Algebraic Geometry (WS 2025)
PD Dr. Jiirgen Miiller, Lecture 12 (12.11.2025)

(12.1) Projective algebraic sets and their ideals. a) We keep the earlier
notation, and let K C L is a field extension. Then the elements of A% do not
induce functions on P. But still, whenever f € A* is homogeneous of degree d,
for [xo,...,7,] € L™ we have f(\- [2o,...,7,]) = A% - f(20,...,7,), for all
A € L*, so that f(A- [zo,...,2]) # 0 if and only if f([xo,...,zy]) # 0. Thus
the vanishing set in P of f is well-defined, by taking representatives in L™*! of
the equivalence classes in P.

Hence, let S C A* be a subset consisting of homogenous polynomials. Then
VuL(S) ={veP;f(v)=0forall feS}CP

is called the (projective) (K-)algebraic subset, being defined by S; then K
and L are called its field of definition and field of coordinates, respectively.

If I < A¥ is homogeneous, let VuL(I) = VﬁL({f € I; f homogeneous}). In
particular, we have VﬁL(S) = VﬁL(<S>) Thus by Hilbert’s Basis Theorem there
are f1,..., fr €S, for some r € Ny, such that VuL(S) = VuL(fl, ..., fr). Hence
any projective algebraic set is defined by a homogenous ideal, or alternatively by
finitely many homogenous polynomials. Moreover, for I C J < A¥ homogenous
we have V% (J) C VA (I), and V (VT) = Vi (I).

For example, we have VﬁL(O) =P,and Vi (1) =0 = VﬁL(Xﬁ) = V%(Aﬂ_) More
interestingly, an algebraic set defined by a single homogeneous polynomial of
degree d > 1 is called a (projective) hypersurface of degree d; for n = 2
the latter is also called a (projective) curve.

A hypersurface of degree 1 is called a (projective) hyperplane; in particular,
we have H; := VﬁL(Xl-) = {[zo: ... xp] € P;x; = 0} = P\ U, fori €
{0,...,n}, where the elements of Hy = P\ Uj are called (for historical reasons)
the points at infinity of P. Note that this depends on the coordinates chosen,
so that any hyperplane can be deemed to be at infinity.

b) Let V C P be any subset. Then the vanishing ideal of V is defined as

InK(V) .= ({f € A* homogeneous; f(v) = 0 for all v € V'}) < A%

Then we have IuK(V) = \/Ii}((V), and for V C W we get IﬁK(W) - InK(V); in
particular we have IﬁK (0) = AF.

c) We consider the interplay between the operators VﬁL and IuK7 where entirely
similar to the affine case we observe the following:

For any V C P and any I < A* homogeneous we get V C VﬁL(IﬁK(V ) and
I C T (V% (I)), which entails V* (T4 (V¥ (1)) = V% (I) and T% (VA (T (V) =



IﬁK(V). In particular, for algebraic subsets V, W C P we get V C W if and only
if 1% (W) C T (V), and V = W if and only if I} (W) = I} (V); in particular,
if V 2 ) then from VﬁL(Aﬂ) = () we get T4 (V) C Ai.

We consider (arbitrary) intersections and (finite) unions of algebraic sets:

Firstly, for algebraic sets V; C P, for i € Z, where Z is a (possibly infinite) index
set, we have VﬁL(ZieI IﬁK(Vl)) = Niez VuL(IﬁK(Vi)) = Niez Vi; in particular,
an arbitrary intersection of algebraic sets is algebraic again.

Secondly, for algebraic sets V, W C P we have VUW = VuL (I%(V)ﬁIﬁK(W)) =
VﬁL(InK(V) - IuK(W))7 in particular, a finite union of algebraic sets is algebraic
again. (This again is obtained entirely similar to the affine case, by observing
that the polynomials occurring can be chosen homogeneous.)

Thus the smallest algebraic set containing V C P is given as V := V%(IﬁK(V))

(12.2) Projective varieties. a) We keep the above notation. By the proper-
ties proved above, the set of algebraic subsets of P form the closed subsets of a
topology, called the (K-)Zariski topology. Thus an algebraic subset V. C P
will just be called (K-)closed, and it carries the induced topology, also called
its Zariski topology.

Going over to vanishing ideals in A%, we conclude that the Zariski topology is
Noetherian, so that any closed subset of P is the finite union of its irreducible
components. In view of this, we observe that a closed subset V C P is irreducible
if and only if its vanishing ideal InK (V) < A% is prime:

We have V # () if and only if T := IﬁK(V) C A*. To show that I is prime, it
suffices to check for f,g € A* homogeneous that fg € I implies f € I or g € I;
thus we may proceed entirely similar to the affine case treated earlier. #

b) This entails the following algebraic-geometric correspondence: The op-
erator IﬁK induces an inclusion-reversing (with respect to set-theoretic inclusion)
injective correspondence

IﬁK: {V C P projective K-closed} — {AftF # I <9 A radical homogeneous},

whose inverse on the image of IﬁK is given by the operator VﬁL. Moreover, a
closed subset V C P is irreducible if and only if IﬁK(V) < Af is prime. In
addition, if L is algebraically closed then IﬁK is surjective, which follows from:

(12.3) Theorem: Hilbert’s Nullstellensatz (projective version).

Let L be algebraically closed, let I < A* be homogeneous, and let V := VHL (I).
Then precisely one of the following cases occurs:

i) We have V = § and A% C VT < Af = T4 (V).

ii) We have V # () and T4 (V) = VT C A% < A%



Proof. A subset § #V C L™ is called an (affine) cone if for any v € V we
have (v);, C V as well; in particular we have 0,11 € V, and {0,,41} is a cone.

We may assume that I <1 Af, and let V= Vi (I) € L™ be the associated
affine closed subset. Then by Hilbert’s Nullstellensatz we have v # 0, such
that I (V) = v/I. Then we conclude that V is a closed cone, where V \ {0,,11}
consists precisely of the equivalence classes with respect to ~ belonging to V.

We have V = {0,,41} if and only if vT = (x#) = AﬁJr <1 A*. In this case we have
V =0 and 1% (V) = A%; otherwise, V # 0 and I} (V) = I (V) = VI C A%, ¢




