
Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 6 (28.10.2025)

(6.1) Nullstellensatz (geometric form)
Keeping the notation introduced earlier, let L be algebraically closed, and let
I EA. Then we have IK(VL(I)) =

√
I EA.

Proof: ‘Rabinowitsch Trick’. We have already seen that

I ⊆
√
I ⊆ IK(VL(I)) =

√
IK(VL(I)) EA.

Now let 0 6= f ∈ IK(VL(I)), let T be an additional indeterminate, and let
J := 〈I, fT − 1〉EA[T ] = K[X , T ]; in other words, we have T = 1

f ∈ A[T ]/J .

We show that J = A[T ]: Let [x1, . . . , xn, t] ∈ VL(J) ⊆ Ln+1, then [x1, . . . , xn] ∈
VL(I), thus f(x1, . . . , xn) = 0, implying that 0 = (fT − 1)(x1, . . . , xn, t) =
f(x1, . . . , xn) · t−1 = −1, a contradiction; hence VL(J) = ∅, thus by the strong
form of Hilbert’s Nullstellensatz we infer that J = A[T ] indeed.

Hence there are g, g1, . . . , gr ∈ A[T ] and f1, . . . , fr ∈ I, for some r ∈ N0, such
that 1 = g · (fT − 1) +

∑r
i=1 gifi ∈ A[T ]. Now let ϕ : A[T ] → K(X ) be the

K-algebra homomorphism defined by Xi 7→ Xi and T 7→ 1
f . Then we have

ϕ(fT − 1) = 0, so that
∑r

i=1 ϕ(gi)fi = 1 ∈ K(X ). We may assume that

ϕ(gi) =
g′
i

fk ∈ K(X ), for all i, where g′i ∈ A and k ∈ N is large enough. This

yields fk =
∑r

i=1 g
′
ifi ∈ K(X ), showing that fk ∈ I, thus f ∈

√
I. ]

(6.2) Topological spaces. We recall some notions from general topology: A
collection of subsets of a set V, being called open, is called a topology on V,
provided the following properties hold: Both ∅ and V are open; if U ,U ′ ⊆ V are
open, then U ∩ U ′ ⊆ V is open; and if Ui ⊆ V are open, for i ∈ I, where I is a
(possibly infinite) index set, then

⋃
i∈I Ui ⊆ V is open.

Then V together with a topology on it is called a topological space. For
example, the collection {∅,V} is a topology, being called the trivial topology;
and the set of all subsets of V is a topology, being called the discrete topology.

A subset W ⊆ V is called closed if its complement V \W ⊆ V is open. Hence
by taking complements a topology is equivalently given by a collection of closed
subsets, having the following properties: Both ∅ and V are closed; ifW,W ′ ⊆ V
are closed, then W ∪W ′ ⊆ V is closed; and if Wi ⊆ V are closed, for i ∈ I,
where I is a (possibly infinite) index set, then

⋂
i∈IWi ⊆ V is closed.

Given a subset U ⊆ V, its closure in V is defined as the closed subset U :=⋂
{W ⊆ V closed;U ⊆ W} ⊆ V; note that the latter set of sets contains V

as an element, thus is non-empty, so that the intersection is well-defined. In
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other words, U ⊆ V is the smallest closed subset (with respect to set-theoretic
inclusion) containing U . The subset U ⊆ V is called dense if U = V.

Any subset V ′ ⊆ V carries the induced topology, whose open subsets are
given as U ∩V ′ ⊆ V ′, where U ⊆ V is open; likewise, its closed subsets are given
as W ∩ V ′ ⊆ V ′, where W ⊆ V is closed.

(6.3) Irreducible spaces. A topological space V 6= ∅ is called reducible, if
V = V ′ ∪ V ′′ is a union of proper closed subsets V ′,V ′′ ⊂ V; note that we do
not require V ′ and V ′′ to be disjoint. If V 6= ∅ is not reducible, that is whenever
V = V ′ ∪ V ′′ is a union of closed subsets we necessarily have V ′ = V or V ′′ = V,
then V is called irreducible. A subset ∅ 6=W ⊆ V is called (ir)reducible if it
is so with respect to the induced topology.

We present various characterisations of irreducible topological spaces:

i) By taking complements, it follows that V is irreducible if and only if whenever
U ′,U ′′ ⊆ V are open such that U ′ ∩ U ′′ = ∅, then we have U ′ = ∅ or U ′′ = ∅.
ii) This can be rephrased as follows: V is irreducible if and only if whenever
∅ 6= U ′,U ′′ ⊆ V are open, then we have U ′ ∩ U ′′ 6= ∅.
In particular, any irreducible topological space is connected, that is cannot
be written as the disjoint union of two non-empty open (hence closed) subsets.
(But the converse does not hold in general.)

iii) Thus V is irreducible if and only if any non-empty open subset of V is dense:

Let V be irreducible, and let ∅ 6= U ⊆ V be open; then V \ U ⊆ V is open, and
we have U ∩ (V \ U) = ∅; thus we have V \ U = ∅, that is U = V.

Conversely, let V be such that any non-empty open subset is dense, and assume
there are ∅ 6= U ′,U ′′ ⊆ V open such that U ′∩U ′′ = ∅; then V \U ′′ ⊂ V is closed,
so that U ′ ⊆ V \ U ′′ implies U ′ ⊆ U ′ ⊆ V \ U ′′ ⊂ V, a contradiction. ]
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