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(8.1) Algebraic-geometric correspondence. Keeping the notation intro-
duced earlier, let V. C L™ be closed. Then we have the following algebraic-
geometric correspondence:

For any subset S C K[V] we get the (closed) subset
Vv(S):={veV;f(w)=0forall feS} =V (S+1Ix(V)) CV.
Conversely, for any subset W C 'V we get the (radical) vanishing ideal
Iv(W):={f € K[V]; f(w) =0 for all w e W} =Ix(W)/Ix(V) < K[V].
Then we have W = Vv (Iy(W)) C V. For any closed subset W C V we have
KIW] = A/Tic(W) 2 (A/T (V) /(L (W)/Tx (V) = K[V]/Ty (W),

where the natural epimorphism K[V] — K[W] with kernel Iy,(W) is given by
restricting regular functions on V to W. Moreover, W is irreducible if and only
if K[W] is a domain, or equivalently if and only if Iy, (W) < K[V] is prime.

If'V C L™ is closed, the operator Iy induces an inclusion-reversing (with respect
to set-theoretic inclusion) injective correspondence

{W C V K-closed} — {I < K[V];I = VT radical},

whose inverse on the image of Iy is the operator V. If L is algebraically closed,
then Iy is surjective, and for I < K[V] we have Iy (Vv (I)) = VI < K[V].

(8.2) Affine algebras. A reduced finitely generated K-algebra is called an
affine K-algebra. Actually, any affine K-algebra R is the coordinate algebra
of a K-closed set: Let L be an algebraic closure of K. Since R is finitely
generated, by n € Ny elements say, we have R 22 A/I, where since R is reduced
we have I = /T; hence letting V := V(I) C L" we get K[V] = A/Ix(V) =
A/g(V(I)) = A/VI=A/I=R.

(8.3) Example. i) If L is infinite, then we have Ix (L") = {0} < A = K[X],
thus K[L"] = A/{0} = A; since A is a domain, L™ is irreducible.

UK=L, forv=[xy,...,x,) € K" letting I := (X1 —z1,...,Xp — ) JA,
we have Vi (I) = {v}, showing that all singleton sets are closed and irreducible.
Moreover, polynomial division shows that dimg(A/I) < 1. Hence from I C
Ix(v) <A we get Ix(v) =1 <A, being maximal, and K[{v}] = A/I = K.

iii) If moreover K = L is finite, then all subsets of K™ are closed, the irreducible
ones being the singleton subsets. Thus in this case the Zariski topology coincides
with the discrete topology; in particular, K" is reducible for n > 1.



(8.4) Regular maps. a) We keep the above notation, and additionally let
B := K[Y], where Y := {Y1,...,Y,,} are (further) indeterminates for some m €
Ng. Moreover, let V. C L™ and W C L™ be closed. A map ¢: V — W is called
regular or a (K-)morphism (of affine varieties), if there are ‘polynomials’
fi,..., fm € K[V] such that o(v) = [f1(v),..., fm(v)] € W, for all v € V.

Let Morg (V, W) be the set of all regular maps from V to W. In particular, for
W = L we have Morg (V, L) = K[V] as sets. Moreover, ¢ € Morg(V, W) is
called an isomorphism (of affine varieties), if it is bijective and its inverse
is regular again; in particular, idy € Morg(V, V) is an isomorphism.

b) Let Hom(K[W], K[V]) be the set of all K-algebra homomorphisms from
K[W] to K[V]; recall that an algebra homomorphism is an isomorphism if and
only if it is bijective. Letting ¢: V — W be regular, by pre-composition we get
the dual K-algebra homomorphism or comorphism of coordinate K-algebras

" K[W] = K[V]: g gop=g(f1,-., fm)

We only have to show that ¢* is well-defined: For g € K[W] and v € V we get
g(@(v)) = g(fl(v)v R fm(U)) = g(fla ) fm)(v)a where g(f17 LR fm) € K[V]7
note that this independent of the choice of representatives for ¢ € K[W] and
the f; € K[V] in K[Y] and K[X], respectively.

(8.5) Functoriality. Keeping the above notation, we vary the regular map:

Let v € Morg(U,V), where U is an affine variety. Then it is immediate
(by concatenation of ‘polynomial’ functions) that ¥y € Morg (U, W). For
g € K[W] we have go (po1) = (gop) o1, so that we get (p)* = @**.
Moreover, we have (idw)* = idgw). In other words, the collection of maps
7*: @ — " is contravariantly functorial.

Theorem. The map Morg (V, W) — Hom(K[W], K[V]): ¢ — ©* is bijective.

Proof. Let ¢: V. — W be regular, given by fi,...,fn € K[V]. Then for
Y; € K[W], where j € {1,...,m}, we have ¢*(Y;) = f;, implying injectivity.

Let a: K[W] — K[V] be a homomorphism of K-algebras. For j € {1,...,m}
let f; == a(Y; +Ix(W)) € K[V], and let p: V — L™: v = [fi(v),..., fm(v)]
be the associated regular map. Then we have ¢*: B — K[V]: Y; — f;. Thus
by construction ¢* factors through B/Ix (W) = K[W]. Hence for f € Ix(W)
we have ¢*(f) = 0, which for v € V implies f(¢(v)) = (¢*(f))(v) = 0. This
says that ¢(v) € VL (Ix(W)) = W. Thus we have ¢(V) C W. Hence, slightly
abusing notation, we have a regular map ¢: V. — W, having comorphism
©*: K[W] = K[V]:Y; — f;. This shows ¢* = «, implying surjectivity. 1

Being an isomorphism of varieties is a property strictly stronger than being a
homeomorphism, let alone being bijective, as the following example shows (once
we have shown that the map ¢ — ¢* reflects and respects isomorphisms):



Example. Let ¢ be a prime power, let F;, C F be an algebraic closure, and
let A := F,[X] = F,[F]. The Frobenius map ® = ¢,: F — F: z > 27 is
an Fg-morphism, whose comorphism is the F,-algebra homomorphism ¢*: A —
A: X — X9 Then we have ®*(f) = f(X?) = f9, for f € A, hence ®* is
injective, but not surjective. Thus ®* is not an isomorphism, so ® neither is. #




