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1 Schur functors

It turns out that the functorial language is the right setting to formulate and
understand some of the most powerful techniques of computational representa-
tion theory, the condensation techniques. The exposition of Section 1 is derived
from [27, Sect.6]. We begin in a fairly general setting, thereby correcting an
impreciseness in [31]. For the necessary notions from category theory see [3,
Ch.2.1] and [2, Ch.II.1].

(1.1) Notation. Let Θ be a principal ideal domain. Let A be a Θ-algebra,
which is a finitely generated Θ-free Θ-module. Let mod-A be the abelian cat-
egory of finitely generated right A-modules. Let modΘ-A be the full additive
subcategory of mod-A consisting of its Θ-free objects. In particular, if Θ is a
field we have modΘ-A = mod-A.

(1.2) Lemma. Let V ∈ mod-Θ. Then the following are equivalent:
a) We have V ∈ modΘ-Θ, i. e. V is a finitely generated Θ-free Θ-module.
b) V is a projectve Θ-module.
c) V is a torsion-free Θ-module.

Proof. Let V be Θ-free. Then each surjection X → V , for all X ∈ mod-Θ,
splits, hence V is Θ-projective. Let V be Θ-projective. Then V is a direct
summand of some X ∈ modΘ-Θ, hence V is Θ-torsion-free. Let V be Θ-torsion-
free. As Θ is a principal ideal domain, V is Θ-free. ]

(1.3) Definition. See [18, Ch.I.17].
Let V ∈ modΘ-Θ and let U ≤ V be a Θ-submodule. Then U ≤ V is called
Θ-pure in V , if V/U is a Θ-free Θ-module.

(1.4) Lemma.
a) U ≤ V is Θ-pure if and only if U is a Θ-direct summand of V .
b) If U,U ′ ≤ V are Θ-pure, then U ∩ U ′ ≤ V is Θ-pure as well.

Proof. a) Let U be Θ-pure. Then V/U is Θ-free, hence the natural surjection
V → V/U splits, thus U has a Θ-complement in V . Let V ∼= U ⊕ U ′. Hence
V ≥ U ′ ∼= V/U is Θ-torsion-free, thus by Lemma (1.2) U ′ is Θ-free.
b) We have V/(U ∩U ′) ≤ V/U ⊕V/U ′, thus V/(U ∩U ′) is Θ-torsion-free, hence
Θ-free. ]

(1.5) Definition. Let V ∈ modΘ-Θ and U ≤ V be a Θ-submodule. Then the
Θ-pure Θ-submodule

UV :=
⋂
{X;U ≤ X ≤ V is Θ-pure} ≤ V

is called the pure closure of U in V .
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(1.6) Proposition. Es ist

UV =
∑
{X;U ≤ X ≤ V,X/U is Θ-torsion} ≤ V.

Proof. Let U ≤ X ≤ V such that X/U is Θ-torsion, and let v ∈ X \UV . Then
there is ϑ ∈ Θ such that ϑv ∈ U ≤ UV , hence V/UV is not Θ-torsion-free, a
contradiction. Hence X ≤ UV .

Let v ∈ UV \ U such that (v + U)Θ ≤ UV /U is not Θ-torsion, hence (v + U)Θ
is Θ-free. Thus there is U ≤ U ′ < UV such that V/U ′ ∼= V/UV ⊕ Θ, which is
Θ-free, a contradiction. ]

(1.7) Definition and Remark. Let C be an additive category, let V,W ∈ C
and α : V →W be a C-morphism.
a) An object K ∈ C together with a monomorphism kerα : K → V is called a
(categorical) kernel of α, if (kerα)α = 0 and if for all morphisms ξ : X → V
fulfilling ξα = 0 there is a morphism ξ′ : X → K such that ξ = ξ′(kerα).
b) An object C ∈ C together with an epimorphism cokα : W → C is called a
(categorical) cokernel of α, if α(cokα) = 0 and if for all morphisms ξ : W →
X fulfilling αξ = 0 there is a morphism ξ′ : W → C such that ξ = (cokα)ξ′.
c) Kernel and cokernel are uniquely determined up to isomorphism.
d) The morphism imα := ker(cokα) is called the (categorical) image of α.
The morphism coimα := cok (kerα) is called the (categorical) coimage of α.
e) The morphism α induces a morphism α̂ : coimα→ imα.
f) The category C is called exact if α̂ is an isomorphism for all α : V →W .

g) Let β : W → U . The sequence V α→W
β→ U is called exact, if imα ∼= kerβ.

(1.8) Proposition. Let V,W ∈ modΘ-A and α ∈ HomA(V,W ).
a) Then kerα and cokα exist in modΘ-A.
b) The map α̂ induced by α is an isomorphism if and only if V α ≤ W is a
Θ-pure submodule. In particular, if Θ is not a field then modΘ-A fails to be an
exact category.

Proof. The set theoretic kernel K ∈ mod-A of α is a Θ-free module, and hence
together with its natural embedding into V , it is a categorical kernel of α.

As (V α)W ≤ W is Θ-pure, we have W/(V α)W ∈ modΘ-A. Let β : W →
W/(V α)W denote the natural surjection. Let X ∈ modΘ-A and γ : W → X
such that αγ = 0. Then, by Proposition (1.6), for w ∈ (V α)W there is ϑ ∈ Θ
such that ϑw ∈ V α, hence we have ϑw · γ = 0, and since X is Θ-free we
conclude wγ = 0. Hence γ factors through β, and W/(V α)W together with β
is a categorical cokernel of α.

As kerα ≤ V is a Θ-pure submodule, we have cok (kerα) ∼= V/ kerα, and as
(V α)W ≤ W is a Θ-pure submodule, we have ker(cokα) ∼= (V α)W , while for
the natural map α̂ : V/ kerα→ (V α)W we have (V/ kerα)α̂ = V α. ]
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We introduce the objects of interest in Section 1.

(1.9) Definition. See [11, Ch.6.2].
a) Let e ∈ A be an idempotent. Then the additive exact functor

Ce : mod-A→ mod-eAe : V 7→ V e,

mapping α ∈ HomA(V,W ) to its restriction α|V e ∈ HomeAe(V e,We) to V e, is
called the Schur functor or condensation functor with respect to e. For
V ∈ mod-A the eAe-module Ce(V ) = V e ∈ mod-eAe is called the condensed
module of V .
b) The uncondensation functor with respect to e is the additive functor

Ue := ?⊗eAe eA : mod-eAe→ mod-A.

For W ∈ mod-eAe, the A-module W ⊗eAe eA ∈ mod-A is called the uncon-
densed module of W .

(1.10) Remark.
a) There is an equivalence σe : Ce → ? ⊗A Ae of functors from mod-A to
mod-eAe, given by σe(V ) : V e→ V ⊗A Ae : ve 7→ v ⊗ e.
Furthermore, there is an equivalence τe : HomA(eA, ?) → ? ⊗A Ae of functors
from mod-A to mod-eAe, given by τe(V ) : HomA(eA, V ) → V e : α 7→ eα, with
inverse given by τ−1

e (V ) : V e→ HomA(eA, V ) : v 7→ (ea 7→ v · a).

The functor Ce ◦Ue : mod-eAe→ mod-eAe is equivalent to the identity functor
on mod-eAe, using the equivalence given by V ⊗eAeeA·e→ V : v⊗ea·e 7→ veae.

b) The exactness of the Schur functor Ce : mod-A→ mod-eAe follows from the
fact that Ce is equivalent to both a covariant Hom-functor, which hence by [45,
Prop.1.6.8] is left exact, and to a tensor functor, which hence by [45, Appl.2.6.2]
is right exact.

In general the uncondensation functor Ue : mod-eAe→ mod-A is not exact, see
Example (1.25) and Remark (1.14).

(1.11) Proposition.
a) Ce induces an additive functor modΘ-A→ modΘ-eAe.

b) Let V,W,U ∈ modΘ-A and let V α→ W
β→ U be an exact sequence in

modΘ-A, see Definition (1.7). Then V e
α|V e−→ We

β|We−→ Ue is an exact sequence
in modΘ-eAe.

Proof. If V ∈ mod-A is Θ-free, then V e ∈ mod-eAe also is Θ-free.

Both (V α)W ·e ≤ (V α)W and (V α)W ≤W are Θ-pure. Hence (V α)W ·e ≤W is
Θ-pure, thus this holds for (V α)W ·e ≤We as well. Hence we have (V α ·e)We ≤
(V α)W ·e. Furthermore, by Proposition (1.6), for w ∈ (V α)W ·e = (V α)W ∩We
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there is θ ∈ Θ such that θw ∈ V α∩We = V α·e. Hence we also have (V α)W ·e ≤
(V α · e)We, and thus (V α)W · e = (V α · e)We.

By the exactness of V α→ W
β→ U we have (V α)W = imα = kerβ, see

Proposition (1.8). Hence the exactness of Ce : mod-A → mod-eAe implies
im (α|V e) = (V α · e)We = (V α)W · e = (kerβ) · e = ker(β|We). ]

The most important case, as far as computational applications are concerned,
is where the base ring Θ is a field.

(1.12) Proposition. See [31, La.3.2].
Let Θ be a field and let e ∈ A be an idempotent.
a) Let S ∈ mod-A be simple. Then we have Se 6= {0}, if and only if S is
a constituent of eA/rad(eA) ∈ mod-A. If Se 6= {0}, then Se ∈ mod-eAe is
simple.
b) Let S, S′ ∈ mod-A be simple, such that Se 6= {0}. Then we have S ∼= S′ ∈
mod-A, if and only if Se ∼= S′e ∈ mod-eAe.
c) Let T ∈ mod-eAe be simple. Then there is a simple S ∈ mod-A, such that
T ∼= Se ∈ mod-eAe.

Proof. By Remark (1.10) we have Se ∼= HomA(eA, S) ∼= HomA(eA/rad(eA), S)
as Θ-vector spaces. For 0 6= v ∈ Se, as S ∈ mod-A is simple, we have v · eAe =
vA · e = Se.

Let Se ∼= S′e ∈ mod-eAe. Choose a decomposition of e ∈ A as a sum of pairwise
orthogonal primitive idempotents in A. We have HomA(eA, S) ∼= Se 6= {0} as
Θ-vector spaces, if and only if there is a summand eS ∈ eAe ⊆ A such that eSA
is projective indecomposable with eSA/rad(eSA) ∼= S ∈ mod-A. Applying the
functor CeS : mod-eAe → mod-eSAeS , we obtain SeS ∼= S′eS ∈ mod-eSAeS .
Hence we have {0} 6= S′eS ∼= HomA(eSA,S′) as Θ-vector spaces, thus S′ ∼= S ∈
mod-A.

By Remark (1.10) we have {0} 6= T ∼= Ce ◦ Ue(T ) ∼= T ∈ mod-eAe, hence
Ue(T ) 6= {0}. Thus there is a simple S ∈ mod-A such that HomA(Ue(T ), S) 6=
{0}. By the Adjointness Theorem [9, Thm.0.2.19] we have as Θ-vector spaces

HomA(T ⊗eAe eA, S) ∼= HomeAe(T,HomA(eA, S)) ∼= HomeAe(T, Se) 6= {0}.

Thus we conclude that {0} 6= Se ∈ mod-eAe is simple, hence Se ∼= T ∈
mod-eAe. ]

(1.13) Definition. Let Θ be a field and let e ∈ A be an idempotent.
a) Let Σe ⊆ mod-A be a set of representatives of the isomorphism types of sim-
ple S ∈ mod-A such that Se 6= {0}. In particular, Σ1 is a set of representatives
of the isomorphism types of all simple A-modules.
b) For a set Σ ⊆ mod-A of representatives of some isomorphism types of sim-
ple A-modules let modΣ-A be the full subcategory of mod-A consisting of all
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A-modules all of whose constituents are isomorphic to an element of Σ. In
particular, let mode-A := modΣe -A. The natural embedding induces the fully
faithful exact functor Ie : mode-A→ mod-A. Let

CΣ
e := Ce ◦ Ie : mode-A→ mod-eAe.

c) For V ∈ mod-A let P(V )
ρ→ V denote its projective cover, and let Ω(V ) :=

ker ρ ∈ mod-A be the Heller module of V . Let modΩ,e-A be the full sub-
category of mod-A consisting of all A-modules V such that both V/rad(V ) ∈
mode-A and Ω(V )/rad(Ω(V )) ∈ mode-A. The natural embedding induces the
fully faithful exact functor IΩ,e : modΩ,e-A→ mod-A. Let

CΩ
e := Ce ◦ IΩ,e : modΩ,e-A→ mod-eAe.

(1.14) Remark. Let Θ be a field and let e ∈ A be an idempotent.
a) By Proposition (1.12), the set {Se;S ∈ Σe} ⊆ mod-eAe is a set of represen-
tatives of the isomorphism types of all simple eAe-modules.

b) If Σe = Σ1, then by Proposition (1.12) the projective A-module eA ∈
mod-A is a progenerator of mod-A. Hence in this case, by Morita’s Theo-
rem [9, Thm.0.3.54], the functor Ce induces an equivalence between mod-A and
mod-eAe. Thus in particular Ce is fully faithful and essentially surjective. The
inverse functor is the uncondensation functor Ue, which hence in this case is
exact.

Condensation functors inducing equivalences play a prominent role in the rep-
resentation theory of algebras, see [2]. In practice, such condensation functors
have been examined in the group algebra case in [22].

c) If Σe = Σ1, then we have HomA(eA, fA/rad(fA)) 6= {0} for all primitive
idempotents f ∈ A, hence the projectivity of Ae ∈ mod-eAe follows from the
observation in d). Thus eA ∈ eAe-mod is projective as well, and hence this also
shows that in this case the uncondensation functor Ue is exact.

d) Let f ∈ A be a primitive idempotent such that HomA(eA, fA/rad(fA)) 6=
{0}. Hence we may assume that e = f + (e− f) is a decomposition of e ∈ A as
a sum of orthogonal idempotents. Thus fAe ∈ mod-eAe is a direct summand
of eAe ∈ mod-eAe and hence projective. As f ∈ eAe is primitive as well,
fAe ∈ mod-eAe is indecomposable.

Motivated by Example (1.25), this leads to the Conjecture: If f ∈ A is a
primitive idempotent such that HomA(eA, fA/rad(fA)) = {0}, then fAe ∈
mod-eAe is not projective. Moreover, as actually fAe ∈ mod-eAe might be
decomposable, it is even projective-free.

We discuss properties of the functor Ce in the general case, where we do not
assume that Ce induces an equivalence. Proposition (1.15) shows that CΣ

e is a
suitable functor to examine the submodule structure of A-modules. Proposition
(1.16) and Example (1.25) show that CΣ

e is fully faithful, but in general is not
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essentially surjective. Proposition (1.18) then shows how this failure to be an
equivalence can be remedied by using the functor CΩ

e .

(1.15) Proposition. Let Θ be a field, e ∈ A be an idempotent and let V ∈
mode-A. Then CΣ

e induces a lattice isomorphism between the submodule lattices
of V and CΣ

e (V ) ∈ mod-eAe.

Proof. Clearly CΣ
e preserves inclusion of submodules and commutes with form-

ing sums and intersections of submodules. Hence CΣ
e induces a lattice homo-

morphism from the submodule lattice of V to the submodule lattice of CΣ
e (V ).

Since V ∈ mode-A this is an injection.

Let α : W → V e be an injection in mod-eAe. Applying Ce to HomA(Ue(W ), V )
and using the equivalences of Remark (1.10) yields a Θ-linear map

(Ce)Ue(W ),V :

{
HomA(W ⊗eAe eA, V ) → HomeAe(W,HomA(eA, V )) :

β 7→
(
w 7→ (ea 7→ (w ⊗ e)β · a)

)
.

This coincides with the adjointness Θ-homomorphism given by [9, Thm.0.2.19],
and hence is a Θ-isomorphism. Let β := (Ce)−1

Ue(W ),V (α) ∈ HomA(Ue(W ), V ).
Then we have Ue(W )β ≤ V and thus Ce(Ue(W )β) = (Ce ◦ Ue(W ))α = Wα. ]

(1.16) Proposition. Let Θ be a field and let e ∈ A be an idempotent. Then
the functor CΣ

e : mode-A→ mod-eAe is fully faithful.

Proof. If Σe = Σ1, then we have mode-A = mod-A, and by Remark (1.14)
the functor CΣ

e = Ce : mod-A → mod-eAe is an equivalence of categories, in
particular Ce is fully faithful. Hence we may assume Σe 6= Σ1. Let e′ ∈ A be
an idempotent orthogonal to e, such that Se′ 6= {0} if and only if S ∈ mod-A
is simple isomorphic to an element of Σ1 \ Σe, and let f := e + e′ ∈ A. Hence
Σf = Σ1 and thus the functor Cf : mod-A → mod-fAf is an equivalence of
categories, in particular Cf is fully faithful.

We have the Pierce decomposition fAf = eAe ⊕ eAe′ ⊕ e′Ae ⊕ e′Ae′ as a Θ-
vector space. Hence, for V ∈ mod-eAe and v ∈ V and a ∈ A, let v · eae′ =
v · e′ae = v · e′ae := 0. It is straightforward to check that this defines an fAf -
module structure on V . Thus we obtain a functor Ife : mod-eAe → mod-fAf .
For V,W ∈ mod-eAe we have HomfAf (Ife (V ), Ife (W )) = HomeAe(V,W ), hence
the functor Ife is fully faithful. By the choice of e′ ∈ A we furthermore conclude
Ife ◦ Ce ◦ Ie = Cf ◦ Ie : mode-A → mod-fAf . As Ie and Ife as well as Cf are
fully faithful, Ce also is fully faithful. ]

(1.17) Corollary. Let Θ be a field and let e ∈ A be an idempotent.
a) For V ∈ mode-A we have EndA(V ) ∼= EndeAe(V e).
b) In particular, if S ∈ mode-A is simple, then S is absolutely simple if and
only if Se ∈ mod-eAe is.



7

(1.18) Proposition. See [2, Prop.II.2.5].
Let Θ be a field and e ∈ A be an idempotent. Then the functor

CΩ
e : modΩ,e-A→ mod-eAe

is an equivalence of categories, with inverse Ue : mod-eAe→ modΩ,e-A.

Proof. Let V ∈ mod-eAe and let S ∈ mod-A be simple. By the Adjointness
Theorem [9, Thm.0.2.19] we have HomA(Ue(V ), S) ∼= HomeAe(V,HomA(eA, S))
as Θ-vector spaces. As HomA(eA, S) = {0} if S 6∈ Σe, we conclude that
Ue(V )/rad(Ue(V )) ∈ mode-A.

If P ∈ mod-eAe is projective, and hence is a direct summand of a free eAe-
module, then Ue(P ) ∼= P ⊗eAe eA ∈ mod-A is projective as well. Let P1 →
P0 → V → {0} be the beginning of a projective resolution of V ∈ mod-eAe. By
the right exactness of the tensor functor Ue = ? ⊗eAe eA, see [45, Appl.2.6.2],
the sequence Ue(P1) → Ue(P0) → Ue(V ) → {0} is the beginning of a pro-
jective resolution of Ue(V ) ∈ mod-A. Hence we have HomA(Ω(Ue(V )), S) ≤
HomA(Ue(P1), S) ∼= HomeAe(P1,HomA(eA, S)) as Θ-vectorspaces. Hence we
also have Ω(Ue(V ))/rad(Ω(Ue(V ))) ∈ mode-A.

Thus Ue restricts to a functor Ue : mod-eAe → modΩ,e-A. By Remark (1.10)
CΩ
e ◦ Ue is equivalent to the identity functor on mod-eAe. Conversely, for V ∈

modΩ,e-A we have Ue ◦ Ce(V ) ∼= HomA(eA, V ) ⊗EndA(eA)◦ eA ∈ modΩ,e-A.
Hence it is sufficient to show that the natural evaluation map

ν : HomA(eA, V )⊗EndA(eA)◦ eA→ V : α⊗ ea 7→ (ea)α

is an isomorphism of A-modules.

Assume that ν is not surjective. Then there is S ∈ Σe and 0 6= β ∈ HomA(V, S)
such that im ν ≤ kerβ ≤ V . As β is surjective, eA ∈ mod-A is projective
and HomA(eA, S) 6= {0}, there is α ∈ HomA(eA, V ) such that αβ 6= 0. Hence
imα 6≤ kerβ ≤ V , which is a contradiction. Hence ν is surjective, and we thus
have an exact sequence

{0} → ker ν → HomA(eA, V )⊗EndA(eA)◦ eA
ν→ V → {0}

of A-modules. Since Ce ◦ Ue is equivalent to the identity functor on mod-eAe,
applying Ce yields the exact sequence {0} → (ker ν)e → V e

id→ V e → {0} in
mod-eAe. Hence we conclude (ker ν)e = {0}.

As ν is surjective, the projective cover P(V )
ρ→ V yields the existence of

µ ∈ HomA(P(V ),HomA(eA, V )⊗EndA(eA)◦ eA) such that µν = ρ. As Ω(V )µν =
(ker ρ)µν = {0}, we conclude Ω(V )µ ≤ ker ν. From (ker ν)e = {0} and
Ω(V )/rad(Ω(V )) ∈ mode-A we conclude that Ω(V )µ = {0}. Hence there
is µ ∈ HomA(V,HomA(eA, V ) ⊗EndA(eA)◦ eA) such that ρµ = µ. Thus we
have ρµν = ρ. As ρ is surjective, we conclude µν = idV . Hence ker ν is
a direct summand of HomA(eA, V ) ⊗EndA(eA)◦ eA ∈ modΩ,e-A, and hence
ker ν/rad(ker ν) ∈ mode-A. As (ker ν)e = {0} we conclude ker ν = {0}, and
thus ν is injective as well. ]
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(1.19) Remark. Let V ∈ mod-A and let e ∈ A be an idempotent. The natural
evaluation map ν : HomA(eA, V )⊗eAe eA→ V used in the proof of Proposition
(1.18) is the preimage of idHomA(eA,V ) under the adjointness Θ-isomorphism,
see [9, Thm.0.2.19],

HomA(HomA(eA, V )⊗eAe eA, V ) ∼= HomeAe(HomA(eA, V ),HomA(eA, V )).

This leads to the definition of relative uncondensation functors, which are of
practical importance as a constructive tool, see [33, 44]

(1.20) Definition and Remark. Let V ∈ mod-A, let e ∈ A be an idempotent,
let W ∈ mod-eAe and let α : W → V e be injective.
a) Then in mod-A we have

(α⊗ id) · ν : W ⊗eAe eA
α⊗id−→ V e⊗eAe eA

ν−→ V,

where ν : HomA(eA, V )⊗eAeeA→ V is the natural evaluation map as in Remark
(1.19). Then im ((α⊗ id) · ν) ∈ mod-A is called the uncondensed module of
W with respect to V .
b) As V e can be considered as a Θ-subspace of V , using the injection α we
obtain an injection α̂ : W → V as Θ-vector spaces. Thus the uncondensed
module im ((α⊗ id) · ν) ≤ V equals the A-submodule Wα̂ ·A ≤ V generated by
Wα̂ = im (α̂).

(1.21) We consider the relation of Schur functors and modular reduction.

Let K be an algebraic number field, and let R ⊂ K be a discrete valuation
ring in K with maximal ideal ℘ C R and finite residue class field F := R/℘ of
characteristic p > 0. Let : R → F denote the natural surjection. Hence for
V ∈ modR-R we have a natural surjection : V → V ⊗R F .

Let A ∈ modR-R be an R-algebra as in Notation (1.1), let AK := A⊗R K and
AF := A⊗RF = A. For an idempotent e ∈ A we have the Pierce decomposition
A = eAe⊕ (1− e)Ae⊕ eA(1− e)⊕ (1− e)A(1− e) in modR-R. Hence we have
eAe⊗R K ∼= eAKe as K-algebras, and eAe⊗R F ∼= eAF e as F -algebras.

Let V α→ W
β→ U be an exact sequence in modR-A. Hence it follows from the

Proof of Proposition (1.8) that the induced sequence V ⊗RK
α⊗id−→ W ⊗RK

β⊗id−→
U ⊗R K is an exact sequence in mod-AK . Note that this does not necessarily

hold for the induced sequence V ⊗R F
α⊗id−→ W ⊗R F

β⊗id−→ U ⊗R F in mod-AF .

In the rest of Section 1 let A be as in Section (1.21).

(1.22) Definition. See [8, Ch.XII.82-83].
a) Let S ∈ mod-AK be simple, let Ŝ ∈ modR-A such that Ŝ ⊗R K ∼= S ∈
mod-AK and let T ∈ mod-AF be simple. Then the decomposition number
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dS,T ∈ N0 is defined as the multiplicity of the constituent T in a composition

series of Ŝ := Ŝ ⊗R F ∈ mod-AF .

Identifying the Grothendieck groups G(AK) and G(AF ) with the free abelian
groups generated by a set of representatives of the isomorphism types of the
simple AK-modules and AF -modules, respectively, yields the decomposition
map D : G(AK)→ G(AF ).

b) For S ∈ mod-eAKe simple and T ∈ mod-eAF e simple we analogously define
the decomposition number deS,T ∈ N0. This defines the decomposition
map De : G(eAKe)→ G(eAF e).

(1.23) Proposition. Let e ∈ A ⊆ AK be an idempotent.
a) The additive functors HomA(eA, ?) ⊗R K and HomAK (eAK , ? ⊗R K) from
modR-A to mod-eAKe are equivalent.
b) The additive functors HomA(eA, ?) ⊗R F and HomAF (eAF , ? ⊗R F ) from
modR-A to mod-eAF e are equivalent.

Proof. As A ∈ modR-R, this also holds for eA ≤ A. For V ∈ modR-A hence
HomA(eA, V ) ≤ HomR(eA, V ) ∈ modR-R. ]

(1.24) Proposition. Let e ∈ A ⊆ AK be an idempotent. Let S ∈ mod-AK be
simple and let T ∈ mod-AF be simple, such that {0} 6= Te ∈ mod-eAF e. Then
we have

dS,T = deSe,Te.

In particular, if Se = {0} then we have dST = 0.

Proof. Let Ŝ ∈ modR-A such that Ŝ ⊗R K ∼= S ∈ mod-AK . By Proposition
(1.23), for Ŝe ∈ modR-eAe we hence have Ŝe ⊗R K ∼= Se ∈ mod-eAKe. Thus
the decomposition number deSe,Te ∈ N0 is the multiplicity of the constituent

Te in a composition series of Ŝe ∈ mod-eAF e. By Proposition (1.23) again we
have Ŝe ∼= Ŝe ∈ mod-eAF e. As Ce : mod-AF → mod-eAF e is an exact functor,
by Proposition (1.12) we conclude that the multiplicity of the constituent Te
in a composition series of Ŝe equals the multiplicity of the constituent T in a
composition series of Ŝ ∈ mod-AF . ]

We conclude Section 1 by an example showing that in general CΣ
e : mode-A →

mod-eAe is not essentially surjective and that in general Ue : mod-eAe →
mod-A is not exact.

(1.25) Example. Let (K,R, F ) be as in Section (1.21). Let G := A5 be the
alternating group on 5 letters, and let A := RG, where we assume K to be
a splitting field for AK and F to be a splitting field for AF . The ordinary
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characters and 2-modular Brauer characters of G can be found in [6] and [15],
respectively. Hence the 2-modular decomposition matrix of G is as follows.

1a 2a 2b 4a
1a 1 . . .
3a 1 1 . .
3b 1 . 1 .
5a 1 1 1 .
4a . . . 1

Let H ≤ G be a cyclic subgroup of order 5 and let e := 1
|H| ·

∑
h∈H h ∈

RH ⊆ A. As eAF ∼= (FH)G ∈ mod-AF , we have HomAF (eAF , F ) 6= {0},
where FG denotes the trivial AF -module. Furthermore, eAF ∈ mod-AF is
projective and we have dimF (eAF ) = 12. As dimF (P(FG)) = 12, we conclude
eAF ∼= P(FG) ∈ mod-AF . Hence e ∈ AF is a primitive idempotent, and
thus HomAF (eAF , S) = {0} for all FG 6∼= S ∈ mod-A simple. Hence we have
Σe = {FG} and FGe ∈ mod-eAF e is the only simple up to isomorphism.

Using the equivalences of Remark (1.10) and a straightforward calculation, we
have EndAF (eAF ) ∼= HomAF (eAF , eAF ) ∼= (eAF e)◦ as F -algebras. As eAF ∼=
P(FG) is a non-simple projective indecomposable module for the symmetric
algebra AF , we conclude that EndAF (eAF ) is a local F -algebra containing non-
zero nilpotent elements. Hence eAF e is not semisimple and in particular we have
Ext1

eAF e(FGe, FGe) 6= {0}. As G is a perfect group, we have Ext1
AF (FG, FG) =

{0}. Hence all modules in mode-AF are semisimple. Thus CΣ
e is not essentially

surjective.

Furthermore, e ∈ A is a primitive idempotent. Let f ∈ A be a primitive
idempotent, such that fAF ∼= P(S2) ∈ mod-AF , where S2 ∈ mod-AF is simple
of dimF (S2) = 2. Hence using the projective indecomposable characters given
above we have dimF (fAF e) = dimF Hom(eAF , fAF ) = rkRHom(eA, fA) =
dimK(eAK , fAK) = 2 and dimF (eAF e) = dimK(eAK , eAK) = 4. As eAF e ∼=
EndAF (eAF )◦ is a local F -algebra, eAF e ∈ mod-eAF e is the only projective
indecomposable. Thus fAF e ∈ mod-eAF e is not projective.

By [17, p.262] the Artinian ring eAF e is a perfect ring, see [17, Def.11.6.1]. As
by [17, Thm.10.4.4] projective modules are flat anyway, by [17, Cor.11.1.6] the
flat eAF e-modules are precisely the projective eAF e-modules. Hence the un-
condensation functor Ue = ?⊗eAF e eAF is exact if and only if eAF ∈ mod-eAF e
is projective. But eAF f is a non-projective eAF e-direct summand of eAF .

Finally, we note that for the local F -algebra fAF f ∼= EndAF (fAF )◦ we have
dimF (fAF f) = dimK(fAK , fAK) = 2. Hence the only projective indecom-
posable fAF f ∈ mod-fAF f is uniserial of composition length 2. We have
dimF (eAF f) = dimK(fAK , eAK) = 2, but a straightforward calculation using
the submodule lattice programs [23] available in the MeatAxe [38] shows that
eAF f ∈ mod-fAF f is semisimple, hence is decomposable, not projective and
thus projective-free.
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2 Primitive idempotents

Schur functors with respect to primitive idempotents have been applied to var-
ious computational tasks, such as the determination of submodule lattices, see
[23], and of socle and radical series, see [25], and the computation of homomor-
phism spaces, endomorphism rings and direct sum decompositions, see [42, 24].

As is common understanding it is very difficult to find primitive idempotents in
a given algebra explicitly. But for our purposes this is in fact not necessary, as
it is sufficient to know the action of the idempotent on the module under con-
sideration. Hence we define certain projections, which subsequently are shown
to describe the action of suitable, and in particular primitive, idempotents. The
primitive idempotents for a set of isomorphism types of simple modules thus
produced are not necessarily pairwise orthogonal, and hence their importance
is more practical than theoretical.

We keep the notation of Notation (1.1), and let Θ be a field.

(2.1) Definition and Remark.
a) For V ∈ mod-A let DV : A → EndΘ(V ) : a 7→ aV be the corresponding
representation. In particular, let DA : a 7→ aA denote the regular represen-
tation. The module V ∈ mod-A is called faithful, if we have ker(DV ) = {0}.
In particular, the regular module AA ∈ mod-A is faithful.

b) For a ∈ A let 〈a〉 ⊆ A denote the Θ-subalgebra generated by a. There is
n = n(aV ) ∈ N such that

{0} ≤ ker(aV ) < ker(a2
V ) < . . . < ker(anV ) = ker(an+1

V ) ≤ V.

This gives rise to the Fitting decomposition V = ker(anV )⊕im (anV ) ∈ mod-〈a〉
and the Fitting projection ϕaV ∈ End〈a〉(V ), where

(ϕaV )|ker(anV ) = idker(anV ) and ker(ϕaV ) = im (anV ).

(2.2) Proposition. Let a ∈ A.
a) Let V ∈ mod-A be faithful. Then there is a unique e ∈ A such that eV = ϕaV .
Furthermore, we have e2 = e and e is independent from the choice of V .
b) Let S ∈ mod-A be simple and let S = ker(añS) ⊕ im (añS) ∈ mod-〈a〉 be the
Fitting decomposition as in Definition (2.1), where ñ = n(aS) ∈ N. Then we
have Se = ker(añS).

Proof. a) Let n = n(aV ) ∈ N and let µ′, µ′′ ∈ Θ[X] denote the minimum
polynomials of aV on ker(anV ) ≤ V and im (anV ) ≤ V , respectively. Then we
have µ′ = Xn, and as (aV )|im (anV ) is invertible, we have gcd(µ′, µ′′) = 1 ∈ Θ[X].
Thus there are f, g ∈ Θ[X] such that 1 = f · µ′ + g · µ′′ ∈ Θ[X]. Now let
e := g(a) · µ′′(a) ∈ 〈a〉 ⊆ A. Hence we have (eV )|im (anV ) = 0 and (eV )|ker(anV ) =
(id − f(a) · µ′(a))|ker(anV ) = id|ker(anV ). Thus we have eV = ϕaV . The other
assertions follow from the faithfulness of V .
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b) Let µ̃′, µ̃′′ ∈ Θ[X] denote the minimum polynomials of aS on ker(añS) ≤ S
and im (añS) ≤ S, respectively. Since S is a constituent of the regular module
AA ∈ mod-A, we have µ̃′ | µ′ ∈ Θ[X] and µ̃′′ | µ′′ ∈ Θ[X]. Hence we have
1 = f · µ

′

µ̃′ · µ̃
′ + g · µ

′′

µ̃′′ · µ̃
′′ ∈ Θ[X]. Thus as above we have (eS)|im (añS) = 0 and

(eS)|ker(añS) = id|ker(añS), hence ker(añS) = Se. ]

(2.3) Remark. Let S ∈ mod-A be simple and let a ∈ A. Then we have
ker(aS) ∈ mod-EndA(S). As EndA(S) is a skew field having Θ in its center, we
have dimΘ ker(aS) = [EndA(S) : Θ] · dimEndA(S)(ker(aS)), hence in particular
we have [EndA(S) : Θ] | dimΘ ker(aS). Thus we have dimEndA(S)(ker(aS)) = 1
if and only if [EndA(S) : Θ] = dimΘ ker(aS), thus if and only if the unit group
EndA(S)∗ acts transitively on ker(aS) \ {0}.
In practice, this yields a method to determine EndA(S): Choose a few elements
aj ∈ A and calculate d := gcd(dimΘ ker((aj)S); j ≥ 1). Let a ∈ A such that
dimΘ ker(aS) = d, and let {ei ∈ S; i ∈ {1, . . . , d}} be a Θ-basis of ker(aS). For
i ≥ 2 check whether there is an A-endomorphism of S mapping e1 7→ ei; this is
done using the MeatAxe standard basis algorithm, see [35]. If this holds true,
then d = [EndA(S) : Θ] and we have found a Θ-basis of EndA(S). Otherwise,
we start from the beginning and check a few more elements aj ∈ A.

(2.4) Definition and Remark. Let S ∈ mod-A be simple and let a ∈ A.
a) If dimΘ ker(a2

S) = [EndA(S) : Θ], then we have dimΘ ker(aS) = [EndA(S) : Θ]
as well, and by Definition (2.1) we have {0} 6= ker(aS) = ker(a2

S), hence n(aS) =
1 and the Fitting decomposition of S is S = ker(aS)⊕ im (aS).
b) Let Σ ⊆ mod-A be a set of representatives of some isomorphism types of
simple A-modules and let S ∈ Σ. An element a ∈ A is called an S-peakword
with respect to Σ, if

ker(aT ) = {0} for all S 6∼= T ∈ Σ and dimΘ ker(a2
S) = [EndA(S) : Θ].

An S-peakword with respect to Σ = Σ1, see Definition (1.13), is called an
S-peakword.

(2.5) Proposition. Let S ∈ mod-A be simple. Then there exists an S-
peakword.

Proof. As rad(A) ⊆ ker(DT ) for all T ∈ mod-A simple, by going over to
A/rad(A) we may assume that A is semisimple. Hence for dT := dimΘ(T )

[EndA(T ) : Θ]
∈

N we have
A ∼=

⊕
T∈Σ1

(EndA(T )◦)dT×dT .

For T 6∼= S let aT ∈ (EndA(T )◦)dT×dT be invertible, hence we have ker(aT ) =
{0}. Moreover, S is a EndA(S)-vector space of dimEndA(S)(S) = dS . Choose a
decomposition S = S′⊕S′′ as EndA(S)-vector spaces, where dimEndA(S)(S′) =
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1. Let aS ∈ (EndA(S)◦)dS×dS such that S′ and S′′ are aS-invariant, S′ ·aS = {0}
and aS acts invertibly on S′′. Thus we have ker(a2

S) = S′ and dimΘ ker(a2
S) =

[EndA(S) : Θ]. Hence a := aS +
∑
S 6∼=T∈Σ1

aT ∈ A is as desired. ]

(2.6) Remark. Let Θ := Fq be a finite field and T ∈ mod-A simple. Then we
have F := EndA(T ) ∼= Fq̃, where q̃ := q[EndA(T ) : Fq ]. This allows to determine
the proportion of peakwords amongst all the elements of A, where again we may
assume that A is semisimple.
a) The proportion of invertible elements in F d×d, where d := dT , is given as

|GLd(q̃)|
|F d×d|

= q̃−
d(d+1)

2 ·
d∏
i=1

(q̃i − 1).

Hence we have limq̃→∞
|GLd(q̃)|
|Fd×d| = q̃−

d(d+1)
2 · q̃

d(d+1)
2 = 1.

b) The elements a ∈ F d×d whose Fitting decomposition is F d = ker(a)⊕ im (a)
as F -vector spaces, where dimF ker(a) = 1, are determined by a 1-dimensional
F -subspace of F d, which is annihilated by a, and a complement, on which a
acts invertibly. Hence the proportion of these elements in F d×d is given as

(∗) = q̃−d
2
· q̃

d − 1
q̃ − 1

·
d−1∏
i=1

(q̃d − q̃i) = q̃−
d(d+1)

2 ·
d∏
i=2

(q̃i − 1).

Hence we have limq̃→∞((∗) · q̃) = q̃−
d(d+1)

2 · q̃−
(d−1)(d+2)

2 · q̃ = 1.

(2.7) Theorem. Let a ∈ A be an S-peakword with respect to Σ and let e ∈ A
be the corresponding idempotent, see Proposition (2.2). Then e ∈ A is an
idempotent such that eA/rad(eA) ∼= S ⊕M ∈ mod-A, where M ∈ modΣ1\Σ-A.

Proof. For T ∈ mod-A simple, by Proposition (2.2) we have Te = ker(an(aT )
T ).

Hence for S 6∼= T ∈ Σ by Definition (2.4) we have HomA(eA, T ) ∼= Te =
{0} as Θ-vector spaces, while HomA(eA/rad(eA), S) ∼= HomA(eA, S) ∼= Se =
ker(an(aS)

S ) = ker(aS) as Θ-vector spaces, and since furthermore dimΘ ker(aS) =
[EndA(S) : Θ] the constituent S occurs in eA/rad(eA) with multiplicity 1. ]

(2.8) Corollary. If Σ = Σ1, hence a ∈ A is an S-peakword, then e ∈ A is a
primitive idempotent such that eA/rad(eA) ∼= S.

We show how peakwords and primitive idempotents can be used to compute
submodule lattices. For the necessary notions from lattice theory see [1].

(2.9) Notation. Let V ∈ mod-A and let S ∈ mod-A be simple.

Let M(V ) denote the set of A-submodules of V . It becomes a modular lattice,
see Definition (2.12), of finite length by the partial ordering ≤ given by set
theoretic inclusion.
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LetMS(V ) := {W ≤ V ;W/rad(W ) ∼= S ⊕ · · · ⊕ S} ⊆ M(V ). HenceMS(V ) is
closed under taking sums, and hence becomes a lattice by letting the intersection
of W,W ′ ∈ MS(V ) be the largest element of MS(V ) contained in W ∩W ′ ∈
M(V ).

Let LS(V ) := {W ≤ V ;W/rad(W ) ∼= S} ⊆ MS(V ) be the set of S-mountains
(S-local submodules), and let L(V ) :=

∐
S∈Σ1

LS . Hence L(V ) ⊆ M(V )
is the subset of all sum-irreducible elements of M(V ), i. e. the set of all A-
submodules of V which are not the sum of strictly smaller A-submodules.

Let LS⊕S(V ) := {W ≤ V ;W/rad(W ) ∼= S ⊕ S} ⊆ MS(V ).

(2.10) Theorem. Let V ∈ mod-A, and let e ∈ A be a primitive idempotent
such that eA/rad(eA) ∼= S.

a) The map κ : MS(V )→M(V e) : W 7→We is an isomorphism of lattices. Its
inverse is given as κ−1 : M(V e) → MS(V ) : W 7→ W · A, where we consider
W ≤ V e ≤ V as Θ-vector spaces and W · A ≤ V is the uncondensed module
with respect to V , see Definition (1.20).

b) We have L(V e) = {v · eAe ≤ V e; 0 6= v ∈ V e} as well as

LS(V ) = {v ·A ≤ V ; 0 6= v ∈ V e ≤ V }.

Proof. a) Let W ≤ V e ∈ mod-eAe. By Definition (1.20), the A-submodule
W · A ≤ V is an epimorphic image of the uncondensed module W ⊗eAe eA ∈
mod-A. By the Adjointness Theorem [9, Thm.0.2.19], for S 6∼= T ∈ mod-A
simple we conclude HomA(W ⊗eAe eA, T ) ∼= HomeAe(W,Te) = {0} as Θ-vector
spaces, thus κ−1 is well-defined. As We = W ≤ V e ∈ mod-eAe, we have
(W ·A) ·e = W ·eAe = W . Thus κ−1 ·κ = idM(V e), in particular κ is surjective.
Moreover, for W,W ′ ∈ MS(V ), W 6= W ′, either (W + W ′)/W ∈ mod-A or
(W + W ′)/W ′ ∈ mod-A has S as a constituent, hence by the exactness of the
condensation functor Ce, see Definition (1.9), the map κ is injective as well.

b) For 0 6= v ∈ V e let W := v · eAe ≤ V e ∈ mod-eAe. Hence W is an
epimorphic image of the regular module eAe ∈ mod-eAe. As e ∈ A is primitive,
the algebra eAe is a local ring, having Se ∈ mod-eAe as its only simple module
up to isomorphism. Thus we have eAe/rad(eAe) ∼= Se ∈ mod-eAe. Conversely,
each element of L(V e) has a singleton generating set.

We have v · A = W · A ≤ V ∈ mod-A. By a) we have W · A ∈ MS(V ), and by
Definition (1.20) and the right exactness of the tensor functor Ue = ?⊗eAe eA,
the A-module W ·A ≤ V is an epimorphic image of eAe⊗eAeeA ∼= eA ∈ mod-A.
Since eA/rad(eA) ∼= S, we have W · A ∈ LS(V ). Conversely, by the exactness
of the condensation functor Ce, for W ∈ LS(V ) we have rad(W ) ∩ We =
rad(W )e < We, and hence for v ∈We \ rad(W )e ⊆ V e we have v ·A = W . ]

Note that in the first part of the above proof we cannot use the general statement
from Remark (1.10), saying that Ce ◦ Ue is equivalent to the identity functor
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on mod-eAe, since we do not consider the uncondensation functor Ue but a
truncated relative version.

(2.11) Corollary. Let a ∈ A be an S-peakword with respect to Σ, let V ∈
modΣ-A and let n := n(aV ) ∈ N be as in Definition (2.1). Then by Proposition
(2.2) we have LS(V ) = {v ·A ≤ V ; 0 6= v ∈ ker(anV )}.

The Benson-Conway Theorem (2.13), which is of purely combinatorial nature,
shows how to rebuild a modular lattice M from the incidence structure of the
subset L ⊆M of its sum-irreducible elements. The notions used here are taken
from [4].

(2.12) Definition and Remark. LetM be a modular lattice of finite length,
where a lattice M is called modular, if for all X,Y, Z ∈ M such that Z ≤ X
we have X ∩ (Y +Z) = (X ∩ Y ) + (X ∩Z) = (X ∩ Y ) +Z. Let L ⊆M be the
subset of the sum-irreducible elements of M.

a) A subset D ⊆ L is called a dotted-line, if |D| ≥ 3 and if it is maximal subject
to the following property: For all X,Y ∈ D, X 6= Y , we have X + Y =

∑
D.

Note that if X,Y ∈ D, X 6= Y , where D is a dotted-line, then X 6≤ Y . To see
this, assume that X ≤ Y holds, and let Z ∈ D, X 6= Z 6= Y . Then we have
Y = X + Y = X + Z ∈ L, a contradiction.

b) A subset X ⊆ L is called a BC-closed, if it has the following properties:
i) If X ∈ X and Y ∈ L such that Y ≤ X, then Y ∈ X ; i. e. X is an ideal of
the partially ordered set L.
ii) If D ⊆ L is a dotted-line such that |D ∩ X | ≥ 2, then D ⊆ X .

c) Let M(L) ⊆ Pot(L) be the partially ordered set of all BC-closed subsets
of L, where the partial order is given by set theoretic inclusion on Pot(L).
Hence M(L) is closed under taking intersections, and hence becomes a lattice
by letting the sum of X ,X ′ ∈M(L) be the smallest element ofM(L) containing
X + X ′ ∈ Pot(L).

(2.13) Theorem: Benson-Conway.
We keep notation from Definition (2.12). The map

τ : M→M(L) : X 7→ {Y ∈ L;Y ≤ X}

is an isomorphism of lattices, with inverse τ−1 : M(L)→M : X 7→
∑
X .

Proof. See [4]. ]

For the case of submodule lattices M(V ) the isomorphism types of the simple
subquotients provide additional structure on the set of BC-closed subsets and
for the dotted-lines. Actually, the statements of Proposition (2.14) Theorem
(2.17) can be generalized to arbitrary modular lattices, see [30].
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(2.14) Proposition. We keep the notation from Notation (2.9).
a) Let D ⊆ L(V ) be a dotted-line. Then there is S ∈ mod-A simple such that
D ⊆ LS(V ) and W :=

∑
D ∈ LS⊕S(V ). Moreover, there is a bijection

δ : D → {Y <· W} : X 7→ X + rad(W ),

where Y <· W means that Y < W is a maximal A-submodule.
b) Conversely, let W ∈ LS⊕S(V ). Then there is a dotted-line D ⊆ LS(V ) such
that

∑
D = W .

Proof. a) Let X ′, X ′′ ∈ D, X ′ 6= X ′′. Since by Definition (2.12) we have
X ′ 6≤ X ′′ and X ′′ 6≤ X ′, we conclude that X ′ ∩ X ′′ ≤ rad(X ′) ∩ rad(X ′′) and
hence (X ′ + X ′′)/rad(X ′ + X ′′) ∼= X ′/rad(X ′) ⊕ X ′′/rad(X ′′) ∼= S′ ⊕ S′′, for
S′, S′′ ∈ mod-A simple. As |D| ≥ 3 we conclude that S′ ∼= S′′.

For X ∈ D we have X 6≤ rad(W ), thus (X + rad(W ))/rad(W ) ∼= S. As
W/rad(W ) ∼= S ⊕ S, we have X + rad(W ) <· W , and thus δ is well-defined and
injective. Assume, δ is not surjective, and let W ′ <· W such that W ′ 6∈ im (δ).
Then there is Y ∈ L(V ) such that W ′ = Y + rad(W ). Hence for all X ∈ D we
have W = X + Y + rad(W ) = X + Y , contradicting the maximality of D.

b) For each W ′ <· W choose XW ′ ∈ L(V ) such that XW ′ ≤ W ′ and XW ′ 6≤
rad(W ). HenceW ′ = XW ′+rad(W ). Thus forW ′,W ′′ <· W , W ′ 6= W ′′ we have
W = XW ′+XW ′′+rad(W ) = XW ′+XW ′′ . Let D := {XW ′ ∈ L(V );W ′ <· W}.
As D can be enlarged to a dotted-line, and by a) the map δ is injective, D
already fulfills the maximality condition for dotted-lines. ]

(2.15) Corollary. Let Θ := Fq be a finite field and S ∈ mod-A simple. Then
we have EndA(S) ∼= Fq̃, where q̃ := q[EndA(S) : Fq ]. Let D ⊆ LS(V ) be a dotted-
line. Then we have |D| = q̃ + 1.

Proof. Let W :=
∑
D ∈ LS⊕S(V ), thus W/rad(W ) ∼= S ⊕ S. We have to

show that S ⊕ S has precisely q̃ + 1 submodules T <· S, which hence are
isomorphic to S. Consider the natural projections πi : S⊕S → S, for i ∈ {1, 2}.
If both (π1)|T 6= 0 6= (π2)|T , then π := π−1

1 · π2 ∈ EndA(S)∗, and hence
T = {(v, vπ) ∈ S ⊕ S; v ∈ S}. Conversely, all subsets of S ⊕ S of this form are
A-submodules, yielding exactly q̃ − 1 diagonal A-submodules, next to S ⊕ {0}
and {0} ⊕ S. ]

(2.16) Corollary: To Theorem (2.13).
LetM(LS(V )) ⊆ Pot(LS(V )) be the set of all BC-closed subsets of LS(V ). As
in Definition (2.12) the set M(LS(V )) becomes a lattice, and by Proposition
(2.14) the dotted-lines in LS(V ) are precisely the dotted-lines in L(V ) which
are subsets of LS(V ).

Then the map τ : MS(V ) → M(LS(V )) : X 7→ {Y ∈ LS(V );Y ≤ X} is an
isomorphism of lattices with inverse τ−1 : M(LS(V ))→MS(V ) : X 7→

∑
X .
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(2.17) Theorem. We keep the notation from Notation (2.9).
For each S ∈ mod-A simple and each W ∈ LS⊕S(V ) choose a dotted-line
DW ⊆ LS(V ), and let ∆ := {DW ;S ∈ . . . ,W ∈ . . .} ⊆ Pot(L(V )). Then an
ideal X ⊆ L(V ) is BC-closed, see Definition (2.12), if and only if it has the
following property: If D ∈ ∆ such that |D ∩ X | ≥ 2, then we have D ⊆ X .

Proof. See [23]. ]

The next aim is the computation of socle and radical series, see [25, 42]. To
calculate the socle series it is sufficient to find a Θ-basis of the socle, pass to
the quotient module and to proceed iteratively. Moreover, to calculate the socle
it is sufficient to find successively its isotypic components. The computation of
the radical and the radical, uses duality.

(2.18) Remark. We keep the notation from Corollary (2.11).

a) Let socS(V ) :=
∑
{T ≤ V ;T ∼= S} ≤ V denote the S-isotypic component of

the socle soc(V ) ≤ V . As for S ∼= T ≤ socS(V ) ≤ V we have ker(aV )∩T 6= {0},
we by Corollary (2.11) conclude that

socS(V ) =
∑
{v ·A ≤ V ; 0 6= v ∈ ker(aV ) ∩ socS(V )}

=
∑
{v ·A ≤ V ; 0 6= v ∈ ker(aV ),dimΘ(v ·A) = dimΘ(S)}.

Hence if Θ = Fq is a finite field, socS(V ) can be found by initialising {0} :=
W ≤ V to be the submodule of socS(V ) already known, running through all
0 6= v ∈ ker(aV ), which are Θ-linearly independent of W , calculating v ·A ≤ V
using the MeatAxe spinning algorithm, see [35], which is interrupted as soon as
dimΘ(S) is exceeded, and if dimΘ(v · A) = dimΘ(S) adding the newly found
simple summand to W .

Of course this might mean unsuccessfully trying quite a lot of vectors, and
actually we can do better than that. The basic idea is as follows:

b) Let 0 6= s ∈ ker(aS) ≤ S be fixed. Hence there is a Θ-linear map

σ : HomA(S, V ) = HomA(S, socS(V ))→ ker(aV )∩ socS(V ) ≤ ker(aV ) : ϕ 7→ sϕ.

As S is simple, σ is injective. Moreover, letting m := mS(socS(V )) ∈ N denote
the multiplicity of S in a decomposition of socS(V ) into irreducible direct A-
summands, we since dimΘ ker(aS) = [EndA(S) : Θ], see Definition (2.4), have
dimΘ(HomA(S, V )) = [EndA(S) : Θ] ·m = dimΘ(ker(aV )∩ socS(V )), and hence
σ is an isomorphism. Moreover, we have socS(V ) = 〈ker(aV )∩ socS(V )〉A ≤ V ,
and if EndA(S) = Θ and {w1, . . . , wm} ⊆ V is a Θ-basis of ker(aV ) ∩ socS(V ),
then even socS(V ) =

⊕m
k=1(wk ·A) ≤ V .

Let d := dimΘ(S) ∈ N and let {a1, . . . , ad} ⊆ A such that Bs := {sa1, . . . , sad} ⊆
S is the MeatAxe standard basis of S with respect to s ∈ S, see [35]. Since
dimΘ ker(aS) = [EndA(S) : Θ] the representing matrices DBs(a) ∈ Θd×d with
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respect to the Θ-basis Bs ⊆ S, for a ∈ A, do not depend on the particular choice
of 0 6= s ∈ ker(aS), see Remark (2.3).

For v ∈ ker(aV ) we have v ∈ im (σ) if and only if vai · a =
∑d
j=1DBs(a)ij · vaj ,

for all i ∈ {1, . . . , d} and a ∈ A, where DBs(a)ij ∈ Θ denotes the corresponding
matrix entry of DBs(a). Let l := dimΘ(ker(aV )) and B := {v1, . . . , vl} ⊆ V be a
Θ-basis of ker(aV ) and v =

∑l
k=1 λkvk, for λk ∈ Θ. Hence the above condition

translates into

l∑
k=1

λk ·

vkai · a− d∑
j=1

DBs(a)ij · vkaj

 = 0,

for all i ∈ {1, . . . , d} and a ∈ A, where A ⊆ A is a Θ-algebra generating set
of A. As the bracketed term is a fixed element of V , for all i ∈ {1, . . . , d}
and a ∈ A, this can be considered as a set of homogeneous Θ-linear equations
for the unknowns λk. Let Λ ≤ Θ1×l denote its solution space. Hence Λ →
ker(aV ) ∩ socS(V ) : [λ1, . . . , λl] 7→

∑l
k=1 λkvk is a Θ-isomorphism.

c) Let V ∗ := HomΘ(V,Θ) ∈ A-mod ∼= mod-A◦ denote the dual module of V ,
see [8, Ch.IX.60], where for a ∈ A = A◦ and a pair B ⊆ V and B∗ ⊆ V ∗ of
mutually dual Θ-bases we have DB∗(a) = DB(a)tr.

For U ≤ V as Θ-vector spaces let U⊥ := {f ∈ V ∗;Uf = {0}} ≤ V ∗ as Θ-
vector spaces. Hence if U ∈ mod-A then U⊥ ∈ mod-A◦, and moreover we
have rad(V )⊥ = soc(V ∗) and soc(V )⊥ = rad(V ∗). Thus rad(V ) = rad(V )⊥⊥ =
soc(V ∗)⊥. Hence the calculation of rad(V ) ∈ mod-A is reduced to the calcu-
lation of soc(V ∗) ∈ mod-A◦, and a Θ-basis B ⊆ V reflects the radical series of
V ∈ mod-A if and only if the corresponding dual Θ-basis B∗ ⊆ V ∗ reflects the
socle series of V ∗ ∈ mod-A◦.

In Remark (2.21) we describe a technique, generalizing the approach from Re-
mark (2.18), to compute homomorphism spaces, see [42, 24]. It uses the notion
of a finite module presentation, see Definition (2.19). This leads to a different
field of constructive computational techniques, using finitely presented objects;
for further details see [41] for the case of group actions, and [19, 28] for arbitrary
finitely presented modules for finitely presented algebras.

(2.19) Definition. Let V ∈ mod-A, let F = 〈f1, . . . , fr〉A ∈ mod-A be free of
rank r ∈ N0 such that there is an epimorphism Φ: F → V , and let ker(Φ) =
〈g1, . . . , gs〉A ≤ F , for s ∈ N0. Hence we have the description V ∼= F/ ker(Φ) =
F = 〈f1, . . . , fr|g1, . . . , gs〉A ∈ mod-A as a finitely presented A-module. Let

: F → F denote the natural epimorphism.

(2.20) Proposition. We keep the notation of Definition (2.19), and let A be
as a Θ-algebra be generated by A ⊆ A finite.
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a) Let B := {v1, . . . , vd} be a Θ-basis of V , for d := dimΘ(V ) ∈ N0. Then we
have a finite A-module presentation F → V : fi 7→ vi, where

F := 〈f1, . . . , fd|fi · a−
d∑
j=1

DB(a)ij · fj , i ∈ {1, . . . , d}, a ∈ A〉A.

b) Let r ≤ d such that 〈v1, . . . , vr〉A = V , let aik ∈ A such that vi =∑r
k=1 vkaik ∈ V , for i ∈ {1, . . . , d}. Then we have a finite A-module pre-

sentation F → V : fi 7→ vi, where

F := 〈f1, . . . , fr|
r∑

k=1

fkaik · a−
d∑
j=1

r∑
k=1

DB(a)ij · fkajk, i ∈ {1, . . . , r}, a ∈ A〉A.

Proof. a) It is easily seen that dimΘ(F ) ≤ d. As F → V : fi 7→ vi is well-
defined, it hence is an isomorphism. b) follows from a). ]

(2.21) Remark.
a) Let Φ: F → V be as in Definition (2.19), and let W ∈ mod-A. Then
we have a Θ-embedding Φ∗ : HomA(V,W ) → HomA(F,W ) : ϕ → Φϕ, where
im (Φ∗) = {Ψ ∈ HomA(F,W ); Ψ|ker(Φ) = 0}.
Let C := {w1, . . . , we} be a Θ-basis of W , for e = dimΘ(W ) ∈ N0, and for
i ∈ {1, . . . , r} and j ∈ {1, . . . , e} let Ψij ∈ HomA(F,W ) defined by fiΨij := wj
and fkΨij := 0 for k 6= i. Hence for Ψ =

∑r
i=1

∑e
j=1 αijΨij ∈ HomA(F,W ), for

αij ∈ Θ, we have Ψ ∈ im (Φ∗) if and only if gΨ = 0 for all g =
∑r
i=1 fiai(g) ∈

ker(Φ), where ai(g) ∈ A. Thus Ψ ∈ im (Φ∗) if and only if for all k ∈ {1, . . . , e}
and g ∈ G, where 〈G〉A = ker(Φ), we have

r∑
i=1

e∑
j=1

αijDC(ai(g))jk = 0.

Similar to Remark (2.18)b), this can be considered as a set of homogeneous
Θ-linear equations for the unknowns αij .

b) To lessen the number of unknowns in the above set of equations, we proceed
as follows: We keep the notation of Corollary (2.11), let W ∈ modΣ-A, and
for S ∈ Σ and an S-peakword a ∈ A let BS ⊆ ker(anV ) such that BS is a Θ-
basis of ker(anV ) = (ker(anV )+rad(V ))/rad(V ), where : V → V/rad(V ) denotes
the natural Θ-epimorphism. Note that rad(V ) ≤ V can be determined using
Remark (2.18)c).

By Corollary (2.11) we have 〈BS〉A = socS(V ). Letting B :=
∐
S∈Σ BS ⊆ V ,

we have 〈B, rad(V )〉A = V , and hence 〈B〉A = V . Note that B is Θ-linearly
independent, and thus from B we find a Θ-basis of V as in Proposition (2.20)b).

For ϕ ∈ HomA(V,W ) we have BS · ϕ ⊆ ker(an(aV )
W ). Hence let CS ⊆ W be a

Θ-basis of ker(an(aV )
W ), and thus we conclude that im (Φ∗) is contained in the



20

following Θ-subspace of HomA(F,W )

im (Φ∗) ≤ {Ψ ∈ HomA(F,W ); fiΨ ∈ CS if fiΦ ∈ BS , i ∈ {1, . . . , |B|}}.

For more details, the computation of endomorphism rings and direct sum de-
compositions of modules see [42], where also applications to the explicit deter-
mination of Green correspondents are given.

3 Fixed point condensation

Fixed point condensation is one of the workhorses of computational represen-
tation theory. Fixed point condensation has been applied to different types of
modules for group algebras over finite fields. Historically, the first application
[43] has been to permutation modules. Applications to tensor product modules
have been worked out in [46, 26, 32] and arbitrary induced modules have been
dealt with in [33]. Great improvements for the permutation module case have
been made by the invention of the direct condense technique [37, 21, 31, 27].

Many of the appplications come from the Modular Atlas project, see [15, 47,
48], hence from the problem of explicitly calculating decomposition numbers
for the almost quasi-simple groups given in [6], see e. g. [16, 7, 12, 33, 29,
31]. Furthermore, there have been applications to the determination of Green
correspondents, see [42], and to endomorphism rings of permutation modules
and to algebraic graph theory, see [14, 20, 13, 27, 5].

We keep the notation of Notation (1.1), let (K,R, F ) be as in Section (1.21),
and let Θ ∈ {K,R, F}.

(3.1) Definition and Remark.
a) Let G be a finite group and let A := RG. Moreover let H ≤ G such that
p = char(F ) 6 | |H|, and let

e := eH :=
1
|H|
·
∑
h∈H

h ∈ RG ⊆ KG

denote the centrally primitive idempotent of RH belonging to the trivial repre-
sentation.

b) We have eA ∼= RGH ∈ modR-A, where the latter is isomorphic to the permu-
tation A-module on the right cosets of H in G.

By the Nakayama relations, see [3, Prop.3.3.1], for V ∈ modR-A we obtain
Ce(V ) = V e ∼= HomA(eA, V ) ∼= HomA(RGH , V ) ∼= HomRH(RH , VH) ∼= FixV (H)
∈ modR-R, where in fact we have V e = FixV (H), which can also be easily
directly checked.

Similarly, for V ∈ mod-KG we have V e = FixV (H), and for V ∈ mod-FG we
have V e = FixV (H). Hence these condensation functors are called fixed point
condensation functors with respect to H.
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(3.2) Remark. For V ∈ modΘ-ΘG let χV ∈ ZIBrΘ(G) denote its R-valued
Brauer character, see [9, Ch.2.17]. Here, for Θ = F the class function χV on G
is defined by χV (g) := χV (gp′), where g = gp · gp′ ∈ G denote the p-part and
the p′-part of g ∈ G, respectively.

Let dV := 〈(χV )H , 1H〉H = 〈χV , 1GH〉G ∈ N0, where 〈·, ·〉· denotes the hermitian
product on the respective set of K-valued class functions, and 1H ∈ ZIBrΘ(H) is
the trivial character. As H is a p′-group, for Θ ∈ {K,R} we have rkΘ(V e) = dV ,
and for Θ = F we have dimF (V e) = dV . Thus the Θ-rank of a fixed point con-
densed module can be determined from purely character theoretic information
without actually applying the fixed point condensation functor.

(3.3) Proposition. Let V ∈ modΘ-ΘG and g ∈ G.
a) For Θ ∈ {K,R} we have trV e(ege) = 1

|H| ·
∑
C∈Cl(G) |C ∩Hg| ·χV (C), where

Cl(G) denotes the set of conjugacy classes of G.
b) For Θ = F we have trV e(ege) = 1

|H| ·
∑
C∈Cl(G) |C ∩Hg| · χV (C).

Proof. a) We have χV (ab) = χV (ba), for a, b ∈ G. Thus for Θ ∈ {K,R} we
have trV e(ege) = trV (ege) = 1

|H|2 ·
∑
h′,h′′∈H χV (h′gh′′) = |H|

|H|2 ·
∑
h∈Hg χV (h).

b) is proved analogously. ]

This has been applied to the calculation of decomposition numbers of alge-
braically conjugate ordinary characters, see [31, 34, 39]. Recalling that eAe ∼=
EndA(eA)◦, where eA ∼= RGH ∈ modR-A, is the endomorphism ring of a permu-
tation module, Proposition (3.3) generalizes to the characters of endomorphism
rings of monomial representations, see [27]. A converse of Proposition (3.3) is
given by Ree’s formula, see [9, Thm.1.11.28].

We proceed to consider fixed point condensation of permutation modules, where
Proposition (3.5) shows that the computations actually needed boil down to a
counting problem, see Notation (3.4). Hence its implementation, as is available
in the MeatAxe [38], is straightforward.

(3.4) Notation. Let Ω be a G-set and let V := ΘΩ ∈ modΘ-ΘG denote the
corresponding ΘG-permutation module. Let H ≤ G be as in Definition (3.1),
let Ω =

∐r
i=1 Ωi be the partition of Ω into H-orbits, and for i ∈ I := {1, . . . , r}

let Ω+
i :=

∑
ω∈Ωi

ω ∈ ΘΩ denote the corresponding orbit sum. For g ∈ G and
i, j ∈ I the number

cij(g) := |{ω ∈ Ωi : ωg ∈ Ωj}| = |Ωi ∩ Ωg
−1

j | = |Ωgi ∩ Ωj | ∈ N0

is called the corresponding orbit counting number. The matrix C(g) :=
[cij(g); i, j ∈ I] ∈ Nr×r0 is called the orbit counting matrix.

(3.5) Proposition. We keep the notation from Notation (3.4), and let Θ = F .
Then the set Ω+ := {Ω+

i ; i ∈ I} ⊆ FΩ is an F -basis of V e, and the representing
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matrix of the action of ege ∈ eFGe on V e with respect to Ω+ is given in terms
of the orbit counting matrix as

C(g) · diag[|Ωj |−1; j ∈ I] ∈ F r×r.

Similar statements hold for Θ ∈ {K,R}.

Proof. We have FΩ 3 v =
∑
ω∈Ω vω · ω ∈ (FΩ)e if and only if the coefficients

vω ∈ F , for ω ∈ Ω, are constant on the G-orbits Ωi, for all i ∈ I. Moreover, we
have Ω+

i · ege = 1
|H| ·

∑
j∈I |{ω ∈ Ωi;ωg ∈ Ωj}| · |H||Ωj | · Ω

+
j . ]

Note that C(g) ∈ F r×r is well-defined without imposing the condition p 6 | |H|,
see Definition (3.1), while diag[|Ωi|−1; i ∈ I] ∈ F r×r is well-defined if and only if
|Ωi| 6= 0 ∈ F for all i ∈ I. Question: If this is the case, but p | |H|, is there an
interpretation of the matrix in Proposition (3.5), and are there examples where
this occurs? Moreover, let pd := gcd{Ωi; i ∈ I}p ∈ N. Question [36]: Is there
an interpretation of the matrices

[cij(g); i, j ∈ I] · diag[
pd

|Ωj |
; j ∈ I] ∈ F r×r ?

The next aim is to describe fixed point condensation of induced modules, see
[33], which has been implemented for modules over finite fields in GAP [10].
Mackey’s Theorem is used to describe the structure of a condensed induced
module, which leads to a description of the necessary computations.

(3.6) Remark.
a) Let U ≤ G and let H ≤ G be as in Definition (3.1). Let G =

∐
i∈I UgiH for

suitable gi ∈ G, and for i ∈ I let H =
∐
j∈Ii(U

gi ∩H)hij for suitable hij ∈ H.

Let V ∈ modΘ-ΘU . By Mackey’s Theorem, see [3, Thm.3.3.4], we have V G =
V ⊗ΘU ΘG =

⊕
i∈I
⊕

j∈Ii V ⊗ gihij ∈ modΘ-Θ. Hence we have (V G)H ∼=⊕
i∈I((V gi)Ugi∩H)H ∈ modΘ-ΘH, where V gi ∈ modΘ-Θ[Ugi ] is defined by

v · ugi := v · u for v ∈ V and u ∈ U .

Thus we have V G · e ∼=
⊕

i∈I HomΘH(ΘH , ((V gi)Ugi∩H)H) ∈ modΘ-Θ. More-
over, another application of the Nakayama relations, see [3, Prop.3.3.1], shows
HomΘH(ΘH , ((V gi)Ugi∩H)H) ∼= HomΘ[Ugi∩H](ΘUgi∩H , (V gi)Ugi∩H), where the
Nakayama isomorphism is given by the exterior trace map, see [3, Exc.3.3],
mapping ϕ ∈ HomΘ[Ugi∩H](ΘUgi∩H , (V gi)Ugi∩H) toλ 7→∑

j∈Ii

(λh−1
ij )ϕ · hij = λϕ ·

∑
j∈Ii

hij

 ∈ HomΘH(ΘH , ((V gi)Ugi∩H)H).

As HomΘ[Ugi∩H](ΘUgi∩H , (V gi)Ugi∩H) ∼= HomΘ[U∩ giH](ΘU∩ giH , VU∩ giH), and
letting ei := eU∩ giH ∈ ΘU , for i ∈ I, denote the idempotent belonging to the
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p′-subgroup U ∩ giH ≤ U ≤ G, see Definition (3.1), in modΘ-Θ we obtain

V G · e ∼=
⊕
i∈I

FixV (U ∩ giH)⊗ gi
∑
j∈Ii

hij

 ∼= ⊕
i∈I

im ((ei)V )⊗ gi
∑
j∈Ii

hij

 .

b) For g ∈ G the action of ege ∈ eΘGe on V G · e is described as follows. For
v ∈ V as well as i ∈ I and j ∈ Ii we have (v ⊗ gihij) · g = vu′ ⊗ gi′hi′j′ , where
the indices i′ ∈ I and j′ ∈ Ii′ as well as u′ ∈ U are uniquely determined by
gihij · g = u′ · gi′hi′j′ .
Hence for v ∈ FixV (U ∩ giH) we from this obtain (v ⊗ gi

∑
j∈Ii hij) · eg =∑

j∈Ii(v⊗ gihij) · g =
∑
j∈Ii vu

′⊗ gi′hi′j′ , where the indices i′ ∈ Ii and j′ ∈ Ii′
as well as u′ ∈ U depend on i ∈ I and j ∈ Ii.

Moreover, for i ∈ I we have e = |Ugi∩H|
|H| · egii ·

∑
j∈Ii hij ∈ ΘH. Hence for

v ∈ V as well as i ∈ I and j ∈ Ii this gives (v ⊗ gihij) · e = (v ⊗ gi) · e =
|Ugi∩H|
|H| · vei ⊗ gi

∑
j∈Ii hij .

c) In practice, the permutation representation of G on the right cosets Ω =
U |G is needed, which is handled by a randomized Schreier-Sims algorithm, see
[40]. Hence the U -H double cosets U |G|H are in bijection with the H-orbits
Ω =

∐
i∈I Ωi, which yields the set {gi ∈ G; i ∈ I}. Furthermore, we have

Ugi ∩ H = StabH(Ugi), which yields the transversal {hij ∈ H; j ∈ Ii} and a
stabilizer chain for Ugi ∩H.

To find FixV (U ∩ giH) = im ((ei)V ), we factorize egii ∈ Θ[Ugi ∩H], as a product
of sums over transversals, along the stabilizer chain for Ugi ∩ H. Let V =
V ei ⊕ V (1 − ei) ∈ modΘ-Θ, with corresponding projection πi : V → V ei and
injection ιi : V ei → V . Matrices for πi and ιi are found a precomputation step,
which is independent of the particular element g ∈ G to be condensed.

To find the action of ege ∈ eΘGe on V G · e, we fix i ∈ I and for all j ∈ Ii we
calculate the corresponding indices i′ ∈ I and j′ ∈ Ii′ as well as the element
u′ ∈ H describing the action of g on Ω using the stabilizer chains computed
above. Thus u′ maps FixV (U ∩ giH) to im (ιi) · u′ ≤ V G, while the projection
induced by e to the i′-th, say, component of V G · e is given by πi′ .

We next turn to the description of fixed point condensation of tensor product
modules, see [46, 26, 32], which has been implemented for modules over finite
fields in the MeatAxe [38].

(3.7) Remark.
a) Let H ≤ G be as in Definition (3.1), let Θ ∈ {K,F} and let Σ := Σ1(ΘH) ⊆
mod-ΘH be a set of representatives of the isomorphism types of all simple ΘH-
modules, see Definition (1.13). For S, T ∈ Σ we have HomΘH(ΘH , S ⊗Θ T ) ∼=
HomΘH(S∗, T ) 6= {0} if and only if T ∼= S∗ ∈ mod-ΘH, where S∗ ∈ mod-ΘH
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denotes the contragredient module of S, see also Remark (2.18). In this case,
we have (S ⊗Θ S∗) · e = FixS⊗ΘS∗(H) ∼= HomΘH(ΘH , S ⊗Θ S∗) ∼= EndΘH(S).

Let V,W ∈ mod-ΘG. As ΘH is a semisimple Θ-algebra, there are mS(V ) ∈ N0,
for S ∈ Σ, such that VH ∼=

⊕
S∈Σ

⊕mS(V )
i=1 S ∈ mod-ΘH. Hence we have

(V ⊗Θ W ) · e ∼=
⊕
S∈Σ

mS(V )⊕
i=1

mS∗ (W )⊕
j=1

(S ⊗Θ S∗) · e ∈ mod-ΘH.

b) A Θ-basis of V reflecting the semisimplicity of VH and MeatAxe standard
bases for the constituents S of VH is found using the peakword technique, see
Definition (2.4), which has been described for the computation of socle series,
see Remark (2.18).

For S ∈ Σ let S⊗Θ S
∗ = im (eS⊗ΘS∗)⊕ker(eS⊗ΘS∗) ∈ mod-Θ with correspond-

ing projection πS : S ⊗Θ S∗ → (S ⊗Θ S∗) · e and injection ιS : (S ⊗Θ S∗) · e →
S ⊗Θ S∗. Matrices for πS and ιS are found a precomputation step, which is
independent of the particular element g ∈ G to be condensed.

The action of g ∈ G on V ⊗Θ W , with respect to its product Θ-basis, is given
by the Kronecker product gV ⊗ gW , where gV ∈ ΘdimΘ(V )×dimΘ(V ) is the rep-
resenting matrix of the action of g on V . In practice, calculating the image of
v⊗w ∈ V ⊗Θ W under the action of g ∈ G amounts to considering v⊗w as an
element of ΘdimΘ(V )×dimΘ(W ) and then to calculating (gV )tr · (v ⊗ w) · gW .

For the very new developments concerning the direct condense technique for
permutation modules and various applications to representation theory and al-
gebraic graph theory see [37, 21, 31, 27].
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