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(5.1) Hilbert’s Nullstellensatz. Keeping the notation introduced earlier, we
prove the following fundamental ‘Theorem of Zeroes’:

Theorem: Nullstellensatz (strong form) [HILBERT, 1893].
Let L be algebraically closed, and let I << A. Then we have V(I) # 0.

Theorem: Nullstellensatz (field-theoretic form).
Let the field L be finitely generated as a K-algebra. Then K C L is algebraic.

(5.2) Proof of Hilbert’s Nullstellensatz. In order to prove this we proceed
as follows: We first prove the equivalence of the strong and the field theoretic
form. Then we prove two lemmas, from which the field theoretic form follows:

Proof: Equivalence of strong and field theoretic form.

i) Assume first that the strong form holds, and let K be an algebraic closure of
K. Since L is finitely generated as a K-algebra, by n € Ng elements say, there
is P <A maximal such that L = A/P as K-algebras. Let [z1,...,2,] € V(P),
and let p: A — K be the (non-zero) homomorphism of K-algebras defined by
X; — x;. Then for any f € P we have

So(f) :C,O(f(Xh,Xn)) :f(QO(Xl),,QD(Xn)) :f(I17axn) :OEF,

hence ker(p) = P. Thus there is an embedding L = A/P — K, implying that
K C L is an algebraic field extension.

ii) Assume now that the field-theoretic form holds. Let I C P < A be maximal.
Then A/P is a field extension of K, which is finitely generated as a K-algebra.
Hence by assumption K C (A/P) is algebraic. Since L is algebraically closed,
there is a homomorphism ¢: A — L of K-algebras, inducing an embedding
@: A/P — L. Let v := [p(X1),...,9(Xy)] € L™. Then for any f € P we have

) = fle(Xq),... 0(Xn)) = o(f(X1,..., Xn)) = 0(f) =0 € L,
hence v € V(P) C V(I). Thus we have V(I) # 0. 1
Lemma. Let R be a Noetherian ring, let 7' be a finitely generated R-algebra,

and let S C T be an R-subalgebra, such that T is a finitely generated S-module.
Then S is finitely generated as an R-algebra as well.



Proof. Let T = R[G], where G is finite, and let T = (T)gs where G C T =
{t1,...,t.}, for some r € Ny. Then we have t;t; = >, _; tisijk, for suitable
sijk € S. Let S’ := R[sijk;4, 5,k € {1,...,r}] € S. Then S is a finitely
generated R-algebra, such that T' = R[G] C (T)s: C T, implying that T is a
finitely generated S’-module.

Since R is Noetherian, by Hilbert’s Basis Theorem S’ is Noetherian as well.
Thus T is a Noetherian S’-module. Hence S C T is a finitely generated S’-
module as well. Thus, since S’ is a finitely generated R-algebra, S is a finitely
generated R-algebra as well. i

Lemma. Let R := K(X) be the associated rational function field, where n > 1.
Then R is not finitely generated as a K-algebra.

Proof. Assume to the contrary that R = K[%;i e{l,...,r}], where f; € A:=
K[X] and 0 # g € A, for some r € Ny; note that we may indeed assume the
elements of the generating set to have the same denominator. This implies that
any element of R can be written in the form £ for some f € Aand k € Np.
Since A is factorial, g has only finitely many monic irreducible divisors.

Now, A has infinitely many monic irreducible polynomials: If K is infinite,
there are X — a € K[X] for a € K; if K is finite, there is a monic irreducible
polynomial of any degree d € N. Hence there is an irreducible polynomial p € A
not dividing g. Then 1% € R is not of the required form, a contradiction. #

Proof: Field theoretic form [ZARISKI, 1947; ARTIN-TATE, 1951].
Assume that K C L is not algebraic. Then, since K C L is a finitely generated
field extension, let ) := {Y7,...,Y;.} be a transcendence basis of L over K,
for some r € N; that is K ()) is a rational function field, such that K () C L is
algebraic. By finite generation, L is a finitely generated K ())-vector space.

Now, since L is a finitely generated K-algebra, the first lemma implies that
K (Y) is a finitely generated K-algebra, contradicting the second lemma. i

(5.3) Consequences from Hilbert’s Nullstellensatz.

Corollary: Nullstellensatz (weak form).
Let K be algebraically closed, and let P <t A be maximal. Then there is v =
[€1,...,25] € K™ such that P = (X1 —x1,..., X, — z,,) < A.

Proof. By the strong form of Hilbert’s Nullstellensatz, applied to K = L, the
ideal P has a zero v = [z1,...,2,] € K". Hence for any f € A\ P we have
f(v) # 0: Assume that f(v) =0, then A = (P, f) C Ix(v) <A, a contradiction.

We conclude that [ := (X; — z1,...,X, — z,) € P < A. Now polynomial
division shows that dimg (A/I) < 1, thus we have I = P < A. il




