Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 4 (21.10.2025)

(4.1) Radical ideals. Keeping the notation introduced earlier, let $I \subseteq A$ be an ideal. Then the radical of I be given as

$$\sqrt{I} = \operatorname{rad}(I) := \{ f \in A; f^k \in I \text{ for some } k \in \mathbb{N} \};$$

in other words, \sqrt{I} consists of the elements of A which are **nilpotent** modulo the ideal I. It is immediate that for $f,g\in \sqrt{I}$ we have $f\cdot A\subseteq \sqrt{I}$; and from $(f+g)^k=\sum_{l=1}^k \binom{k}{l} f^l g^{k-l}$ we infer that \sqrt{I} is additively closed; hence $\sqrt{I} \subseteq A$ is an ideal again.

We have $\sqrt{I} = \langle 1 \rangle$ if and only if $I = \langle 1 \rangle$. Moreover, we have $I \subseteq \sqrt{I} = \sqrt{\sqrt{I}}$, and if $\sqrt{I} = I$ then I is called a **radical ideal**. In particular, if $P \triangleleft A$ is prime, then A/P is a domain, which hence does not have non-zero nilpotent elements, implying that $\sqrt{P} = P$, that is P is radical.

Now, for any subset $V \subseteq L^n$ we have $\mathbf{I}_K(V) = \sqrt{\mathbf{I}_K(V)}$, and for any ideal $I \subseteq A$ we have $\mathbf{V}_L(\sqrt{I}) = \mathbf{V}_L(I)$: Since L does not contain any non-zero nilpotent elements, from $f^k \in \mathbf{I}_K(V)$, for some $f \in A$ and $k \in \mathbb{N}$, we get $f \in \mathbf{I}_K(V)$ already. Similarly, if $v \in \mathbf{V}_L(I)$, then for $f \in \sqrt{I}$ we have $f^k(v) = 0$, for some $k \in \mathbb{N}$, implying f(v) = 0, hence $v \in \mathbf{V}_L(\sqrt{I})$.

(4.2) Algebraic sets and their ideals. a) Keeping the above notation, we consider the interplay between the operators V_L and I_K : By definition, for $V \subseteq L^n$ we have $V \subseteq V_L(I_K(V))$, and for $I \subseteq A$ we have $I \subseteq I_K(V_L(I))$.

For three-fold compositions this yields: The inclusion $I \subseteq \mathbf{I}_K(\mathbf{V}_L(I))$ implies $\mathbf{V}_L(\mathbf{I}_K(\mathbf{V}_L(I))) \subseteq \mathbf{V}_L(I)$, so that the inclusion $\mathbf{V}_L(I) \subseteq \mathbf{V}_L(\mathbf{I}_K(\mathbf{V}_L(I)))$ implies equality; that is we have

$$\mathbf{V}_L(\mathbf{I}_K(\mathbf{V}_L(I))) = \mathbf{V}_L(I)$$
, for any $I \leq A$.

Similarly, the inclusion $V \subseteq \mathbf{V}_L(\mathbf{I}_K(V))$ implies $\mathbf{I}_K(\mathbf{V}_L(\mathbf{I}_K(V))) \subseteq \mathbf{I}_K(V)$, so that the inclusion $\mathbf{I}_K(V) \subseteq \mathbf{I}_K(\mathbf{V}_L(\mathbf{I}_K(V)))$ implies equality; that is we have

$$\mathbf{I}_K(\mathbf{V}_L(\mathbf{I}_K(V))) = \mathbf{I}_K(V), \text{ for any } V \subseteq L^n.$$

b) Let $\mathbf{V}, \mathbf{W} \subseteq L^n$ be algebraic. Then we have $\mathbf{V} \subseteq \mathbf{W}$ if and only if $\mathbf{I}_K(\mathbf{W}) \subseteq \mathbf{I}_K(\mathbf{V})$, and $\mathbf{V} = \mathbf{W}$ if and only if $\mathbf{I}_K(\mathbf{W}) = \mathbf{I}_K(\mathbf{V})$: From $\mathbf{I}_K(\mathbf{W}) \subseteq \mathbf{I}_K(\mathbf{V})$ we get $\mathbf{V} = \mathbf{V}_L(\mathbf{I}_K(\mathbf{V})) \subseteq \mathbf{V}_L(\mathbf{I}_K(\mathbf{W})) = \mathbf{W}$; similarly, equality $\mathbf{I}_K(\mathbf{W}) = \mathbf{I}_K(\mathbf{V})$ implies $\mathbf{V} = \mathbf{V}_L(\mathbf{I}_K(\mathbf{V})) = \mathbf{V}_L(\mathbf{I}_K(\mathbf{W})) = \mathbf{W}$.

We now consider (arbitrary) intersections and (finite) unions of algebraic sets: Firstly, for algebraic sets $\mathbf{V}_i \subseteq L^n$, for $i \in \mathcal{I}$, where \mathcal{I} is a (possibly infinite) index set, we have $\mathbf{V}_L(\sum_{i \in \mathcal{I}} \mathbf{I}_K(\mathbf{V}_i)) = \bigcap_{i \in \mathcal{I}} \mathbf{V}_L(\mathbf{I}_K(\mathbf{V}_i)) = \bigcap_{i \in \mathcal{I}} \mathbf{V}_i$. In particular, an arbitrary intersection of algebraic sets is algebraic again. Secondly:

Proposition. We have $\mathbf{V} \cup \mathbf{W} = \mathbf{V}_L(\mathbf{I}_K(\mathbf{V}) \cap \mathbf{I}_K(\mathbf{W})) = \mathbf{V}_L(\mathbf{I}_K(\mathbf{V}) \cdot \mathbf{I}_K(\mathbf{W}))$. In particular, a finite union of algebraic sets is algebraic again.

Proof. We have $I_K(V) \cdot I_K(W) \subseteq I_K(V) \cap I_K(W) \subseteq I_K(V \cup W)$, implying

$$\mathbf{V} \cup \mathbf{W} \subseteq \mathbf{V}_L(\mathbf{I}_K(\mathbf{V} \cup \mathbf{W})) \subseteq \mathbf{V}_L(\mathbf{I}_K(\mathbf{V}) \cap \mathbf{I}_K(\mathbf{W})) \subseteq \mathbf{V}_L(\mathbf{I}_K(\mathbf{V}) \cdot \mathbf{I}_K(\mathbf{W})).$$

Conversely, let $v \in L^n \setminus (\mathbf{V} \cup \mathbf{W})$. Since $\mathbf{V} = \mathbf{V}_L(\mathbf{I}_K(\mathbf{V}))$ and $\mathbf{W} = \mathbf{V}_L(\mathbf{I}_K(\mathbf{W}))$, there are $f \in \mathbf{I}_K(\mathbf{V})$ and $g \in \mathbf{I}_K(\mathbf{W})$ such that $f(v) \neq 0 \neq g(v)$. Hence we have $fg \in \mathbf{I}_K(\mathbf{V}) \cdot \mathbf{I}_K(\mathbf{W})$ such that $(fg)(v) \neq 0$, thus $v \notin \mathbf{V}_L(\mathbf{I}_K(\mathbf{V}) \cdot \mathbf{I}_K(\mathbf{W}))$.

Thus the smallest algebraic set containing V is given as the intersection $\overline{V} := \bigcap \{ \mathbf{W} \subseteq L^n \text{ algebraic}; V \subseteq \mathbf{W} \}$. Hence we have $V \subseteq \mathbf{V}_L(\mathbf{I}_K(V)) \subseteq \overline{V}$. Since conversely for any algebraic set $V \subseteq \mathbf{V}_L(I)$ we already have $\overline{V} = \mathbf{V}_L(\mathbf{I}_K(V)) \subseteq \mathbf{V}_L(\mathbf{I}_K(V_L(I))) = \mathbf{V}_L(I)$, we get $\overline{V} = \mathbf{V}_L(\mathbf{I}_K(V))$.

For subsets $V \subseteq W$ we have $\overline{V} \subseteq \overline{W}$, and V is algebraic if and only if $V = \overline{V}$.

(4.3) Algebraic-geometric correspondence. Keeping the above notation, we conclude that the operator I_K induces an inclusion-reversing (with respect to set-theoretic inclusion) injective correspondence

$$\mathbf{I}_K : {\mathbf{V} \subseteq L^n \text{ affine } K\text{-algebraic}} \to {I \leq A; I = \sqrt{I} \text{ radical}},$$

whose inverse on $\operatorname{im}(\mathbf{I}_K)$ is given by the operator \mathbf{V}_L .

In general, \mathbf{I}_K is not surjective: For example, let $K = L = \mathbb{R}$ and n = 1. Then $f := X^2 + 1 \in \mathbb{R}[X]$ is irreducible, hence $\langle f \rangle \lhd \mathbb{R}[X]$ is prime, thus radical. But $\mathbf{V}_{\mathbb{R}}(f) = \emptyset$, so that $\mathbf{I}_{\mathbb{R}}(\mathbf{V}_{\mathbb{R}}(f)) = \mathbf{I}_{\mathbb{R}}(\emptyset) = \langle 1 \rangle$, implying that $\langle f \rangle \notin \operatorname{im}(\mathbf{I}_{\mathbb{R}})$.

But it will follow from (the geometric form of) Hilbert's Nullstellensatz, that if L is algebraically closed then \mathbf{I}_K is surjective as well. In this case, the bijective correspondence given by \mathbf{I}_K and \mathbf{V}_L provides an **algebraic-geometric dictionary**, allowing us to translate between geometric properties of algebraic sets and algebraic properties of ideals.