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(12.1) Projective algebraic sets and their ideals. a) We keep the earlier
notation, and let K ⊆ L is a field extension. Then the elements of A] do not
induce functions on P. But still, whenever f ∈ A] is homogeneous of degree d,
for [x0, . . . , xn] ∈ Ln+1 we have f(λ · [x0, . . . , xn]) = λd · f(x0, . . . , xn), for all
λ ∈ L∗, so that f(λ · [x0, . . . , xn]) 6= 0 if and only if f([x0, . . . , xn]) 6= 0. Thus
the vanishing set in P of f is well-defined, by taking representatives in Ln+1 of
the equivalence classes in P.

Hence, let S ⊆ A] be a subset consisting of homogenous polynomials. Then

V]
L(S) := {v ∈ P; f(v) = 0 for all f ∈ S} ⊆ P

is called the (projective) (K-)algebraic subset, being defined by S; then K
and L are called its field of definition and field of coordinates, respectively.

If I E A] is homogeneous, let V]
L(I) := V]

L({f ∈ I; f homogeneous}). In

particular, we have V]
L(S) = V]

L(〈S〉). Thus by Hilbert’s Basis Theorem there

are f1, . . . , fr ∈ S, for some r ∈ N0, such that V]
L(S) = V]

L(f1, . . . , fr). Hence
any projective algebraic set is defined by a homogenous ideal, or alternatively by
finitely many homogenous polynomials. Moreover, for I ⊆ J E A] homogenous
we have V]

L(J) ⊆ V]
L(I), and V]

L(
√
I) = V]

L(I).

For example, we have V]
L(0) = P, and V]

L(1) = ∅ = V]
L(X ]) = V]

L(A]
+). More

interestingly, an algebraic set defined by a single homogeneous polynomial of
degree d ≥ 1 is called a (projective) hypersurface of degree d; for n = 2
the latter is also called a (projective) curve.

A hypersurface of degree 1 is called a (projective) hyperplane; in particular,

we have Hi := V]
L(Xi) = {[x0 : . . . : xn] ∈ P;xi = 0} = P \ Ui, for i ∈

{0, . . . , n}, where the elements of H0 = P \U0 are called (for historical reasons)
the points at infinity of P. Note that this depends on the coordinates chosen,
so that any hyperplane can be deemed to be at infinity.

b) Let V ⊆ P be any subset. Then the vanishing ideal of V is defined as

I]K(V ) := 〈{f ∈ A] homogeneous; f(v) = 0 for all v ∈ V }〉EA].

Then we have I]K(V ) =
√

I]K(V ), and for V ⊆ W we get I]K(W ) ⊆ I]K(V ); in

particular we have I]K(∅) = A].

c) We consider the interplay between the operators V]
L and I]K , where entirely

similar to the affine case we observe the following:

For any V ⊆ P and any I E A] homogeneous we get V ⊆ V]
L(I]K(V )) and

I ⊆ I]K(V]
L(I)), which entails V]

L(I]K(V]
L(I))) = V]

L(I) and I]K(V]
L(I]K(V ))) =
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I]K(V ). In particular, for algebraic subsets V,W ⊆ P we get V ⊆W if and only

if I]K(W) ⊆ I]K(V), and V = W if and only if I]K(W) = I]K(V); in particular,

if V 6= ∅ then from V]
L(A]

+) = ∅ we get I]K(V) ⊂ A]
+.

We consider (arbitrary) intersections and (finite) unions of algebraic sets:

Firstly, for algebraic sets Vi ⊆ P, for i ∈ I, where I is a (possibly infinite) index

set, we have V]
L(
∑

i∈I I]K(Vi)) =
⋂

i∈I V]
L(I]K(Vi)) =

⋂
i∈I Vi; in particular,

an arbitrary intersection of algebraic sets is algebraic again.

Secondly, for algebraic sets V,W ⊆ P we have V∪W = V]
L(I]K(V)∩I]K(W)) =

V]
L(I]K(V) · I]K(W)); in particular, a finite union of algebraic sets is algebraic

again. (This again is obtained entirely similar to the affine case, by observing
that the polynomials occurring can be chosen homogeneous.)

Thus the smallest algebraic set containing V ⊆ P is given as V := V]
L(I]K(V )).

(12.2) Projective varieties. a) We keep the above notation. By the proper-
ties proved above, the set of algebraic subsets of P form the closed subsets of a
topology, called the (K-)Zariski topology. Thus an algebraic subset V ⊆ P
will just be called (K-)closed, and it carries the induced topology, also called
its Zariski topology.

Going over to vanishing ideals in A], we conclude that the Zariski topology is
Noetherian, so that any closed subset of P is the finite union of its irreducible
components. In view of this, we observe that a closed subset V ⊆ P is irreducible
if and only if its vanishing ideal I]K(V) EA] is prime:

We have V 6= ∅ if and only if I := I]K(V) ⊂ A]. To show that I is prime, it
suffices to check for f, g ∈ A] homogeneous that fg ∈ I implies f ∈ I or g ∈ I;
thus we may proceed entirely similar to the affine case treated earlier. ]

b) This entails the following algebraic-geometric correspondence: The op-

erator I]K induces an inclusion-reversing (with respect to set-theoretic inclusion)
injective correspondence

I]K : {V ⊆ P projective K-closed} → {A]
+ 6= I EA] radical homogeneous},

whose inverse on the image of I]K is given by the operator V]
L. Moreover, a

closed subset V ⊆ P is irreducible if and only if I]K(V) E A] is prime. In

addition, if L is algebraically closed then I]K is surjective, which follows from:

(12.3) Theorem: Hilbert’s Nullstellensatz (projective version).

Let L be algebraically closed, let I EA] be homogeneous, and let V := V]
L(I).

Then precisely one of the following cases occurs:
i) We have V = ∅ and A]

+ ⊆
√
I EA] = I]K(V).

ii) We have V 6= ∅ and I]K(V) =
√
I ⊂ A]

+ CA].
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Proof. A subset ∅ 6= V ⊆ Ln+1 is called an (affine) cone if for any v ∈ V we
have 〈v〉L ⊆ V as well; in particular we have 0n+1 ∈ V , and {0n+1} is a cone.

We may assume that I C A], and let Ṽ := VL(I) ⊆ Ln+1 be the associated

affine closed subset. Then by Hilbert’s Nullstellensatz we have Ṽ 6= ∅, such
that IK(Ṽ) =

√
I. Then we conclude that Ṽ is a closed cone, where Ṽ \{0n+1}

consists precisely of the equivalence classes with respect to ∼ belonging to V.

We have Ṽ = {0n+1} if and only if
√
I = 〈X ]〉 = A]

+ CA]. In this case we have

V = ∅ and I]K(V) = A]; otherwise, V 6= ∅ and I]K(V) = IK(Ṽ) =
√
I ⊆ A]

+. ]
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