
Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 3 (15.10.2025)

All rings and algebras occurring in the sequel will be commutative, associative,
and unital, unless otherwise specified.

Affine varieties

(3.1) Hilbert’s Basis Theorem. Recall that a ring R is called Noetherian if
any ideal of R is finitely generated. This is equivalent to saying that R fulfills the
ascending chain condition (A.C.C.) on ideals, that is any strictly ascending
chain of ideals of R terminates. Moreover, it is equivalent to the maximum
condition on ideals, that is any set of ideals R contains a maximal element.

This implies that any generating set of an ideal of R contains a finite generating
set. For example, any principal ideal ring, and thus any field is Noetherian.

Theorem: Hilbert [1890]. Let R be a Noetherian ring, and let X be an
indeterminate. Then the polynomial ring R[X] is Noetherian as well.

Proof. Assume to the contrary that there is an ideal I E R[X] which is not
finitely generated. Then there is a sequence [f1, f2, . . .] ⊆ I ⊆ R[X] such that
fi ∈ I \ 〈f1, . . . , fi−1〉, being chosen such that its degree di := deg(fi) ≥ 0 is
minimal, for i ≥ 1; note that I \ 〈〉 = I \ {0}, and that di ≤ di+1.

Let ai := lc(fi) ∈ R \ {0} be the leading coefficient of fi, so that fi has
leading monomial lm(fi) := Xdi and leading term lt(fi) := aiX

di , for
i ≥ 1. (These notions appearing here is reminiscent of Gordan’s proof [1900];
the present formulation seems to bo back to Sarges [1976]).

Now let J := 〈ai; i ≥ 1〉E R. Then, since R is Noetherian, there is n ≥ 0 such
that J = 〈a1, . . . , an〉. Thus we have an+1 =

∑n
i=1 aibi, for some b1, . . . , bn ∈ R.

Hence g :=
∑n

i=1 bifiX
dn+1−di ∈ 〈f1, . . . , fn〉 has degree deg(g) = dn+1 and

leading coefficient lc(g) =
∑n

i=1 aibi = an+1, which implies that fn+1 − g ∈
I \ 〈f1, . . . , fn〉 has degree deg(fn+1 − g) < dn+1, a contradiction. ]

Corollary. If R is Noetherian, then so is any finitely generated R-algebra.

Proof. Any such algebra can be written as R[X ]/I, where X is a finite set of
indeterminates, and I ER[X ]. Now, by Hilbert’s Basis Theorem and induction,
R[X ] is Noetherian, and so is R[X ]/I by the Homomorphism Theorem. ]
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(3.2) Algebraic sets. Let K ⊆ L be a field extension, let X := {X1, . . . , Xn}
be indeterminates, where n ∈ N0, and let A := K[X ] be the associated polyno-
mial K-algebra; recall that An(L) = Ln is also called the n-dimensional affine
space over L. Then, letting S ⊆ A, the set

VL(S) := {[x1, . . . , xn] ∈ Ln; f(x1, . . . , xn) = 0 for all f ∈ S}

is called the (affine) algebraic (K-)set given by the defining set S; then K
and L are called its field of definition and its field of coordinates, respec-
tively. If R ⊆ L is a subring, then VR(S) := VL(S) ∩ Rn is called the set of
R-rational points of VL(S).

We have VL(S) = VL(〈S〉A). Thus by Hilbert’s Basis Theorem there are
f1, . . . , fr ∈ S, for some r ∈ N0, such that VL(S) = VL(f1, . . . , fr). Hence any
algebraic set is defined by an ideal, or alternatively by finitely many equations.

For ideals I, JEA such that I ⊆ J we have VL(J) ⊆ VL(I). Given ideals IiEA,
for i ∈ I, where I is a (possibly infinite) index set, we have

⋂
i∈I VL(Ii) =

VL(
∑

i∈I Ii), but in general we only have
⋃

i∈I VL(Ii) ⊆ VL(
⋂

i∈I Ii).

For example, we have VL(1) = ∅ and VL(0) = Ln. Moreover, for K = L and
n = 1, we have A = L[X], so that the associated algebraic sets are L itself and
its finite subsets; this shows that the infinite union of algebraic sets need not be
algebraic again.

(3.3) Vanishing ideals. Keeping the above notation, letting V ⊆ Ln be any
subset, the set

IK(V ) := {f ∈ A; f(x1, . . . , xn) = 0 for all [x1, . . . , xn] ∈ V }EA

is called the vanishing ideal of V ; it is immediate that IK(V ) is an ideal.

For V ⊆ W ⊆ Ln we have IK(W ) ⊆ IK(V ). Given Vi ⊆ Ln, for i ∈ I, where
I is a (possibly infinite) index set, we have

⋂
i∈I IK(Vi) = IK(

⋃
i∈I Vi), but in

general (even for finite sums) we only have
∑

i∈I IK(Vi) ⊆ IK(
⋂

i∈I Vi).

For example, we have IK(∅) = 〈1〉, and if L is infinite then we indeed have
IK(Ln) = {0}. Moreover, for K = L infinite and n = 1, if V1, V2 ⊆ L are
infinite such that V1 ∩ V2 is finite, then we have IL(V1) = {0} = IL(V2), but
IL(V1 ∩ V2) 6= {0}, so that we have IL(V1) + IL(V2) 6= IL(V1 ∩ V2).
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