
Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 7 (29.10.2025)

(7.1) Irreducible spaces. Let V be a topological space.

Proposition. A subset W ⊆ V is irreducible if and only if W ⊆ V is.

Proof. Let first U ⊆ V be open such U ∩ W = ∅. Then V \ U is closed and
contains W, so that we have W ⊆ W ⊆ V \ U , thus U ∩ W = ∅ as well.
(Conversely, if U ∩W = ∅ then we trivially have U ∩W = ∅ as well.)

i) Now letW be irreducible, and let U ′,U ′′ ⊆ V be open such that U ′∩W 6= ∅ 6=
U ′′ ∩W. Then we have U ′ ∩W 6= ∅ 6= U ′′ ∩W as well, so that by irreducibility
of W we have ∅ 6= U ′ ∩ U ′′ ∩W ⊆ U ′ ∩ U ′′ ∩W. Thus W is irreducible.

ii) Let conversely W be irreducible, and let U ′,U ′′ ⊆ V be open such that
U ′ ∩W 6= ∅ 6= U ′′ ∩W. Then we trivially have U ′ ∩W 6= ∅ 6= U ′′ ∩W as well,
so that by irreducibility of W we have U ′ ∩ U ′′ ∩W 6= ∅. This in turn implies
U ′ ∩ U ′′ ∩W 6= ∅ as well. Thus W is irreducible. ]

(7.2) Noetherian spaces. A topological space V is called Noetherian, if any
strictly descending chain of closed subsets of V terminates, or equivalently if any
non-empty subset of closed subsets of V has a minimal element.

By taking complements, V is Noetherian if and only if any strictly ascending
chain of open subsets of V terminates, or equivalently if any non-empty subset
of open subsets of V has a maximal element.

Theorem: Irreducible components. Let V 6= ∅ be a Noetherian topological
space. Then V can written as an irredundant finite union V =

⋃r
i=1 Vi, for

some r ∈ N, of irreducible closed subsets, that is Vi 6⊆
⋃

j 6=i Vj for all i. More-
over, the subsets V1, . . . ,Vr are precisely the (finitely many) maximal irreducible
(closed) subsets of V, being called its irreducible components.

Proof. Assume first that V cannot be written as a finite union of irreducible
closed subsets. Hence V is reducible, so that it is a union V =W1∪W ′1 of proper
closed subsets, where we may assume that W1 is reducible again. Iterating this
process yields an infinite strictly descending chain V ⊃ W1 ⊃ W2 ⊃ · · · of closed
subsets, a contradiction. Hence we may write V =

⋃r
i=1 Vi, for some r ∈ N, as

an irredundant union of irreducible closed subsets.

Then any irreducible closed subset V ′ ⊆ V is contained in (at least) one of the
Vi: We have V ′ = V ′ ∩ (

⋃r
i=1 Vi) =

⋃r
i=1(V ′ ∩ Vi), where the sets V ′ ∩ Vi ⊆ V ′

are closed; since V ′ is irreducible, we have V ′∩Vi = V ′, for some i, thus V ′ ⊆ Vi.
Hence the Vi are precisely the maximal irreducible closed subsets of V. ]
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(7.3) Zariski topology. We again place ourselves in the algebraic-geometric
setting built up earlier. We have seen that we have quite a rich supply of
algebraic sets: Both ∅ and Ln are algebraic, and both arbitrary intersections
and finite unions of algebraic sets are algebraic again. Thus the set of algebraic
subsets of Ln can be considered as the closed subsets of a topology on Ln, being
called its (K-)Zariski topology. Thus henceforth algebraic sets will just be
called (K-)closed.

The Zariski topology is Noetherian: Let Ln ⊇ V1 ⊃ V2 ⊃ · · · ⊃ ∅ be an infinite
strictly descending chain of closed subsets; then the chain {0} ⊆ IK(Ln) ⊆
IK(V1) ⊂ IK(V2) ⊂ · · ·EA of ideals is strictly increasing, a contradiction. ]

In particular, the closure of any subset V ⊆ Ln, that is the smallest closed set
containing V , is given as V = VL(IK(V )), justifying the notation already used
earlier. Moreover, any closed set is the finite union of its irreducible components.
Thus the study of closed sets can often be reduced to the case of irreducible ones.
We characterize irreducible closed sets algebraically:

Proposition. A closed set V ⊆ Ln is irreducible if and only if IK(V) is prime.

Proof. i) Let first V be irreducible. Then V 6= ∅ implies that I := IK(V) CA
is proper. In order to show that I is prime, let f, g ∈ A such that fg ∈ I.
Then we have V = VL(I) ⊆ VL(fg) = VL(f) ∪ VL(g), implying that V =
(VL(f) ∩V) ∪ (VL(g) ∩V). Since V is irreducible, we have VL(f) ∩V = V,
say, that is V ⊆ VL(f), or equivalently f ∈ I.

ii) Let now I be prime. Then ICA being proper implies V 6= ∅. In order to show
that V is irreducible, assume to the contrary that V = V′∪V′′, where V′,V′′ ⊂
V are closed and proper. Letting I ′ := IK(V′) E A and I ′′ := IK(V′′) E A,
we have I = IK(V) = IK(V′ ∪V′′) = IK(V′) ∩ IK(V′′) = I ′ ∩ I ′′, where both
I ⊂ I ′ and I ⊂ I ′′. Hence there are f ∈ I ′ \ I and g ∈ I ′′ \ I. But now we have
fg ∈ I ′ · I ′′ ⊆ I ′ ∩ I ′′ = I, a contradiction. ]

(7.4) Reduced rings. Let R be a ring. Then the ideal

nil(R) :=
√
{0} = {f ∈ R; fk = 0 for some k ∈ N}ER,

consisting of the nilpotent elements of R, is called the nilradical of R. More-
over, the ring R is called reduced if nil(R) = {0}.

From
√√
{0} =

√
{0} we get nil(R/nil(R)) = {0}, that is Rred := R/nil(R) is

reduced, being called the reduced ring associated with R. Then, for any ideal
I E R we have nil(R/I) =

√
I/I, that is (R/I)red ∼= R/

√
I. In particular, R/I

is reduced if and only if I =
√
I is radical.

(7.5) Coordinate algebras. a) Keeping the notation introduced earlier, let
V ⊆ Ln be closed. Then the vanishing ideal IK(V) E A is radical, thus the
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(finitely generated) coordinate algebra K[V] := A/IK(V) of V is reduced.
In general, any reduced finitely generated K-algebra is called an affine K-
algebra.

The closed set V ⊆ Ln, equipped with the (induced) Zariski topology, together
with its affine coordinate algebra K[V] is called an affine (K-)variety. Note
that this definition depends on the given embedding V ⊆ Ln (which will be
remedied by defining abstract affine varieties later). The coordinate algebra
plays a decisive role within the structure of V as an affine variety:

Any f ∈ K[V] induces a (polynomial) regular function f• : V→ L : v 7→ f(v),
where f(v) is given by choosing any representative of f in A modulo IK(V).
(We will show later that regular functions are actually continuous with respect
to the Zariski topology.)

This gives rise to the homomorphism of K-algebras K[V]→ Maps(V, L) : f 7→
f•. Since for g, h ∈ A we have g• = h• if and only if g − h ∈ IK(V), we
conclude that the latter map is injective. Hence K[V] can be identified with
the algebra of functions it induces, so that K[V] is also called the algebra of
regular functions on V. In particular, for Xi ∈ K[V] we get the coordinate
function (Xi)

• mapping [x1, . . . , xn] ∈ V to its i-th coordinate xi ∈ L.

We have the following algebraic-geometric correspondence: For any subset
S ⊆ K[V] we get the (closed) subset

VV(S) := {v ∈ V; f(v) = 0 for all f ∈ S} = VL(S + IK(V)) ⊆ V.

Conversely, for any subset W ⊆ V we get the (radical) vanishing ideal

IV(W ) := {f ∈ K[V]; f(w) = 0 for all w ∈W} = IK(W )/IK(V) EK[V].

Then we have W = VV(IV(W )) ⊆ V. For any closed subset W ⊆ V we have

K[W] = A/IK(W) ∼= (A/IK(V))/(IK(W)/IK(V)) = K[V]/IV(W),

where the natural epimorphism K[V]→ K[W] with kernel IV(W) is given by
restricting regular functions on V to W. Moreover, W is irreducible if and only
if K[W] is a domain, or equivalently if and only if IV(W) EK[V] is prime.
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