Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 1 (12.10.2025)

Introduction

(1.1) Example: Solving polynomial equations. Let $\mathcal{X} := \{X, Y, Z\}$ be indeterminates over \mathbb{C} , and let $\mathbb{C}[\mathcal{X}]$ be the associated polynomial \mathbb{C} -algebra. We consider the following polynomials in $f, g, h \in \mathbb{C}[\mathcal{X}]$:

$$f := X + Y + Z - 1,$$

$$g := X^2 + Y^2 + Z^2 - 1,$$

$$h := X^3 + Y^3 + Z^3 - 1,$$

and let $I := \langle f, g, h \rangle \subseteq \mathbb{C}[\mathcal{X}]$ be the ideal generated by them. We aim at finding the complex solutions of the equations 'f = g = h = 0', that is the set

$$\mathbf{V}(f, g, h) := \{ [x, y, z] \in \mathbb{C}^3; f(x, y, z) = g(x, y, z) = h(x, y, z) = 0 \}.$$

Then we have $\mathbf{V}(f, g, h) = \mathbf{V}(I) = \{v \in \mathbb{C}^3; p(v) = 0 \text{ for } p \in I\}.$

i) In order to determine V(I), we try to find suitable elements of I by 'eliminating indeterminates': To this end, we order monomials **lexicographically** with respect to 'X > Y > Z > 1', and apply polynomial divisioa iteratively. (This falls short of applying the full **Buchberger algorithm**, but suffices here to actually find a **Gröbner basis**.) We successively get:

Dividing h by f we get $b' := h - X^2 f = -X^2 Y - X^2 Z + X^2 + Y^3 + Z^3 - 1$, and proceeding further we obtain

$$\begin{array}{ll} b &:=& \frac{1}{3} \left(b' + (XY + XZ - X - Y^2 - 2YZ - Z^2 + 2Y + 2Z - 1)f \right) \\ &=& -Y^2Z + Y^2 - YZ^2 + 2YZ - Y + Z^2 - Z. \end{array}$$

Similarly, dividing g by f we get $c':=g-Xf=-XY-XZ+X+Y^2+Z^2-1$, and proceeding further we obtain

$$c := \frac{1}{2} (c' + (Y + Z - 1)f) = Y^2 + YZ - Y + Z^2 - Z.$$

Finally, dividing b by c we get $d := b + (Z - 1)c = Z^3 - Z^2$.

Hence we have $I=\langle f,g,h\rangle=\langle c,b,f\rangle=\langle d,c,f\rangle \unlhd \mathbb{C}[\mathcal{X}].$ Now let $[x,y,z]\in \mathbf{V}(I).$ Then from d=Z(Z-1) we get $z\in\{0,1\}.$ Next, from $c=Y^2+Y(Z-1)+Z(Z-1),$ for z=1 we get y=0, and for z=0 we get $y\in\{0,1\}.$ Finally, from f=X+Y+Z-1, for $[y,z]\in\{[0,1],[1,0]\}$ we get x=0, and for [y,z]=[0,0] we get x=1. Hence we conclude that $\mathbf{V}(I)=\{[0,0,1],[0,1,0],[1,0,0]\}.$ (Note that we have three indeterminates, three equations, and a finite variety.)

ii) In the present case, next to the general attack using polynomial division, there is an approach taking advantage of the particular situation:

The symmetric group S_3 acts on $\mathbb{C}[\mathcal{X}]$ by \mathbb{C} -algebra automorphisms given by permuting the indeterminates. Since $f, g, h \in \mathbb{C}[\mathcal{X}]$ are S_3 -invariant, so is $I = \langle f, g, h \rangle \subseteq \mathbb{C}[\mathcal{X}]$, and thus S_3 also acts on $\mathbf{V}(I)$.

Appealing to the **Newton identities** for symmetric polynomials, entangling power sum polynomials and elementary symmetric polynomials, we infer that

$$e_2 = \frac{1}{2}(f^2 - g + 2f) = XY + XZ + YZ,$$

$$e_3 = \frac{1}{3}(h - f^3 + 3fe_2 - 3g - 3e_2 + 3f) = \frac{1}{6}(2h + f^3 - 3fg + 3f^2 - 3g) = XYZ.$$

Thus we have $I = \langle f, g, h \rangle = \langle f, e_2, e_3 \rangle \subseteq A$. (Noting that $f = e_1 - 1$, we actually have $\mathbb{C}[f, g, h] = \mathbb{C}[f, e_2, e_3] = \mathbb{C}[e_1, e_2, e_3]$.

Now let again $[x, y, z] \in \mathbf{V}(I)$. Then $e_3 = XYZ$ shows, using the \mathcal{S}_3 -action, that we may assume x = 0. Next, $e_2 = XY + XZ + YZ$ shows, using the \mathcal{S}_3 -action again, that we may assume y = 0 as well. Finally f = X + Y + Z - 1 yields z = 1. Thus in conclusion we get $\mathbf{V}(I) = \{[0, 0, 1], [0, 1, 0], [1, 0, 0]\}$.