Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 6 (28.10.2025)

(6.1) Nullstellensatz (geometric form)

Keeping the notation introduced earlier, let L be algebraically closed, and let $I \leq A$. Then we have $\mathbf{I}_K(\mathbf{V}_L(I)) = \sqrt{I} \leq A$.

Proof: 'Rabinowitsch Trick'. We have already seen that

$$I \subseteq \sqrt{I} \subseteq \mathbf{I}_K(\mathbf{V}_L(I)) = \sqrt{\mathbf{I}_K(\mathbf{V}_L(I))} \trianglelefteq A.$$

Now let $0 \neq f \in \mathbf{I}_K(\mathbf{V}_L(I))$, let T be an additional indeterminate, and let $J := \langle I, fT - 1 \rangle \subseteq A[T] = K[\mathcal{X}, T]$; in other words, we have $T = \frac{1}{f} \in A[T]/J$.

We show that J=A[T]: Let $[x_1,\ldots,x_n,t]\in \mathbf{V}_L(J)\subseteq L^{n+1}$, then $[x_1,\ldots,x_n]\in \mathbf{V}_L(I)$, thus $f(x_1,\ldots,x_n)=0$, implying that $0=(fT-1)(x_1,\ldots,x_n,t)=f(x_1,\ldots,x_n)\cdot t-1=-1$, a contradiction; hence $\mathbf{V}_L(J)=\emptyset$, thus by the strong form of Hilbert's Nullstellensatz we infer that J=A[T] indeed.

Hence there are $g,g_1,\ldots,g_r\in A[T]$ and $f_1,\ldots,f_r\in I$, for some $r\in\mathbb{N}_0$, such that $1=g\cdot (fT-1)+\sum_{i=1}^rg_if_i\in A[T]$. Now let $\varphi\colon A[T]\to K(\mathcal{X})$ be the K-algebra homomorphism defined by $X_i\mapsto X_i$ and $T\mapsto \frac{1}{f}$. Then we have $\varphi(fT-1)=0$, so that $\sum_{i=1}^r\varphi(g_i)f_i=1\in K(\mathcal{X})$. We may assume that $\varphi(g_i)=\frac{g_i'}{f^k}\in K(\mathcal{X})$, for all i, where $g_i'\in A$ and $k\in\mathbb{N}$ is large enough. This yields $f^k=\sum_{i=1}^rg_i'f_i\in K(\mathcal{X})$, showing that $f^k\in I$, thus $f\in\sqrt{I}$.

(6.2) Topological spaces. We recall some notions from general topology: A collection of subsets of a set \mathcal{V} , being called **open**, is called a **topology** on \mathcal{V} , provided the following properties hold: Both \emptyset and \mathcal{V} are open; if $\mathcal{U}, \mathcal{U}' \subseteq \mathcal{V}$ are open, then $\mathcal{U} \cap \mathcal{U}' \subseteq \mathcal{V}$ is open; and if $\mathcal{U}_i \subseteq \mathcal{V}$ are open, for $i \in \mathcal{I}$, where \mathcal{I} is a (possibly infinite) index set, then $\bigcup_{i \in \mathcal{I}} \mathcal{U}_i \subseteq \mathcal{V}$ is open.

Then \mathcal{V} together with a topology on it is called a **topological space**. For example, the collection $\{\emptyset, \mathcal{V}\}$ is a topology, being called the **trivial topology**; and the set of all subsets of \mathcal{V} is a topology, being called the **discrete topology**.

A subset $W \subseteq V$ is called **closed** if its complement $V \setminus W \subseteq V$ is open. Hence by taking complements a topology is equivalently given by a collection of closed subsets, having the following properties: Both \emptyset and V are closed; if $W, W' \subseteq V$ are closed, then $W \cup W' \subseteq V$ is closed; and if $W_i \subseteq V$ are closed, for $i \in \mathcal{I}$, where \mathcal{I} is a (possibly infinite) index set, then $\bigcap_{i \in \mathcal{I}} W_i \subseteq V$ is closed.

Given a subset $\mathcal{U} \subseteq \mathcal{V}$, its **closure** in \mathcal{V} is defined as the closed subset $\overline{\mathcal{U}} := \bigcap \{\mathcal{W} \subseteq \mathcal{V} \text{ closed}; \mathcal{U} \subseteq \mathcal{W}\} \subseteq \mathcal{V}$; note that the latter set of sets contains \mathcal{V} as an element, thus is non-empty, so that the intersection is well-defined. In

other words, $\overline{\mathcal{U}} \subseteq \mathcal{V}$ is the smallest closed subset (with respect to set-theoretic inclusion) containing \mathcal{U} . The subset $\mathcal{U} \subseteq \mathcal{V}$ is called **dense** if $\overline{\mathcal{U}} = \mathcal{V}$.

Any subset $\mathcal{V}' \subseteq \mathcal{V}$ carries the **induced topology**, whose open subsets are given as $\mathcal{U} \cap \mathcal{V}' \subseteq \mathcal{V}'$, where $\mathcal{U} \subseteq \mathcal{V}$ is open; likewise, its closed subsets are given as $\mathcal{W} \cap \mathcal{V}' \subseteq \mathcal{V}'$, where $\mathcal{W} \subseteq \mathcal{V}$ is closed.

(6.3) Irreducible spaces. A topological space $\mathcal{V} \neq \emptyset$ is called **reducible**, if $\mathcal{V} = \mathcal{V}' \cup \mathcal{V}''$ is a union of proper closed subsets $\mathcal{V}', \mathcal{V}'' \subset \mathcal{V}$; note that we do not require \mathcal{V}' and \mathcal{V}'' to be disjoint. If $\mathcal{V} \neq \emptyset$ is not reducible, that is whenever $\mathcal{V} = \mathcal{V}' \cup \mathcal{V}''$ is a union of closed subsets we necessarily have $\mathcal{V}' = \mathcal{V}$ or $\mathcal{V}'' = \mathcal{V}$, then \mathcal{V} is called **irreducible**. A subset $\emptyset \neq \mathcal{W} \subseteq \mathcal{V}$ is called **(ir)reducible** if it is so with respect to the induced topology.

We present various characterisations of irreducible topological spaces:

- i) By taking complements, it follows that \mathcal{V} is irreducible if and only if whenever $\mathcal{U}', \mathcal{U}'' \subseteq \mathcal{V}$ are open such that $\mathcal{U}' \cap \mathcal{U}'' = \emptyset$, then we have $\mathcal{U}' = \emptyset$ or $\mathcal{U}'' = \emptyset$.
- ii) This can be rephrased as follows: \mathcal{V} is irreducible if and only if whenever $\emptyset \neq \mathcal{U}', \mathcal{U}'' \subseteq \mathcal{V}$ are open, then we have $\mathcal{U}' \cap \mathcal{U}'' \neq \emptyset$.

In particular, any irreducible topological space is **connected**, that is cannot be written as the disjoint union of two non-empty open (hence closed) subsets. (But the converse does not hold in general.)

iii) Thus ${\mathcal V}$ is irreducible if and only if any non-empty open subset of ${\mathcal V}$ is dense:

Let \mathcal{V} be irreducible, and let $\emptyset \neq \mathcal{U} \subseteq \mathcal{V}$ be open; then $\mathcal{V} \setminus \overline{\mathcal{U}} \subseteq \mathcal{V}$ is open, and we have $\mathcal{U} \cap (\mathcal{V} \setminus \overline{\mathcal{U}}) = \emptyset$; thus we have $\mathcal{V} \setminus \overline{\mathcal{U}} = \emptyset$, that is $\overline{\mathcal{U}} = \mathcal{V}$.

Conversely, let \mathcal{V} be such that any non-empty open subset is dense, and assume there are $\emptyset \neq \mathcal{U}', \mathcal{U}'' \subseteq \mathcal{V}$ open such that $\mathcal{U}' \cap \mathcal{U}'' = \emptyset$; then $\mathcal{V} \setminus \mathcal{U}'' \subset \mathcal{V}$ is closed, so that $\mathcal{U}' \subseteq \mathcal{V} \setminus \mathcal{U}''$ implies $\mathcal{U}' \subseteq \overline{\mathcal{U}'} \subseteq \mathcal{V} \setminus \mathcal{U}'' \subset \mathcal{V}$, a contradiction. \sharp