Übungen zur Algebraischen Zahlentheorie (WS 2023)

PD Dr. Jürgen Müller, Ausgabe: 09.11.2023

(5.1) Exercise: Invertible ideals.

Let R be an integral domain, and let $\{0\} \neq I \unlhd R$. Show the following:
a) If $\{0\} \neq J \unlhd R$, then I and J are isomorphic as R-modules if and only if there are $r, s \in R \backslash\{0\}$ such that $r I=s J$.
b) If I is invertible then it is finitely generated.
c) The set of invertible ideals forms an Abelian monoid, which is free if and only if R is a principal ideal domain.

(5.2) Exercise: Dedekind domains.

Let R be a Dedekind domain. Show the following:
a) If R has only finitely many prime ideals, then R is a principal ideal domain.
b) If $\{0\} \neq \mathfrak{a} \unlhd R$, then all ideals of R / \mathfrak{a} are principal. (Thus if \mathfrak{a} is prime then R / \mathfrak{a} is a principal ideal domain.)

(5.3) Exercise: Non-factorial quadratic number rings.

For $d \in \mathbb{Z} \backslash\{0,1\}$ square-free let \mathcal{O}_{d} be the ring of integers of $\mathbb{Q}(\sqrt{d})$. Show that \mathcal{O}_{d} is not factorial for the following d (actually these are all cases for $|d| \leq 30$), by exhibiting elements having non-unique factorisations into irreducible elements:
a) $d \in\{-5,-6,-10,-13,-14,-15,-17,-21,-22,-23,-26,-29,-30\}$,
b) $d \in\{10,15,26,30\}$.
(5.4) Exercise: Non-factorial domains.

For $d \in \mathbb{Z} \backslash\{0,1\}$ square-free let \mathcal{O}_{d} be the ring of integers of $\mathbb{Q}(\sqrt{d})$, and let $R_{d}:=\mathbb{Z}[\sqrt{d}] \subseteq \mathcal{O}_{d}$; recall that $R_{d}=\mathcal{O}_{d}$ if and only if $d \not \equiv 1(\bmod 4)$.
a) Let $d \leq-3$ be odd. Show that $2 \in R_{d}$ is irreducible but not prime.
b) Let $d \leq-5$ such that $d \equiv 3(\bmod 4)$. Show that $d-1$ and $2+2 \sqrt{d}$ do not have a greatest common divisor in R_{d}.
c) Let $d:=-3$. Show that there is a unique prime ideal $\mathfrak{p} \triangleleft R_{-3}$ containing (2), and show that $\mathfrak{p} \neq(2)$ and $\mathfrak{p}^{2}=2 \mathfrak{p}$. Is (2) a product of prime ideals?

What do the above results imply for \mathcal{O}_{d} ?

