Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 5 (22.10.2025)

(5.1) Hilbert's Nullstellensatz. Keeping the notation introduced earlier, we prove the following fundamental 'Theorem of Zeroes':

Theorem: Nullstellensatz (strong form) [HILBERT, 1893]. Let L be algebraically closed, and let $I \triangleleft A$. Then we have $\mathbf{V}_L(I) \neq \emptyset$.

Theorem: Nullstellensatz (field-theoretic form).

Let the field L be finitely generated as a K-algebra. Then $K \subseteq L$ is algebraic.

(5.2) Proof of Hilbert's Nullstellensatz. In order to prove this we proceed as follows: We first prove the equivalence of the strong and the field theoretic form. Then we prove two lemmas, from which the field theoretic form follows:

Proof: Equivalence of strong and field theoretic form.

i) Assume first that the strong form holds, and let \overline{K} be an algebraic closure of K. Since L is finitely generated as a K-algebra, by $n \in \mathbb{N}_0$ elements say, there is $P \triangleleft A$ maximal such that $L \cong A/P$ as K-algebras. Let $[x_1, \ldots, x_n] \in \mathbf{V}_{\overline{K}}(P)$, and let $\varphi \colon A \to \overline{K}$ be the (non-zero) homomorphism of K-algebras defined by $X_i \mapsto x_i$. Then for any $f \in P$ we have

$$\varphi(f) = \varphi(f(X_1, \dots, X_n)) = f(\varphi(X_1), \dots, \varphi(X_n)) = f(x_1, \dots, x_n) = 0 \in \overline{K},$$

hence $\ker(\varphi) = P$. Thus there is an embedding $L \cong A/P \to \overline{K}$, implying that $K \subseteq L$ is an algebraic field extension.

ii) Assume now that the field-theoretic form holds. Let $I \subseteq P \lhd A$ be maximal. Then A/P is a field extension of K, which is finitely generated as a K-algebra. Hence by assumption $K \subseteq (A/P)$ is algebraic. Since L is algebraically closed, there is a homomorphism $\varphi \colon A \to L$ of K-algebras, inducing an embedding $\overline{\varphi} \colon A/P \to L$. Let $v := [\varphi(X_1), \dots, \varphi(X_n)] \in L^n$. Then for any $f \in P$ we have

$$f(v) = f(\varphi(X_1), \dots, \varphi(X_n)) = \varphi(f(X_1, \dots, X_n)) = \varphi(f) = 0 \in L,$$

Ħ

hence $v \in \mathbf{V}_L(P) \subseteq \mathbf{V}_L(I)$. Thus we have $\mathbf{V}_L(I) \neq \emptyset$.

Lemma. Let R be a Noetherian ring, let T be a finitely generated R-algebra, and let $S \subseteq T$ be an R-subalgebra, such that T is a finitely generated S-module. Then S is finitely generated as an R-algebra as well.

Proof. Let $T = R[\mathcal{G}]$, where \mathcal{G} is finite, and let $T = \langle \mathcal{T} \rangle_S$ where $\mathcal{G} \subseteq \mathcal{T} = \{t_1, \ldots, t_r\}$, for some $r \in \mathbb{N}_0$. Then we have $t_i t_j = \sum_{k=1}^r t_k s_{ijk}$, for suitable $s_{ijk} \in S$. Let $S' := R[s_{ijk}; i, j, k \in \{1, \ldots, r\}] \subseteq S$. Then S' is a finitely generated R-algebra, such that $T = R[\mathcal{G}] \subseteq \langle \mathcal{T} \rangle_{S'} \subseteq T$, implying that T is a finitely generated S'-module.

Since R is Noetherian, by Hilbert's Basis Theorem S' is Noetherian as well. Thus T is a Noetherian S'-module. Hence $S \subseteq T$ is a finitely generated S'-module as well. Thus, since S' is a finitely generated R-algebra, S is a finitely generated R-algebra as well.

Lemma. Let $R := K(\mathcal{X})$ be the associated rational function field, where $n \geq 1$. Then R is not finitely generated as a K-algebra.

Proof. Assume to the contrary that $R = K[\frac{f_i}{g}; i \in \{1, ..., r\}]$, where $f_i \in A := K[\mathcal{X}]$ and $0 \neq g \in A$, for some $r \in \mathbb{N}_0$; note that we may indeed assume the elements of the generating set to have the same denominator. This implies that any element of R can be written in the form $\frac{f}{g^k}$, for some $f \in A$ and $k \in \mathbb{N}_0$. Since A is factorial, g has only finitely many monic irreducible divisors.

Now, A has infinitely many monic irreducible polynomials: If K is infinite, there are $X - a \in K[X]$ for $a \in K$; if K is finite, there is a monic irreducible polynomial of any degree $d \in \mathbb{N}$. Hence there is an irreducible polynomial $p \in A$ not dividing g. Then $\frac{1}{p} \in R$ is not of the required form, a contradiction.

Proof: Field theoretic form [ZARISKI, 1947; ARTIN-TATE, 1951].

Assume that $K \subseteq L$ is not algebraic. Then, since $K \subseteq L$ is a finitely generated field extension, let $\mathcal{Y} := \{Y_1, \dots, Y_r\}$ be a **transcendence basis** of L over K, for some $r \in \mathbb{N}$; that is $K(\mathcal{Y})$ is a rational function field, such that $K(\mathcal{Y}) \subseteq L$ is algebraic. By finite generation, L is a finitely generated $K(\mathcal{Y})$ -vector space.

Now, since L is a finitely generated K-algebra, the first lemma implies that $K(\mathcal{Y})$ is a finitely generated K-algebra, contradicting the second lemma.

(5.3) Consequences from Hilbert's Nullstellensatz.

Corollary: Nullstellensatz (weak form).

Let K be algebraically closed, and let $P \triangleleft A$ be maximal. Then there is $v = [x_1, \ldots, x_n] \in K^n$ such that $P = \langle X_1 - x_1, \ldots, X_n - x_n \rangle \triangleleft A$.

Proof. By the strong form of Hilbert's Nullstellensatz, applied to K = L, the ideal P has a zero $v = [x_1, \ldots, x_n] \in K^n$. Hence for any $f \in A \setminus P$ we have $f(v) \neq 0$: Assume that f(v) = 0, then $A = \langle P, f \rangle \subseteq \mathbf{I}_K(v) \triangleleft A$, a contradiction.

We conclude that $I := \langle X_1 - x_1, \dots, X_n - x_n \rangle \subseteq P \lhd A$. Now polynomial division shows that $\dim_K(A/I) \leq 1$, thus we have $I = P \lhd A$.