
Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 5 (22.10.2025)

(5.1) Hilbert’s Nullstellensatz. Keeping the notation introduced earlier, we
prove the following fundamental ‘Theorem of Zeroes’:

Theorem: Nullstellensatz (strong form) [Hilbert, 1893].
Let L be algebraically closed, and let I CA. Then we have VL(I) 6= ∅.

Theorem: Nullstellensatz (field-theoretic form).
Let the field L be finitely generated as a K-algebra. Then K ⊆ L is algebraic.

(5.2) Proof of Hilbert’s Nullstellensatz. In order to prove this we proceed
as follows: We first prove the equivalence of the strong and the field theoretic
form. Then we prove two lemmas, from which the field theoretic form follows:

Proof: Equivalence of strong and field theoretic form.
i) Assume first that the strong form holds, and let K be an algebraic closure of
K. Since L is finitely generated as a K-algebra, by n ∈ N0 elements say, there
is P CA maximal such that L ∼= A/P as K-algebras. Let [x1, . . . , xn] ∈ VK(P ),
and let ϕ : A → K be the (non-zero) homomorphism of K-algebras defined by
Xi 7→ xi. Then for any f ∈ P we have

ϕ(f) = ϕ(f(X1, . . . , Xn)) = f(ϕ(X1), . . . , ϕ(Xn)) = f(x1, . . . , xn) = 0 ∈ K,

hence ker(ϕ) = P . Thus there is an embedding L ∼= A/P → K, implying that
K ⊆ L is an algebraic field extension.

ii) Assume now that the field-theoretic form holds. Let I ⊆ P CA be maximal.
Then A/P is a field extension of K, which is finitely generated as a K-algebra.
Hence by assumption K ⊆ (A/P ) is algebraic. Since L is algebraically closed,
there is a homomorphism ϕ : A → L of K-algebras, inducing an embedding
ϕ : A/P → L. Let v := [ϕ(X1), . . . , ϕ(Xn)] ∈ Ln. Then for any f ∈ P we have

f(v) = f(ϕ(X1), . . . , ϕ(Xn)) = ϕ(f(X1, . . . , Xn)) = ϕ(f) = 0 ∈ L,

hence v ∈ VL(P ) ⊆ VL(I). Thus we have VL(I) 6= ∅. ]

Lemma. Let R be a Noetherian ring, let T be a finitely generated R-algebra,
and let S ⊆ T be an R-subalgebra, such that T is a finitely generated S-module.
Then S is finitely generated as an R-algebra as well.
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Proof. Let T = R[G], where G is finite, and let T = 〈T 〉S where G ⊆ T =
{t1, . . . , tr}, for some r ∈ N0. Then we have titj =

∑r
k=1 tksijk, for suitable

sijk ∈ S. Let S′ := R[sijk; i, j, k ∈ {1, . . . , r}] ⊆ S. Then S′ is a finitely
generated R-algebra, such that T = R[G] ⊆ 〈T 〉S′ ⊆ T , implying that T is a
finitely generated S′-module.

Since R is Noetherian, by Hilbert’s Basis Theorem S′ is Noetherian as well.
Thus T is a Noetherian S′-module. Hence S ⊆ T is a finitely generated S′-
module as well. Thus, since S′ is a finitely generated R-algebra, S is a finitely
generated R-algebra as well. ]

Lemma. Let R := K(X ) be the associated rational function field, where n ≥ 1.
Then R is not finitely generated as a K-algebra.

Proof. Assume to the contrary that R = K[ fig ; i ∈ {1, . . . , r}], where fi ∈ A :=

K[X ] and 0 6= g ∈ A, for some r ∈ N0; note that we may indeed assume the
elements of the generating set to have the same denominator. This implies that
any element of R can be written in the form f

gk , for some f ∈ A and k ∈ N0.
Since A is factorial, g has only finitely many monic irreducible divisors.

Now, A has infinitely many monic irreducible polynomials: If K is infinite,
there are X − a ∈ K[X] for a ∈ K; if K is finite, there is a monic irreducible
polynomial of any degree d ∈ N. Hence there is an irreducible polynomial p ∈ A
not dividing g. Then 1

p ∈ R is not of the required form, a contradiction. ]

Proof: Field theoretic form [Zariski, 1947; Artin–Tate, 1951].
Assume that K ⊆ L is not algebraic. Then, since K ⊆ L is a finitely generated
field extension, let Y := {Y1, . . . , Yr} be a transcendence basis of L over K,
for some r ∈ N; that is K(Y) is a rational function field, such that K(Y) ⊆ L is
algebraic. By finite generation, L is a finitely generated K(Y)-vector space.

Now, since L is a finitely generated K-algebra, the first lemma implies that
K(Y) is a finitely generated K-algebra, contradicting the second lemma. ]

(5.3) Consequences from Hilbert’s Nullstellensatz.

Corollary: Nullstellensatz (weak form).
Let K be algebraically closed, and let P C A be maximal. Then there is v =
[x1, . . . , xn] ∈ Kn such that P = 〈X1 − x1, . . . , Xn − xn〉CA.

Proof. By the strong form of Hilbert’s Nullstellensatz, applied to K = L, the
ideal P has a zero v = [x1, . . . , xn] ∈ Kn. Hence for any f ∈ A \ P we have
f(v) 6= 0: Assume that f(v) = 0, then A = 〈P, f〉 ⊆ IK(v)CA, a contradiction.

We conclude that I := 〈X1 − x1, . . . , Xn − xn〉 ⊆ P C A. Now polynomial
division shows that dimK(A/I) ≤ 1, thus we have I = P CA. ]
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