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(4.1) Radical ideals. Keeping the notation introduced earlier, let I < A be
an ideal. Then the radical of I be given as

VI =rad(I) := {f € A; f* € I for some k € N};

in other words, /I consists of the elements of A which are nilpotent modulo
the ideal I. Tt is immediate that for f,g € VI we have f- A C /T; and from
(f+9)k= Ele (]f) flg*—" we infer that /T is additively closed; hence vI < A
is an ideal again.

We have /T = (1) if and only if I = (1). Moreover, we have I C /T = VI,
and if /T = I then I is called a radical ideal. In particular, if P <1 A is prime,
then A/P is a domain, which hence does not have non-zero nilpotent elements,
implying that v/P = P, that is P is radical.

Now, for any subset V' C L™ we have I (V) = /I (V), and for any ideal T <A
we have V(vI) = Vi (I): Since L does not contain any non-zero nilpotent
elements, from f* € Ix(V), for some f € A and k € N, we get f € Ix(V)
already. Similarly, if v € V(I), then for f € v/T we have f*(v) = 0, for some
k € N, implying f(v) = 0, hence v € V1, (v/T).

(4.2) Algebraic sets and their ideals. a) Keeping the above notation, we
consider the interplay between the operators Vi and Ix: By definition, for
V C L™ we have V C V(I (V)), and for I < A we have I C Ix(V(I)).

For three-fold compositions this yields: The inclusion I C Ix(V(I)) implies
Vi(Ix(Vr(I))) € VL(I), so that the inclusion V(I) C V(Ix(VL(I))) im-
plies equality; that is we have

VL(IK(VL(I))) :VL(I), for anyIﬂA.

Similarly, the inclusion V' C V(Ix(V)) implies Ix(VL(Ix(V))) C Ix(V), so
that the inclusion I (V) C Ix (VL (Ix(V))) implies equality; that is we have

IK(VL(IK(V))) = IK(V), for any \%4 g L".

b) Let V, W C L™ be algebraic. Then we have V.C W if and only if Ix (W) C
Ix(V),and V = W if and only if Ix (W) = Ix(V): From Ix (W) CIx(V) we
get V=V (Ig(V)) C VL (Ix(W)) =W, similarly, equality Ix (W) = Ix(V)
implies V = VL(IK(V)) = VL(IK(W)) =W.

We now consider (arbitrary) intersections and (finite) unions of algebraic sets:
Firstly, for algebraic sets V; C L™, for i € Z, where 7 is a (possibly infinite)
index set, we have V(3 ;c7 Ix (Vi) = Niez VeIk (Vi) = Niez Vi- In par-
ticular, an arbitrary intersection of algebraic sets is algebraic again. Secondly:



Proposition. We have VUW =V (Ix(V)NIg(W)) = V(I (V) -Ix(W)).
In particular, a finite union of algebraic sets is algebraic again.

Proof. We have Ix(V) - Ix(W) CIx(V)NIx(W) CIx(VUW), implying
VUWC VL (Ik(VUW)) C VLI (V) NIk(W)) C VL(Ik(V) - Ix(W)).

Conversely, let v € L™\ (VUW). Since V = V(Ix(V)) and W = V(Ix(W)),
there are f € Ix (V) and g € Ix(W) such that f(v) # 0 # g(v). Hence we have
fg €I (V) -Ix(W) such that (fg)(v) #0, thus v € Vp(Ix(V) - Ixg(W)).

Thus the smallest algebraic set containing V is given as the intersection V :=
N{W C L" algebraic; V C W}. Hence we have V C V(Ix(V)) C V. Since
conversely for any algebraic set V C V(1) we already have V =V (Ix(V)) C
VL(IK(VL(I))) = VL(I), we get V= VL(IK(V))

For subsets V C W we have V C W, and V is algebraic if and only if V = V.

(4.3) Algebraic-geometric correspondence. Keeping the above notation,
we conclude that the operator I induces an inclusion-reversing (with respect
to set-theoretic inclusion) injective correspondence

Ix: {V C L" affine K-algebraic} — {I < A; T = /T radical},

whose inverse on im(Ix) is given by the operator V.

In general, I is not surjective: For example, let K = L =R and n = 1. Then
f:=X?+1 e R[X] is irreducible, hence (f) <R[X] is prime, thus radical. But
Vr(f) =0, so that Ig(Vr(f)) = Ir(0) = (1), implying that (f) & im(Ig). i

But it will follow from (the geometric form of) Hilbert’s Nullstellensatz, that
if L is algebraically closed then Ik is surjective as well. In this case, the bi-
jective correspondence given by Ix and Vi provides an algebraic-geometric
dictionary, allowing us to translate between geometric properties of algebraic
sets and algebraic properties of ideals.




