
Algebraic Geometry (WS 2025)

PD Dr. Jürgen Müller, Lecture 8 (04.11.2025)

(8.1) Algebraic-geometric correspondence. Keeping the notation intro-
duced earlier, let V ⊆ Ln be closed. Then we have the following algebraic-
geometric correspondence:

For any subset S ⊆ K[V] we get the (closed) subset

VV(S) := {v ∈ V; f(v) = 0 for all f ∈ S} = VL(S + IK(V)) ⊆ V.

Conversely, for any subset W ⊆ V we get the (radical) vanishing ideal

IV(W ) := {f ∈ K[V]; f(w) = 0 for all w ∈W} = IK(W )/IK(V) EK[V].

Then we have W = VV(IV(W )) ⊆ V. For any closed subset W ⊆ V we have

K[W] = A/IK(W) ∼= (A/IK(V))/(IK(W)/IK(V)) = K[V]/IV(W),

where the natural epimorphism K[V]→ K[W] with kernel IV(W) is given by
restricting regular functions on V to W. Moreover, W is irreducible if and only
if K[W] is a domain, or equivalently if and only if IV(W) EK[V] is prime.

If V ⊆ Ln is closed, the operator IV induces an inclusion-reversing (with respect
to set-theoretic inclusion) injective correspondence

{W ⊆ V K-closed} → {I EK[V]; I =
√
I radical},

whose inverse on the image of IV is the operator VV. If L is algebraically closed,
then IV is surjective, and for I EK[V] we have IV(VV(I)) =

√
I EK[V].

(8.2) Affine algebras. A reduced finitely generated K-algebra is called an
affine K-algebra. Actually, any affine K-algebra R is the coordinate algebra
of a K-closed set: Let L be an algebraic closure of K. Since R is finitely
generated, by n ∈ N0 elements say, we have R ∼= A/I, where since R is reduced
we have I =

√
I; hence letting V := VL(I) ⊆ Ln we get K[V] = A/IK(V) =

A/IK(VL(I)) = A/
√
I = A/I ∼= R.

(8.3) Example. i) If L is infinite, then we have IK(Ln) = {0} C A = K[X ],
thus K[Ln] = A/{0} ∼= A; since A is a domain, Ln is irreducible.

ii) If K = L, for v = [x1, . . . , xn] ∈ Kn letting I := 〈X1−x1, . . . , Xn−xn〉EA,
we have VK(I) = {v}, showing that all singleton sets are closed and irreducible.
Moreover, polynomial division shows that dimK(A/I) ≤ 1. Hence from I ⊆
IK(v) CA we get IK(v) = I CA, being maximal, and K[{v}] = A/I ∼= K.

iii) If moreover K = L is finite, then all subsets of Kn are closed, the irreducible
ones being the singleton subsets. Thus in this case the Zariski topology coincides
with the discrete topology; in particular, Kn is reducible for n ≥ 1.
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(8.4) Regular maps. a) We keep the above notation, and additionally let
B := K[Y], where Y := {Y1, . . . , Ym} are (further) indeterminates for some m ∈
N0. Moreover, let V ⊆ Ln and W ⊆ Lm be closed. A map ϕ : V→W is called
regular or a (K-)morphism (of affine varieties), if there are ‘polynomials’
f1, . . . , fm ∈ K[V] such that ϕ(v) = [f1(v), . . . , fm(v)] ∈W, for all v ∈ V.

Let MorK(V,W) be the set of all regular maps from V to W. In particular, for
W = L we have MorK(V, L) = K[V] as sets. Moreover, ϕ ∈ MorK(V,W) is
called an isomorphism (of affine varieties), if it is bijective and its inverse
is regular again; in particular, idV ∈ MorK(V,V) is an isomorphism.

b) Let Hom(K[W],K[V]) be the set of all K-algebra homomorphisms from
K[W] to K[V]; recall that an algebra homomorphism is an isomorphism if and
only if it is bijective. Letting ϕ : V→W be regular, by pre-composition we get
the dual K-algebra homomorphism or comorphism of coordinate K-algebras

ϕ∗ : K[W]→ K[V] : g 7→ g ◦ ϕ = g(f1, . . . , fm).

We only have to show that ϕ∗ is well-defined: For g ∈ K[W] and v ∈ V we get
g(ϕ(v)) = g(f1(v), . . . , fm(v)) = g(f1, . . . , fm)(v), where g(f1, . . . , fm) ∈ K[V];
note that this independent of the choice of representatives for g ∈ K[W] and
the fj ∈ K[V] in K[Y] and K[X ], respectively.

(8.5) Functoriality. Keeping the above notation, we vary the regular map:

Let ψ ∈ MorK(U,V), where U is an affine variety. Then it is immediate
(by concatenation of ‘polynomial’ functions) that ψϕ ∈ MorK(U,W). For
g ∈ K[W] we have g ◦ (ϕ ◦ ψ) = (g ◦ ϕ) ◦ ψ, so that we get (ψϕ)∗ = ϕ∗ψ∗.
Moreover, we have (idW)∗ = idK[W]. In other words, the collection of maps
?∗ : ϕ 7→ ϕ∗ is contravariantly functorial.

Theorem. The map MorK(V,W)→ Hom(K[W],K[V]) : ϕ 7→ ϕ∗ is bijective.

Proof. Let ϕ : V → W be regular, given by f1, . . . , fm ∈ K[V]. Then for
Yj ∈ K[W], where j ∈ {1, . . . ,m}, we have ϕ∗(Yj) = fj , implying injectivity.

Let α : K[W] → K[V] be a homomorphism of K-algebras. For j ∈ {1, . . . ,m}
let fj := α(Yj + IK(W)) ∈ K[V], and let ϕ : V → Lm : v 7→ [f1(v), . . . , fm(v)]
be the associated regular map. Then we have ϕ∗ : B → K[V] : Yj 7→ fj . Thus
by construction ϕ∗ factors through B/IK(W) = K[W]. Hence for f ∈ IK(W)
we have ϕ∗(f) = 0, which for v ∈ V implies f(ϕ(v)) = (ϕ∗(f))(v) = 0. This
says that ϕ(v) ∈ VL(IK(W)) = W. Thus we have ϕ(V) ⊆W. Hence, slightly
abusing notation, we have a regular map ϕ : V → W, having comorphism
ϕ∗ : K[W]→ K[V] : Yj 7→ fj . This shows ϕ∗ = α, implying surjectivity. ]

Being an isomorphism of varieties is a property strictly stronger than being a
homeomorphism, let alone being bijective, as the following example shows (once
we have shown that the map ϕ 7→ ϕ∗ reflects and respects isomorphisms):
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Example. Let q be a prime power, let Fq ⊆ F be an algebraic closure, and
let A := Fq[X] = Fq[F]. The Frobenius map Φ = Φq : F → F : x 7→ xq is
an Fq-morphism, whose comorphism is the Fq-algebra homomorphism Φ∗ : A→
A : X 7→ Xq. Then we have Φ∗(f) = f(Xq) = fq, for f ∈ A, hence Φ∗ is
injective, but not surjective. Thus Φ∗ is not an isomorphism, so Φ neither is. ]
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