Relators := rels);
<pc group of size 78125 with 7 generators>

The non-interactive Pq function also allows the options to be passed in two other ways; these alternatives
have been included for those familiar with the GAP 3 version of the ANUPQ package; the preferred method
of passing options is the one already described. Firstly, they may be passed in a record as a second argument;
note that any boolean options must be set explicitly e.g.

gap> Pq(H, rec(Prime := 5, ClassBound := 5, Metabelian := true));
<pc group of size 78125 with 7 generators>

It is also possible to pass them as extra arguments, where each option name appears as a string followed
immediately by its value (if not a boolean option) e.g.

gap> Pq(H, "Prime", 5, "ClassBound", 5, "Metabelian");
<pc group of size 78125 with 7 generators>

The preceding two examples can be run from GAP via PqExample("Pq-ni"); (see 3.4.4).

This method of passing options permits abbreviation; the only restriction is that the abbreviation must be
unique. So "Pr" may be used for "Prime", "Class" or even just "C" for "ClassBound", etc.

The following example illustrates the use of the option Identities. We compute the largest finite Burnside
group of exponent 5 that also satisfies the 3-Engel identity. Each identity is defined by a function whose
arguments correspond to the variables of the identity. The return value of each of those functions is the
identity evaluated on the arguments of the function.

gap> F := FreeGroup(2);
<free group on the generators [f1, f2]>
gap> Burnside5 := x->x^5;
function(x) ... end
gap> Engel3 := function(x,y) return PqLeftNormComm([x,y,y,y]); end;
function(x, y) ... end
gap> Pq(F : Prime := 5, Identities := [Burnside5, Engel3]);
#I Class 1 with 2 generators.
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
<pc group of size 3125 with 5 generators>

The above example can be run from GAP via PqExample("B5-5-Engel3-Id"); (see 3.4.4).

2I PqEpimorphism(F : options) F

returns for the fp or pc group F an epimorphism from F onto the p-quotient of F specified by options;
the possible options options and required option ("Prime") are as for Pq (see 4.1.1). PqEpimorphism only
differs from Pq in what it outputs; everything about what must/may be passed as input to PqEpimorphism
is the same as for Pq. The same alternative methods of passing options to the non-interactive Pq function
are available to the non-interactive version of PqEpimorphism.

Notes: PqEpimorphism may also be called with no arguments or one integer argument, in which case it
is being used interactively (see 5.3.2), and the options SetupFile and PqWorkspace are ignored by the
interactive PqEpimorphism function.

22 Chapter 4. Non-interactive ANUPQ functions

See Section 3.5 for the attributes and property NuclearRank, MultiplicatorRank and IsCapable which
may be applied to the image group of the epimorphism returned by PqEpimorphism.

gap> F := FreeGroup (2, "F");
<free group on the generators [F1, F2]>
gap> phi := PqEpimorphism(F : Prime := 5, ClassBound := 2);
[F1, F2] -> [f1, f2]
gap> Image(phi);
<pc group of size 3125 with 5 generators>

Typing: PqExample("PqEpimorphism"); runs the above example in GAP (see 3.4.4).

3I PqPCover(F : options) F

returns for the fp or pc group F , the p-covering group of the p-quotient of F specified by options, as a
pc group, i.e. the p-covering group of the p-quotient Pq(F : options). Thus the options that PqPCover
accepts are exactly those expected for Pq (and hence as a minimum the user must supply a value for the
Prime option; see 4.1.1 for more details), except in the following special case.

If F is already a p-group, in the sense that HasIsPGroup(F) and IsPGroup(F) is true, then

Prime
defaults to PrimePGroup(F), if not supplied and HasPrimePGroup(F) = true; and

ClassBound
defaults to PClassPGroup(F) if HasPClassPGroup(F) = true if not supplied, or to the usual
default of 63, otherwise.

The same alternative methods of passing options to the non-interactive Pq function are available to the
non-interactive version of PqPCover.

We now give a few examples of the use of PqPCover. These examples are just a subset of the ones we gave for
Pq (see 4.1.1), except that in each instance the command Pq has been replaced with PqPCover. Essentially
the same examples may be run by typing: PqExample("PqPCover"); (see 3.4.4).

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> PqPCover(F : Prime := 2, ClassBound := 3);
<pc group of size 262144 with 18 generators>
gap>
gap> # Now let’s get a p-cover of a p-quotient of an fp group
gap> G := F / [a^4, b^4];
<fp group on the generators [a, b]>
gap> PqPCover(G : Prime := 2, ClassBound := 3);
<pc group of size 16384 with 14 generators>
gap>
gap> # Now let’s get a p-cover of a different p-quotient of the same group
gap> PqPCover(G : Prime := 2, ClassBound := 3, Exponent := 4);
<pc group of size 8192 with 13 generators>
gap>
gap> # Now we’ll get a p-cover of a p-quotient of another fp group
gap> # which we will redo using the ‘Relators’ option
gap> R := [a^25, Comm(Comm(b, a), a), b^5];
[a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5]
gap> H := F / R;
<fp group on the generators [a, b]>
gap> PqPCover(H : Prime := 5, ClassBound := 5, Metabelian);

Section 2. Computing Standard Presentations 23

<pc group of size 48828125 with 11 generators>
gap>
gap> # Now we redo the previous example using the ‘Relators’ option
gap> F := FreeGroup("a", "b");;
gap> rels := ["a^25", "[b, a, a]", "b^5"];
["a^25", "[b, a, a]", "b^5"]
gap> PqPCover(F : Prime := 5, ClassBound := 5, Metabelian,
> Relators := rels);
<pc group of size 48828125 with 11 generators>

4.2 Computing Standard Presentations

1I PqStandardPresentation(F : options) F
I StandardPresentation(F : options) M

return the p-quotient specified by options of the fp or pc p-group F , as an fp group which has a standard
presentation. Here options is a selection of the options from the following list (see Chapter 6 for detailed
descriptions). Section 3.6 gives some important hints and warnings regarding option usage, and Section 4.10.2
in the GAP Reference Manual describes their “record”-like syntax.

Prime := p

pQuotient := Q

ClassBound := n

Exponent := n

Metabelian

GroupName := name

OutputLevel := n

StandardPresentationFile := filename

SetupFile := filename

PqWorkspace := workspace

Unless F is a pc p-group, the user must supply either the option Prime or the option pQuotient (if both
Prime and pQuotient are supplied, the prime p is determined by applying PrimePGroup (see 37.15.15 in
the Reference Manual) to the value of pQuotient).

The options for PqStandardPresentation may also be passed in the two alternative ways described for Pq
(see 4.1.1). StandardPresentation does not provide these alternative ways of passing options.

Notes: In contrast to the function Pq (see 4.1.1) which returns a pc group, PqStandardPresentation or
StandardPresentation returns an fp group. This is because the output is mainly used for isomorphism
testing for which an fp group is enough. However, the presentation is a polycyclic presentation and if you
need to do any further computation with this group (e.g. to find the order) you can use the function
PcGroupFpGroup (see 44.4.1 in the GAP Reference Manual) to form a pc group.

If the user does not supply a p-quotient Q via the pQuotient option and the prime p is either supplied or F
is a pc p-group, then a p-quotient Q is computed. If the user does supply a p-quotient Q via the pQuotient
option, the package AutPGrp is called to compute the automorphism group of Q ; an error will occur that
asks the user to install the package AutPGrp if the automorphism group cannot be computed.

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for the group re-
turned by PqStandardPresentation or StandardPresentation (see Section 3.5).

We illustrate the method with the following examples.

24 Chapter 4. Non-interactive ANUPQ functions

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := F / [a^25, Comm(Comm(b, a), a), b^5];
<fp group on the generators [a, b]>
gap> S := StandardPresentation(G : Prime := 5, ClassBound := 10);
<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26]>

gap> IsPcGroup(S);
false
gap> # if we need to compute with S we should convert it to a pc group
gap> Spc := PcGroupFpGroup(S);
<pc group of size 1490116119384765625 with 26 generators>
gap>
gap> H := F / [a^625, Comm(Comm(Comm(Comm(b, a), a), a), a)/Comm(b, a)^5,
> Comm(Comm(b, a), b), b^625];;
gap> StandardPresentation(H : Prime := 5, ClassBound := 15, Metabelian);
<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
f12, f13, f14, f15, f16, f17, f18, f19, f20]>

gap>
gap> F4 := FreeGroup("a", "b", "c", "d");;
gap> a := F4.1;; b := F4.2;; c := F4.3;; d := F4.4;;
gap> G4 := F4 / [b^4, b^2 / Comm(Comm (b, a), a), d^16,
> a^16 / (c * d), b^8 / (d * c^4)];
<fp group on the generators [a, b, c, d]>
gap> K := Pq(G4 : Prime := 2, ClassBound := 1);
<pc group of size 4 with 2 generators>
gap> StandardPresentation(G4 : pQuotient := K, ClassBound := 14);
<fp group with 53 generators>

Typing: PqExample("StandardPresentation"); runs the above example in GAP (see 3.4.4).

2I EpimorphismPqStandardPresentation(F : options) F
I EpimorphismStandardPresentation(F : options) M

Each of the above functions accepts the same arguments and options as the function StandardPresentation
(see 4.2.1) and returns an epimorphism from the fp or pc group F onto the finitely presented group given
by a standard presentation, i.e. if S is the standard presentation computed for the p-quotient of F by
StandardPresentation then EpimorphismStandardPresentation returns the epimorphism from F to the
group with presentation S .

Note: The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for the image
group of the epimorphism returned by EpimorphismPqStandardPresentation or EpimorphismStandardP-
resentation (see Section 3.5).

We illustrate the function with the following example.

gap> F := FreeGroup(6, "F");
<free group on the generators [F1, F2, F3, F4, F5, F6]>
gap> # For printing GAP uses the symbols F1, ... for the generators of F
gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;;
gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b,
> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3];;
gap> Q := F / R;
<fp group on the generators [F1, F2, F3, F4, F5, F6]>
gap> # For printing GAP also uses the symbols F1, ... for the generators of Q
gap> # (the same as used for F) ... but the gen’rs of Q and F are different:

Section 3. Testing p-Groups for Isomorphism 25

gap> GeneratorsOfGroup(F) = GeneratorsOfGroup(Q);
false
gap> G := Pq(Q : Prime := 3, ClassBound := 3);
<pc group of size 729 with 6 generators>
gap> phi := EpimorphismStandardPresentation(Q : Prime := 3,
> ClassBound := 3);
[F1, F2, F3, F4, F5, F6] -> [f1*f2^2*f3*f4^2*f5^2, f1*f2*f3*f5, f3^2,
f4*f6^2, f5, f6]

gap> NamesOfComponents(phi);
["Source", "Range", "MappingGeneratorsImages"]
gap> phi!.Source; # This is the group Q (GAP uses F1, ... for gen’r symbols)
<fp group of size infinity on the generators [F1, F2, F3, F4, F5, F6]>
gap> phi!.Range; # This is the group G (GAP uses f1, ... for gen’r symbols)
<fp group on the generators [f1, f2, f3, f4, f5, f6]>
gap> AssignGeneratorVariables(G);
#I Assigned the global variables [f1, f2, f3, f4, f5, f6]
gap> # Just to see that the images of [F1, ..., F6] do generate G
gap> Group([f1*f2^2*f3, f1*f2*f3*f4*f5^2*f6^2, f3^2, f4, f5, f6]) = G;
true
gap> Size(Image(phi));
729

Typing: PqExample("EpimorphismStandardPresentation"); runs the above example in GAP (see 3.4.4).
Note that AssignGeneratorVariables (see 35.2.5) has only been available since GAP 4.3.

4.3 Testing p-Groups for Isomorphism

1I IsPqIsomorphicPGroup(G, H) F
I IsIsomorphicPGroup(G, H) M

each return true if G is isomorphic to H , where both G and H must be pc groups of prime power order.
These functions compute and compare in GAP the fp groups given by standard presentations for G and H
(see 4.2.1).

gap> G := Group((1,2,3,4), (1,3));
Group([(1,2,3,4), (1,3)])
gap> P1 := Image(IsomorphismPcGroup(G));
Group([f1, f2, f3])
gap> P2 := SmallGroup(8, 5);
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup(P1, P2);
false
gap> P3 := SmallGroup(8, 4);
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup(P1, P3);
false
gap> P4 := SmallGroup(8, 3);
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup(P1, P4);
true

Typing: PqExample("IsIsomorphicPGroup"); runs the above example in GAP (see 3.4.4).

26 Chapter 4. Non-interactive ANUPQ functions

4.4 Computing Descendants of a p-Group

1I PqDescendants(G : options) F

returns, for the pc group G which must be of prime power order with a confluent pc presentation (see 44.4.7
in the GAP Reference Manual), a list of descendants (pc groups) of G . Following the colon options a selection
of the options listed below should be given, separated by commas like record components (see Section 4.10.2
in the GAP Reference Manual). See Chapter 6 for detailed descriptions of the options.

The automorphism group of each descendant D is also computed via a call to the AutomorphismGroupPGroup
function of the AutPGrp package.

ClassBound := n

Relators := rels

OrderBound := n

StepSize := n, StepSize := list

RankInitialSegmentSubgroups := n

SpaceEfficient

CapableDescendants

AllDescendants := false

Exponent := n

Metabelian

GroupName := name

SubList := sub

BasicAlgorithm

CustomiseOutput := rec

SetupFile := filename

PqWorkspace := workspace

Notes: The function PqDescendants uses the automorphism group of G which it computes via the package
AutPGrp. If this package is not installed an error may be raised. If the automorphism group of G is insoluble,
the pq program will call GAP together with the AutPGrp package for certain orbit-stabilizer calculations.
(So, in any case, one should ensure the AutPGrp package is installed.)

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for each group of
the list returned by PqDescendants (see Section 3.5).

The options options for PqDescendants may be passed in an alternative manner to that already described,
namely you can pass PqDescendants a record as an argument, which contains as entries some (or all) of the
above mentioned. Those parameters which do not occur in the record are set to their default values.

Note that you cannot set both OrderBound and StepSize.

In the first example we compute all descendants of the Klein four group which have exponent-2 class at
most 5 and order at most 26.

Section 4. Computing Descendants of a p-Group 27

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := PcGroupFpGroup(F / [a^2, b^2, Comm(b, a)]);
<pc group of size 4 with 2 generators>
gap> des := PqDescendants(G : OrderBound := 6, ClassBound := 5);;
gap> Length(des);
83
gap> List(des, Size);
[8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,
32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64]

gap> List(des, d -> Length(PCentralSeries(d, 2)) - 1);
[2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 4,
4, 4,
4, 4, 4, 5, 5, 5, 5, 5]

Below, we compute all capable descendants of order 27 of the elementary abelian group of order 9.

gap> F := FreeGroup(2, "g");
<free group on the generators [g1, g2]>
gap> G := PcGroupFpGroup(F / [F.1^3, F.2^3, Comm(F.1, F.2)]);
<pc group of size 9 with 2 generators>
gap> des := PqDescendants(G : OrderBound := 3, ClassBound := 2,
> CapableDescendants);
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

gap> List(des, d -> Length(PCentralSeries(d, 3)) - 1);
[2, 2]
gap> # For comparison let us now compute all descendants
gap> PqDescendants(G : OrderBound := 3, ClassBound := 2);
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

In the third example, we compute all capable descendants of the elementary abelian group of order 52 which
have exponent-5 class at most 3, exponent 5, and are metabelian.

gap> F := FreeGroup(2, "g");;
gap> G := PcGroupFpGroup(F / [F.1^5, F.2^5, Comm(F.2, F.1)]);
<pc group of size 25 with 2 generators>
gap> des := PqDescendants(G : Metabelian, ClassBound := 3,
> Exponent := 5, CapableDescendants);
[<pc group of size 125 with 3 generators>,
<pc group of size 625 with 4 generators>,
<pc group of size 3125 with 5 generators>]

gap> List(des, d -> Length(PCentralSeries(d, 5)) - 1);
[2, 3, 3]
gap> List(des, d -> Length(DerivedSeries(d)));
[3, 3, 3]
gap> List(des, d -> Maximum(List(Elements(d), Order)));
[5, 5, 5]

28 Chapter 4. Non-interactive ANUPQ functions

The examples "PqDescendants-1", "PqDescendants-2" and "PqDescendants-3" (in order) are essentially
the same as the above three examples (see 3.4.4).

2I PqSupplementInnerAutomorphisms(D) F

returns a generating set for a supplement to the inner automorphisms of D , in the form of a record with
fields agAutos, agOrder and glAutos, as provided by the pq program. One should be very careful in using
these automorphisms for a descendant calculation.

Note: In principle there must be a way to use those automorphisms in order to compute descendants but
there does not seem to be a way to hand back these automorphisms properly to the pq program.

gap> Q := Pq(FreeGroup(2) : Prime := 3, ClassBound := 1);
<pc group of size 9 with 2 generators>
gap> des := PqDescendants(Q : StepSize := 1);
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

gap> S := PqSupplementInnerAutomorphisms(des[3]);
rec(agAutos := [], agOrder := [3, 2, 2, 2],
glAutos := [Pcgs([f1, f2, f3]) -> [f1*f2^2, f2, f3],

Pcgs([f1, f2, f3]) -> [f1^2, f2, f3^2],
Pcgs([f1, f2, f3]) -> [f1^2, f2, f3^2]])

gap> A := AutomorphismGroupPGroup(des[3]);
rec(glAutos := [], glOrder := 1,
agAutos := [Pcgs([f1, f2, f3]) -> [f1^2, f2, f3^2],

Pcgs([f1, f2, f3]) -> [f1*f2^2, f2, f3],
Pcgs([f1, f2, f3]) -> [f1*f3, f2, f3],
Pcgs([f1, f2, f3]) -> [f1, f2*f3, f3]], agOrder := [2, 3, 3, 3],

one := IdentityMapping(<pc group of size 27 with 3 generators>),
group := <pc group of size 27 with 3 generators>, size := 54,
glOper := []

The above example may be executed on-line via PqExample("PqSupplementInnerAutomorphisms");
(see 3.4.4).

Note that by also including PqStart as a second argument to PqExample one can see how it is possible,
with the aid of PqSetPQuotientToGroup (see 5.3.7), to do the equivalent computations with the interactive
versions of Pq and PqDescendants and a single pq process (recall pq is the name of the external C program).

3I PqList(filename [: SubList := sub]) F

reads a file with name filename (a string) and returns the list L of pc groups (or with option SubList a
sublist of L or a single pc group in L) defined in that file. If the option SubList is passed and has the
value sub, then it has the same meaning as for PqDescendants, i.e. if sub is an integer then PqList returns
L[sub]; otherwise, if sub is a list of integers PqList returns Sublist(L, sub).

Both PqList and SavePqList (see 4.4.4) can be used to save and restore a list of descendants (see 4.4.1).

4I SavePqList(filename, list) F

writes a list of descendants list to a file with name filename (a string).

SavePqList and PqList (see 4.4.3) can be used to save and restore, respectively, the results of PqDescen-
dants (see 4.4.1).

5

Interactive
ANUPQ functions

Here we describe the interactive functions defined by the ANUPQ package, i.e. the functions that manipulate
and initiate interactive ANUPQ processes. These are functions that extract information via a dialogue with
a running pq process (process used in the UNIX sense). Occasionally, a user needs the “next step”; the
functions provided in this chapter make use of data from previous steps retained by the pq program, thus
allowing the user to interact with the pq program like one can when one uses the pq program as a stand-alone
(see guide.dvi in the standalone-doc directory).

An interactive ANUPQ process is initiated by PqStart and terminated via PqQuit; these functions are
described in Section 5.1.

Each interactive ANUPQ function that manipulates an already started interactive ANUPQ process, has a
form where the first argument is the integer i returned by the initiating PqStart command, and a second form
with one argument fewer (where the integer i is discovered by a default mechanism, namely by determining
the least integer i for which there is a currently active interactive ANUPQ process). We will thus commonly
say that “for the ith (or default) interactive ANUPQ process” a certain function performs a given action. In
each case, it is an error if i is not the index of an active interactive process, or there are no current active
interactive processes.

Notes: The global method of passing options (via PushOptions), should not be used with any of the
interactive functions. In fact, the OptionsStack should be empty at the time any of the interactive functions
is called.

On quitting GAP, PqQuitAll(); is executed, which terminates all active interactive ANUPQ processes. If
GAP is killed without quitting, before all interactive ANUPQ processes are terminated, zombie processes
(still living child processes whose parents have died), may result. Since zombie processes do consume
resources, in such an event, the responsible computer user should seek out and terminate those zombie
processes (e.g. on Linux: ps xw | grep pq gives you information on the pq processes corresponding to
any interactive ANUPQ processes started in a GAP session; you can then do kill N for each number N
appearing in the first column of this output).

5.1 Starting and Stopping Interactive ANUPQ Processes

1I PqStart(G, workspace : options) F
I PqStart(G : options) F
I PqStart(workspace : options) F
I PqStart(: options) F

activate an iostream for an interactive ANUPQ process (i.e. PqStart starts up a pq process and opens a
GAP iostream to “talk” to that process) and returns an integer i that can be used to identify that process.
The argument G should be an fp group or pc group that the user intends to manipulate using interactive
ANUPQ functions. If the function is called without specifying G , a group can be read in by using the function
PqRestorePcPresentation (see 5.4.12). If PqStart is given an integer argument workspace, then the pq
program is started up with a workspace (an integer array) of size workspace (i.e. 4 × workspace bytes in a
32-bit environment); otherwise, the pq program sets a default workspace of 10000000.

30 Chapter 5. Interactive ANUPQ functions

The only options currently recognised by PqStart are Prime, Exponent and Relators (see Chapter 6 for
detailed descriptions of these options) and if provided they are essentially global for the interactive ANUPQ
process, except that any interactive function interacting with the process and passing new values for these
options will over-ride the global values.

2I PqQuit(i) F
I PqQuit() F

closes the stream of the ith or default interactive ANUPQ process and unbinds its ANUPQData.io record.

Note: It can happen that the pq process, and hence the GAP iostream assigned to communicate with it, can
die, e.g. by the user typing a Ctrl-C while the pq process is engaged in a long calculation. IsPqProcessAlive
(see 5.2.3) is provided to check the status of the GAP iostream (and hence the status of the pq process it
was communicating with).

3I PqQuitAll() F

is provided as a convenience, to terminate all active interactive ANUPQ processes with a single command.
It is equivalent to executing PqQuit(i) for all active interactive ANUPQ processes i (see 5.1.2).

5.2 Interactive ANUPQ Process Utility Functions

1I PqProcessIndex(i) F
I PqProcessIndex() F

With argument i , which must be a positive integer, PqProcessIndex returns i if it corresponds to an active
interactive process, or raises an error. With no arguments it returns the default active interactive process
or returns fail and emits a warning message to Info at InfoANUPQ or InfoWarning level 1.

Note: Essentially, an interactive ANUPQ process i is “active” if ANUPQData.io[i] is bound (i.e. we still
have some data telling us about it). Also see 5.1.1.

2I PqProcessIndices() F

returns the list of integer indices of all active interactive ANUPQ processes (see 5.2.1 for the meaning of
“active”).

3I IsPqProcessAlive(i) F
I IsPqProcessAlive() F

return true if the GAP iostream of the ith (or default) interactive ANUPQ process started by PqStart is
alive (i.e. can still be written to), or false, otherwise. (See the notes for 5.1.1 and 5.1.2.)

If the user does not yet have a gap> prompt then usually the pq program is still away doing something and
an ANUPQ interface function is still waiting for a reply. Typing a Ctrl-C (i.e. holding down the Ctrl key
and typing c) will stop the waiting and send GAP into a break-loop, from which one has no option but to
quit;. The typing of Ctrl-C, in such a circumstance, usually causes the stream of the interactive ANUPQ
process to die; to check this we provide IsPqProcessAlive (see 5.2.3).

The GAP iostream of an interactive ANUPQ process will also die if the pq program has a segmentation fault.
We do hope that this never happens to you, but if it does and the failure is reproducible, then it’s a bug
and we’d like to know about it. Please read the README that comes with the ANUPQ package to find out
what to include in a bug report and who to email it to.

Section 3. Interactive Versions of Non-interactive ANUPQ Functions 31

5.3 Interactive Versions of Non-interactive ANUPQ Functions

1I Pq(i : options) F
I Pq(: options) F

return, for the fp or pc group (let us call it F), of the ith or default interactive ANUPQ process, the p-
quotient of F specified by options, as a pc group; F must previously have been given (as first argument)
to PqStart to start the interactive ANUPQ process (see 5.1.1) or restored from file using the function
PqRestorePcPresentation (see 5.4.12). Following the colon options is a selection of the options listed for
the non-interactive Pq function (see 4.1.1), separated by commas like record components (see Section 4.10.2
in the GAP Reference Manual), except that the options SetupFile or PqWorkspace are ignored by the
interactive Pq, and RedoPcp is an option only recognised by the interactive Pq i.e. the following options are
recognised by the interactive Pq function:

Prime := p

ClassBound := n

Exponent := n

Relators := rels

Metabelian

Identities := funcs

GroupName := name

OutputLevel := n

RedoPcp

Detailed descriptions of the above options may be found in Chapter 6.

As a minimum the Pq function must have a value for the Prime option, though Prime need not be passed
again in the case it has previously been provided, e.g. to PqStart (see 5.1.1) when starting the interactive
process.

The behaviour of the interactive Pq function depends on the current state of the pc presentation stored by
the pq program:

1. If no pc presentation has yet been computed (the case immediately after the PqStart call initiating
the process) then the quotient group of the input group of the process of largest lower exponent-p class
bounded by the value of the ClassBound option (see 6.1.2) is returned.

2. If the current pc presentation of the process was determined by a previous call to Pq or PqEpimorphism,
and the current call has a larger value ClassBound then the class is extended as much as is possible
and the quotient group of the input group of the process of the new lower exponent-p class is returned.

3. If the current pc presentation of the process was determined by a previous call to PqPCover then a
consistent pc presentation of a quotient for the current class is determined before proceeding as in 2.

4. If the RedoPcp option is supplied the current pc presentation is scrapped, all options must be re-supplied
(in particular, Prime must be supplied) and then the Pq function proceeds as in 1.

See Section 3.5 for the attributes and property NuclearRank, MultiplicatorRank and IsCapable which
may be applied to the group returned by Pq.

The following is one of the examples for the non-interactive Pq redone with the interactive version. Also,
we set the option OutputLevel to 1 (see 6.1.9), in order to see the orders of the quotients of all the classes
determined, and we set the InfoANUPQ level to 2 (see 7.3.1), so that we catch the timing information.

32 Chapter 5. Interactive ANUPQ functions

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := F / [a^4, b^4];
<fp group on the generators [a, b]>
gap> PqStart(G);
1
gap> SetInfoLevel(InfoANUPQ, 2); #To see timing information
gap> Pq(: Prime := 2, ClassBound := 3, OutputLevel := 1);
#I Lower exponent-2 central series for [grp]
#I Group: [grp] to lower exponent-2 central class 1 has order 2^2
#I Group: [grp] to lower exponent-2 central class 2 has order 2^5
#I Group: [grp] to lower exponent-2 central class 3 has order 2^8
#I Computation of presentation took 0.00 seconds
<pc group of size 256 with 8 generators>

2I PqEpimorphism(i : options) F
I PqEpimorphism(: options) F

return, for the fp or pc group (let us call it F), of the ith or default interactive ANUPQ process, an
epimorphism from F onto the p-quotient of F specified by options; F must previously have been given
(as first argument) to PqStart to start the interactive ANUPQ process (see 5.1.1). Since the underlying
interactions with the pq program effected by the interactive PqEpimorphism are identical to those effected
by the interactive Pq, everything said regarding the requirements and behaviour of the interactive Pq function
(see 5.3.1) is also the case for the interactive PqEpimorphism.

Note: See Section 3.5 for the attributes and property NuclearRank, MultiplicatorRank and IsCapable
which may be applied to the image group of the epimorphism returned by PqEpimorphism.

3I PqPCover(i : options) F
I PqPCover(: options) F

return, for the fp or pc group of the ith or default interactive ANUPQ process, the p-covering group of the
p-quotient Pq(i : options) or Pq(: options), modulo the following:

1. If no pc presentation has yet been computed (the case immediately after the PqStart call initiating the
process) and the group F of the process is already a p-group, in the sense that HasIsPGroup(F) and
IsPGroup(F) is true, then

Prime
defaults to PrimePGroup(F), if not supplied and HasPrimePGroup(F) = true; and

ClassBound
defaults to PClassPGroup(F) if HasPClassPGroup(F) = true if not supplied, or to the usual
default of 63, otherwise.

2. If a pc presentation has been computed and none of options is RedoPcp or if no pc presentation has yet
been computed but 1. does not apply then PqPCover(i : options); is equivalent to:

Pq(i : options);
PqPCover(i);

3. If the RedoPcp option is supplied the current pc presentation is scrapped, and PqPCover proceeds as in
1. or 2. but without the RedoPcp option.

Section 3. Interactive Versions of Non-interactive ANUPQ Functions 33

4I PqStandardPresentation([i]: options) F
I StandardPresentation([i]: options) M

return, for the ith or default interactive ANUPQ process, the p-quotient of the group F of the process,
specified by options, as an fp group which has a standard presentation. Here options is a selection of
the options from the following list (see Chapter 6 for detailed descriptions); this list is the same as for
the non-interactive version of PqStandardPresentation except for the omission of options SetupFile and
PqWorkspace (see 4.2.1).

Prime := p

pQuotient := Q

ClassBound := n

Exponent := n

Metabelian

GroupName := name

OutputLevel := n

StandardPresentationFile := filename

Unless F is a pc p-group, or the option Prime has been passed to a previous interactive function for
the process to compute a p-quotient for F , the user must supply either the option Prime or the option
pQuotient (if both Prime and pQuotient are supplied, the prime p is determined by applying PrimePGroup
(see 37.15.15 in the Reference Manual) to the value of pQuotient).

Taking one of the examples for the non-interactive version of StandardPresentation (see 4.2.1) that re-
quired two separate calls to the pq program, we now show how it can be done by setting up a dialogue with
just the one pq process, using the interactive version of StandardPresentation:

gap> F4 := FreeGroup("a", "b", "c", "d");;
gap> a := F4.1;; b := F4.2;; c := F4.3;; d := F4.4;;
gap> G4 := F4 / [b^4, b^2 / Comm(Comm (b, a), a), d^16,
> a^16 / (c * d), b^8 / (d * c^4)];
<fp group on the generators [a, b, c, d]>
gap> SetInfoLevel(InfoANUPQ, 1); #Only essential Info please
gap> PqStart(G4); #Start a new interactive process for a new group
2
gap> K := Pq(2 : Prime := 2, ClassBound := 1); #‘pq’ process no. is 2
<pc group of size 4 with 2 generators>
gap> StandardPresentation(2 : pQuotient := K, ClassBound := 14);
<fp group with 53 generators>

Notes

In contrast to the function Pq (see 4.1.1) which returns a pc group, PqStandardPresentation or Standard-
Presentation returns an fp group. This is because the output is mainly used for isomorphism testing for
which an fp group is enough. However, the presentation is a polycyclic presentation and if you need to do
any further computation with this group (e.g. to find the order) you can use the function PcGroupFpGroup
(see 44.4.1 in the GAP Reference Manual) to form a pc group.

If the user does not supply a p-quotient Q via the pQuotient option, and the prime p is either supplied,
stored, or F is a pc p-group, then a p-quotient Q is computed. (The value of the prime p is stored if passed
initially to PqStart or to a subsequent interactive process.) Note that a stored value for pQuotient (from a
prior call to Pq) does not have precedence over a value for the prime p. If the user does supply a p-quotient
Q via the pQuotient option, the package AutPGrp is called to compute the automorphism group of Q ; an

34 Chapter 5. Interactive ANUPQ functions

error will occur that asks the user to install the package AutPGrp if the automorphism group cannot be
computed.

If any of the interactive functions PqStandardPresentation, StandardPresentation, EpimorphismPqS-
tandardPresentation or EpimorphismStandardPresentation has been called previously for an interactive
process, a subsequent call to any of these functions for the same process returns the previously computed
value. Note that all these functions compute both an epimorphism and an fp group and store the results in
the SPepi and SP fields of the data record associated with the process. See the example for the interactive
EpimorphismStandardPresentation (5.3.5).

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for the group re-
turned by PqStandardPresentation or StandardPresentation (see Section 3.5).

5I EpimorphismPqStandardPresentation([i]: options) F
I EpimorphismStandardPresentation([i]: options) M

Each of the above functions accepts the same arguments and options as the interactive form of Standard-
Presentation (see 5.3.4) and returns an epimorphism from the fp or pc group F of the ith or default
interactive ANUPQ process onto the finitely presented group given by a standard presentation, i.e. if S is
the standard presentation computed for the p-quotient of F by StandardPresentation then Epimorphism-
StandardPresentation returns the epimorphism from F to the group with presentation S . The group F
must have been given (as first argument) to PqStart to start the interactive ANUPQ process (see 5.1.1).

Taking our earlier non-interactive example (see 4.2.2) and modifying it a little, we illustrate, as for the
interactive StandardPresentation (see 5.3.4), how something that required two separate calls to the pq
program can now be achieved with a dialogue with just one pq process. Also, observe that calls to one of the
standard presentation functions (as mentioned in the notes of 5.3.4) computes and stores both an fp group
with a standard presentation and an epimorphism; subsequent calls to a standard presentation function for
the same process simply return the appropriate stored value.

gap> F := FreeGroup(6, "F");;
gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;;
gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b,
> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3];
[F1^3*F4^-1, F2^3*F4^-1*F5^2*F6^2, F4^3*F6^-1, F2^-1*F1^-1*F2*F1*F3^-1,
F3^-1*F1^-1*F3*F1, F3^-1*F2^-1*F3*F2*F5^-1, F3^3]

gap> Q := F / R;
<fp group on the generators [F1, F2, F3, F4, F5, F6]>
gap> PqStart(Q);
3
gap> G := Pq(3 : Prime := 3, ClassBound := 3);
<pc group of size 729 with 6 generators>
gap> lev := InfoLevel(InfoANUPQ);; # Save current InfoANUPQ level
gap> SetInfoLevel(InfoANUPQ, 2); # To see computation times
gap> # It is not necessary to pass the ‘Prime’ option to
gap> # ‘EpimorphismStandardPresentation’ since it was previously
gap> # passed to ‘Pq’:
gap> phi := EpimorphismStandardPresentation(3 : ClassBound := 3);
#I Class 1 3-quotient and its 3-covering group computed in 0.00 seconds
#I Order of GL subgroup is 48
#I No. of soluble autos is 0
#I dim U = 1 dim N = 3 dim M = 3
#I nice stabilizer with perm rep
#I Computing standard presentation for class 2 took 0.00 seconds
#I Computing standard presentation for class 3 took 0.01 seconds

Section 3. Interactive Versions of Non-interactive ANUPQ Functions 35

[F1, F2, F3, F4, F5, F6] -> [f1*f2^2*f3*f4^2*f5^2, f1*f2*f3*f5, f3^2,
f4*f6^2, f5, f6]

gap> # Image of phi should be isomorphic to G ...
gap> # let’s check the order is correct:
gap> Size(Image(phi));
729
gap> # ‘StandardPresentation’ and ‘EpimorphismStandardPresentation’
gap> # behave like attributes, so no computation is done when
gap> # either is called again for the same process ...
gap> StandardPresentation(3 : ClassBound := 3);
<fp group of size 729 on the generators [f1, f2, f3, f4, f5, f6]>
gap> # No timing data was Info-ed since no computation was done
gap> SetInfoLevel(InfoANUPQ, lev); # Restore previous InfoANUPQ level

A very similar (essential details are the same) example to the above may be executed live, by typing:
PqExample("EpimorphismStandardPresentation-i");.
Note: The notes for PqStandardPresentation or StandardPresentation (see 5.3.4) apply also to Epi-
morphismPqStandardPresentation or EpimorphismStandardPresentation except that their return value
is an epimorphism onto an fp group, i.e. one should interpret the phrase “returns an fp group” as “returns
an epimorphism onto an fp group” etc.

6I PqDescendants(i : options) F
I PqDescendants(: options) F

return for the pc group G of the ith or default interactive ANUPQ process, which must be of prime power
order with a confluent pc presentation (see 44.4.7 in the GAP Reference Manual), a list of descendants
(pc groups) of G . The group G is usually given as first argument to PqStart when starting the interactive
ANUPQ process (see 5.1.1). Alternatively, one may initiate the process with an fp group, use Pq interactively
(see 5.3.1) to create a pc group and use PqSetPQuotientToGroup (see 5.3.7), which involves no computation,
to set the pc group returned by Pq as the group of the process. Note that repeating a call to PqDescendants
for the same interactive ANUPQ process simply returns the list of descendants originally calculated; a warning
is emitted at InfoANUPQ level 1 reminding you of this should you do this.
Following the colon options a selection of the options listed for the non-interactive PqDescendants function
(see 4.4.1) should be given, separated by commas like record components (see Section 4.10.2 in the GAP
Reference Manual), except that the options SetupFile or PqWorkspace are ignored by the interactive
PqDescendants, i.e. the following options are recognised by the interactive PqDescendants function:

ClassBound := n
Relators := rels
OrderBound := n
StepSize := n, StepSize := list
RankInitialSegmentSubgroups := n
SpaceEfficient

CapableDescendants

AllDescendants := false

Exponent := n
Metabelian

GroupName := name
SubList := sub
BasicAlgorithm

CustomiseOutput := rec

36 Chapter 5. Interactive ANUPQ functions

Notes: The function PqDescendants uses the automorphism group of G which it computes via the package
AutPGrp if the automorphism group of G is not already present. If AutPGrp is not installed an error may be
raised. If the automorphism group of G is insoluble the pq program will call GAP together with the AutPGrp
package for certain orbit-stabilizer calculations.

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for each group of
the list returned by PqDescendants (see Section 3.5).

Let us now repeat the examples previously given for the non-interactive PqDescendants, but this time with
the interactive version of PqDescendants:

gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := PcGroupFpGroup(F / [a^2, b^2, Comm(b, a)]);
<pc group of size 4 with 2 generators>
gap> PqStart(G); #This will now be the 4th interactive process running
4
gap> des := PqDescendants(4 : OrderBound := 6, ClassBound := 5);;
gap> Length(des);
83
gap> List(des, Size);
[8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,
32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64]

gap> List(des, d -> Length(PCentralSeries(d, 2)) - 1);
[2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 4,
4, 4,
4, 4, 4, 5, 5, 5, 5, 5]

In the second example we compute all capable descendants of order 27 of the elementary abelian group of
order 9.

gap> F := FreeGroup(2, "g");;
gap> G := PcGroupFpGroup(F / [F.1^3, F.2^3, Comm(F.1, F.2)]);
<pc group of size 9 with 2 generators>
gap> PqStart(G); #This will now be the 5th interactive process running
5
gap> des := PqDescendants(5 : OrderBound := 3, ClassBound := 2,
> CapableDescendants);
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

gap> List(des, d -> Length(PCentralSeries(d, 3)) - 1);
[2, 2]
gap> # For comparison let us now compute all descendants
gap> # (using the non-interactive Pq function)
gap> PqDescendants(G : OrderBound := 3, ClassBound := 2);
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

In the third example, we compute all capable descendants of the elementary abelian group of order 52 which
have exponent-5 class at most 3, exponent 5, and are metabelian.

Section 3. Interactive Versions of Non-interactive ANUPQ Functions 37

gap> F := FreeGroup(2, "g");;
gap> G := PcGroupFpGroup(F / [F.1^5, F.2^5, Comm(F.2, F.1)]);
<pc group of size 25 with 2 generators>
gap> PqStart(G); #This will now be the 6th interactive process running
6
gap> des := PqDescendants(6 : Metabelian, ClassBound := 3,
> Exponent := 5, CapableDescendants);
[<pc group of size 125 with 3 generators>,
<pc group of size 625 with 4 generators>,
<pc group of size 3125 with 5 generators>]

gap> List(des, d -> Length(PCentralSeries(d, 5)) - 1);
[2, 3, 3]
gap> List(des, d -> Length(DerivedSeries(d)));
[3, 3, 3]
gap> List(des, d -> Maximum(List(Elements(d), Order)));
[5, 5, 5]

7I PqSetPQuotientToGroup(i) F
I PqSetPQuotientToGroup() F

for the ith or default interactive ANUPQ process, set the p-quotient previously computed by the interactive
Pq function (see 5.3.1) to be the group of the process. This function is supplied to enable the computation
of descendants of a p-quotient that is already known to the pq program, via the interactive PqDescendants
function (see 5.3.6), thus avoiding the need to re-submit it and have the pq program recompute it.

Note: See the function PqPGSetDescendantToPcp (5.4.48) for a mechanism to make (the p-cover of) a
particular descendants the current group of the process.

The following example of the usage of PqSetPQuotientToGroup, which is essentially equivalent to what is
obtained by running PqExample("PqDescendants-1-i");, redoes the first example of 5.3.6 (which computes
the descendants of the Klein four group).

gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> procId := PqStart(F : Prime := 2);
7
gap> Pq(procId : ClassBound := 1);
<pc group of size 4 with 2 generators>
gap> PqSetPQuotientToGroup(procId);
gap> des := PqDescendants(procId : OrderBound := 6, ClassBound := 5);;
gap> Length(des);
83
gap> List(des, Size);
[8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32,
32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64]

gap> List(des, d -> Length(PCentralSeries(d, 2)) - 1);
[2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 4,
4, 4,
4, 4, 4, 5, 5, 5, 5, 5]

38 Chapter 5. Interactive ANUPQ functions

5.4 Low-level Interactive ANUPQ Functions based on menu items of the pq program

The pq program has 5 menus, the details of which the reader will not normally need to know, but if she
wishes to know the details they may be found in the standalone manual: guide.dvi. Both guide.dvi and
the pq program refer to the items of these 5 menus as “options”, which do not correspond in any way to
the options used by any of the GAP functions that interface with the pq program.

Warning: The commands provided in this section are intended to provide something like the interactive
functionality one has when running the standalone, from within GAP. The pq standalone (in particular, its
“advanced” menus) assumes some expertise of the user; doing the “wrong” thing can cause the program to
crash. While a number of safeguards have been provided in the GAP interface to the pq program, these are
not foolproof, and the user should exercise care and ensure pre-requisites of the various commands are met.

General commands

The following commands either use a menu item from whatever menu is “current” for the pq program, or
have general application and are not associated with just one menu item of the pq program.

1I PqNrPcGenerators(i) F
I PqNrPcGenerators() F

for the ith or default interactive ANUPQ process, return the number of pc generators of the lower exponent
p-class quotient of the group currently determined by the process. This also applies if the pc presentation
is not consistent.

2I PqFactoredOrder(i) F
I PqFactoredOrder() F

for the ith or default interactive ANUPQ process, return an integer pair [p, n] where p is a prime and n
is the number of pc generators (see 5.4.1) in the pc presentation of the quotient group currently determined
by the process. If this presentation is consistent, then pn is the order of the quotient group. Otherwise (if
tails have been added but the necessary consistency checks, relation collections, exponent law checks and
redundant generator eliminations have not yet been done), pn is an upper bound for the order of the group.

3I PqOrder(i) F
I PqOrder() F

for the ith or default interactive ANUPQ process, return pn where [p, n] is the pair as returned by
PqFactoredOrder (see 5.4.2).

4I PqPClass(i) F
I PqPClass() F

for the ith or default interactive ANUPQ process, return the lower exponent p-class of the quotient group
currently determined by the process.

5I PqWeight(i, j) F
I PqWeight(j) F

for the ith or default interactive ANUPQ process, return the weight of the j th pc generator of the lower
exponent p-class quotient of the group currently determined by the process, or fail if there is no such
numbered pc generator.

6I PqCurrentGroup(i) F
I PqCurrentGroup() F

for the ith or default interactive ANUPQ process, return the group whose pc presentation is determined by
the process as a GAP pc group (either a lower exponent p-class quotient of the start group or the p-cover of
such a quotient).

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 39

Notes: See Section 3.5 for the attributes and property NuclearRank, MultiplicatorRank and IsCapable
which may be applied to the group returned by PqCurrentGroup.

7I PqDisplayPcPresentation(i [: OutputLevel := lev]) F
I PqDisplayPcPresentation([: OutputLevel := lev]) F

for the ith or default interactive ANUPQ process, direct the pq program to display the pc presentation of
the lower exponent p-class quotient of the group currently determined by the process.

Except if the last command communicating with the pq program was a p-group generation command (for
which there is only a verbose output level), to set the amount of information this command displays you may
wish to call PqSetOutputLevel first (see 5.4.8), or equivalently pass the option OutputLevel (see 6.1.9).

Note: For those familiar with the pq program, PqDisplayPcPresentation performs menu item 4 of the
current menu of the pq program.

8I PqSetOutputLevel(i, lev) F
I PqSetOutputLevel(lev) F

for the ith or default interactive ANUPQ process, direct the pq program to set the output level of the pq
program to lev .

Note: For those familiar with the pq program, PqSetOutputLevel performs menu item 5 of the main (or
advanced) p-Quotient menu, or the Standard Presentation menu.

9I PqEvaluateIdentities(i [: Identities := funcs]) F
I PqEvaluateIdentities([: Identities := funcs]) F

for the ith or default interactive ANUPQ process, invoke the evaluation of identities defined by the Iden-
tities option, and eliminate any redundant pc generators formed. Since a previous value of Identities is
saved in the data record of the process, it is unnecessary to pass the Identities if set previously.

Note: This function is mainly implemented at the GAP level. It does not correspond to a menu item of the
pq program.

Commands from the Main p-Quotient menu

10I PqPcPresentation(i : options) F
I PqPcPresentation(: options) F

for the ith or default interactive ANUPQ process, direct the pq program to compute the pc presentation of
the quotient (determined by options) of the group of the process, which for process i is stored as ANUPQ-
Data.io[i].group.

The possible options are the same as for the interactive Pq (see 5.3.1) function, except for RedoPcp (which, in
any case, would be superfluous), namely: Prime, ClassBound, Exponent, Relators, GroupName, Metabelian,
Identities and OutputLevel (see Chapter 6 for a detailed description for these options). The option Prime
is required unless already provided to PqStart.

Notes

The pc presentation is held by the pq program. In contrast to Pq (see 5.3.1), no GAP pc group is returned;
see PqCurrentGroup (5.4.6) if you need the corresponding GAP pc group.

PqPcPresentation(i: options); is roughly equivalent to the following sequence of low-level commands:

PqPcPresentation(i: opts); #class 1 call
for c in [2 .. class] do

PqNextClass(i);
od;

where opts is options except with the ClassBound option set to 1, and class is either the maximum class
of a p-quotient of the group of the process or the user-supplied value of the option ClassBound (whichever

40 Chapter 5. Interactive ANUPQ functions

is smaller). If the Identities option has been set, both the first PqPcPresentation class 1 call and the
PqNextClass calls invoke PqEvaluateIdentities(i); as their final step.

For those familiar with the pq program, PqPcPresentation performs menu item 1 of the main p-Quotient
menu.

11I PqSavePcPresentation(i, filename) F
I PqSavePcPresentation(filename) F

for the ith or default interactive ANUPQ process, direct the pq program to save the pc presentation previously
computed for the quotient of the group of that process to the file with name filename. If the first character
of the string filename is not /, filename is assumed to be the path of a writable file relative to the directory
in which GAP was started. A saved file may be restored by PqRestorePcPresentation (see 5.4.12).

Note: For those familiar with the pq program, PqSavePcPresentation performs menu item 2 of the main
p-Quotient menu.

12I PqRestorePcPresentation(i, filename) F
I PqRestorePcPresentation(filename) F

for the ith or default interactive ANUPQ process, direct the pq program to restore the pc presentation
previously saved to filename, by PqSavePcPresentation (see 5.4.11). If the first character of the string
filename is not /, filename is assumed to be the path of a readable file relative to the directory in which
GAP was started.

Note: For those familiar with the pq program, PqRestorePcPresentation performs menu item 3 of the
main p-Quotient menu.

13I PqNextClass(i [: QueueFactor]) F
I PqNextClass([: QueueFactor]) F

for the ith or default interactive ANUPQ process, direct the pq to calculate the next class of ANUPQ-
Data.io[i].group.

PqNextClass accepts the option QueueFactor (see also 6.1.27) which should be a positive integer if auto-
morphisms have been previously supplied. If the pq program requires a queue factor and none is supplied
via the option QueueFactor a default of 15 is taken.

Notes

The single command: PqNextClass(i); is equivalent to executing

PqComputePCover(i);
PqCollectDefiningRelations(i);
PqDoExponentChecks(i);
PqEliminateRedundantGenerators(i);

If the Identities option is set the PqEliminateRedundantGenerators(i); step is essentially replaced by
PqEvaluateIdentities(i); (which invokes its own elimination of redundant generators).

For those familiar with the pq program, PqNextClass performs menu item 6 of the main p-Quotient menu.

14I PqComputePCover(i) F
I PqComputePCover() F

for the ith or default interactive ANUPQ process, direct the pq to compute the p-covering group of ANUPQ-
Data.io[i].group. In contrast to the function PqPCover (see 4.1.3), this function does not return a GAP
pc group.

Notes

The single command: PqComputePCover(i); is equivalent to executing

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 41

PqSetupTablesForNextClass(i);
PqTails(i, 0);
PqDoConsistencyChecks(i, 0, 0);
PqEliminateRedundantGenerators(i);

For those familiar with the pq program, PqComputePCover performs menu item 7 of the main p-Quotient
menu.

Commands from the Advanced p-Quotient menu

15I PqCollect(i, word) F
I PqCollect(word) F

for the ith or default interactive ANUPQ process, instruct the pq program to do a collection on word , a
word in the current pc generators (the form of word required is described below). PqCollect returns the
resulting word of the collection as a list of generator number, exponent pairs (the same form as the second
allowed input form of word ; see below).

The argument word may be input in either of the following ways:

1. word may be a string, where the ith pc generator is represented by xi , e.g. "x3*x2^2*x1". This way
is quite versatile as parentheses and left-normed commutators – using square brackets, in the same
way as PqGAPRelators (see 7.4.2) – are permitted; word is checked for correct syntax via PqParseWord
(see 3.4.3).

2. Otherwise, word must be a list of generator number, exponent pairs of integers, i.e. each pair represents
a “syllable” so that [[3, 1], [2, 2], [1, 1]] represents the same word as that of the example
given for the first allowed form of word .

Note: For those familiar with the pq program, PqCollect performs menu item 1 of the Advanced p-Quotient
menu.

16I PqSolveEquation(i, a, b) F
I PqSolveEquation(a, b) F

for the ith or default interactive ANUPQ process, direct the pq program to solve a ∗x = b for x , where a and
b are words in the pc generators. For the representation of these words see the description of the function
PqCollect (5.4.15).

Note: For those familiar with the pq program, PqSolveEquation performs menu item 2 of the Advanced
p-Quotient menu.

17I PqCommutator(i, words, pow) F
I PqCommutator(words, pow) F

for the ith or default interactive ANUPQ process, instruct the pq program to compute the left normed
commutator of the list words of words in the current pc generators raised to the integer power pow , and
return the resulting word as a list of generator number, exponent pairs. The form required for each word of
words is the same as that required for the word argument of PqCollect (see 5.4.15). The form of the output
word is also the same as for PqCollect.

Note: For those familiar with the pq program, PqCommutator performs menu item 3 of the Advanced
p-Quotient menu.

18I PqSetupTablesForNextClass(i) F
I PqSetupTablesForNextClass() F

for the ith or default interactive ANUPQ process, direct the pq program to set up tables for the next class. As
as side-effect, after PqSetupTablesForNextClass(i) the value returned by PqPClass(i) will be one more
than it was previously.

42 Chapter 5. Interactive ANUPQ functions

Note: For those familiar with the pq program, PqSetupTablesForNextClass performs menu item 6 of the
Advanced p-Quotient menu.

19I PqTails(i, weight) F
I PqTails(weight) F

for the ith or default interactive ANUPQ process, direct the pq program to compute and add tails of weight
weight if weight is in the integer range [2 .. PqPClass(i)] (assuming i is the number of the process, even
in the default case) or for all weights if weight = 0.

If weight is non-zero, then tails that introduce new generators for only weight weight are computed and
added, and in this case and if weight < PqPClass(i), it is assumed that the tails that introduce new
generators for each weight from PqPClass(i) down to weight weight + 1 have already been added. You
may wish to call PqSetMetabelian (see 5.4.30) prior to calling PqTails.

Notes

For its use in the context of finding the next class see 5.4.13; in particular, a call to PqSetupTables-
ForNextClass (see 5.4.18) needs to have been made prior to calling PqTails.

The single command: PqTails(i, weight); is equivalent to

PqComputeTails(i, weight);
PqAddTails(i, weight);

For those familiar with the pq program, PqTails uses menu item 7 of the Advanced p-Quotient menu.

20I PqComputeTails(i, weight) F
I PqComputeTails(weight) F

for the ith or default interactive ANUPQ process, direct the pq program to compute tails of weight weight
if weight is in the integer range [2 .. PqPClass(i)] (assuming i is the number of the process, even in the
default case) or for all weights if weight = 0. See PqTails (5.4.19) for more details.

Note: For those familiar with the pq program, PqComputeTails uses menu item 7 of the Advanced p-
Quotient menu.

21I PqAddTails(i, weight) F
I PqAddTails(weight) F

for the ith or default interactive ANUPQ process, direct the pq program to add the tails of weight weight ,
previously computed by PqComputeTails (see 5.4.20), if weight is in the integer range [2 .. PqPClass(i)]
(assuming i is the number of the process, even in the default case) or for all weights if weight = 0. See
PqTails (5.4.19) for more details.

Note: For those familiar with the pq program, PqAddTails uses menu item 7 of the Advanced p-Quotient
menu.

22I PqDoConsistencyChecks(i, weight, type) F
I PqDoConsistencyChecks(weight, type) F

for the ith or default interactive ANUPQ process, do consistency checks for weight weight if weight is in the
integer range [3 .. PqPClass(i)] (assuming i is the number of the process) or for all weights if weight =
0, and for type type if type is in the range [1, 2, 3] (see below) or for all types if type = 0. (For its use
in the context of finding the next class see 5.4.13.)

The type of a consistency check is defined as follows. PqDoConsistencyChecks(i, weight, type) for weight
in [3 .. PqPClass(i)] and the given value of type invokes the equivalent of the following PqDoConsisten-
cyCheck calls (see 5.4.31):

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 43

type = 1:
PqDoConsistencyCheck(i, a, a, a) checks 2 * PqWeight(i, a) + 1 = weight , for pc genera-
tors of index a.

type = 2:
PqDoConsistencyCheck(i, b, b, a) checks for pc generators of indices b, a satisfying b > a and
PqWeight(i, b) + PqWeight(i, a) + 1 = weight .

type = 3:
PqDoConsistencyCheck(i, c, b, a) checks for pc generators of indices c, b, a satisfying c > b >
a and the sum of the weights of these generators equals weight .

Notes

PqWeight(i, j) returns the weight of the j th pc generator, for process i (see 5.4.5).

It is assumed that tails for the given weight (or weights) have already been added (see 5.4.19).

For those familiar with the pq program, PqDoConsistencyChecks performs menu item 8 of the Advanced
p-Quotient menu.

23I PqCollectDefiningRelations(i) F
I PqCollectDefiningRelations() F

for the ith or default interactive ANUPQ process, direct the pq program to collect the images of the defining
relations of the original fp group of the process, with respect to the current pc presentation, in the context of
finding the next class (see 5.4.13). If the tails operation is not complete then the relations may be evaluated
incorrectly.

Note: For those familiar with the pq program, PqCollectDefiningRelations performs menu item 9 of the
Advanced p-Quotient menu.

24I PqCollectWordInDefiningGenerators(i, word) F
I PqCollectWordInDefiningGenerators(word) F

for the ith or default interactive ANUPQ process, take a user-defined word word in the defining generators
of the original presentation of the fp or pc group of the process. Each generator is mapped into the current
pc presentation, and the resulting word is collected with respect to the current pc presentation. The result
of the collection is returned as a list of generator number, exponent pairs.

The word argument may be input in either of the two ways described for PqCollect (see 5.4.15).

Note: For those familiar with the pq program, PqCollectDefiningGenerators performs menu item 23 of
the Advanced p-Quotient menu.

25I PqCommutatorDefiningGenerators(i, words, pow) F
I PqCommutatorDefiningGenerators(words, pow) F

for the ith or default interactive ANUPQ process, take a list words of user-defined words in the defining
generators of the original presentation of the fp or pc group of the process, and an integer power pow .
Each generator is mapped into the current pc presentation. The list words is interpreted as a left-normed
commutator which is then raised to pow and collected with respect to the current pc presentation. The
result of the collection is returned as a list of generator number, exponent pairs.

44 Chapter 5. Interactive ANUPQ functions

Note For those familiar with the pq program, PqCommutatorDefiningGenerators performs menu item 24
of the Advanced p-Quotient menu.

26I PqDoExponentChecks(i [: Bounds := list]) F
I PqDoExponentChecks([: Bounds := list]) F

for the ith or default interactive ANUPQ process, direct the pq program to do exponent checks for weights
(inclusively) between the bounds of Bounds or for all weights if Bounds is not given. The value list of
Bounds (assuming the interactive process is numbered i) should be a list of two integers low , high satisfying
1 ≤ low ≤ high ≤ PqPClass(i) (see 5.4.4). If no exponent law has been specified, no exponent checks are
performed.

Note: For those familiar with the pq program, PqDoExponentChecks performs menu item 10 of the Advanced
p-Quotient menu.

27I PqEliminateRedundantGenerators(i) F
I PqEliminateRedundantGenerators() F

for the ith or default interactive ANUPQ process, direct the pq program to eliminate redundant generators
of the current p-quotient.

Note: For those familiar with the pq program, PqEliminateRedundantGenerators performs menu item 11
of the Advanced p-Quotient menu.

28I PqRevertToPreviousClass(i) F
I PqRevertToPreviousClass() F

for the ith or default interactive ANUPQ process, direct the pq program to abandon the current class and
revert to the previous class.

Note: For those familiar with the pq program, PqRevertToPreviousClass performs menu item 12 of the
Advanced p-Quotient menu.

29I PqSetMaximalOccurrences(i, noccur) F
I PqSetMaximalOccurrences(noccur) F

for the ith or default interactive ANUPQ process, direct the pq program to set maximal occurrences of the
weight 1 generators in the definitions of pcp generators of the group of the process. This can be used to
avoid the definition of generators of which one knows for theoretical reasons that they would be eliminated
later on.

The argument noccur must be a list of non-negative integers of length the number of weight 1 generators
(i.e. the rank of the class 1 p-quotient of the group of the process). An entry of 0 for a particular generator
indicates that there is no limit on the number of occurrences for the generator.

Note: For those familiar with the pq program, PqSetMaximalOccurrences performs menu item 13 of the
Advanced p-Quotient menu.

30I PqSetMetabelian(i) F
I PqSetMetabelian() F

for the ith or default interactive ANUPQ process, direct the pq program to enforce metabelian-ness.

Note: For those familiar with the pq program, PqSetMetabelian performs menu item 14 of the Advanced
p-Quotient menu.

31I PqDoConsistencyCheck(i, c, b, a) F
I PqDoConsistencyCheck(c, b, a) F
I PqJacobi(i, c, b, a) F
I PqJacobi(c, b, a) F

for the ith or default interactive ANUPQ process, direct the pq program to do the consistency check for the
pc generators with indices c, b, a which should be non-increasing positive integers, i.e. c ≥ b ≥ a.

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 45

There are 3 types of consistency checks:

(an)a = a(an) (Type 1)
(bn)a = b(n−1)(ba), b(an) = (ba)a(n−1) (Type 2)
c(ba) = (cb)a (Type 3)

The reason some people talk about Jacobi relations instead of consistency checks becomes clear when one
looks at the consistency check of type 3:

c(ba) = ac[c, a]b[b, a] = acb[c, a][c, a, b][b, a] = . . .
(cb)a = bc[c, b]a = ab[b, a]c[c, a][c, b][c, b, a] = abc[b, a][b, a, c][c, a][c, b][c, b, a] = . . .

Each collection would normally carry on further. But one can see already that no other commutators of
weight 3 will occur. After all terms of weight one and weight two have been moved to the left we end up
with:

abc[b, a][c, a][c, b][c, a, b] . . .
= abc[b, a][c, a][c, b][c, b, a][b, a, c] . . .

Modulo terms of weight 4 this is equivalent to

[c, a, b][b, c, a][a, b, c] = 1

which is the Jacobi identity.

See also PqDoConsistencyChecks (5.4.22).

Note: For those familiar with the pq program, PqDoConsistencyCheck and PqJacobi perform menu item
15 of the Advanced p-Quotient menu.

32I PqCompact(i) F
I PqCompact() F

for the ith or default interactive ANUPQ process, direct the pq program to do a compaction of its work
space. This function is safe to perform only at certain points in time.

Note: For those familiar with the pq program, PqCompact performs menu item 16 of the Advanced p-
Quotient menu.

33I PqEchelonise(i) F
I PqEchelonise() F

for the ith or default interactive ANUPQ process, direct the pq program to echelonise the word most recently
collected by PqCollect or PqCommutator against the relations of the current pc presentation, and return the
number of the generator made redundant or fail if no generator was made redundant. A call to PqCollect
(see 5.4.15) or PqCommutator (see 5.4.17) needs to be performed prior to using this command.

Note: For those familiar with the pq program, PqEchelonise performs menu item 17 of the Advanced
p-Quotient menu.

34I PqSupplyAutomorphisms(i, mlist) F
I PqSupplyAutomorphisms(mlist) F

for the ith or default interactive ANUPQ process, supply the automorphism data provided by the list mlist
of matrices with non-negative integer coefficients. Each matrix in mlist describes one automorphism in the
following way.

– The rows of each matrix correspond to the pc generators of weight one.

– Each row is the exponent vector of the image of the corresponding weight one generator under the
respective automorphism.

46 Chapter 5. Interactive ANUPQ functions

Note: For those familiar with the pq program, PqSupplyAutomorphisms uses menu item 18 of the Advanced
p-Quotient menu.

35I PqExtendAutomorphisms(i) F
I PqExtendAutomorphisms() F

for the ith or default interactive ANUPQ process, direct the pq program to extend automorphisms of the
p-quotient of the previous class to the p-quotient of the present class.

Note: For those familiar with the pq program, PqExtendAutomorphisms uses menu item 18 of the Advanced
p-Quotient menu.

36I PqApplyAutomorphisms(i, qfac) F
I PqApplyAutomorphisms(qfac) F

for the ith or default interactive ANUPQ process, direct the pq program to apply automorphisms; qfac is
the queue factor e.g. 15.

Note: For those familiar with the pq program, PqCloseRelations performs menu item 19 of the Advanced
p-Quotient menu.

37I PqDisplayStructure(i [: Bounds := list]) F
I PqDisplayStructure([: Bounds := list]) F

for the ith or default interactive ANUPQ process, direct the pq program to display the structure for the pcp
generators numbered (inclusively) between the bounds of Bounds or for all generators if Bounds is not given.
The value list of Bounds (assuming the interactive process is numbered i) should be a list of two integers
low , high satisfying 1 ≤ low ≤ high ≤ PqNrPcGenerators(i) (see 5.4.1). PqDisplayStructure also accepts
the option OutputLevel (see 6.1.9).

Explanation of output

New generators are defined as commutators of previous generators and generators of class 1 or as p-th powers
of generators that have themselves been defined as p-th powers. A generator is never defined as p-th power
of a commutator.

Therefore, there are two cases: all the numbers on the righthand side are either the same or they differ.
Below, gi refers to the ith defining generator.

• If the righthand side numbers are all the same, then the generator is a p-th power (of a p-th power of
a p-th power, etc.). The number of repeated digits say how often a p-th power has to be taken.

In the following example, the generator number 31 is the eleventh power of generator 17 which in turn
is an eleventh power and so on:

#I 31 is defined on 17^11 = 1 1 1 1 1

So generator 31 is obtained by taking the eleventh power of generator 1 five times.

• If the numbers are not all the same, the generator is defined by a commutator. If the first two generator
numbers differ, the generator is defined as a left-normed commutator of the weight one generators, e.g.

#I 19 is defined on [11, 1] = 2 1 1 1 1

Here, generator 19 is defined as the commutator of generator 11 and generator 1 which is the same as
the left-normed commutator [x2, x1, x1, x1, x1]. One can check this by tracing back the definition of
generator 11 until one gets to a generator of class 1.

• If the first two generator numbers are identical, then the left most component of the left-normed
commutator is a p-th power, e.g.

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 47

#I 25 is defined on [14, 1] = 1 1 2 1 1

In this example, generator 25 is defined as commutator of generator 14 and generator 1. The left-normed
commutator is

[(x111)11, x2, x1, x1]

Again, this can be verified by tracing back the definitions.

Note: For those familiar with the pq program, PqDisplayStructure performs menu item 20 of the Advanced
p-Quotient menu.

38I PqDisplayAutomorphisms(i [: Bounds := list]) F
I PqDisplayAutomorphisms([: Bounds := list]) F

for the ith or default interactive ANUPQ process, direct the pq program to display the automorphism actions
on the pcp generators numbered (inclusively) between the bounds of Bounds or for all generators if Bounds
is not given. The value list of Bounds (assuming the interactive process is numbered i) should be a list of
two integers low , high satisfying 1 ≤ low ≤ high ≤ PqNrPcGenerators(i) (see 5.4.1). PqDisplayStructure
also accepts the option OutputLevel (see 6.1.9).

Note: For those familiar with the pq program, PqDisplayAutomorphisms performs menu item 21 of the
Advanced p-Quotient menu.

39I PqWritePcPresentation(i, filename) F
I PqWritePcPresentation(filename) F

for the ith or default interactive ANUPQ process, direct the pq program to write a pc presentation of a
previously-computed quotient of the group of that process, to the file with name filename. Here the group
of a process is the one given as first argument when PqStart was called to initiate that process (for process
i the group is stored as ANUPQData.io[i].group). If the first character of the string filename is not /,
filename is assumed to be the path of a writable file relative to the directory in which GAP was started. If a
pc presentation has not been previously computed by the pq program, then pq is called to compute it first,
effectively invoking PqPcPresentation (see 5.4.10).

Note: For those familiar with the pq program, PqPcWritePresentation performs menu item 25 of the
Advanced p-Quotient menu.

Commands from the Standard Presentation menu

40I PqSPComputePcpAndPCover(i : options) F
I PqSPComputePcpAndPCover(: options) F

for the ith or default interactive ANUPQ process, directs the pq program to compute for the group of that
process a pc presentation up to the p-quotient of maximum class or the value of the option ClassBound
and the p-cover of that quotient, and sets up tabular information required for computation of a standard
presentation. Here the group of a process is the one given as first argument when PqStart was called to
initiate that process (for process i the group is stored as ANUPQData.io[i].group).

The possible options are Prime, ClassBound, Relators, Exponent, Metabelian and OutputLevel (see
Chapter 6 for detailed descriptions of these options). The option Prime is normally determined via PrimeP-
Group, and so is not required unless the group doesn’t know it’s a p-group and HasPrimePGroup returns
false.

Note: For those familiar with the pq program, PqSPComputePcpAndPCover performs option 1 of the Standard
Presentation menu.

41I PqSPStandardPresentation(i[, mlist][: options]) F
I PqSPStandardPresentation([mlist][: options]) F

for the ith or default interactive ANUPQ process, inputs data given by options to compute a standard
presentation for the group of that process. If argument mlist is given it is assumed to be the automorphism

48 Chapter 5. Interactive ANUPQ functions

group data required. Otherwise it is assumed that a call to either Pq (see 5.3.1) or PqEpimorphism (see 5.3.2)
has generated a p-quotient and that GAP can compute its automorphism group from which the necessary
automorphism group data can be derived. The group of the process is the one given as first argument when
PqStart was called to initiate the process (for process i the group is stored as ANUPQData.io[i].group and
the p-quotient if existent is stored as ANUPQData.io[i].pQuotient). If mlist is not given and a p-quotient
of the group has not been previously computed a class 1 p-quotient is computed.

PqSPStandardPresentation accepts three options, all optional:

ClassBound := n

PcgsAutomorphisms

StandardPresentationFile := filename

If ClassBound is omitted it defaults to 63.

Detailed descriptions of the above options may be found in Chapter 6.

Note: For those familiar with the pq program, PqSPPcPresentation performs menu item 2 of the Standard
Presentation menu.

42I PqSPSavePresentation(i, filename) F
I PqSPSavePresentation(filename) F

for the ith or default interactive ANUPQ process, directs the pq program to save the standard presentation
previously computed for the group of that process to the file with name filename, where the group of a
process is the one given as first argument when PqStart was called to initiate that process. If the first
character of the string filename is not /, filename is assumed to be the path of a writable file relative to the
directory in which GAP was started.

Note: For those familiar with the pq program, PqSPSavePresentation performs menu item 3 of the Stan-
dard Presentation menu.

43I PqSPCompareTwoFilePresentations(i, f1, f2) F
I PqSPCompareTwoFilePresentations(f1, f2) F

for the ith or default interactive ANUPQ process, direct the pq program to compare the presentations in
the files with names f1 and f2 and returns true if they are identical and false otherwise. For each of the
strings f1 and f2 , if the first character is not a / then it is assumed to be the path of a readable file relative
to the directory in which GAP was started.

Notes

The presentations in files f1 and f2 must have been generated by the pq program but they do not need
to be standard presentations. If If the presentations in files f1 and f2 have been generated by PqSPStan-
dardPresentation (see 5.4.41) then a false response from PqSPCompareTwoFilePresentations says the
groups defined by those presentations are not isomorphic.

For those familiar with the pq program, PqSPCompareTwoFilePresentations performs menu item 6 of the
Standard Presentation menu.

44I PqSPIsomorphism(i) F
I PqSPIsomorphism() F

for the ith or default interactive ANUPQ process, direct the pq program to compute the isomorphism
mapping from the p-group of the process to its standard presentation. This function provides a description
only; for a GAP object, use EpimorphismStandardPresentation (see 5.3.5).

Note: For those familiar with the pq program, PqSPIsomorphism performs menu item 8 of the Standard
Presentation menu.

Section 4. Low-level Interactive ANUPQ Functions based on menu items of the pq program 49

Commands from the Main p-Group Generation menu

Note that the p-group generation commands can only be applied once the pq program has produced a pc
presentation of some quotient group of the “group of the process”.

45I PqPGSupplyAutomorphisms(i[, mlist] : options) F
I PqPGSupplyAutomorphisms([mlist] : options) F

for the ith or default interactive ANUPQ process, supply the pq program with the automorphism group
data needed for the current quotient of the group of that process (for process i the group is stored as
ANUPQData.io[i].group). For a description of the format of mlist see 5.4.34. The options possible are Num-
berOfSolubleAutomorphisms and RelativeOrders. (Detailed descriptions of these options may be found
in Chapter 6.)

If mlist is omitted, the automorphism data is determined from the group of the process which must have
been a p-group in pc presentation.

Note: For those familiar with the pq program, PqPGSupplyAutomorphisms performs menu item 1 of the
main p-Group Generation menu.

46I PqPGExtendAutomorphisms(i) F
I PqPGExtendAutomorphisms() F

for the ith or default interactive ANUPQ process, direct the pq program to compute the extensions of the
automorphisms of the p-quotient of the previous class to the p-quotient of the current class. You may wish
to set the InfoLevel of InfoANUPQ to 2 (or more) in order to see the output from the pq program (see 7.3.1).

Note: For those familiar with the pq program, PqPGExtendAutomorphisms performs menu item 2 of the
main or advanced p-Group Generation menu.

47I PqPGConstructDescendants(i : options) F
I PqPGConstructDescendants(: options) F

for the ith or default interactive ANUPQ process, direct the pq program to construct descendants pre-
scribed by options, and return the number of descendants constructed (compare function 4.4.1 which re-
turns the list of descendants). The options possible are ClassBound, OrderBound, StepSize, PcgsAutomor-
phisms, RankInitialSegmentSubgroups, SpaceEfficient, CapableDescendants, AllDescendants, Ex-
ponent, Metabelian, BasicAlgorithm, CustomiseOutput. (Detailed descriptions of these options may be
found in Chapter 6.)

PqPGConstructDescendants requires that the pq program has previously computed a pc presentation and
a p-cover for a p-quotient of some class of the group of the process.

Note: For those familiar with the pq program, PqPGConstructDescendants performs menu item 5 of the
main p-Group Generation menu.

48I PqPGSetDescendantToPcp(i, cls, n) F
I PqPGSetDescendantToPcp(cls, n) F
I PqPGSetDescendantToPcp(i [: Filename := name]) F
I PqPGSetDescendantToPcp([: Filename := name]) F
I PqPGRestoreDescendantFromFile(i, cls, n) F
I PqPGRestoreDescendantFromFile(cls, n) F
I PqPGRestoreDescendantFromFile(i [: Filename := name]) F
I PqPGRestoreDescendantFromFile([: Filename := name]) F

for the ith or default interactive ANUPQ process, direct the pq program to restore group n of class cls from a
temporary file, where cls and n are positive integers, or the group stored in name. PqPGSetDescendantToPcp
and PqPGRestoreDescendantFromFile are synonyms; they make sense only after a prior call to construct
descendants by say PqPGConstructDescendants (see 5.4.47) or the interactive PqDescendants (see 5.3.6).

50 Chapter 5. Interactive ANUPQ functions

In the Filename option forms, the option defaults to the last filename in which a presentation was stored
by the pq program.

Notes

Since the PqPGSetDescendantToPcp and PqPGRestoreDescendantFromFile are intended to be used in cal-
culation of further descendants the pq program computes the p-cover of the restored descendant. Hence,
PqCurrentGroup used immediately after one of these commands returns the p-cover of the restored descen-
dant rather than the descendant itself.

For those familiar with the pq program, PqPGSetDescendantToPcp and PqPGRestoreDescendantFromFile
perform menu item 3 of the main or advanced p-Group Generation menu.

Commands from the Advanced p-Group Generation menu

The functions below perform the component algorithms of PqPGConstructDescendants (see 5.4.47). You
can get some idea of their usage by trying PqExample("Nott-APG-Rel-i");. You can get some idea of
the breakdown of PqPGConstructDescendants into these functions by comparing the previous output with
PqExample("Nott-PG-Rel-i");.

These functions are intended for use only by “experts”; please contact the authors of the package if you
genuinely have a need for them and need any amplified descriptions.

49I PqAPGDegree(i, step, rank [: Exponent := n]) F
I PqAPGDegree(step, rank [: Exponent := n]) F

for the ith or default interactive ANUPQ process, direct the pq program to invoke menu item 6 of the
Advanced p-Group Generation menu. Here the step-size step and the rank rank are positive integers and
are the arguments required by the pq program. See 6.1.4 for the one recognised option Exponent.

50I PqAPGPermutations(i : options) F
I PqAPGPermutations(: options) F

for the ith or default interactive ANUPQ process, direct the pq program to perform menu item 7 of the
Advanced p-Group Generation menu. Here the options options recognised are PcgsAutomorphisms, Space-
Efficient, PrintAutomorphisms and PrintPermutations (see Chapter 6 for details).

51I PqAPGOrbits(i : options) F
I PqAPGOrbits(: options) F

for the ith or default interactive ANUPQ process, direct the pq to perform menu item 8 of the Advanced
p-Group Generation menu.

Here the options options recognised are PcgsAutomorphisms, SpaceEfficient, and CustomiseOutput (see
Chapter 6 for details). For the CustomiseOutput option only the setting of the orbit is recognised (all other
fields if set are ignored).

52I PqAPGOrbitRepresentatives(i : options) F
I PqAPGOrbitRepresentatives(: options) F

for the ith or default interactive ANUPQ process, direct the pq to perform item 9 of the Advanced p-Group
Generation menu.

The options options may be any selection of the following: PcgsAutomorphisms, SpaceEfficient, Expo-
nent, Metabelian, CapableDescendants (or AllDescendants), CustomiseOutput (where only the group
and autgroup fields are recognised) and Filename (see Chapter 6 for details). If Filename is omitted the
reduced p-cover is written to the file "redPCover" in the temporary directory whose name is stored in
ANUPQData.tmpdir.

Section 5. Primitive Interactive ANUPQ Process Read/Write Functions 51

53I PqAPGSingleStage(i : options) F
I PqAPGSingleStage(: options) F

for the ith or default interactive ANUPQ process, direct the pq to perform option 5 of the Advanced p-Group
Generation menu.

The possible options are StepSize, PcgsAutomorphisms, RankInitialSegmentSubgroups, SpaceEffi-
cient, CapableDescendants, AllDescendants, Exponent, Metabelian, BasicAlgorithm and Customise-
Output. (Detailed descriptions of these options may be found in Chapter 6.)

5.5 Primitive Interactive ANUPQ Process Read/Write Functions

For those familiar with using the pq program as a standalone we provide primitive read/write tools to
communicate directly with an interactive ANUPQ process, started via PqStart. For the most part, it is up
to the user to translate the output strings from pq program into a form useful in GAP.

1I PqRead(i) F
I PqRead() F

read a complete line of ANUPQ output, from the ith or default interactive ANUPQ process, if there is
output to be read and returns fail otherwise. When successful, the line is returned as a string complete
with trailing newline, colon, or question-mark character. Please note that it is possible to be “too quick”
(i.e. the return can be fail purely because the output from ANUPQ is not there yet), but if PqRead finds
any output at all, it waits for a complete line. PqRead also writes the line read via Info at InfoANUPQ level
2. It doesn’t try to distinguish banner and menu output from other output of the pq program.

2I PqReadAll(i) F
I PqReadAll() F

read and return as many complete lines of ANUPQ output, from the ith or default interactive ANUPQ
process, as there are to be read, at the time of the call, as a list of strings with any trailing newlines
removed and returns the empty list otherwise. PqReadAll also writes each line read via Info at InfoANUPQ
level 2. It doesn’t try to distinguish banner and menu output from other output of the pq program. Whenever
PqReadAll finds only a partial line, it waits for the complete line, thus increasing the probability that it has
captured all the output to be had from ANUPQ.

3I PqReadUntil(i, IsMyLine) F
I PqReadUntil(IsMyLine) F
I PqReadUntil(i, IsMyLine, Modify) F
I PqReadUntil(IsMyLine, Modify) F

read complete lines of ANUPQ output, from the ith or default interactive ANUPQ process, “chomps” them
(i.e. removes any trailing newline character), emits them to Info at InfoANUPQ level 2 (without trying to
distinguish banner and menu output from other output of the pq program), and applies the function Modify
(where Modify is just the identity map/function for the first two forms) until a “chomped” line line for
which IsMyLine(Modify(line)) is true. PqReadUntil returns the list of Modify-ed “chomped” lines read.

Notes: When provided by the user, Modify should be a function that accepts a single string argument.

IsMyLine should be a function that is able to accept the output of Modify (or take a single string argument
when Modify is not provided) and should return a boolean.

If IsMyLine(Modify(line)) is never true, PqReadUntil will wait indefinitely.

4I PqWrite(i, string) F
I PqWrite(string) F

write string to the ith or default interactive ANUPQ process; string must be in exactly the form the ANUPQ
standalone expects. The command is echoed via Info at InfoANUPQ level 3 (with a “ToPQ> ” prompt);

52 Chapter 5. Interactive ANUPQ functions

i.e. do SetInfoLevel(InfoANUPQ, 3); to see what is transmitted to the pq program. PqWrite returns true
if successful in writing to the stream of the interactive ANUPQ process, and fail otherwise.

Note: If PqWrite returns fail it means that the ANUPQ process has died.

6 ANUPQ Options

In this chapter we describe in detail all the options used by functions of the ANUPQ package. Note that by
“options” we mean GAP options that are passed to functions after the arguments and separated from the
arguments by a colon as described in Chapter 4.10 in the Reference Manual. The user is strongly advised
to read Section 3.6.

1I AllANUPQoptions() F

lists all the GAP options defined for functions of the ANUPQ package:

gap> AllANUPQoptions();
["AllDescendants", "BasicAlgorithm", "Bounds", "CapableDescendants",
"ClassBound", "CustomiseOutput", "Exponent", "Filename", "GroupName",
"Identities", "Metabelian", "NumberOfSolubleAutomorphisms", "OrderBound",
"OutputLevel", "PcgsAutomorphisms", "PqWorkspace", "Prime",
"PrintAutomorphisms", "PrintPermutations", "QueueFactor",
"RankInitialSegmentSubgroups", "RedoPcp", "RelativeOrders", "Relators",
"SetupFile", "SpaceEfficient", "StandardPresentationFile", "StepSize",
"SubList", "TreeDepth", "pQuotient"]

The following global variable gives a partial breakdown of where the above options are used.

2I ANUPQoptions V

is a record of lists of names of admissible ANUPQ options, such that each field is either the name of a “key”
ANUPQ function or other (for a miscellaneous list of functions) and the corresponding value is the list of
option names that are admissible for the function (or miscellaneous list of functions).

Also, from within a GAP session, you may use GAP’s help browser (see Chapter 2 in the GAP Reference
Manual); to find out about any particular ANUPQ option, simply type: “?option option”, where option is
one of the options listed above without any quotes, e.g.

gap> ?option Prime

will display the sections in this manual that describe the Prime option. In fact the first 4 are for the functions
that have Prime as an option and the last actually describes the option. So follow up by choosing

gap> ?5

This is also the pattern for other options (the last section of the list always describes the option; the other
sections are the functions with which the option may be used).

In the section following we describe in detail all ANUPQ options. To continue onto the next section on-line
using GAP’s help browser, type:

gap> ?>

54 Chapter 6. ANUPQ Options

6.1 Detailed descriptions of ANUPQ Options

1I Prime := p

Specifies that the p-quotient for the prime p should be computed.

2I ClassBound := n

Specifies that the p-quotient to be computed has lower exponent-p class at most n. If this option
is omitted a default of 63 (which is the maximum possible for the pq program) is taken, except for
PqDescendants (see 4.4.1) and in a special case of PqPCover (see 4.1.3). Let F be the argument
(or start group of the process in the interactive case) for the function; then for PqDescendants
the default is PClassPGroup(F) + 1, and for the special case of PqPCover the default is PClassP-
Group(F).

3I pQuotient := Q

This option is only available for the standard presentation functions. It specifies that a p-quotient
of the group argument of the function or group of the process is the pc p-group Q , where Q is of
class less than the provided (or default) value of ClassBound. If pQuotient is provided, then the
option Prime if also provided, is ignored; the prime p is discovered by computing PrimePGroup(Q).

4I Exponent := n

Specifies that the p-quotient to be computed has exponent n. For an interactive process, Exponent
defaults to a previously supplied value for the process. Otherwise (and non-interactively), the default
is 0, which means that no exponent law is enforced.

5I Relators := rels

Specifies that the relators sent to the pq program should be rels instead of the relators of the
argument group F (or start group in the interactive case) of the calling function; rels should be a
list of strings in the string representations of the generators of F , and F must be an fp group
(even if the calling function accepts a pc group). This option provides a way of giving relators to the
pq program, without having them pre-expanded by GAP, which can sometimes effect a performance
loss of the order of 100 (see Section A.1).

Notes

1. The pq program does not use / to indicate multiplication by an inverse and uses square brackets to
represent (left normed) commutators. Also, even though the pq program accepts relations, all elements
of rels must be in relator form, i.e. a relation of form w1 = w2 must be written as w1*(w2)^-1 and
then put in a pair of double-quotes to make it a string. See the example below.

2. To ensure there are no syntax errors in rels, each relator is parsed for validity via PqParseWord
(see 3.4.3). If they are ok, a message to say so is Info-ed at InfoANUPQ level 2.

6I Metabelian

Specifies that the largest metabelian p-quotient subject to any other conditions specified by other
options be constructed. By default this restriction is not enforced.

7I GroupName := name

Specifies that the pq program should refer to the group by the name name (a string). If GroupName
is not set and the group has been assigned a name via SetName (see 12.8.1) it is set as the name
the pq program should use. Otherwise, the “generic” name "[grp]" is set as a default.

Section 1. Detailed descriptions of ANUPQ Options 55

8I Identities := funcs

Specifies that the pc presentation should satisfy the laws defined by each function in the list funcs.
This option may be called by Pq, PqEpimorphism, or PqPCover (see 4.1.1). Each function in the
list funcs must return a word in its arguments (there may be any number of arguments). Let
identity be one such function in funcs. Then as each lower exponent p-class quotient is formed,
instances identity(w1 , . . . ,wn) are added as relators to the pc presentation, where w1 , . . . ,wn are
words in the pc generators of the quotient. At each class the class and number of pc generators
is Info-ed at InfoANUPQ level 1, the number of instances is Info-ed at InfoANUPQ level 2, and
the instances that are evaluated are Info-ed at InfoANUPQ level 3. As usual timing information is
Info-ed at InfoANUPQ level 2; and details of the processing of each instance from the pq program
(which is often quite voluminous) is Info-ed at InfoANUPQ level 3. Try the examples "B2-4-Id"
and "11gp-3-Engel-Id" which demonstrate the usage of the Identities option; these are run
using PqExample (see 3.4.4). Take note of Note 1. below in relation to the example "B2-4-Id"; the
companion example "B2-4" generates the same group using the Exponent option. These examples
are discussed at length in Section A.2.

Notes

1. Setting the InfoANUPQ level to 3 or more when setting the Identities option may slow down the
computation considerably, by overloading GAP with io operations.

2. The Identities option is implemented at the GAP level. An identity that is just an exponent law
should be specified using the Exponent option (see 6.1.4), which is implemented at the C level and is
highly optimised and so is much more efficient.

3. The number of instances of each identity tends to grow combinatorially with the class. So care should be
exercised in using the Identities option, by including other restrictions, e.g. by using the ClassBound
option (see 6.1.2).

9I OutputLevel := n

Specifies the level of “verbosity” of the information output by the ANU pq program when computing
a pc presentation; n must be an integer in the range 0 to 3. OutputLevel := 0 displays at most
one line of output and is the default; OutputLevel := 1 displays (usually) slightly more output
and OutputLevels of 2 and 3 are two levels of verbose output. To see these messages from the pq
program, the InfoANUPQ level must be set to at least 1 (see 7.3.1). See Section 3.6 for an example
of how OutputLevel can be used as a troubleshooting tool.

10I RedoPcp

Specifies that the current pc presentation (for an interactive process) stored by the pq program
be scrapped and clears the current values stored for the options Prime, ClassBound, Exponent
and Metabelian and also clears the pQuotient, pQepi and pCover fields of the data record of the
process.

11I SetupFile := filename

Non-interactively, this option directs that pq should not be called and that an input file with name
filename (a string), containing the commands necessary for the ANU pq standalone, be constructed.
The commands written to filename are also Info-ed behind a “ToPQ> ” prompt at InfoANUPQ level
4 (see 7.3.1). Except in the case following, the calling function returns true. If the calling function
is the non-interactive version of one of Pq, PqPCover or PqEpimorphism and the group provided as
argument is trivial given with an empty set of generators, then no setup file is written and fail is
returned (the pq program cannot do anything useful with such a group). Interactively, SetupFile
is ignored.

56 Chapter 6. ANUPQ Options

Note: Since commands emitted to the pq program may depend on knowing what the “current state” is, to
form a setup file some “close enough guesses” may sometimes be necessary; when this occurs a warning is
Info-ed at InfoANUPQ or InfoWarning level 1. To determine whether the “close enough guesses” give an
accurate setup file, it is necessary to run the command without the SetupFile option, after either setting
the InfoANUPQ level to at least 4 (the setup file script can then be compared with the “ToPQ> ” commands
that are Info-ed) or setting a pq command log file by using ToPQLog (see 3.4.7).

12I PqWorkspace := workspace

Non-interactively, this option sets the memory used by the pq program. It sets the maximum number
of integer-sized elements to allocate in its main storage array. By default, the pq program sets this
figure to 10000000. Interactively, PqWorkspace is ignored; the memory used in this case may be set
by giving PqStart a second argument (see 5.1.1).

13I PcgsAutomorphisms
I PcgsAutomorphisms := false

Let G be the group associated with the calling function (or associated interactive process). Passing
the option PcgsAutomorphisms without a value (or equivalently setting it to true), specifies that
a polycyclic generating sequence for the automorphism group (which must be soluble) of G , be
computed and passed to the pq program. This increases the efficiency of the computation; it also
prevents the pq from calling GAP for orbit-stabilizer calculations. By default, PcgsAutomorphisms
is set to the value returned by IsSolvable(AutomorphismGroup(G)), and uses the package
AutPGrp to compute AutomorphismGroup(G) if it is installed. This flag is set to true or false in
the background according to the above criterion by the function PqDescendants (see 4.4.1 and 5.3.6).

Note: If PcgsAutomorphisms is used when the automorphism group of G is insoluble, an error message
occurs.

14I OrderBound := n

Specifies that only descendants of size at most pn , where n is a non-negative integer, be generated.
Note that you cannot set both OrderBound and StepSize.

15I StepSize := n
I StepSize := list

For a positive integer n, StepSize specifies that only those immediate descendants which are a
factor pn bigger than their parent group be generated.
For a list list of positive integers such that the sum of the length of list and the exponent-p class
of G is equal to the class bound defined by the option ClassBound, StepSize specifies that the
integers of list are the step sizes for each additional class.

16I RankInitialSegmentSubgroups := n

Sets the rank of the initial segment subgroup chosen to be n. By default, this has value 0.

17I SpaceEfficient

Specifies that the pq program performs certain calculations of p-group generation more slowly but
with greater space efficiency. This flag is frequently necessary for groups of large Frattini quotient
rank. The space saving occurs because only one permutation is stored at any one time. This op-
tion is only available if the PcgsAutomorphisms flag is set to true (see 6.1.13). For an interactive
process, SpaceEfficient defaults to a previously supplied value for the process. Otherwise (and
non-interactively), SpaceEfficient is by default false.

18I CapableDescendants

By default, all (i.e. capable and terminal) descendants are computed. If this flag is set, only capable
descendants are computed. Setting this option is equivalent to setting AllDescendants := false
(see 6.1.19), except if both CapableDescendants and AllDescendants are passed, AllDescendants
is essentially ignored.

Section 1. Detailed descriptions of ANUPQ Options 57

19I AllDescendants := false

By default, all descendants are constructed. If this flag is set to false, only capable descendants
are computed. Passing AllDescendants without a value (which is equivalent to setting it to true)
is superfluous. This option is provided only for backward compatibility with the GAP 3 version of
the ANUPQ package, where by default AllDescendants was set to false (rather than true). It is
preferable to use CapableDescendants (see 6.1.18).

20I TreeDepth := class

Specifies that the descendants tree developed by PqDescendantsTreeCoclassOne (see A.4.1) should
be extended to class class, where class is a positive integer.

21I SubList := sub

Suppose that L is the list of descendants generated, then for a list sub of integers this option causes
PqDescendants to return Sublist(L, sub). If an integer n is supplied, PqDescendants returns
L[n].

22I NumberOfSolubleAutomorphisms := n

Specifies that the number of soluble automorphisms of the automorphism group supplied by PqPG-
SupplyAutomorphisms (see 5.4.45) in a p-group generation calculation is n. By default, n is taken
to be 0; n must be a non-negative integer. If n ≥ 0 then a value for the option RelativeOrders
(see 6.1.23) must also be supplied.

23I RelativeOrders := list

Specifies the relative orders of each soluble automorphism of the automorphism group supplied
by PqPGSupplyAutomorphisms (see 5.4.45) in a p-group generation calculation. The list list must
consist of n positive integers, where n is the value of the option NumberOfSolubleAutomorphisms
(see 6.1.22). By default list is empty.

24I BasicAlgorithm

Specifies that an algorithm that the pq program calls its “default” algorithm be used for p-group
generation. By default this algorithm is not used. If this option is supplied the settings of options
RankInitialSegmentSubgroups, AllDescendants, Exponent and Metabelian are ignored.

25I CustomiseOutput := rec

Specifies that fine tuning of the output is desired. The record rec should have any subset (or all) of
the the following fields:

perm := list
where list is a list of booleans which determine whether the permutation group output for the
automorphism group should contain: the degree, the extended automorphisms, the automorphism
matrices, and the permutations, respectively.

orbit := list
where list is a list of booleans which determine whether the orbit output of the action of the
automorphism group should contain: a summary, and a complete listing of orbits, respectively. (It’s
possible to have both a summary and a complete listing.)

group := list
where list is a list of booleans which determine whether the group output should contain: the
standard matrix of each allowable subgroup, the presentation of reduced p-covering groups, the
presentation of immediate descendants, the nuclear rank of descendants, and the p-multiplicator
rank of descendants, respectively.

58 Chapter 6. ANUPQ Options

autgroup := list
where list is a list of booleans which determine whether the automorphism group output should
contain: the commutator matrix, the automorphism group description of descendants, and the au-
tomorphism group order of descendants, respectively.

trace := val
where val is a boolean which if true specifies algorithm trace data is desired. By default, one does
not get algorithm trace data.

Not providing a field (or mis-spelling it!), specifies that the default output is desired. As a convenience, 1 is
also accepted as true, and any value that is neither 1 nor true is taken as false. Also for each list above,
an unbound list entry is taken as false. Thus, for example

CustomiseOutput := rec(group := [,,1], autgroup := [,1])

specifies for the group output that only the presentation of immediate descendants is desired, for the auto-
morphism group output only the automorphism group description of descendants should be printed, that
there should be no algorithm trace data, and that the default output should be provided for the permutation
group and orbit output.

26I StandardPresentationFile := filename

Specifies that the file to which the standard presentation is written has name filename. If the first
character of the string filename is not /, filename is assumed to be the path of a writable file relative
to the directory in which GAP was started. If this option is omitted it is written to the file with the
name generated by the command Filename(ANUPQData.tmpdir, "SPres");, i.e. the file with
name "SPres" in the temporary directory in which the pq program executes.

27I QueueFactor := n

Specifies a queue factor of n, where n should be a positive integer. This option may be used with
PqNextClass (see 5.4.13).

The queue factor is used when the pq program uses automorphisms to close a set of elements of the p-
multiplicator under their action.

The algorithm used is a spinning algorithm: it starts with a set of vectors in echelonized form (elements of
the p-multiplicator) and closes the span of these vectors under the action of the automorphisms. For this
each automorphism is applied to each vector and it is checked if the result is contained in the span computed
so far. If not, the span becomes bigger and the vector is put into a queue and the automorphisms are applied
to this vector at a later stage. The process terminates when the automorphisms have been applied to all
vectors and no new vectors have been produced.

For each new vector it is decided, if its processing should be delayed. If the vector contains too many non-
zero entries, it is put into a second queue. The elements in this queue are processed only when there are no
elements in the first queue left.

The queue factor is a percentage figure. A vector is put into the second queue if the percentage of its non-zero
entries exceeds the queue factor.

28I Bounds := list

Specifies a lower and upper bound on the indices of a list, where list is a pair of positive non-
decreasing integers. See 5.4.37 and 5.4.38 where this option may be used.

29I PrintAutomorphisms := list

Specifies that automorphism matrices be printed.

30I PrintPermutations := list

Specifies that permutations of the subgroups be printed.

Section 1. Detailed descriptions of ANUPQ Options 59

31I Filename := string

Specifies that an output or input file to be written to or read from by the pq program should have
the name string .

7

Installing the
ANUPQ Package

The ANU pq program is written in C and the package can be installed under UNIX and in environments
similar to UNIX. It has been tested on DECstation running Ultrix, a HP 9000/700 and HP 9000/800 running
HP-UX, a MIPS running RISC/os Berkeley, a NeXTstation running NeXTSTEP 3.0, a SUN running SunOS
and an Intel Pentium based PC running Linux or Windows equipped with cygwin.

The current version of the ANUPQ package requires GAP 4.4, and version 1.2 of the AutPGrp package. If
you still have GAP 4.3 (at least fix4), then you must use ANUPQ 2.2, and AutPGrp 1.1. You should not use
earlier versions of the ANUPQ package since they are known to have bugs.

To install the ANUPQ package, move the file anupq-XXX .zoo for some version number XXX into the
pkg directory in which you plan to install ANUPQ. Usually, this will be the directory pkg in the hierarchy
of your version of GAP 4; it is however also possible to keep an additional pkg directory in your private
directories. The only essential difference with installing ANUPQ in a pkg directory different to the GAP 4
home directory is that one must start GAP with the -l switch (see Section 3.1), e.g. if your private pkg
directory is a subdirectory of mygap in your home directory you might type:

gap -l ";myhomedir/mygap"

where myhomedir is the path to your home directory, which (since GAP 4.3) may be replaced by a tilde.
The empty path before the semicolon is filled in by the default path of the GAP 4 home directory.

Then, in your chosen pkg directory, unzoo anupq-XXX .zoo by

unzoo -x anupq-XXX

Change to the newly created anupq directory. Now you need to call configure path where path is the path
to the GAP home directory. So for example if you install the package in the main pkg directory call

./configure ../..

What this does is look for a file sysinfo.gap in the root directory of GAP in order to determine an
architecture name for the subdirectory of bin in which to put the compiled pq binary. This only makes sense
if GAP was compiled for the same architecture that pq will be. If you have a shared file system mounted
across different architectures, then you should run configure and make for ANUPQ for each architecture
immediately after compiling GAP on the same architecture.

If you had to install the package in your own directory but wish to use the system GAP 4 then you will need
to find out what path is. To do this, start up GAP and find out what GAP’s root path is from finding the
value of the variable GAPInfo.RootPaths (in GAP 4.4; this was GAP ROOT PATHS prior to GAP 4.4), e.g.

gap> GAPInfo.RootPaths;
["/usr/local/lib/gap4r4/"]

would tell you to use /usr/local/lib/gap4r4 for path.

The configure command will fetch the architecture type for which GAP has been compiled last, create a
Makefile and list a number of “targets” to call make with. If you have one of the standard Linux (or NetBSD

61

or FreeBSD) systems with gcc, wish to compile with -O2 optimisation, and have gmp with its include and
library files in /usr/local/include and /usr/local/lib, respectively, you can now simply call

make

to compile the binary and to install it in the appropriate place.

If you need a special target, e.g. you don’t have gmp or are not on a Linux system, and the targets displayed
on the screen after the configure step rushed past your eyes and you can’t scroll back to see them, you can
“pipe” those same targets through less or more, e.g. with more:

make unknown | more

An abbreviation of the target list is as follows:

’linux-iX86-gcc2-gmp’ for IBM x86 PCs under linux/BSD with GNU cc 2 and mp
’linux-iX86-cc-gmp’ for IBM x86 PCs under linux/BSD with cc and GNU mp
’linux-iX86-gcc2’ for IBM x86 PCs under linux/BSD with GNU cc 2
’linux-iX86-cc’ for IBM x86 PCs under linux/BSD with cc (GNU)
’iX86-pc-cygwin-gcc-gmp’ for IBM x86 PCs under CYGWIN with GNU cc and GNU mp
’iX86-pc-cygwin-gcc’ for IBM x86 PCs under CYGWIN with GNU cc
[... 16 lines deleted ...]
’sunos-gcc2-gmp’ for SunOS with GNU cc 2 and gmp
’sunos-cc-gmp’ for SunOS with cc and GNU mp
’sunos-gcc2’ for SunOS with GNU cc 2
’sunos-cc’ for SunOS with cc
’unix-gmp’ for a generic unix system with cc and GNU mp
’unix’ for a generic unix system with cc
’clean’ remove all created files

targets are listed according to preference,
i.e., ’sunos-gcc2’ is better than ’sunos-cc’
no target is the same as choosing ’linux-iX86-gcc2-gmp’
additional C compiler and linker flags can be passed with
’make <target> COPTS=<compiler-opts> LOPTS=<linker-opts>’,
e.g., ’make sunos-cc COPTS=-g LOPTS=-g’.

set GAP if GAP4 is not started with the command ’gap’,
e.g., ’make sunos-cc GAP=/usr/local/bin/gap4’.

in order to use the GNU multiple precision (gmp) set
’GNUINC’ (default ’/usr/local/include’) and
’GNULIB’ (default ’/usr/local/lib’)

do ’make unknown | more’ to see these targets again via more

Let’s suppose that the linux-iX86-gcc2-gmp target does not satisfy your requirements, that your system
is Solaris 2.8 (i.e. SunOS 5.8), you have gmp but its include and lib directories are somewhere else, and
that gap4 is the command used to start GAP 4. Then the following might be the appropriate make call:

make sunos-gcc2-gmp GAP=gap4 GNUINC=/opt/local/include GNULIB=/opt/local/lib

If you don’t have the GNU multiple precision arithmetic (gmp) installed on your system, don’t worry, gmp
is not required; just select an appropriate target without -gmp.

The path of GAP (see Note below) used by the pq binary (the value GAP is set to in the make command)
may be over-ridden by setting the environment variable ANUPQ GAP EXEC. These values are only of interest

62 Chapter 7. Installing the ANUPQ Package

when the pq program is run as a standalone; however, the testPq script assumes you have set one of these
correctly (see Section 7.1). When the pq program is started from GAP communication occurs via an iostream,
so that the pq binary does not actually need to know a valid path for GAP is this case.

Note. By “path of GAP” we mean the path of the command used to invoke GAP (which should be a script,
e.g. the gap.sh script generated in the bin directory for the version of GAP when GAP was compiled). The
usual strategy is to copy the gap.sh script to a standard location, e.g. /usr/local/bin/gap. It is a mistake
to copy the GAP executable gap (in a directory with name of form bin/compile-platform) to the standard
location, since direct invocation of the executable results in GAP starting without being able to find its own
library (a fatal error).

7.1 Testing your ANUPQ installation

Now it is time to test the installation. After doing configure and make you will have a testPq script.
The script assumes that, if the environment variable ANUPQ GAP EXEC is set, it is a correct path for GAP, or
otherwise that the make call that compiled the pq program set GAP to a correct path for GAP (see Section 7.2
for more details). To run the tests, just type:

testPq

Some of the tests the script runs take a while. Please be patient. The script checks that you not only have
a correct GAP (at least version 4.4) installation that includes the AutPGrp package, but that the ANUPQ
package and its pq binary interact correctly. You should see something like the following output:

Made dir: /tmp/testPq
Testing installation of ANUPQ Package (version 3.0)

The first two tests check that the pq C program compiled ok.
Testing the pq binary ... OK.
Testing the pq binary’s stack size ... OK.
The pq C program compiled ok! We test it’s the right one below.

The next tests check that you have the right version of GAP
for version 3.0 of the ANUPQ package and that GAP is finding
the right versions of the ANUPQ and AutPGrp packages.

Checking GAP ...
pq binary made with GAP set to: /usr/local/bin/gap
Starting GAP to determine version and package availability ...
GAP version (4.4.6) ... OK.
GAP found ANUPQ package (version 3.0) ... good.
GAP found pq binary (version 1.8) ... good.
GAP found AutPGrp package (version 1.2) ... good.

GAP is OK.

Checking the link between the pq binary and GAP ... OK.
Testing the standard presentation part of the pq binary ... OK.
Doing p-group generation (final GAP/ANUPQ) test ... OK.
Tests complete.
Removed dir: /tmp/testPq
Enjoy using your functional ANUPQ package!

Section 3. Setting the Verbosity of ANUPQ via Info and InfoANUPQ 63

7.2 Running the pq program as a standalone

When the pq program is run as a standalone it sometimes needs to call GAP to compute stabilisers of
subgroups; in doing so, it first checks the value of the environment variable ANUPQ GAP EXEC, and uses that,
if set, or otherwise the value of GAP it was compiled with, as the path for GAP. If you ran testPq (see
Section 7.1) and you got both GAP is OK and the link between the pq binary and GAP is OK, you should be
fine. Otherwise heed the recommendations of the error messages you get and run the testPq until all tests
are passed.

It is especially important that the GAP, whose path you gave, should know where to find the ANUPQ and
AutPGrp packages. To ensure this the path should be to a shell script that invokes GAP. If you needed to
install the needed packages in your own directory (because, say, you are not a system administrator) then
you should create your own shell script that runs GAP with a correct setting of the -l option and set the
path used by the pq binary to the path of that script. To create the script that runs GAP it is easiest to
copy the system one and edit it, e.g. start by executing the following UNIX commands (skip the second step
if you already have a bin directory; you@unix> is your UNIX prompt):

you@unix> cd
you@unix> mkdir bin
you@unix> cd bin
you@unix> which gap
/usr/local/bin/gap
you@unix> cp /usr/local/bin/gap mygap
you@unix> chmod +x mygap

At the second-last step use the path of GAP returned by which gap. Now hopefully you will have a copy of
the script that runs the system GAP in mygap. Now use your favourite editor to edit the -l part of the last
line of mygap which should initially look something like:

exec $GAP_DIR/bin/$GAP_PRG -m $GAP_MEM -o 970m -l $GAP_DIR $*

so that it becomes (the tilde is a UNIX abbreviation for your home directory):

exec $GAP_DIR/bin/$GAP_PRG -m $GAP_MEM -o 970m -l "$GAP_DIR;~/gapstuff" $*

assuming that your personal GAP pkg directory is a subdirectory of gapstuff in your home directory.
Finally, to let the pq program know where GAP is and also know where your pkg directory is that contains
ANUPQ, set the environment variable ANUPQ GAP EXEC to the complete (i.e. absolute) path of your mygap
script (do not use the tilde abbreviation), or at the make step that compiles pq do

make GAP=absolute-path-of-mygap

occasionally have limits on what may be written there. ANUPQDirectoryTemporary permits the user to
choose a directory (object) where one is not so limited.

7.3 Setting the Verbosity of ANUPQ via Info and InfoANUPQ

1I InfoANUPQ V

The input to and the output from the pq program is, by default, not displayed. However the user may choose
to see some, or all, of this input/output. This is done via the Info mechanism (see Chapter 7.4 in the GAP
Reference Manual). For this purpose, there is the InfoClass InfoANUPQ. If the InfoLevel of InfoANUPQ is
high enough each line of pq input/output is directed to a call to Info and will be displayed for the user to
see. By default, the InfoLevel of InfoANUPQ is 1, and it is recommended that you leave it at this level, or
higher. Messages that the user should presumably want to see and output from the pq program influenced

64 Chapter 7. Installing the ANUPQ Package

by the value of the option OutputLevel (see the options listed in Section 4.1.1), other than timing and
memory usage are directed to Info at InfoANUPQ level 1.

To turn off all InfoANUPQ messaging, set the InfoANUPQ level to 0.

There are five other user-intended InfoANUPQ levels: 2, 3, 4, 5 and 6.

gap> SetInfoLevel(InfoANUPQ, 2);

enables the display of most timing and memory usage data from the pq program, and also the number of
identity instances when the Identities option is used. (Some timing and memory usage data, particularly
when profuse in quantity, is Info-ed at InfoANUPQ level 3 instead.) Note that the the GAP functions time
and Runtime (see 7.6.2 in the GAP Reference Manual) count the time spent by GAP and not the time spent
by the (external) pq program.

gap> SetInfoLevel(InfoANUPQ, 3);

enables the display of output of the nature of the first two InfoANUPQ that was not directly invoked by
the user (e.g. some commands require GAP to discover something about the current state known to the pq
program). The identity instances processed under the Identities option are also displayed at this level. In
some cases, the pq program produces a lot of output despite the fact that the OutputLevel (see 6.1.9) is
unset or is set to 0; such output is also Info-ed at InfoANUPQ level 3.

gap> SetInfoLevel(InfoANUPQ, 4);

enables the display of all the commands directed to the pq program, behind a “ToPQ> ” prompt (so that
you can distinguish it from the output from the pq program). See Section 3.6 for an example of how this
can be a useful troubleshooting tool.

gap> SetInfoLevel(InfoANUPQ, 5);

enables the display of the pq program’s prompts for input. Finally,

gap> SetInfoLevel(InfoANUPQ, 6);

enables the display of all other output from the pq program, namely the banner and menus. However, the
timing data printed when the pq program exits can never be observed.

7.4 Utility Functions

1I PqLeftNormComm(elts) F

returns for a list of elements of some group (e.g. elts may be a list of words in the generators of a free or
fp group) the left normed commutator of elts, e.g. if w1 , w2 , w3 are such elements then PqLeftNormComm(
[w1, w2, w3]); is equivalent to Comm(Comm(w1, w2), w3);.

Note: elts must contain at least two elements.

2I PqGAPRelators(group, rels) F

returns a list of words that GAP understands, given a list rels of strings in the string representations of the
generators

A Examples

There are a large number of examples provided with the ANUPQ package. These may be executed or displayed
via the function PqExample (see 3.4.4). Each example resides in a file of the same name in the directory
examples. Most of the examples are translations to GAP of examples provided for the pq standalone by
Eamonn O’Brien; the standalone examples are found in directories standalone/examples (p-quotient and
p-group generation examples) and standalone/isom (standard presentation examples). The first line of
each example indicates its origin. All the examples seen in earlier chapters of this manual are also available
as examples, in a slightly modified form (the example which one can run in order to see something very
close to the text example “live” is always indicated near – usually immediately after – the text example).
The format of the (PqExample) examples is such that they can be read by the standard Read function of
GAP, but certain features and comments are interpreted by the function PqExample to do somewhat more
than Read does. In particular, any function without a -i, -ni or .g suffix has both a non-interactive and
interactive form; in these cases, the default form is the non-interactive form, and giving PqStart as second
argument generates the interactive form.

Running PqExample without an argument or with a non-existent example Infos the available examples and
some hints on usage:

gap> PqExample();
#I PqExample Index (Table of Contents)
#I -----------------------------------
#I This table of possible examples is displayed when calling ‘PqExample’
#I with no arguments, or with the argument: "index" (meant in the sense
#I of ‘‘list’’), or with a non-existent example name.
#I
#I Examples that have a name ending in ‘-ni’ are non-interactive only.
#I Examples that have a name ending in ‘-i’ are interactive only.
#I Examples with names ending in ‘.g’ also have only one form. Other
#I examples have both a non-interactive and an interactive form; call
#I ‘PqExample’ with 2nd argument ‘PqStart’ to get the interactive form
#I of the example. The substring ‘PG’ in an example name indicates a
#I p-Group Generation example, ‘SP’ indicates a Standard Presentation
#I example, ‘Rel’ indicates it uses the ‘Relators’ option, and ‘Id’
#I indicates it uses the ‘Identities’ option.
#I
#I The following ANUPQ examples are available:
#I
#I p-Quotient examples:
#I general:
#I "Pq" "Pq-ni" "PqEpimorphism"
#I "PqPCover" "PqSupplementInnerAutomorphisms"
#I 2-groups:
#I "2gp-Rel" "2gp-Rel-i" "2gp-a-Rel-i"
#I "B2-4" "B2-4-Id" "B2-8-i"

66 Appendix A. Examples

#I "B4-4-i" "B4-4-a-i" "B5-4.g"
#I 3-groups:
#I "3gp-Rel-i" "3gp-a-Rel" "3gp-a-Rel-i"
#I "3gp-a-x-Rel-i" "3gp-maxoccur-Rel-i"
#I 5-groups:
#I "5gp-Rel-i" "5gp-a-Rel-i" "5gp-b-Rel-i"
#I "5gp-c-Rel-i" "5gp-metabelian-Rel-i" "5gp-maxoccur-Rel-i"
#I "F2-5-i" "B2-5-i" "R2-5-i"
#I "R2-5-x-i" "B5-5-Engel3-Id"
#I 7-groups:
#I "7gp-Rel-i"
#I 11-groups:
#I "11gp-i" "11gp-Rel-i" "11gp-a-Rel-i"
#I "11gp-3-Engel-Id" "11gp-3-Engel-Id-i"
#I
#I p-Group Generation examples:
#I general:
#I "PqDescendants-1" "PqDescendants-2" "PqDescendants-3"
#I "PqDescendants-1-i"
#I 2-groups:
#I "2gp-PG-i" "2gp-PG-2-i" "2gp-PG-3-i"
#I "2gp-PG-4-i" "2gp-PG-e4-i"
#I "PqDescendantsTreeCoclassOne-16-i"
#I 3-groups:
#I "3gp-PG-i" "3gp-PG-4-i" "3gp-PG-x-i"
#I "3gp-PG-x-1-i" "PqDescendants-treetraverse-i"
#I "PqDescendantsTreeCoclassOne-9-i"
#I 5-groups:
#I "5gp-PG-i" "Nott-PG-Rel-i" "Nott-APG-Rel-i"
#I "PqDescendantsTreeCoclassOne-25-i"
#I 7,11-groups:
#I "7gp-PG-i" "11gp-PG-i"
#I
#I Standard Presentation examples:
#I general:
#I "StandardPresentation" "StandardPresentation-i"
#I "EpimorphismStandardPresentation"
#I "EpimorphismStandardPresentation-i" "IsIsomorphicPGroup-ni"
#I 2-groups:
#I "2gp-SP-Rel-i" "2gp-SP-1-Rel-i" "2gp-SP-2-Rel-i"
#I "2gp-SP-3-Rel-i" "2gp-SP-4-Rel-i" "2gp-SP-d-Rel-i"
#I "gp-256-SP-Rel-i" "B2-4-SP-i" "G2-SP-Rel-i"
#I 3-groups:
#I "3gp-SP-Rel-i" "3gp-SP-1-Rel-i" "3gp-SP-2-Rel-i"
#I "3gp-SP-3-Rel-i" "3gp-SP-4-Rel-i" "G3-SP-Rel-i"
#I 5-groups:
#I "5gp-SP-Rel-i" "5gp-SP-a-Rel-i" "5gp-SP-b-Rel-i"
#I "5gp-SP-big-Rel-i" "5gp-SP-d-Rel-i" "G5-SP-Rel-i"
#I "G5-SP-a-Rel-i" "Nott-SP-Rel-i"
#I 7-groups:
#I "7gp-SP-Rel-i" "7gp-SP-a-Rel-i" "7gp-SP-b-Rel-i"
#I 11-groups:

Section 1. The Relators Option 67

#I "11gp-SP-a-i" "11gp-SP-a-Rel-i" "11gp-SP-a-Rel-1-i"
#I "11gp-SP-b-i" "11gp-SP-b-Rel-i" "11gp-SP-c-Rel-i"
#I
#I Notes
#I -----
#I 1. The example (first) argument of ‘PqExample’ is a string; each
#I example above is in double quotes to remind you to include them.
#I 2. Some examples accept options. To find out whether a particular
#I example accepts options, display it first (by including ‘Display’
#I as last argument) which will also indicate how ‘PqExample’
#I interprets the options, e.g. ‘PqExample("11gp-SP-a-i", Display);’.
#I 3. Try ‘SetInfoLevel(InfoANUPQ, <n>);’ for some <n> in [2 .. 4]
#I before calling PqExample, to see what’s going on behind the scenes.
#I

If on your terminal you are unable to scroll back, an alternative to typing PqExample(); to see the displayed
examples is to use on-line help, i.e. you may type:

gap> ?anupq:examples

which will display this appendix in a GAP session. If you are not fussed about the order in which the examples
are organised, AllPqExamples(); lists the available examples relatively compactly (see 3.4.5).

In the remainder of this appendix we will discuss particular aspects related to the Relators (see 6.1.5) and
Identities (see 6.1.8) options, and the construction of the Burnside group B(5, 4).

A.1 The Relators Option

The Relators option was included because computations involving words containing commutators that are
pre-expanded by GAP before being passed to the pq program may run considerably more slowly, than the
same computations being run with GAP pre-expansions avoided. The following examples demonstrate a case
where the performance hit due to pre-expansion of commutators by GAP is a factor of order 100 (in order
to see timing information from the pq program, we set the InfoANUPQ level to 2).

Firstly, we run the example that allows pre-expansion of commutators (the function PqLeftNormComm is
provided by the ANUPQ package; see 7.4.1). Note that since the two commutators of this example are very
long (taking more than an page to print), we have edited the output at this point.

gap> SetInfoLevel(InfoANUPQ, 2); #to see timing information
gap> PqExample("11gp-i");
#I #Example: "11gp-i" . . . based on: examples/11gp
#I F, a, b, c, R, procId are local to ‘PqExample’
gap> F := FreeGroup("a", "b", "c"); a := F.1; b := F.2; c := F.3;
<free group on the generators [a, b, c]>
a
b
c
gap> R := [PqLeftNormComm([b, a, a, b, c])^11,
> PqLeftNormComm([a, b, b, a, b, c])^11, (a * b)^11];
[b^-1*a^-2*b^-1*a*b*a*b^-1*a^-1*b*a*b*a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2*c^

... 22 lines deleted here ...
-1*a*b*a^-1*b^-1*a^-1*b*a^2*b*c, b^-1*a^-1*b^-2*a^-1*b*a*b*a^-1*b^
... 43 lines deleted here ...
-1*b^-1*a^-1*b*a*b^-1*a^-1*b^-1*a*b^2*a*b*c,

68 Appendix A. Examples

a*b*a*b*a*b*a*b*a*b*a*b*a*b*a*b*a*b*a*b*a*b]
gap> procId := PqStart(F/R : Prime := 11);
1
gap> PqPcPresentation(procId : ClassBound := 7,
> OutputLevel := 1);
#I Lower exponent-11 central series for [grp]
#I Group: [grp] to lower exponent-11 central class 1 has order 11^3
#I Group: [grp] to lower exponent-11 central class 2 has order 11^8
#I Group: [grp] to lower exponent-11 central class 3 has order 11^19
#I Group: [grp] to lower exponent-11 central class 4 has order 11^42
#I Group: [grp] to lower exponent-11 central class 5 has order 11^98
#I Group: [grp] to lower exponent-11 central class 6 has order 11^228
#I Group: [grp] to lower exponent-11 central class 7 has order 11^563
#I Computation of presentation took 27.04 seconds
gap> PqSavePcPresentation(procId, ANUPQData.outfile);
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

Now we do the same calculation using the Relators option. In this way, the commutators are passed directly
as strings to the pq program, so that GAP does not “see” them and pre-expand them.

gap> PqExample("11gp-Rel-i");
#I #Example: "11gp-Rel-i" . . . based on: examples/11gp
#I #(equivalent to "11gp-i" example but uses ‘Relators’ option)
#I F, rels, procId are local to ‘PqExample’
gap> F := FreeGroup("a", "b", "c");
<free group on the generators [a, b, c]>
gap> rels := ["[b, a, a, b, c]^11", "[a, b, b, a, b, c]^11", "(a * b)^11"];
["[b, a, a, b, c]^11", "[a, b, b, a, b, c]^11", "(a * b)^11"]
gap> procId := PqStart(F : Prime := 11, Relators := rels);
2
gap> PqPcPresentation(procId : ClassBound := 7,
> OutputLevel := 1);
#I Relators parsed ok.
#I Lower exponent-11 central series for [grp]
#I Group: [grp] to lower exponent-11 central class 1 has order 11^3
#I Group: [grp] to lower exponent-11 central class 2 has order 11^8
#I Group: [grp] to lower exponent-11 central class 3 has order 11^19
#I Group: [grp] to lower exponent-11 central class 4 has order 11^42
#I Group: [grp] to lower exponent-11 central class 5 has order 11^98
#I Group: [grp] to lower exponent-11 central class 6 has order 11^228
#I Group: [grp] to lower exponent-11 central class 7 has order 11^563
#I Computation of presentation took 0.27 seconds
gap> PqSavePcPresentation(procId, ANUPQData.outfile);
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

A.2 The Identities Option and PqEvaluateIdentities Function

Please pay heed to the warnings given for the Identities option (see 6.1.8); it is written mainly at the
GAP level and is not particularly optimised. The Identities option allows one to compute p-quotients
that satisfy an identity. A trivial example better done using the Exponent option, but which nevertheless
demonstrates the usage of the Identities option, is as follows:

Section 2. The Identities Option and PqEvaluateIdentities Function 69

gap> SetInfoLevel(InfoANUPQ, 1);
gap> PqExample("B2-4-Id");
#I #Example: "B2-4-Id" . . . alternative way to generate B(2, 4)
#I #Generates B(2, 4) by using the ‘Identities’ option
#I #... this is not as efficient as using ‘Exponent’ but
#I #demonstrates the usage of the ‘Identities’ option.
#I F, f, procId are local to ‘PqExample’
gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> # All words w in the pc generators of B(2, 4) satisfy f(w) = 1
gap> f := w -> w^4;
function(w) ... end
gap> Pq(F : Prime := 2, Identities := [f]);
#I Class 1 with 2 generators.
#I Class 2 with 5 generators.
#I Class 3 with 7 generators.
#I Class 4 with 10 generators.
#I Class 5 with 12 generators.
#I Class 5 with 12 generators.
<pc group of size 4096 with 12 generators>
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.
gap> time;
1400

Note that the time statement gives the time in milliseconds spent by GAP in executing the PqExample("B2-
4-Id"); command (i.e. everything up to the Info-ing of the variables used), but over 90% of that time is
spent in the final Pq statement. The time spent by the pq program, which is negligible anyway (you can
check this by running the example while the InfoANUPQ level is set to 2), is not counted by time.

Since the identity used in the above construction of B(2, 4) is just an exponent law, the “right” way to
compute it is via the Exponent option (see 6.1.4), which is implemented at the C level and is highly optimised.
Consequently, the Exponent option is significantly faster, generally by several orders of magnitude:

gap> SetInfoLevel(InfoANUPQ, 2); # to see time spent by the ‘pq’ program
gap> PqExample("B2-4");
#I #Example: "B2-4" . . . the ‘‘right’’ way to generate B(2, 4)
#I #Generates B(2, 4) by using the ‘Exponent’ option
#I F, procId are local to ‘PqExample’
gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> Pq(F : Prime := 2, Exponent := 4);
#I Computation of presentation took 0.00 seconds
<pc group of size 4096 with 12 generators>
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.
gap> time; # time spent by GAP in executing ‘PqExample("B2-4");’
50

The following example uses the Identities option to compute a 3-Engel group for the prime 11. As is the
case for the example "B2-4-Id", the example has both a non-interactive and an interactive form; below, we
demonstrate the interactive form.

70 Appendix A. Examples

gap> SetInfoLevel(InfoANUPQ, 1); # reset InfoANUPQ to default level
gap> PqExample("11gp-3-Engel-Id", PqStart);
#I #Example: "11gp-3-Engel-Id" . . . 3-Engel group for prime 11
#I #Non-trivial example of using the ‘Identities’ option
#I F, a, b, G, f, procId, Q are local to ‘PqExample’
gap> F := FreeGroup("a", "b"); a := F.1; b := F.2;
<free group on the generators [a, b]>
a
b
gap> G := F/[a^11, b^11];
<fp group on the generators [a, b]>
gap> # All word pairs u, v in the pc generators of the 11-quotient Q of G
gap> # must satisfy the Engel identity: [u, v, v, v] = 1.
gap> f := function(u, v) return PqLeftNormComm([u, v, v, v]); end;
function(u, v) ... end
gap> procId := PqStart(G);
3
gap> Q := Pq(procId : Prime := 11, Identities := [f]);
#I Class 1 with 2 generators.
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
<pc group of size 161051 with 5 generators>
gap> # We do a ‘‘sample’’ check that pairs of elements of Q do satisfy
gap> # the given identity:
gap> f(Random(Q), Random(Q));
<identity> of ...
gap> f(Q.1, Q.2);
<identity> of ...
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

The (interactive) call to Pq above is essentially equivalent to a call to PqPcPresentation with the same
arguments and options followed by a call to PqCurrentGroup. Moreover, the call to PqPcPresentation (as
described in 5.4.10) is equivalent to a “class 1” call to PqPcPresentation followed by the requisite number
of calls to PqNextClass, and with the Identities option set, both PqPcPresentation and PqNextClass
“quietly” perform the equivalent of a PqEvaluateIdentities call. In the following example we break down
the Pq call into its low-level equivalents, and set and unset the Identities option to show where PqEval-
uateIdentities fits into this scheme.

gap> PqExample("11gp-3-Engel-Id-i");
#I #Example: "11gp-3-Engel-Id-i" . . . 3-Engel grp for prime 11
#I #Variation of "11gp-3-Engel-Id" broken down into its lower-level component
#I #command parts.
#I F, a, b, G, f, procId, Q are local to ‘PqExample’
gap> F := FreeGroup("a", "b"); a := F.1; b := F.2;
<free group on the generators [a, b]>
a
b
gap> G := F/[a^11, b^11];
<fp group on the generators [a, b]>
gap> # All word pairs u, v in the pc generators of the 11-quotient Q of G
gap> # must satisfy the Engel identity: [u, v, v, v] = 1.

Section 3. A Large Example 71

gap> f := function(u, v) return PqLeftNormComm([u, v, v, v]); end;
function(u, v) ... end
gap> procId := PqStart(G : Prime := 11);
4
gap> PqPcPresentation(procId : ClassBound := 1);
gap> PqEvaluateIdentities(procId : Identities := [f]);
#I Class 1 with 2 generators.
gap> for c in [2 .. 4] do
> PqNextClass(procId : Identities := []); #reset ‘Identities’ option
> PqEvaluateIdentities(procId : Identities := [f]);
> od;
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
gap> Q := PqCurrentGroup(procId);
<pc group of size 161051 with 5 generators>
gap> # We do a ‘‘sample’’ check that pairs of elements of Q do satisfy
gap> # the given identity:
gap> f(Random(Q), Random(Q));
<identity> of ...
gap> f(Q.1, Q.2);
<identity> of ...
#I Variables used in ‘PqExample’ are saved in ‘ANUPQData.example.vars’.

A.3 A Large Example

An example demonstrating how a large computation can be organised with the ANUPQ package is the
computation of the Burnside group B(5, 4), the largest group of exponent 4 generated by 5 elements. It has
order 22728 and lower exponent-p central class 13. The example "B5-4.g" computes B(5, 4); it is based on
a pq standalone input file written by M. F. Newman.

To be able to do examples like this was part of the motivation to provide access to the low-level functions
of the standalone program from within GAP.

Please note that the construction uses the knowledge gained by Newman and O’Brien in their initial con-
struction of B(5, 4), in particular, insight into the commutator structure of the group and the knowledge of
the p-central class and the order of B(5, 4). Therefore, the construction cannot be used to prove that B(5, 4)
has the order and class mentioned above. It is merely a reconstruction of the group. More information is
contained in the header of the file examples/B5-4.g.

procId := PqStart(FreeGroup(5) : Exponent := 4, Prime := 2);
Pq(procId : ClassBound := 2);
PqSupplyAutomorphisms(procId,

[
[[1, 1, 0, 0, 0], # first automorphism
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]],

72 Appendix A. Examples

[[0, 0, 0, 0, 1], # second automorphism
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0]]

]);;

Relations :=
[[], ## class 1
[], ## class 2
[], ## class 3
[], ## class 4
[], ## class 5
[], ## class 6
class 7
[["x2","x1","x1","x3","x4","x4","x4"]],
class 8
[["x2","x1","x1","x3","x4","x5","x5","x5"]],
class 9
[["x2","x1","x1","x3","x4","x4","x5","x5","x5"],
["x2","x1","x1","x2","x3","x4","x5","x5","x5"],
["x2","x1","x1","x3","x3","x4","x5","x5","x5"]],

class 10
[["x2","x1","x1","x2","x3","x3","x4","x5","x5","x5"],
["x2","x1","x1","x3","x3","x4","x4","x5","x5","x5"]],

class 11
[["x2","x1","x1","x2","x3","x3","x4","x4","x5","x5","x5"],
["x2","x1","x1","x2","x3","x1","x3","x4","x2","x4","x3"]],

class 12
[["x2","x1","x1","x2","x3","x1","x3","x4","x2","x5","x5","x5"],
["x2","x1","x1","x3","x2","x4","x3","x5","x4","x5","x5","x5"]],

class 13
[["x2","x1","x1","x2","x3","x1","x3","x4","x2","x4","x5","x5","x5"

]]
];

for class in [3 .. 13] do
Print("Computing class ", class, "\n");
PqSetupTablesForNextClass(procId);

for w in [class, class-1 .. 7] do

PqAddTails(procId, w);
PqDisplayPcPresentation(procId);

if Relations[w] <> [] then
recalculate automorphisms
PqExtendAutomorphisms(procId);

Section 4. Developing descendants trees 73

for r in Relations[w] do
Print("Collecting ", r, "\n");
PqCommutator(procId, r, 1);
PqEchelonise(procId);
PqApplyAutomorphisms(procId, 15); #queue factor = 15

od;

PqEliminateRedundantGenerators(procId);
fi;
PqComputeTails(procId, w);

od;
PqDisplayPcPresentation(procId);

smallclass := Minimum(class, 6);
for w in [smallclass, smallclass-1 .. 2] do

PqTails(procId, w);
od;
recalculate automorphisms
PqExtendAutomorphisms(procId);
PqCollect(procId, "x5^4");
PqEchelonise(procId);
PqApplyAutomorphisms(procId, 15); #queue factor = 15
PqEliminateRedundantGenerators(procId);
PqDisplayPcPresentation(procId);

od;

A.4 Developing descendants trees

In the following example we will explore the 3-groups of rank 2 and 3-coclass 1 up to 3-class 5. This will be
done using the p-group generation machinery of the package. We start with the elementary abelian 3-group
of rank 2. From within GAP, run the example "PqDescendants-treetraverse-i" via PqExample (see 3.4.4).

gap> G := ElementaryAbelianGroup(9);
<pc group of size 9 with 2 generators>
gap> procId := PqStart(G);
5
gap> #
gap> # Below, we use the option StepSize in order to construct descendants
gap> # of coclass 1. This is equivalent to setting the StepSize to 1 in
gap> # each descendant calculation.
gap> #
gap> # The elementary abelian group of order 9 has 3 descendants of
gap> # 3-class 2 and 3-coclass 1, as the result of the next command
gap> # shows.
gap> #
gap> PqDescendants(procId : StepSize := 1);
[<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>,
<pc group of size 27 with 3 generators>]

gap> #
gap> # Now we will compute the descendants of coclass 1 for each of the
gap> # groups above. Then we will compute the descendants of coclass 1

74 Appendix A. Examples

gap> # of each descendant and so on. Note that the pq program keeps
gap> # one file for each class at a time. For example, the descendants
gap> # calculation for the second group of class 2 overwrites the
gap> # descendant file obtained from the first group of class 2.
gap> # Hence, we have to traverse the descendants tree in depth first
gap> # order.
gap> #
gap> PqPGSetDescendantToPcp(procId, 2, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
2
gap> PqPGSetDescendantToPcp(procId, 3, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
2
gap> PqPGSetDescendantToPcp(procId, 4, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
2
gap> #
gap> # At this point we stop traversing the ‘‘left most’’ branch of the
gap> # descendants tree and move upwards.
gap> #
gap> PqPGSetDescendantToPcp(procId, 4, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> PqPGSetDescendantToPcp(procId, 3, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> #
gap> # The computations above indicate that the descendants subtree under
gap> # the first descendant of the elementary abelian group of order 9
gap> # will have only one path of infinite length.
gap> #
gap> PqPGSetDescendantToPcp(procId, 2, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
4
gap> #
gap> # We get four descendants here, three of which will turn out to be
gap> # incapable, i.e., they have no descendants and are terminal nodes
gap> # in the descendants tree.
gap> #
gap> PqPGSetDescendantToPcp(procId, 2, 3);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0

Section 4. Developing descendants trees 75

gap> #
gap> # The third descendant of class three is incapable. Let us return
gap> # to the second descendant of class 2.
gap> #
gap> PqPGSetDescendantToPcp(procId, 2, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
4
gap> PqPGSetDescendantToPcp(procId, 3, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> PqPGSetDescendantToPcp(procId, 3, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> #
gap> # We skip the third descendant for the moment ...
gap> #
gap> PqPGSetDescendantToPcp(procId, 3, 4);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> #
gap> # ... and look at it now.
gap> #
gap> PqPGSetDescendantToPcp(procId, 3, 3);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
6
gap> #
gap> # In this branch of the descendant tree we get 6 descendants of class
gap> # three. Of those 5 will turn out to be incapable and one will have
gap> # 7 descendants.
gap> #
gap> PqPGSetDescendantToPcp(procId, 4, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> PqPGSetDescendantToPcp(procId, 4, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
7
gap> PqPGSetDescendantToPcp(procId, 4, 3);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0

76 Appendix A. Examples

To automate the above procedure to some extent we provide:

1I PqDescendantsTreeCoclassOne(i) F
I PqDescendantsTreeCoclassOne() F

for the ith or default interactive ANUPQ process, generate a descendant tree for the group of the process
(which must be a pc p-group) consisting of descendants of p-coclass 1 and extending to the class determined
by the option TreeDepth (or 6 if the option is omitted). In an XGAP session, a graphical representation of the
descendants tree appears in a separate window. Subsequent calls to PqDescendantsTreeCoclassOne for the
same process may be used to extend the descendant tree from the last descendant computed that itself has
more than one descendant. PqDescendantsTreeCoclassOne also accepts the options CapableDescendants
(or AllDescendants) and any options accepted by the interactive PqDescendants function (see 5.3.6).

Notes

1. PqDescendantsTreeCoclassOne first calls PqDescendants. If PqDescendants has already been called
for the process, the previous value computed is used and a warning is Info-ed at InfoANUPQ level 1.

2. As each descendant is processed its unique label defined by the pq program and number of descendants
is Info-ed at InfoANUPQ level 1.

3. PqDescendantsTreeCoclassOne is an “experimental” function that is included to demonstrate the sort
of things that are possible with the p-group generation machinery.

Ignoring the extra functionality provided in an XGAP session, PqDescendantsTreeCoclassOne, with one
argument that is the index of an interactive ANUPQ process, is approximately equivalent to:

PqDescendantsTreeCoclassOne := function(procId)
local des, i;

des := PqDescendants(procId : StepSize := 1);
RecurseDescendants(procId, 2, Length(des));

end;

where RecurseDescendants is (approximately) defined as follows:

RecurseDescendants := function(procId, class, n)
local i, nr;

if class > ValueOption("TreeDepth") then return; fi;

for i in [1..n] do
PqPGSetDescendantToPcp(procId, class, i);
PqPGExtendAutomorphisms(procId);
nr := PqPGConstructDescendants(procId : StepSize := 1);
Print("Number of descendants of group ", i,

" at class ", class, ": ", nr, "\n");
RecurseDescendants(procId, class+1, nr);

od;
return;

end;

The following examples (executed via PqExample; see 3.4.4), demonstrate the use of PqDescendantsTreeCo-
classOne:

"PqDescendantsTreeCoclassOne-9-i"
approximately redoes example "PqDescendants-treetraverse-i" using PqDescendantsTreeCo-
classOne;

Section 4. Developing descendants trees 77

"PqDescendantsTreeCoclassOne-16-i"
uses the option CapableDescendants; and

"PqDescendantsTreeCoclassOne-25-i"
calculates all descendants by omitting the CapableDescendants option.

The numbers 9, 16 and 25 respectively, indicate the order of the elementary abelian group to which PqDe-
scendantsTreeCoclassOne is applied for these examples.

Bibliography

[HN80] George Havas and M[ichael] F. Newman. Application of computers to questions like those of
Burnside. In J[ens] L. Mennicke, editor, Burnside groups, Proceedings of a workshop, Bielefeld,
Germany, 1977, volume 806 of Lecture Notes in Math., pages 211–230. Springer, Berlin, Heidelberg
and New York, 1980.

[LGS90] C. R. Leedham-Green and L. H. Soicher. Collection from the left and other strategies. J. Symbolic
Comput., 9(5-6):665–675, 1990. Computational group theory, Part 1.

[New77] M[ichael] F. Newman. Determination of groups of prime-power order. In R. A. Bryce, J. Cossey,
and M[ichael] F. Newman, editors, Group theory, Proc. Miniconf., Austral. Nat. Univ., Canberra,
1975, volume 573 of Lecture Notes in Math., pages 73–84. Springer, Berlin, Heidelberg and New
York, 1977.

[NNN98] M. F. Newman, Werner Nickel, and Alice C. Niemeyer. Descriptions of groups of prime-power order.
J. Symbolic Comput., 25(5):665–682, 1998.

[NO96] M[ichael] F. Newman and E[amonn] A. O’Brien. Application of computers to questions like those
of Burnside, II. Internat. J. Algebra Comput., 6:593–605, 1996.

[O’B90] E[amonn] A. O’Brien. The p-group generation algorithm. J. Symbolic Comput., 9:677–698, 1990.

[O’B94] E[amonn] A. O’Brien. Isomorphism testing for p-groups. J. Symbolic Comput., 17 (1):133–147,
1994.

[O’B95] E[amonn] A. O’Brien. Computing automorphism groups of p-groups. In Wieb Bosma and Alf
van der Poorten, editors, Computational Algebra Number and Number Theory, pages 83–90.
(Sydney, 1992), Kluwer Academic Publishers, Dordrecht, 1995.

[Sim94] C. C. Sims. Computation with Finitely Presented Groups. Cambridge University Press, 1994.

[VL84] M[ichael] R. Vaughan-Lee. An aspect of the Nilpotent Quotient Algorithm. In Michael D. Atkinson,
editor, Computational Group Theory, Proceedings LMS Symposium on Computational Group
Theory, Durham 1982, pages 75–84. Academic Press, 1984.

[VL90a] M[ichael] R. Vaughan-Lee. Collection from the left. J. Symbolic Comput., 9:725–733, 1990.

[VL90b] M[ichael] R. Vaughan-Lee. The restricted Burnside problem, volume 5 of London Math. Soc.
Monographs. Oxford University Press, 1990.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A
A Large Example, 71
AllANUPQoptions, 53
allowable subgroup, 7
AllPqExamples, 15
anupq, 3
ANUPQ GAP EXEC, environment variable, 61–63
ANUPQData, 11
ANUPQDirectoryTemporary, 13
ANUPQoptions, 53
ANUPQWarnOfOtherOptions, 17
Attributes and a Property for fp and pc p-groups,

15
Authors and Acknowledgements, 4
automorphisms, of p-groups, 23, 33

B
B(5, 4), 71
banner, 10

suppression, 10
Basic notions, 6
bug reports, 4

C
capable, 7
Change history, 4
class, 7
collection, 6
compaction, 9
Computing Descendants of a p-Group, 26
Computing p-Quotients, 19
Computing Standard Presentations, 23
confluent, 6
confluent rewriting system, 6
consistency conditions, 6
consistent, 6

D
definition, of generator, 8
descendant, 7

Detailed descriptions of ANUPQ Options, 54
Developing descendants trees, 73

E
echelonised matrix, 9
Engel identity, 8
EpimorphismPqStandardPresentation, 24

interactive, 34
EpimorphismStandardPresentation, 24

interactive, 34
exponent-p central series, 7
exponent check, 9
exponent law, 8
extended automorphism, 7

G
GrepPqExamples, 15

H
Hints and Warnings regarding the use of Options,

16

I
identical relation, 8
immediate descendant, 7
InfoANUPQ, 13, 63
Interactive ANUPQ Process Utility Functions, 30
Interactive Versions of Non-interactive ANUPQ

Functions, 31
interruption of an interactive ANUPQ process, 30
IsCapable, 15
IsIsomorphicPGroup, 25
isomorphism testing, 9
IsPqIsomorphicPGroup, 25
IsPqProcessAlive, 30

L
labelled pcp, 8
label of standard matrix, 9
law, 8
Loading the ANUPQ Package, 10

80 Index

Low-level Interactive ANUPQ Functions based on
menu items of the pq program, 38

M
menu item, of pq program, 16
metabelian law, 8
MultiplicatorRank, 15
multiplicator rank, 7

N
NuclearRank, 15
nucleus, 7

O
option, of pq program is a menu item, 16
option AllDescendants, 26, 35, 57
option BasicAlgorithm, 26, 35, 57
option Bounds, 58
option CapableDescendants, 26, 35, 56
option ClassBound, 19, 23, 26, 31, 33, 35, 48, 54
option CustomiseOutput, 26, 35, 57
option Exponent, 19, 23, 26, 31, 33, 35, 54
option Filename, 59
option GroupName, 19, 23, 26, 31, 33, 35, 54
option Identities, 19, 31, 55

example of usage, 21
option Metabelian, 19, 23, 26, 31, 33, 35, 54
option NumberOfSolubleAutomorphisms, 57
option OrderBound, 26, 35, 56
option OutputLevel, 19, 23, 31, 33, 55
option PcgsAutomorphisms, 48, 56
option pkgbanner, 4
option pQuotient, 23, 33, 54
option PqWorkspace, 19, 23, 26, 56
option Prime, 19, 23, 31, 33, 54
option PrintAutomorphisms, 58
option PrintPermutations, 58
option QueueFactor, 40, 58
option RankInitialSegmentSubgroups, 26, 35, 56
option RedoPcp, 31, 55
option RelativeOrders, 57
option Relators, 19, 26, 31, 35, 54

example of usage, 20
option SetupFile, 19, 23, 26, 55
option SpaceEfficient, 26, 35, 56
option StandardPresentationFile, 23, 33, 48, 58
option StepSize, 26, 35, 56, 56
option SubList, 26, 35, 57
option TreeDepth, 57

orbits, 9

P
p-class, 7
p-cover, 7
p-covering group, 7
p-group generation, 9
p-multiplicator, 7
p-multiplicator rank, 7
pc generators, 6
pcp, 6
pc presentation, 6
permutations, 7
power-commutator presentation, 6
Pq, 19

interactive, 31
PqAddTails, 42
PqAPGDegree, 50
PqAPGOrbitRepresentatives, 50
PqAPGOrbits, 50
PqAPGPermutations, 50
PqAPGSingleStage, 51
PqApplyAutomorphisms, 46
PqCollect, 41
PqCollectDefiningRelations, 43
PqCollectWordInDefiningGenerators, 43
PqCommutator, 41
PqCommutatorDefiningGenerators, 43
PqCompact, 45
PqComputePCover, 40
PqComputeTails, 42
PqCurrentGroup, 38
PqDescendants, 26

interactive, 35
PqDescendantsTreeCoclassOne, 76
PqDisplayAutomorphisms, 47
PqDisplayPcPresentation, 39
PqDisplayStructure, 46
PqDoConsistencyCheck, 44
PqDoConsistencyChecks, 42
PqDoExponentChecks, 44
PqEchelonise, 45
PqEliminateRedundantGenerators, 44
PqEpimorphism, 21

interactive, 32
PqEvaluateIdentities, 39
PqExample, 15
PqExtendAutomorphisms, 46

Index 81

PqFactoredOrder, 38
PqGAPRelators, 14, 64
PqJacobi, 44
PqLeftNormComm, 14, 64
PqList, 28
PqNextClass, 40
PqNrPcGenerators, 38
PqOrder, 38
PqParseWord, 14
PqPClass, 38
PqPCover, 22

interactive, 32
PqPcPresentation, 39
PqPGConstructDescendants, 49
PqPGExtendAutomorphisms, 49
PqPGRestoreDescendantFromFile, 49
PqPGSetDescendantToPcp, 49
PqPGSupplyAutomorphisms, 49
PqProcessIndex, 30
PqProcessIndices, 30
PqQuit, 30
PqQuitAll, 30
PqRead, 51
PqReadAll, 51
PqReadUntil, 51
PqRestorePcPresentation, 40
PqRevertToPreviousClass, 44
PqSavePcPresentation, 40
PqSetMaximalOccurrences, 44
PqSetMetabelian, 44
PqSetOutputLevel, 39
PqSetPQuotientToGroup, 37
PqSetupTablesForNextClass, 41
PqSolveEquation, 41
PqSPCompareTwoFilePresentations, 48
PqSPComputePcpAndPCover, 47
PqSPIsomorphism, 48
PqSPSavePresentation, 48
PqSPStandardPresentation, 47
PqStandardPresentation, 23

interactive, 33

PqStart, 29
PqSupplementInnerAutomorphisms, 28
PqSupplyAutomorphisms, 45
PqTails, 42
PqWeight, 38
PqWrite, 51
PqWritePcPresentation, 47
Primitive Interactive ANUPQ Process Read/Write

Functions, 51

R
Running the pq program as a standalone, 63

S
SavePqList, 28
Setting the Verbosity of ANUPQ via Info and

InfoANUPQ, 13, 63
StandardPresentation, 23

interactive, 33
standard presentation, 9
Starting and Stopping Interactive ANUPQ

Processes, 29

T
tails, 8
terminal, 7
Testing p-Groups for Isomorphism, 25
Testing your ANUPQ installation, 62
The ANUPQData Record, 11
The Identities Option and PqEvaluateIdentities

Function, 68
The p-group generation Algorithm, Standard

Presentation, Isomorphism Testing, 9
The p-quotient Algorithm, 8
The Relators Option, 67
ToPQLog, 15
troubleshooting tips, 17

U
Utility Functions, 14, 64

W
weighted pcp, 7
weight function, 7

	Contents
	Introduction
	Authors and Acknowledgements
	Change history

	Mathematical Background and Terminology
	Basic notions
	The p-quotient Algorithm
	The p-group generation Algorithm, Standard Presentation, Isomorphism Testing

	Infrastructure
	Loading the ANUPQ Package
	The ANUPQData Record
	Setting the Verbosity of ANUPQ via Info and InfoANUPQ
	Utility Functions
	Attributes and a Property for fp and pc p-groups
	Hints and Warnings regarding the use of Options

	Non-interactive ANUPQ functions
	Computing p-Quotients
	Computing Standard Presentations
	Testing p-Groups for Isomorphism
	Computing Descendants of a p-Group

	Interactive ANUPQ functions
	Starting and Stopping Interactive ANUPQ Processes
	Interactive ANUPQ Process Utility Functions
	Interactive Versions of Non-interactive ANUPQ Functions
	Low-level Interactive ANUPQ Functions based on menu items of the pq program
	Primitive Interactive ANUPQ Process Read/Write Functions

	ANUPQ Options
	Detailed descriptions of ANUPQ Options

	Installing the ANUPQ Package
	Testing your ANUPQ installation
	Running the pq program as a standalone
	Setting the Verbosity of ANUPQ via Info and InfoANUPQ
	Utility Functions

	Examples
	The Relators Option
	The Identities Option and PqEvaluateIdentities Function
	A Large Example
	Developing descendants trees
	Bibliography
	Index
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

