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0 Introduction

Historical background. Invariant theory dates back to number theoretical
considerations, on the representability of integers by binary quadratic forms,
begun by LAGRANGE [1773], and later continued by GAuss [1801] in his famous
Disquisitiones arithmeticae.

The next landmark is the seminal work of BOOLE [1841], introducing the notion
of transformation groups. Since then, invariant theory has developed into a
centerpiece of 19" century mathematics, with work done by HESSE, SYLVESTER,
CAYLEY, CLEBSCH, GORDAN, LIE, KLEIN, and many more. A basic aim was to
develop methods to construct infinitely many invariants of n-ary d-forms, coined
‘concomitants’ by SYLVESTER. This led CAYLEY to ask whether there are always
finitely many ‘basic invariants’, polynomially generating all invariants. Contrary
to the general believe, GORDAN [1868] showed their existence combinatorially
for binary forms, earning him the title of ‘king of invariant theory’.

The key breakthrough, in particular for the problem of finite generation, was
achieved in two famous papers by HILBERT [1890, 1893], which laid the ground-
work of modern abstract commutative algebra, and thus of modern algebraic
geometry, in their aftermath followed by the work of NOETHER. Actually, while
HILBERT was mainly interested in invariants for continuous groups, NOETHER’S
focus was on finite groups. Still, as the new abstract methods have been non-
constructive in the first place, this led to the famous exclamation of GORDAN,
at this time being a dogmatic defender of the view that mathematics must be
constructive: Das ist Theologie und nicht Mathematik! — This is theology and
not mathematics! (Actually, it is reported that GORDAN [1899] has admitted:
I have convinced myself that theology also has its advantages.)

1 Application: Quadratic forms

(1.1) Action on polynomial algebras. Let K be a field, let K[X] be the
polynomial algebra in the indeterminates X := {X;,...,X,}, where n € Ny,
and let K[X]; := (X)x < K[X] be the K-subspace generated by X.

The general linear group GL,, (K) acts naturally (on the right) K-linearly on the
K-vector space K™. Viewing K[X]; as the K-vector space of linear forms on
K", where X is the j-th coordinate function, for j € {1,...,n}, the group
GL,,(K) acts K-linearly by pre-composition on K[X];, thus by the universal
property of K[X] giving rise to K-algebra automorphisms of K[X] as follows:

For A = [a;;];; € GL,(K) we have (AX;)(z1,...,7,) = X;([21,...,2,] - A) =
S wa = (0 ai; Xi) (21, ..., @y), for zq,..., 2, € K. In other words we
have AX; := > | X;a;; € K[X]1, that is A: X — X - A. In terms of the K-
basis X C K[X];, the K-linear map induced by A4 is given by A" € K™*". In
order to get a (right) action of GL,,(K) we let (fA)(X) := f(X - A7) € K[X],
for f € K[X]; in particular the K-linear map on K[X]; induced by A is given
by A7 € K™*" with respect to the K-basis X C K[X];.



(1.2) Quadratic forms. Let K be a field such that char(K) # 2, let n € N,
and let K[X]; < K[X] be the K-subspace generated by the monomials of degree

2; we have dimg (K[X]2) = % A polynomial ¢ 1= >, o, ¢:; XiX; €
K[X]; is called an n-ary quadratic form over K. -

Then ¢ gives rise to the polynomial map K™ — K: z = [x1,...,2,] — ¢(x) =
q(x1,...,x,), which with a slight abuse is also called a quadratic form; thus
the map b: K" x K" — K: [z,y] = 1(q¢(z +y) — q(z) — q(y)) is a symmetric
K-bilinear form, and we have b(z,z) = ¢(z) and the name-giving property

q(\z) = A% - q(z), for A € K.
Let KI5 = {A € K™ A" = A} < K™ " be the K-subspace of symmetric

sym
matrices; we have dimy (K35") = w The quadratic form ¢ is associated
with the Gram matrix Q, = [q};]i; € KL, where ¢j; = gii, and qj; =

q;i = % - qi; for i < j. This gives rise to an isomorphism of K-vector spaces
K[X]y = KX q — Qq, such that conversely q(X) = X - Qg - X™.

For A € GL,,(K) we get (¢A)(X) = (X - A7) - Q- (A7 - X'T), thus we have
Qqa = A71- Q4 A7'; recall that applying A amounts to applying base change
of K™. Quadratic forms ¢q and ¢’ are called equivalent if there is A € GL,(K)
such that ¢ = ¢’A, or equivalently Q, = A-Q, - A™.

Then rk(g) = rk(Qq) € {0,...,n} is called the rank of ¢, and A(g) =
det(Qq) € K is called the discriminant of ¢ [SYLVESTER, 1852], Thus ap-
plying A € GL,,(K) yields rk(qA) = rk(q) and A(gA) = det(A™!-Q, - A~") =
det(A)~2 - det(Q,) = det(4)™2 - A(g). In particular, the rank is a GL,(K)-
invariant of quadratic forms, while the the discriminant of quadratic forms is
invariant with respect to the special linear group SL,, (K).

(1.3) Complex quadratic forms. a) The classification of quadratic forms up
to equivalence is highly dependent on the field K chosen, the simplest case being
K algebraically closed. Here, we restrict ourselves to the complex numbers C.
Given an m-ary quadratic form ¢ € C[Xy,...,X,]s =: V, where n € N| let
[q] €V be its equivalence class with respect to the action of SL,,(C).

Theorem. Any n-ary quadratic form is SL,, (C)-equivalent to precisely one of:
i) qns = 0X2+ Z?:_ll X2, where § # 0; we have rk(gn,s) = n and A(g,,5) = 6.
ii) ¢- := >, X7, where r € {0,...,n—1}; we have rk(q,) = r and A(g,) = 0.

Moreover, all the forms g, 5 for § # 0 are GL,,(C)-equivalent.

Proof. We show that the Gram matrix ) of any quadratic form ¢ of rank
r := rk(q) is SL,(C)-diagonalizable (by mimicking the proof of Sylvester’s
Theorem of Inertia):

We may assume that ¢ # 0. Since SL,(C) acts transitively on C™ \ {0}, we

may choose a C-basis of C™ whose first element, v say, is non-isotropic, that
is g(v) # 0. Since any unitriangular matrix belongs to SL, (C), by the standard



orthogonalization procedure we may complement this by a C-basis of the or-
thogonal complement (v)¢ < C", with respect to the C-bilinear form induced
by g. Hence by induction on n € N we may assume that ¢ = >_'_, 6; X7, where
d; # 0. (So far the argument works for any field K such that char( ) 7é 2.)

If r < n, letting A := diagler,...,e,1,...,1,([]\_; &) '] € SL,(C), where
€2 =9; fori e {1,....r}, we get g4 = >\, 5ie;2Xi2 = ¢r. (The argument
given so far, and in the sequel, only uses the fact that (K*)? = K*; for K = R,
where [R*: (R*)?] = 2, we recover the signature from Sylvester’s Theorem.)

If r = n, letting A := diagey,...,ep—1,6 1] € SL,(C), where € = §; for
ie{l,....,n—1}, and € :== [['" e;, we get gA = 5,2 X2 + S0} 516;2){? =
n.s,c2. Finally, letting A := diag[l,...,1,€] € GL,(C), where ¢ = §, we get
GnsA =0 2X2+ YT XP = gai. f

b) Apart from the algebraic picture, we also have the complex metric topology
at our disposal. (Actually, the arguments to follow remain valid for any alge-
braically closed field K such that char(K) # 2, and regular maps with respect
to the Zariski topology.)

We may view the discriminant A: V — C as a polynomial map, in particular as a
continuous map. Its fiber associated with § € C is the hypersurface A=(§) C V,
which hence is closed. Moreover, since A is SL,,(C)-invariant, A~1(J) consists
of a union of equivalence classes: For § # 0 we have A™1(§) = [g, 5], while
AH0) = ]_[:f:_o1 [g-] is a proper union of equivalence classes for n > 2; note that
[90] = {qo} is a singleton set.

Thus [gn,s] €V is closed for § # 0. But for ¢ = 0 this is different, where for
r € {0,...,n — 1} the closure of [¢,] CV equals [¢.] = []._,[gs] C V:

Since SL,, (C) acts by homeomorphisms, [g,] is SL,, (C)-invariant as well, hence is
a union of equivalence classes. Since {M € C"*™;rk(M) < r} C C"*" coincides
with the set of all matrices all of whose ((r 4+ 1) x (r + 1))-minors vanish, we
conclude that the latter set is closed. Hence {M € CZX";rk(M) < r} C CIX»

sym sym

is closed as well, in other words [[._,[gs] is closed, whence [g,] C []._[gs]-

Conversely, for 7 = 0 we have [go] = [go]. For r € {1,...,n — 1} and € € C let
Qe = €X2+ >, ! X2. Then we have g, € [g-] for € # 0, and lim, 0 g, =
dro = ¢r—1, which entails [¢.—1] C [gr], hence [g,—1] C [¢;]. By induction this

implies 117_olas] = a,] U T, o[qj—[ 0T € [ar). g

From A~'(0) = [g,,_1] we infer that any SL,, (C)-invariant continuous complex-
valued map on A71(0) is constant, hence the equivalence classes contained in
A~1(0) cannot be separated by these maps.

This also entails that any SL,, (C)-invariant continuous complex-valued map F'
on V is constant on the fibers of A, that is we have F' = A - f for some map
f: € — C. Moreover, A admits the continuous section s: C = V: 6 — ¢y,
where ¢y, 0 '= ¢—1, that is we have s- A =id¢c. This yields s- F'=s-A- f = f,



entailing that f is continuous, saying that F' is a continuous function of A. In
particular, if F' is a polynomial map, we infer that f is a polynomial map as
well, saying that F' is a polynomial function of A.

In terms of invariant algebras, see (3.2), we have thus shown that C[V]3t(©) =

C[A], the univariate polynomial algebra generated by A. Moreover, by Exer-
cise (18.1), any GL,(C)-invariant continuous complex-valued map F on V is
constant, implying that C[V]S(©) = C.

(1.4) Binary quadratic forms [LAGRANGE, 1773; Gauss, 1801]. We con-
sider binary quadratic forms over a field K such that char(K) # 2, that is the
casen = 2. Letting V := K[X,Y],, we consider the K-bases {X?2,2XY,Y?} CV
and {X2+Y?2 2XY, X?2-Y?2} C V. This yields two identifications of V with K3.
Letting A, B, C and U, W, V be the associated coordinate functions, respectively,
the algebra of polynomial functions on V is K[V] := K[A, B,C] = K[U, W, V],
where the base change matrix
1 0 1
M:=10 1 0| eGLyK)
1 0 -1
yields [A4, B,CC'

[U,W,V]-M = [U+V,W,U — V] and [U, W, V] = [A, B,C] -
M- = [A; —

EAQ

7

2

b sym ?
thus A(g) = det(Q) = ac — b* € K. Hence as polynomial function on V we
have A = AC - B*>= (U+V)(U-V)-W?=U0U%2-V?-W? € K[V]. For
§ € K the fiber A=1(8) C V is, with respect to the above identifications, given as
{la,b,c] € K3;ac—b* =6} and {[u, w,v] € K3;v* +w? = u? — §}, respectively.

In particular, geometrically for K = R, the Jacobian [%v%’%] = 2.

[U, —W, —V] shows that A=}(§) C V is smooth for § # 0, while for § = 0
we get the unique singular point go € A~1(0). Considering A=1(d), we get a
single-shell hyperboloid for § < 0, a double-shell hyperboloid for § > 0,
and a cone for 6 = 0; see Table 1, where these are given in the second picture,
the u-axis being the vertical one.

Let ¢ := aX? +2bXY + cY? € V, having Gram matrix Q = {a lc)] € K2x2

In view of Sylvester’s Theorem we observe the following: The single-shell hyper-
boloid for § = —1 consists of the SLo(R)-equivalence class containing ¢» _1 =
X2 —Y?, or likewise 2XY, which have signature [1,—1]; the double-shell hy-
perboloid for § =1 consists of the SLa(R)-equivalence classes containing g2 1 =
X2 4+Y? and —X? — Y2, which have signature [1,1] and [—~1, —1], respectively;
and in the ‘degenerate’ case 6 = 0, the cone consists of the SLy(R)-equivalence
classes {go} = {0}, and the ones containing ¢; = X? and q; = —X?, which have
signature [0, 0], as well as [1,0] and [—1, 0], respectively.




Table 1: Hyperboloids for § < 0 and 6 =0 and § > 0.

I Invariant algebras

2 Graded algebras

(2.1) Graded algebras. a) Let K be a field. A (non-commutative) K-algebra
R is called (non-negatively) graded, if we have R = @ ., Rq as K-vector
spaces, such that Ry = K, and dimg (Rg) € Ng, and RgRy C Ryyq for d,d' >
0. (In this context the property dimg(Rg) = 1 is also called connectedness.)

For r = [r4la € R, the element rg4 € Ry is called its d-th homogeneous
component, where since R is a direct sum (rather than a direct product), we
have r4 # 0 for only finitely many d. If r # 0, the maximum d > 0 such that
rq # 0 is called the degree deg(r) € Ny of r.

The K-subspace Ry < R, for d € Z, is called its d-th homogeneous compo-
nent, where we let Ry := {0} for d < 0. The Hilbert(-Poincaré) series of R
is the formal power series Hg := Y o, dimg (Rq) - T¢ € Z[[T]] € Q((T)). For
example, the field K is a graded K-algebra with zero homogeneous components
of positive degree; thus we have Hx =1 € Z[T].

b) Let R be a graded K-algebra. An R-module M is called graded, if M =
®dZdM M, as K-vector spaces, for some dy; € Z, such that dimg(My) € Ny,
and MgRy C Mgy, q, for d > dp; and d" > 0. If dpy > 0 then M is called
non-negatively graded. For m = [mg]q € M, the element mg € My is called
its d-th homogeneous component, where we have my # 0 for only finitely
many d. If m # 0, the maximum d > dj; such that my # 0 is called the degree
deg(m) € Z of m.

The K-subspace My < M, for d € Z, is called the d-th homogeneous com-
ponent of M, where M, := {0} for d < dj;. The Hilbert(-Poincaré) series
of M is the formal Laurent series Hp = Y ;n, dimg(Ma) - T € Q((T)).
Moreover, let M[s] := @ c; Mays denote the graded R-module obtained from



M by shifting s € Z steps to the left; hence for the associated Hilbert series
we have Hyq = T7° - Hy € Q((T)).

An R-submodule M’ < M is called homogeneous, if whenever ) ., mq € M’
we have my € M’ as well, for all d € Z; in other words, we have M' = @, M/,
where M), := M’ N M,. Note that M’ is homogeneous if and only if M’ is as
an R-module generated by homogeneous elements. If M’ is homogeneous, then
both M’ and M /M’ are graded R-modules as well, the grading being inherited
from M; from (M/M')g = Myq/(MqNM') = Mg/M}, for d € Z, we infer that
the associated Hilbert series are related by Hys = Hyr + Hyryap € Q((T)).

Let M and M’ be graded R-modules. Considering R-module homomorphisms
we get the direct product Homg(M, M") = [[ 4 [ 14 ez Homr(Ma, M},), where
Homp(M, M'). := [] ey Homp(Mg, M7, ) is called its c-th homogeneous
component, for ¢ € Z. In particular, Homg(M, M) consists of the homo-
morphisms of graded R-modules from M to M’.

¢) In particular, the regular R-R-bimodule R is graded both as R-module
and as left R-module, where dg = 0, and the ideals of R coincide with its
R-R-submodules. An ideal I < R is called homogeneous if it is a graded
R-submodule of R, that is we have I = @~ Is where I := I N Ry.

Let Ry := @d>0 Ry < Rgr be the irrelevant ideal; note that it is maximal
such that R/R; = K. Since any proper homogeneous ideal of R has zero 0-th
component and thus is contained in R, we conclude that R, is the unique
maximal homogeneous ideal of R.

(2.2) Generating sets. a) Let K be a field, let R be a graded K-algebra,
and let M = @dsz M, be a graded R-module. Then MRy C M, :=
@Di>a,,+1 Ma is a homogeneous R-submodule; let ~: M — M/MR, be the
natural epimorphism of R-modules, where M/M R, are called the indecom-
posable elements of M. Actually, M/M R, becomes an R/R,-module, car-
rying the grading inherited from M, so that since R/R; = Ry = K we may
consider M/M R, as a graded K-vector space.

Proposition: Graded Nakayama Lemma. Given a set S C M of homoge-
neous elements, then S generates M as an R-module, if and only if S generates
M/MR, as a K-vector space.

Proof. We may assume that S generates M/M R, as a K-vector space, and
let 0 # v € M be homogeneous. To show that v belongs to the R-submodule of
M generated by S, we proceed by induction on d := deg(v) > dps. Since My,,
embeds into M/M R, we are done for d = dj; hence let d > dps + 1. Then
there are s; € S and t; € M homogeneous, as well as a; € K and r; € Ry
homogeneous, such that v = E?:l Sia; + Zé.:l t;r;, where k,l € Ny, and we
may assume that deg(s;) = deg(t;r;) = d. Hence we have deg(t;) < d, so that
by induction ¢; belongs to the R-submodule of M generated by S, so does v. {



Thus a homogeneous generating set S C M is minimal if and only if S C
M/MR, is a K-basis. Hence, if R is finitely generated, this entails that a
homogeneous generating set of R is minimal if and only if it is of minimal
cardinality. Moreover, since M /M R is a graded K-vector space, the cardinality
of a minimal homogeneous generating set of M, and the multiset of the degrees
of its elements are uniquely defined; in particular we have M = {0} if and
only if M/MR, = {0}. Let the embedding number of M be the above
cardinality, and if M # {0} let the Noether number (M) = Sr(M) € Ny be
the maximum of the multiset of degrees; we let B({0}) := 0 as well, and if M is
not finitely generated then M has infinite embedding and Noether numbers.

b) We relate the above observation to K-algebra generating sets of R. (We still
do not need to assume that R is commutative, although R typically will be.)

Proposition. Given a set S C Ry of homogeneous elements, then S generates
R as a K-algebra, if and only if S generates Ry < Rp as a right ideal.

Proof. Let S generate R as a K-algebra. Then since any non-empty product
of elements of S belongs to (S) < Rg, we infer that any element of Ry belongs
to (S) as well. Since we have (S) C R anyway, this entails equality.

Let conversely S generate R4 as a right ideal, and let 0 # f € R be homoge-
neous. To show that f belongs to the K-subalgebra of R generated by S, we
proceed by induction on d := deg(f) € Np; the case d = 0 being trivial, let
d > 1. There are s; € S and r; € R homogeneous, such that f = Zle s;T;, for
k € N, and we may assume deg(s;r;) = d. Hence we have deg(r;) < d, so that
by induction 7; belongs to the K-subalgebra of R generated by S, so does f.

Thus a homogeneous generating set S C R of R is minimal if and only if S C
R, /(Ry)?is a K-basis, where ": R, — R, /(R,)? is the natural epimorphism
of R-modules, and R, /(R,)? are called the indecomposable elements of R.
Hence, if R is finitely generated, this entails that a homogeneous generating
set of R is minimal if and only if it is of minimal cardinality. Moreover, since
Ry /(R4)?%is a graded K-vector space, the cardinality of a minimal homogeneous
generating set of R, and the multiset of the degrees of its elements are uniquely
defined. Let the embedding number of R be the above cardinality, and if
R # K let the Noether number §(R) € N be the maximum of the multiset
of degrees; let B(K) := 0, and if R is not finitely generated R has infinite
embedding and Noether numbers.

(2.3) Tensor algebras. a) Let K be a field, and let V and W be K-vector
spaces. A K-bilinear map ®: V xW — T, where T is a K-vector space, is called
a tensor product of V and W, if it has the following universal property: For
any K-bilinear map 8: V x W — U, where U is a K-vector space, there is a
unique K-linear map B: T — U such that 3 = ® - 8. Tensor products always



exist and are unique up to isomorphism of K-vector spaces, where we write
VW =V Qg W :=T, see Exercise (19.1).

If V and W are finitely generated, then we have dimg (V @ W) = dimg (V) -
dimg(W). ItV = Py, Va and W = P,y Wa are graded, then V@ W is
graded as well such that dygw = dv +dw, where (VoOW)q = @, (Ve@Wa_.)
for d € Z; hence we have dimg ((V @ W)q) = 3, oy (dimg (Ve) - dimg (Wa—)),
so that in terms of Hilbert series we have Hygw = Hy - Hw € Q((T)).

In particular, let R and S be K-algebras. Then R® S becomes a K-algebra, by
letting (f @ ¢)(f' ®¢') :=ff' @gg’, for f,f' € Rand g,¢' € S. If R and S are
commutative, then so is R ® S; if R and S are graded, then so is R® S.

b) Let V be a K-vector space such that n := dimg (V) € Ny, let V& =
VeV ®: - -®V be the d-th tensor power of V, with d € N tensor fac-
tors, and let T(V) := @ 5, V&, where V0 := K. Then T(V) becomes a
(non-commutative) graded K-algebra, being called the tensor algebra over V,
where multiplication is inherited from concatenation of tensor products, which
is associative indeed. From dim (V®?) = n? we infer that the Hilbert series of
T(V)is Hryy = Zdzo nt. T4 = Zdzo(nT)d = 1_1nT € Q(T) CQ((1)).

The algebra T'(V') has the following universal property: Let B := {b1,...,b,} C
V be a K-basis, and let a: B — R be any map, where R is a K-algebra.
Then by the universal property of tensor products, a extends to the K-linear
multiplication map ag: V& — R: b;, @ -+~ @ b;, — a(b;,) -+~ a(b;,), for d € N
and 41,...,iq € {1,...,n}. Hence additionally letting ag: K — R: 1 — 1g,
we get a K-linear map & := ), aq: T(V) — R, which by the definition of
the multiplication in T'(V) actually is a homomorphism of K-algebras. Since
T(V) is generated by B as a K-algebra, we conclude that T'(V) is the free
(non-commutative) K-algebra with free generating set B.

c) The symmetric group Sy acts on V®¢ for d € Ny by permuting the tensor
factors, that is for m € Sg we have 7: 11 ® - @ Vg > Vip—1 ® -+ @ Vgp—1, for
v1,...,vq € V; recall that Sy = {1} and V®° = K.

The d-th symmetric power of V is defined as the quotient K-vector space
SUV) := V®d/y@d— of V&4 with respect to the K-subspace

VELT = (01 ® - ®@vq) - (1 —7)iv1,...,04 € V,m € Sg) < V&

note that V&%~ = {0} and V&L~ = {0}, so that S°(V) = K and S*(V) 2 V.

Letting 7'(V)~ be the homogeneous K-subspace T(V)~ = @, V&~ <
T(V), we observe that T(V)~ actually is an ideal of T(V); see Exercise (19.2).
Thus S[V] :=T(V)/T(V)™ = @ 50 S%(V) becomes a graded K-algebra, being
called the symmetric algebra over V', which by construction is commutative.
In particular, for n = 0 we have V¥4 = {0} for d € N, so that S[{0}] = K;
and for n = 1 we have V®? = K and V®%~ = {0} for d > 0, so that S[K] =
P01 ® - ® 1)k, with d tensor factors in the d-th summand.



The algebra S[V] has the following universal property: Let B C V be a K-
basis, and let a: B — R be any map, where R is a commutative K-algebra.
Then by the universal property of T'(V') the map « extends to a homomorphism
a: T(V) — R of K-algebras. Since R is commutative, & factors through the
quotient map with respect to the ideal (V') ™, so that we get a homomorphism
a: S[V] — R of K-algebras. Since S[V] is generated by B as a K-algebra, we
conclude that S[V] is the free commutative K-algebra with free generating
set B, in other words the polynomial K-algebra in the indeterminates B.

(2.4) Polynomial algebras. a) Let R # {0} be a commutative ring, and let
R[X] =@ 50 X R be the free R-module with free generating set Ny. Hence
any polynomial f € R[X] can be uniquely written as f =3 o, fa - X¢, with
coefficients f; € R such that f; # 0 for only finitely many d.

If f # 0, the maximum d > 0 such that f; # 0 is called the degree deg(f) € Ny
of f, and lc(f) := fq4 € R is called its leading coefficient; if lc(f) = 1 then f is
called monic. Then R[X] becomes a commutative R-algebra with respect to the
multiplication induced by addition on Ny, by identifying R with 1- R C R[X].

Then R[X] has the following universal property: Let S be a commutative R-
algebra, with structure homomorphism «: R — S, and let z € S. Then, by
the definition of the multiplication in R[X], there is a unique homomorphism of
R-algebras a: R[X] — S extending «, such that a(X) = z. Hence R[X] is the
univariate polynomial R-algebra in the indeterminate X.

In particular, if R is a domain, that is a commutative non-zero ring without
zero-divisors, then so is R[X]; and if R additionally is factorial, then by the
Lemma of Gauss so is R[X]; see Exercise (19.10).

b) Let K[X] be the polynomial algebra with indeterminates X := {X1,..., X},
where n € Ny; in particular, for n = 0 we have K[0] = K.

Proposition. We have K[X] = K[X;]® --- ® K[X,,] as K-algebras.

Proof. Let R := K[X;] ® --- ® K[X,,]. Then by the universal property of
K[X] there is a homomorphism of K-algebras a: K[X] — R such that a: X; —
1® - X, ® -1, for i € {1,...,n}, where X; occurs in the i-th tensor
factor. Conversely, for i € {1,...,n} there is a homomorphism of K-algebras
Bi: K[X;] = K[X] such that ;: X; — X, by the universal property of tensor
products giving rise to a homomorphism of K-algebras §:=,® - -®8,: R —
K[X] such that 8: X{' @ --- @ X2 — [, X[, for aq,...,a, € Ny. Finally,
wegeta-f: X;—» X;and B0 1®---®X;®-- 01— 180 0X,®---®1.

Hence letting &’ := X \ {X,,}, for n > 1, we have K[X] = K[X']| ® K[X,] =
K[X'][X,]. Thus any polynomial f € K[X] can be uniquely written as f =
Zdzo fa- X2, where fq € K[X'] such that f; # 0 for only finitely many d. Hence
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by induction on n € Ny we infer that {[]"_, X € K[X];[a1,...,a,] € Nj} is
a K-basis of K[X], and that K[X] is a factorial domain.

c) Actually, K[X] carries various gradings: To this end, let § := [dy,...,d,] €
N™. Then K|[X] becomes a graded K-algebra by letting degs([[;—, X{") =
Yo dia; € Ny, for [a1,...,a,] € Nj. Thus the homogeneous component
K[X]) < K[X] is the K-subspace generated by the monomials of degree d with
respect to d, and letting degy,(X;) := d; we have K[X] = K[X;]® - ® K[X,)]
as graded algebras.

The standard grading deg = deg, of K[X] is given by the degrees [1,...,1],
that is by letting deg(X;) := 1 for i € {1,...,n}; note that this is the grading
inherited from the symmetric algebra S[K™].

Given degrees d, the Hilbert series of K[X;| with respect to degq,) s given as
H[d[] X, = = 050 T = — € Q(T') € Q((T)). Thus the Hilbert series of
K[X] with respect to degy is given as H?([X] =11, ﬁ € Q(T).

In particular, for the standard grading we get Hg(x] = ﬁ = Zdzo ("‘*‘3—1) .
T4 € Q(T) € Q((T)): Assuming that n > 1, expanding the left hand side as
a power series, the coefficient of T is given as the number of possibilities to
write d as a sum of n non-negative integers, which of course is the same as the

number of monomials of degree d in n indeterminates, and which is well-known
to be equal to (dtf’_ﬁl)) = ("+g_1); see Exercise (19.19).

(2.5) Algebras of polynomial functions. Let K be a field, and let V be a K-
vector space having K-basis B = {b1,...,b,} C V, where n := dimg (V) € No.
Moreover, let V* := Homg (V, K) < Maps(V, K) be the dual space of V, that

is the K-vector space of linear forms on V, and let X = {Xy,...,X,} CV*
be the dual K-basis with respect to B, that is X,;(b;) = &;; € K for i,j €
{1,...,n}, where ¢ is the Kronecker function. Then the symmetric algebra

K[V] := S[V*] = K[X] is called the algebra of polynomial functions on V.

Indeed, Maps(V, K) becomes a commutative K-algebra by pointwise addition
and multiplication. Hence by the universal property of K[X] we get the eval-
uation homomorphism of K-algebras ey : K[X] — Maps(V, K) given by

ev: HX’ (V- K: chb >—>Hca], for [ay,. .., an] € NI,

Proposition. The map ey is injective if and only if n = 0 or K is infinite.

Proof. Since for n = 0 we have K[}] = K = Maps({0}, K), we may assume that
n > 1. Let first K = F, be the field with g elements; we may assume that n = 1.
Then we have X(a) = a = X (a), for all a € Fy, that is ep, (X?) = ep, (X).

Let K be infinite. We proceed by induction on n > 1. Let first n = 1: Recall
that K[X] is factorial, which follows from K[X] being Euclidean with respect
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deg(-). Thus any 0 # f € K[X] has only finitely many roots in K, so that there
is z € K such that f(z) # 0. (Note that here we only need that deg(f) < |K]|.)

Let now n > 2, and let 0 # f = Zi‘l:ofi - X! € K[X], for some d € Ny,
and fo,..., fa € K[X \ {X,}] such that f; # 0. Then by induction there are
elements 1,...,2,-1 € K such that fg(z1,...,2,—1) # 0. This entails that
0 # fz1,...,&p-1,Xpn) = Z?:o fi(x1,...,2n_1) - X} € K[X,]. The latter
having only finitely many roots in K, there is x,, € K such that f(z1,...,z,) #
0. (Note that again we only need that degy (f) < |K].) i

The above argument actually shows that for the finite field K = [F, the map ey
is injective on @g;é F,[X]q < Fy[X]. In particular, for K arbitrary the map ey
is always injective on K[X]o ® K[X]; & K & V*, that is the K-vector space of
affine K-linear forms on V.

3 Invariant algebras

(3.1) Groups. Let K be a field, let V' be a K-vector space such that n :=
dimg (V) € Ny, and let G be a group. Then a group homomorphism p =
pv: G = GL(V) 2 GL,(K) is called a K-representation of G. The represen-
tation p is called faithful if ker(p) = {1}; in this case we may identify G with
a subgroup of GL(V).

Hence the K-vector space V becomes a K[G]-module, for the group algebra
K[G] of G over K. The latter is defined as the K-subspace K[G] := (0459 €
G)r < Maps(G, K), where d,: G — K: x — J,4,, and becomes a K-algebra
by letting 640, = 04, € K[G] for g,h € G; hence we may identify G with the
K-basis {0459 € G} C K[G].

Representations p: G — GL,(K) and p': G — GL,(K) are called equivalent,
if the associated K[G]-modules V' and V' are isomorphic, that is if there is
matrix A € GL,(K) such that p(g) - A= A p'(g9) € GL,(K), for all g € G.

In particular, for n = 1 we have the trivial representation G — K*: g — 1.
Moreover, the dual space V* of V' becomes a K[G]-module, being called the
contragredient module of V', by letting G act by pre-composition, that is for
g€Gand a € V* welet a- g € V* be given by v — a(v-g~1), forv e V.

(3.2) Invariant algebras. a) Let K be a field, and let G be a group. If V and
W are K[G]-modules, then by the universal property of tensor products V@ W
becomes a K[G]-module again, by diagonal G-action given by (v ® w) - g :=
(v-g)@(w-g), forveVandwe W, and g € G.

In particular, the tensor power V®? becomes a K[G]-module, for d € N. More-
over, the G-action commutes with the Sz-action, that is (v ®---®vg)-g- 771 =
(V1g® - ®Vag) T = Vixg® BVtrg = (V17 @+ @Var) g = (V1@ - ®Va) TG,
for v1,...,v4 € V and g € G, and 7 € Sg. Hence V¥4~ < V¥ is a K[G]-
submodule, so that S4(V) := V®4/V®4:~ hecomes a K[G]-module as well.
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Letting G act trivially on V®® = K, the tensor algebra T(V) = @,V ®?
and the symmetric algebra S[V] = @ 5, 5% V), being direct sums, become
K|[G]-modules as well, whose grading is respected by the G-action. Moreover,
since multiplication in T'(V') and S[V] are inherited from concatenation of tensor
products, G acts by graded K-algebra automorphisms on 7'(V') and S[V].

b) Hence we are led to the following notion: A graded K-algebra S, on which
G acts by graded K-algebra automorphisms, is called graded G-algebra. In
particular, the symmetric algebra S[V] is a graded G-algebra, which additionally
is a finitely generated factorial K-domain; moreover, G acts faithfully on S[V]
if and only if S acts faithfully on V.

If S is a graded G-algebra, then the set S¢ = Fixg(G) := {f € S;f-g =
f for all g € G} C S of (G-)invariants is a graded K-subalgebra, being called
the associated invariant algebra, where S = @, ,(S4)¢. Moreover, if S is
commutative, then so is S¢; and if S is a domain, then so is S€.

For example, if N <G is a normal subgroup, then the invariant algebra SV C §
is acted on by G, where the action factors through the natural epimorphism to
G/N; thus SN becomes a graded G//N-algebra, and we have S& = (SNV)G/N,

For the symmetric algebra we get S[V]¢ = @ ;,(5%)¢, where (59)¢ = S[V]¢n
S%: in particular we have (S°)¢ = S%(V) = K and S} (V)¢ = Fixy(G) =
Nyeg kerv(g—1) < V. Note that G enters the picture only through pyv, so that
we may assume that py is faithful, in other words G < GL(V).

Example: Quadratic forms. For the action of SL,(C) and GL,(C) on the
C-vector space V := C[Xy,...,X,]2 of n-ary complex quadratic forms, where
n € N, we have seen in (1.3) (using a topological argument), that the invariant
algebra C[V]SL(©) = §[V*]3En(C) = C[A] is the univariate polynomial algebra
generated by the discriminant A, and that C[V]SL(©) = g[p*|Gn(©) = C
consists of the constant functions only.

(3.3) Example: Cyclic groups. Let K be a field, let k¥ € N such that
char(K) 1 k, and assume that K contains a primitive k-th root of unity (.
We consider various faithful representations of the cyclic group G := (z) = Cj:
a) Let G — GL1(K) = K*: z — (. Then G acts on K[X]| by X - z = (: X.
Hence for f =Y 50a4X? € K[X] we have f -z = Y ;5 (laqaX? € K[X], so
that by comparing coefficients we observe that f -z = f if and only if ag =
0 whenever k { d. Thus we have K[X]“ = K[X*], which is a univariate
polynomial algebra, in degree k, and Hilbert series Hg|xjo = ﬁ € Q(7).

b) Similarly, let G — GL2(K): z — diag[(x,1]. Then G acts on S := K[X,Y]
by X-z2=(X and Y -z =Y. Hence for d € Ny and f = Z?:o a; XYt e 8,
we have f -z = Z?:o 1a; XY € Sy, so that by comparing coefficients we
observe that f -z = f if and only if a; = 0 whenever k t ¢. Thus we have
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S¢ = K[X* Y] =2 K[X*] ® K[Y], which is a bivariate polynomial algebra
again, but with degrees [k, 1], and Hilbert series Hga = m € Q(T).

c) Let G — GLy(K): z — diag[(x, (k). Then we have K? = K @ K as K[G]-
modules, where the direct summands are both isomorphic to the representation
z — (. considered above; the associated invariants are called vector invari-
ants. Then G acts on S := K[X,Y] by X -2 = (X and Y -z = (Y. Hence for
deNgand f = Y0 ;XY € Sy wehave f-z = 30 (fa; XY~ € Sy, 50
that by comparing coefficients we observe that f-z = f if and only if k& | d; thus

¢ = D0 Ska- Since dimg (Sq) = d+ 1, we have Hge = 3 ;5o (kd + 1Tk =

h— k
B (Do THH) = (T Vg TH) = (%) = 20T € Q).

To elucidate the structure of S¢, let R := K[X* Y*] = K[X*] ® K[Y*] be
the bivariate polynomial algebra genenerated by {X*, Y*}, with degrees [k, k];
note that the tensor factors are the invariant algebras of the direct summands
of the representation K? = K @ K under consideration. We show that S¢ =
R® @k I(Xk 'Y'*. R) as graded R-modules, the latter being the free graded
R-module generated by {1, X*~1Y,..., XY*~11: in particular this entails that
as K-algebras we have S¢ = K[X* X*-1Y,... XY*~1 Y

Since S, < SY, we have R C S¢ and {X*~'Y,..., XY*~11 C S% showing
that R+ Y0 (X*~1Y?. R) C SG. Conversely, let f := XY =i € Sp; be a
monomial, where d € Ny and ¢ € {0,...,kd}. If k | 4, then f is a monomial
in {Xk,Yk}, thus f € R. If k { 4, then let j € {1,...,k — 1} such that i = j
(mod k); then we have X?Y*d—% = Xiyk—i. X~y k(d=1)=(i=J) where the latter
factor is a monomial in {X*,Y*}, thus f € X*~9Y7 . R.

Thus we have S¢ = R+ Zk l(X’c {y't. R). It remains to show directness: The
free R—module generated by {1, X*~1Y ...  XY*~1} has Hilbert series Hr +

_ 14(k—1)T* . .
ZZ 1 "Hyroiyipg = Gtz = Hse € Q(T). Thus the natural epimorphism

of graded R-modules from the latter free R-module to S is injective indeed. 4
Note that X*, X*~1y, XY*k~1 Y*k ¢ S& are pairwise non-associate irreducible
elements, for k > 2, but fulfill X*~'Y - XY*~! = X*.Y* implying that S¢ is
not factorial, in particular it is not a polynomial algebra.

d) Let G — GL2(K): z + diag[Ck, ¢ ']- Then we have X -2 = (, X and YV -z =
;'Y Hence for f =Y, ~qai; X'Y7 € Swehave f-z =3, .-0¢ Y ai; XY €
S, so that by comparing coefficients we observe that f-z = f if and only if a; =0
whenever k t (i — j). Thus for a monomial f we have f -z = f if and only if it
has the form f = (XY)! XY for i€ {0,...,k— 1} and a,b € Ng. Thus we
have S¢ = K[XY, X* Y*] as graded K-algebras.

Observing that the above monomials are K-linearly independent, letting R :=
K[XF Y*] we get S¢ = @f;ol (XY . R) as graded R-modules. Since R i
polynomial with degrees [k, k], we have Hp = entailing that Hge =

»n

e
k—1 2 2k k
(Zi:o T ) Hp = (1— ! )(71 TF)2 = (1— 7};371 TF) € Q( )
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Note that for k& > 2 the elements XY,(XY)*~1 X* Y* ¢ S& are pairwise
non-associate irreducible, but XY - (XY)¥~! = X* . Y* shows that S is not
factorial, thus it is not a polynomial algebra. We elucidate the structure of S¢:

Let P := K[A, B,C] be the polynomial algebra with degrees [2,k, k], and let
I := (A* — BC) < P, where A¥ — BC € P is homogeneous of degree 2k. Since
I is a free P-module generated in degree 2k, we have Hp,; = Hp — H; =

(1-1T2). Hp = (1—T12_)+ET’“)2 € Q(T). The epimorphism P — S¢ of graded
K-algebras given by A — XY, B+ X* C + Y* factors through P/I, and

since Hp/; = Hge we have an isomorphism P/ = SE. i

(3.4) Example: The cyclic group of order 2. i) Let K be an arbitrary field,
and let G := (z) = C3. We consider the regular representation of G, which with
respect to the K-basis {1,z} C K[G] is given as G — GLy(K): z — [(1) (1)]
Then G acts on S = K[X,Y] by X -2 =Y and Y-z = X. Hence for
d € Ny and f = Z?:o a; XY € Sy we have f -z = Z?:o a; X4yt =
E?:o aqg—; XY € Sy, so that by comparing coefficients we observe that f-z =
f if and only if a; = aq—; for all ¢ € {0,...,d}. Thus for d odd and even,
respectively, we have

(X4 YL XY 4 XYyl XY £ XY )

X

4
2

S§ = d d yd-1 d-1 4 ©
(X7 4+ Yd XY 4 XY9-l L XY ).
In particular we have dimg (S$) = [ 4] + 1. Thus we get Hge = 1+ 7 + 272 +
2% + - = (1+T) - Yyso(d+ 1) - T?* € Z[[T]]. Letting T" := T? we have
Easo(d+1) - T = ¥ pno(d+1) (T = 55(Xaxo(T)) = (=) =
| _ 14T 1
=72 = ooz hence Hge = (1—+T2)2 = Tna-m™ € Q).

We show that S¢ = K[X + Y, XY]: Let R denote the right hand side.

We have S¢ = (X + Y)g and S§ = (X? + Y2 XY)k, so that R C S©.
Conversely, we show by induction on d > 1 that SC? C R, where since Slg C R we
may assume that d > 2. Then for i € {1,...,|4]} we have XY ¢~" 4 X4~y =
(XY) (X421 4+Y9=2) where by induction we have X421 4+Yd=2 ¢ §¢ . C R,
from which, since (XY)? € R anyway, we conclude that XY~ + X4=y? ¢ R;

4
2

note that for i = ¢ the latter equals 2(XY)2, but we have (XY)% € R anyway.

Finally, (X +Y)4 = Z‘LO (f) XY 9 for d odd and even, respectively, yields

d—1 . . L.
(X4 Y+ 3,2 (XYt 4 Xy,

3

d _
(X+¥)= (X4 +Y9) + (§)(XY)E + S (XY 4 Xy,

Since (X + Y)? € R anyway, from what we have seen above we conclude that
X4 4+Y?e R as well, entailing S¢ C R. i
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From this we conclude that S is a bivariate polynomial algebra with degrees
[1,2]: Let R := K[A, B] be the polynomial algebra with degrees [1,2]; hence
Hp = m = Hge € Q(T). Thus the epimorphism of graded K-algebras
a: R — S% given by A+ X +Y and B+ XY is injective.

ii) If char(K) # 2, then the above computation can be simplified considerably,
since z has eigenvalues {£1}, so that z is diagonalizable; note that if char(K) = 2
then z has eigenvalue 1 with multiplicity 1, so that z is not diagonalizable in
this case. Hence applying the base change associated with with respect to the
1 11] € GLy(K) yields a K[G]-isomorphism from
the regular representation to the representation z — diag[—1, 1]; see (3.3).

Hence letting X', Y’ € S be the indeterminates associated with the latter K-
basis, we have [X/,Y'] = [X,Y]- A" = [X — Y, X + Y]. Thus we have S¢ =
K[(X"2Y'| = K[(X-Y)? X +Y], so that from (X -Y)?— (X +Y)? = —4XY
we infer that S¢ = K[X +Y, XY].

eigenvector K-basis A := [

4 Finite generation

(4.1) Invariant fields. a) Let K be a field, and let S be a graded K-domain;
then let L := Q(S) be its field of fractions. For example, let S = S[V], where V
is a finitely generated K-vector space; then S(V) := Q(S[V]) is the associated
field of rational functions.

If S additionally is a G-algebra, where G is a group, by the universal property
of fields of fractions the G-action by K-algebra automorphisms on S extends
uniquely to a G-action by field automorphisms on L. Moreover, G acts faithfully
on L if and only if G acts faithfully on S.

Hence the associated invariant field is given as LE = Fixy(G) := {f € L; f-g =
fforallg € G} C L, being a subfield of L such that S¢ = LY N S. Since
S¢ C S is a domain as well, we get a natural embedding of the associated
field of fractions Q(S¢) into Q(S) = L, thus since Q(S%) consists of invariant
rational functions we have Q(S¢) C LE.

b) The question arises whether we might have equality Q(S%) = LY. Actually,
this is not always the case, not even for S = S[V], where V is a K[G]-module,
as we will see by way of an example below. Still, under suitable additional
hypotheses equality holds (the case of finite groups being dealt with in (4.6)):

To this end, assume that S is factorial; for example, we may have S = S[V].

Recall that any element of L can be written as £ € L where f, g € S such that

g
g # 0, which may be assumed to be coprime. Now assuming that 0 # 5 € LS,
from £ = (%)Z = g—:, for z € G, we infer that f-g* = f*-g. Since ged(f,g) = S*
from this we get f | f#, and since ged(f?, ¢%) = ged(f, g)* = S* we also have
f# | f, thus f ~ f#; and similarly g ~ ¢g*. Hence f and g are semi-invariants
or relative invariants, but not necessarily invariants.
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Proposition. Let G have only the trivial one-dimensional K-representation;
in other words, the only group homomorphism G — K* is given by z — 1, for
z € G. Then we have Q(S%) = LY.

Proof. Letting 0 # 5 € LY, where 0 # f,g € S are coprime, we infer that
(f)x < S and (g)x < S are one-dimensional K[G]-submodules, hence are
trivial K[G)-modules. Thus we have f,g € SY, that is f and g are actually
invariants, hence 5 € Q(S9). i

(4.2) Example: The multiplicative group. Let K be a field, let G :=
GL1(K) = K* act on K2 by z — diag[z,2], and let S := K[X,Y] and L :=
S(V) = K(X,Y); note that K C L is pure transcendental of transcendence
degree trdegy (L) = 2. We determine S¢ C S and LY C L, where G acts by
X z=zX and Y - z = zY, distinguishing the cases whether or not K is finite:

a) Let K be infinite. Then G contains an element of arbitrarily large finite order,
or of infinite order: Assume that all elements of G have order bounded by some
k € N, then all of them are roots of Hle(Xi — 1) € K[X], a contradiction.

We determine S¢ = Do S¢: Let 0 # f € SY, for some d € Ny. Then
letting z € G be an element of infinite order, or of finite order exceeding d, from
f = f? = 2%f we infer that d = 0. This implies S¢ = K, thus Q(S%) = K.

We proceed to consider L&: Let 0 # g € LY, where 0 # f,g € S are coprime.

Writing f = > ;- fa as sum of its homogeneous components, and letting z € G
be an element of infinite order, or of finite order exceeding deg(f), then from
f~fweget Y jsocfa=cf=f*=3 4502 s €S, for some 0 # c € K. By
comparing coefficients we observe that f is homogeneous, of degree d € Ny say,
so that we have f = "0 [ a, XV =y¢. 0 a;(X)i e L.

Similarly, g is homogeneous, of degree e € Ny say, where from 5 =( g)z = f;—: =
zd=e. % € L we infer that 2¢7¢ = 1. Thus letting z € G be an element of infinite

order, or of finite order exceeding max{d, e}, this entails d = e. Hence we have
) . . d Xy
9= biX Y =y S bi(£) € L, showing that £ = ZipetQ ) ¢

=0 ?:0 bl(é)l
K(3£) C L. Conversely, since (3)° = )}: =2 =X c [, forall z € G, we
have % € LY. Thus we have L = K(<); note that K C LY and LY C L are

pure transcendental such that trdeg, (L%) = 1 and trdeg; ¢ (L) = 1.

b) Let K = F, be finite. Then, by Artin’s Theorem, G is cyclic, that is
G = C,_1, so that by (3.3) we have S¢ = K[X%71 X972y, ... XY 2 ydil]

<>

We show that Q(S¢) = K(X?!,%): From % = £ we get K(X971,%) C
; conversely, Irom (X = —i-i i, ori€{0,...,q—1}, we get
Q(S¢ ly, from X971 (&))" = X717y f 0 1

Q(S%) C K(Xx71, %), entailing equality.

We now consider L& (without using the fact shown in (4.6) below that it already
follows from G being finite that we necessarily have LE = Q(S%)):
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Let 0 # 5 € LY where 0 # f,g € S are coprime. Letting (,_1 € G be a
primitive (¢ — 1)-st root of unity, and writing f = 3,5, f4, from f ~ fSi—2

we get Y ysocfa = DogsoCi1fa € S, for some 0 # ¢ € K. By comparing
coefficients we observe that f = 3 ,_( fag—1)+;, for some j € {0,...,q — 2},

thus we have f = ZdZO(Yd(q_1)+j : Z?i%ﬁl)ﬂ aqi($)") € L.

Similarly, we have g = 3,5 Gd(q—1)+i, for some i € {0,...,q — 2}, where from

i = q - f € L we infer that 2/~% = 1, entailing that s = j. Hence we have

9=24> (Yd a=+ Ly DT g, (X)) € L, so that canceling Y7 yields

- d(g—1)+j i
o Daso(Y U T aga ()7 X X
== = KY?" " =) =KX, —).

o (Ylla=D) S (X))

Since Q(S€) C LE anyway, we conclude that LY = Q(S¢) = K(X?7!, ). 4

~<\>< <[>

Note that K C L€ is pure transcendental such that trdegy (L) = 2, while
LE C L is finite. Indeed, since G acts faithfully on L, the field extension I CL
is finite Galois with respect to G, hence having degree [L : L¢] = ¢—1. Actually,
L is the splitting field of the irreducible polynomial 79~ — (X49~1) € (L%)[T],
which splits as Hg;g(T — (1 X) € L[T], where {X, (41X, ..., (g:fX} CLis
the G-orbit of X.

(4.3) Noetherian algebras. Let R be a commutative ring. An R-module M
is called Noetherian, if any ascending chain My < M; <--- < M; <--- < M
of R-submodules stabilizes, that is there is k& € Ny such that M; = M} for
all ¢ > k. The ring R is called Noetherian, if the regular R-module R is
Noetherian; recall that the R-submodules of R coincide with its ideals. For
example, any field K is Noetherian.

We collect a few basic properties; see Exercise (19.4): Letting N < M be R-
modules, if M is Noetherian then so are N and M /N, and if conversely both N
and M/N are Noetherian then so is M. In particular, any finite direct sum of
Noetherian R-modules is Noetherian again. Moreover, M is Noetherian if and
only if each submodule of M is finitely generated; and if R is Noetherian, then
M is Noetherian if and only if M is a finitely generated R-module.

Example. Let K be a field, let R := K[X1, Xo,...] :== U, ey, K[X1,-- -, X5
be the polynomial algebra in countably infinitely many indeterminates, and for
n€Nglet I, == (X1,...,Xp) <R Then {0} =y Cc L C---CI,C---<Ris
an infinite strictly ascending chain of ideals, hence R is not Noetherian; indeed
the ideal |, cy, In = (X1,X2,...) < R is not finitely generated, although the
regular R-module R = (1) is finitely generated.

(4.4) Theorem: Hilbert’s Basis Theorem [HILBERT, 1890]. Let R be a
Noetherian ring. Then the polynomial R-algebra R[X] is Noetherian as well.
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Proof. We show that any ideal I < R[X] is finitely generated. To this end
let Jg := {lc(f) € R;0 # f € I,deg(f) = d} U {0}, for d € Ny. Hence we
have J; < R and Jg C Jgy1. Since R is Noetherian, let &k € Ny such that
Jqg = Jy for d > k. Moreover, since all ideals of R are finitely generated, for
de{0,....,k} let Jg = (rq1,...,7an,) I R, where ng € Ny. Letting fg; € I
such that deg(fa;) = d and le(fq;) = ra; € R, fori € {1,...,n4}, we show that
I = (fdﬂ';de {0,...,k},i € {1,...,7’Ld}) ﬂR[X]

Let J denote the right hand side, and let 0 # f € I such that deg(f) =d > 0.
We proceed by induction on d € Ny: If d = 0 then f € Jy C J, hence let
d>1. If d > k then let ¢ :=k, if d < k let ¢ := d. Since J; = J., there are
C1,...,Cn, € Rsuchthat f:= f—>"", c; Xk fi. . € I has degree deg(f') < d,
or we have f’ = 0. By induction we have f’ € J, hence f € J as well. i

In particular, if K is a field, then by induction on n € Ny the finitely gener-
ated polynomial K-algebra K[Xi,...,X,] is Noetherian. Moreover, since any
finitely generated commutative K-algebra R is a quotient of a finitely generated
polynomial K-algebra, we conclude that R is Noetherian.

(4.5) Integral extensions. a) Let R be a commutative ring, and let R C S
be an extension of commutative rings, that is S is a commutative ring and we
have 1z = 1g. Hence S is an R-algebra, with structure homomorphism being
the identity on R. In particular, if K is a field and R is a K-algebra, then S is
a K-algebra as well.

An element s € S is called integral over R, if there is 0 # f € R[X] monic,
such that f(s) = 0; note that evaluating f at s refers to the universal property
of R[X]. The extension R C S is called integral, and S is called integral over
R, if each element of S is integral over R.

Proposition. An element s € S is integral over R, if and only if there is an
R-subalgebra of S containing s which is finitely generated as an R-module.

Proof. For s € Slet R C R[s] := >, s'R C S be the smallest R-subalgebra
of S containing s. Let now s be integral, and let f = X% + Zf;ol fiX' e RIX],
where d > 1, such that f(s) = 0. Then we have s¢ = —Z?;OI fis', so that
R[s] = Y07} s'R is generated by {1,s,52...5% 1} as an R-module.

Let conversely R C R[s] CT C S, where T is an R-subalgebra which is finitely
generated by {t1,...,t;} as an R-module, where k € N. Then for j € {1,...,k}
we have tjs = Zle tiTij, for some rij € R. Let A:= XE}, — [rij]ij € R[X]ka
be the characteristic matrix associated with [r;;];; € R**¥, thus det(A4) € R[X]

is monic of degree k > 1. We show that det(A)(s) = det(A(s)) = 0, entailing
that s is integral over R:

We have [t1,...,t] - A(s) = [0,...,0] € T*. Now Cramer’s Rule says that
replacing the i-th row of A(s) by [t1,...,tk] - A(s) yields a matrix having de-
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terminant ¢; - det(A(s)), and since the matrix thus obtained has a zero row we
conclude that t; - det(A(s)) =0, for all ¢ € {1,...,k}. Thus since 1 € T is an
R-linear combination of {t1,...,t;}, we infer that det(A(s)) = 0. i

Hence R C S is integral if and only if it is generated as an R-algebra by integral

elements. Moreover, the subset R C R = {s € S;s is integral over R} C S is
a subring of S, being called the integral closure or normalization of R in S;

in particular, if R° = R then R is called integrally closed or normal in S.
Moreover, if R is a K-algebra then RS is a K-algebra as well.

If R is a domain and R is integrally closed in its own field of fractions, then R
is called integrally closed or normal; in particular, if R is factorial then it is
integrally closed; see Exercise (19.11).

b) The extension R C S is called finite, if S is a finitely generated integral
R-algebra, or equivalently if S is a finitely generated R-module.

Proposition. Let R C S be an integral extension, such that S is a finitely
generated K-algebra. Then R is a finitely generated K-algebra as well, and the
extension R C S is finite.

Proof. Let {fi,...,fx} C S be a K-algebra generating set, for some k € Ny.
(Note that for S = S[V] we might choose k = dimg(V').) Moreover, let F; €
R[X] be monic such that F;(f;) =0€ S, fori e {1,...,k},andlet TC RC S
be the K-algebra generated by the coefficients of the polynomials F, ..., Fk.

Since all f1,..., fx € S are integral over T', we conclude that S is integral over T'.
Since S is a finitely generated K-algebra, it is a finitely generated T-algebra as
well, saying that the extension T' C S is finite, that is .S is a finitely generated T-
module. Thus from T' C R C S we infer that S is a finitely generated R-module,
that is the extension R C S is finite as well.

Since T is a finitely generated K-algebra, it is Noetherian. Since S is a finitely
generated T-module, it is a Noetherian T-module. Thus the T-submodule R <
S is a Noetherian T-module as well. Hence R is a finitely generated T-module.
Since T is a finitely generated K-algebra, R is a finitely generated K-algebra. f

(4.6) Theorem: Noether’s Finiteness Theorem [NOETHER, 1916, 1926].
Let K be a field, let G be a finite group, and let S be a finitely generated graded
G-algebra with faithful G-action.

a) Let S be a domain and let L := Q(S). Then the field extension L& C L is
finite Galois with respect to G, and we have Q(S%) = L.

b) The invariant algebra S is finitely generated, and the extension S¢ C S is
finite. Moreover, if S is an integrally closed domain, then so is S©.

Proof. a) Let 0 # 5 € LY, where 0 # f,g € S. Letting ¢’ := Hl;«ézeG g® € s,
the norm of g is given as N(g) := gg’ € S\ {0}, and % = § € L% implies
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fg' € L NS = S, entailing 5 = gg: € Q(8Y), showing that Q(SY) = L.
Moreover, G acts faithfully on L, hence the field extension LY C L is finite

Galois with respect to G.

b) For f € S let Fy =[] c5(X — f7) € S[X]; hence Fy is monic such that
F¢(f) = 0. The G-action by K-algebra automorphisms on S can be extended
(coefficientwise) to a G-action by K-algebra automorphisms on S[X]. Hence we
have (Fy)" = ngG(X_fg)h = ngG<X_fgh) = ngG(X_fg) = FYy, for all
h € G, thus Fy € S€[X], being monic. This shows that the extension S¢ C S is
integral. Hence, since S is a finitely generated K-algebra, it follows from (4.5)
that the extension S C S is finite and that S is finitely generated.

Finally, assume that S is an integrally closed domain, and let f € Q(S%) =
L% C L = Q(S) be integral over S¢. Then f is a root of a monic polynomial in
SE[X] C S[X], thus f is integral over S as well. This implies that f € SNLY =
S, showing that S¢ is integrally closed. i

(4.7) Remark: Finite generation. Letting K be a field, note first that there
are K-subalgebras of polynomial algebras which are not finitely generated in-
deed: For example, since XY ¢ K[X,XY,..., XY 1] C K[X,Y], fori € N,
the K-subalgebra of K[X,Y] generated by {XY?;i € Ny} is not finitely gener-
ated. Actually, this leads to a counterexample to finite generation of invariant
algebras in a more general framework, namely for a finitely generated non-
reduced algebra, that is an algebra having nilpotent elements, which works for
certain finite groups; see Exercise (18.20). Moreover, the above proof of finite
generation of invariant algebras is purely non-constructive, and does not give
the slightest clue how to actually find a finite generating set.

If G is a group, and V is a K[G]-module, the invariant algebra S[V]% is not
finitely generated in general: There is a famous counterexample for an infinite
group G in dimension 32 over C by NAGATA [1959]; see Exercise (18.20). This
is closely related to Hilbert’s 14-th problem: If L C S(V) is a subfield, is
LN S[V] a finitely generated K-algebra? Since S(V)¢ N S[V] = S[V]¢ for any
group G, this counterexample answers this question to the negative as well.

But invariant algebras are finitely generated whenever G is linearly reductive;
see (5.3). Actually, HILBERT worked on linearly reductive groups, although this
notion has only been coined later, whereas NOETHER developed the machinery
for finite groups. For example, SL,,(C) is linearly reductive, for n € N, so that
in particular the invariant algebras Ry, q := S [Vnyd]SL"(C) for the natural action
of SL,,(C) on the C-vector space V, 4 := C[C"]4 = S[(C™)*]q of n-ary d-forms,
for d € N, are finitely generated C-algebras.

For binary d-forms, that is n = 2, finite generation of the invariant algebra
Ryg = S [Vz,d]SLz(C) has already been shown combinatorially by GORDAN
[1868]. Still, there is only poor knowledge as far as explicit finite generat-
ing sets are concerned: We have seen in (1.3) that for quadratic forms the
invariant algebra Rj» is a univariate polynomial algebra in the discriminant,
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which is homogeneous of degree 2. For cubic forms the invariant algebra Rj 3
also is a univariate polynomial algebra in the discriminant, which is homoge-
neous of degree 4. For quaternary forms the invariant algebra R 4 is a bivariate
polynomial algebra, generated by homogeneous elements of degree [2, 3], while
the discriminant has degree 6. Moreover, explicit generators for the invariant
algebra R 4 are only known for d € {5, 6,8}, in which cases Rs 4 no longer is a
polynomial algebra [SHIODA, 1967].

5 Degree bounds

(5.1) Trace maps. Let G be a group, let H < G be a subgroup of index
k:=[G: H] € N, and let T := {t1,...,tx} C G be a (right) transversal of H
in G, that is a set of representatives of the right cosets H\G of H in G.

Let K be a field, and let S be a graded G-algebra. Then we have an extension
SE C SH of graded K-algebras. The relative trace map or relative trans-
fer map Trg with respect to H is defined as the K-linear map Trg: SH —
SC: f Elef-ti. If G is finite, then Tr¢ := Tr?l}: S — 8% fis dgecl g
is called the trace map or transfer map.

The relative trace map is well-defined indeed, and independent of the choice of
the transversal: For f € S we have TrG(f) - g = Zle(f tig) = Zle(f-
hitin(e) = 2oy (f tim(e) = oy (f - 1) = TYG(f), for g € G, where 7: G —
Sme = Sy is the permutation action of G on H\G, so that t;g = hit;.(g)
for some h; € H; thus we have Tr§(f) € S¢ indeed, where Tr (S7) C SC.
Moreover, if 7' := {t},...,t,} C G also is a transversal of H in G, then we
may assume that ¢; = h;t;, for i € {1,...,k} and some h; € H, so that we get

S (f ) = S (f - hati) = Y (f - 1) = TY§(f), showing that Trfj is
independent of the choice of T.

For any subgroup H < U < G we have transitivity of trace maps, that is
Y. Trg = TrfI: Letting 7' C U be a transversal for H in U, and 7" C G be
a transversal for U in G, we get the transversal T := {t't" € G;t' e T,t" € T"'}
for H in G. Then for f € ¥ we have Tr{(TrY (f)) = Zt,,eT,,(Trg](f) ) =

Sinern(Cper (f 1) = Xier (f - 1) = Trg ().
Moreover, Trg: SH — S% is a homomorphism of graded S%-modules: For
d € Ny we have Tr§ (S) < S, and for f € S and g € S we have Tr$ (gf) =

S (gt = S gt = gt = (X g% - f = Tij(g) - f. Thus

SG = Trg(SH) <1 5% is a homogeneous ideal, where S§ C S§ C S§ = S¢.

Proposition. Assume that S is a domain, and that G acts faithfully on S.
Then we have S # {0}.

Proof. We may assume that H = {1}. Since G acts faithfully on L := Q(S),
the elements of G induce pairwise different field automorphisms of L, which
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by Dedekind’s Independence Theorem are L-linearly independent in the
L-vector space Endg (L). Hence the latter are K-linearly independent in the
K-vector space Endg (5); in particular we have > ;g # 0 € Endg (5). i

If G does not act faithfully on S, then we might have S§ = {0}: For example,
let K be such that char(K) = 2, let G := (z) = Cy act trivially on V := K,
and let H := {1}; then we have S[V]¢ = S[V] = K[X], and from Tr%(X?) =
X4 4 X4. 2 =2X% =0, for d € Ny, we infer that S[V]?l} = {0}.

(5.2) Reynolds operators. Let K be a field, let G be group, let H < G be
a subgroup of finite index [G: H] € N, and let S be a commutative graded G-
algebra. We address the question when we have Sg = S%: To this end, letting
T C G be a transversal for H in G, for f € S¢ we observe that Trg(f) =
Tef (1 f) =T (1) - f = (Dper(1-0) - f = ([G: H]-1)- f = [G: H]- [, saying
that Tr|ge = [G: H] -idga.

a) If char(K) 1 [G: HJ, then the relative Reynolds operator with respect
to H is defined as RS := ﬁ -Tr§: SH — SC. Hence RS restricts to
the identity map on S¢, so that S§ = S¢. Moreover, R%(f — R%(f)) = 0,
for f € SH, implies that S = S§ @ ker(R$) = S @ ker(Tr$) as graded
SE-modules, where Rg is the associated projection.

In particular, if G is finite such that char(K) 1 |G|, called the non-modular
case, we have the Reynolds operator R¢ := R{Gl} = ﬁ ‘Tr%: § — SC; hence

S =S¢ @ ker(RY) as graded S¢-modules, R being the associated projection.

b) If char(K) | [G: H], then Tr$ restricts to the zero map on S, so that
(Tr$%)? is the zero map. Hence we have S§ C S C ker(Tr$) € S as graded
S%modules, and since S§ = Sy = K we have S§ C S¢<S% and 1 € ker(Tr%).
Apart from that, only little is known about the trace ideal SG <1 S¢, even for
the symmetric algebra S[V] where V is a K[G]-module.

Moreover, if S is finitely generated, and G is finite acting faithfully on S, then
by Noether’s Finiteness Theorem S¢ is finitely generated, hence Noetherian,
and S is a finitely generated SG-module, so that ker(Tr$) < S are finitely
generated S@-modules as well; thus Carlson’s Lemma, see Exercise (19.18),
implies that ker(Tr%) is not a direct summand of S¥ as graded S&-modules.

In particular, if G is finite such that char(K) | |G|, being called the modular
case, inasmuch Tr restricts to the zero map on S[V]%, we get a fundamentally
different behavior of the trace map ¢ compared to the non-modular case.
Again, only little is known about S{Gl}, even for the symmetric algebra S[V]
where V is a K[G]-module. (Most notably there is Feshbach’s Theorem
[1981] on S’[V]ﬁ} <1 S[V]¥, whose details we are not able to give here.)

(5.3) Hilbert ideals. a) Let K be a field, let G be group, and let S be a
commutative graded G-algebra. The Hilbert ideal Zg = Zg(S) < S is the
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ideal generated by the homogeneous invariants of positive degree, that is Zg :=
Sf S = (84 NSY) -8 <S; hence Ig C S is a proper homogeneous ideal.

The quotient K-algebra S¢ := S/Zg is called the associated coinvariant alge-
bra. Then S¢ is a graded G-algebra again, as well as an (SG/SE)—module, that
is a K-vector space. If additionally S is a finitely generated K-algebra, then by
Noether’s Finiteness Theorem S is a finitely generated S“-module, so that Sg
is a finitely generated K-vector space, and thus is a K[G]-module.

If char(K) { |G|, then applying the Reynolds operator R®, which projects
S onto S, and S¢ onto (Sg)¢, we get (Sg)¢ = RY(Sq) = RY(S/Ic) =
(RY(S) +Z¢)/Ic = (R+Ic)/Ic = (Ro +1g)/Ic = (Sa)o 2 K.

b) Any set of homogeneous invariants of positive degree generating S¢ as a
K-algebra also generates Zg <.S as an ideal. Actually, in the non-modular case
the converse of this statement holds as well; note that if S is a finitely generated
K-algebra, and thus Noetherian, then Zg indeed is generated by finitely many
homogeneous invariants of positive degree:

Theorem: Hilbert’s Finiteness Theorem [HILBERT, 1890]. Let G be finite
such that char(K) { |G|, and let F C S¢ be a set of homogeneous invariants
such that Zg = (F) <S. Then F generates S¢ as a K-algebra.

Proof. Let R C S¢ be the K-algebra generated by F, and let h € S¢ be
homogeneous such that deg(h) = d € Ny. We proceed by induction on d > 0;
the case d = 0 being trivial, let d > 1. Since h € Zg, there are f; € F and
g; € Sd_deg(m such that h = Zle figi € S, for some k € Ny. Thus we have
h = RE(h) = Zle fi - RY(g:). Since RY(g;) € S¢ such that deg(R%(g;)) =
d — deg(f;) < d, by induction we have R%(g;) € R, so that h € R as well. i

Note that in the above proof only the property of R“: S — S being a projec-
tion of graded S“-modules is used. In view of this, linear algebraic groups G
over an algebraically closed field K, which for any algebraic G-module V' possess
a generalized Reynolds operator R%: K[V]| = S[V*] — S[V*|¢ = K[V]¢
sharing the above properties, are called linearly reductive, see (4.7); thus for
these groups the assertion of Hilbert’s Finiteness Theorem holds.

(5.4) Noether’s degree bound. We proceed to prove a degree bound for
generating sets of invariant K-algebras of finite groups G, which holds in the
non-modular case. Actually, NOETHER stated the result in the case char(K) = 0
only, but the proof is valid whenever (|G|)! is invertible in K, thus if char(K) >
|G| as well. We present a recent general proof, thus closing the Noether gap.

To this end, let K be a field, let G be a finite group such that char(K) { |G|,
and let S be a commutative graded G-algebra.
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Proposition: Benson’s Lemma [2000]. Let I <GS be a G-stable ideal, that
is I-g C I for all g € G. Then we have Il C 1¢. 548,

Proof. Let {f, € I;g € G}. Since [[ cq(gh —1) =0 € K[G], for h € G, we

get [Tyeq(fo - 9h — fq) = fg - Tl eq(gh — 1) = 0 € S. Expanding the product,
using the principle of inclusion-exclusion, and summing over h € G yields

S (DS (90 TT fa) =0

MCG geM gEG\M

If M # (), then we have TrG(ngM(fg -g)) € INSY = I, thus the associated
summand belongs to I¢ - S <S. Hence for M = () we obtain Tr%(1)- [l,ec fo €
IS - S as well, which since Tr®(1) = |G| entails [yec fo € I¢. 8. i

Theorem: Noether’s degree bound [NOETHER, 1916; FLEISCHMANN,
2000; FOGARTY, 2001]. Let S be generated by homogeneous elements of de-
gree at most b € N. Then the Hilbert ideal Zg <5 is generated by homogeneous
invariants of positive degree at most b |G|.

Proof. Letting I := (f € S§;d € {1,...,b-|G|}) < S, we have I C Zg, and we
have to show equality:

Firstly, Benson’s Lemma, applied to the G-stable ideal S} < .5, yields Slfl -
Za <S. Since any homogeneous generating set of S contains a generating set
of the ideal Sy, we conclude that S, is generated by homogeneous elements of

degree at most b, so that Slf‘ is generated by homogeneous elements of degree
at most b - |G|. Hence we infer that actually SL_Gl CIlCIg.
Now let f € (Zg)4, for some d > 1. If d < b - |G| then we may assume that f

is of the form f = gh € S, where g € S and h € S are homogeneous; thus we
have deg(g) < d, so that f € I. Hence let d > b |G|.

Then we may assume hat f is of the form f = Hle fi € S, for some k € N,
where the f; € Sy, are homogeneous of degree d; € {1,...,b}, so that we have
b-|G| <d=3"d; <kb; hence k > |G|, thus f € SI°1 C I. (Note that the
last part only uses the fact that f € Sy, so that we actually have Sy C Zg.) 4

We derive a couple of consequences:

a) If N QG is normal, then we have the extension R (SN)G/N csNcCs,
giving rise to the following relative version of Noether’s degree bound:

Let G be arbitrary, let N < G be of finite index such that char(K) t [G: N],
and let SN be generated by homogeneous N-invariants of degree at most b €
N. Then the relative Hilbert ideal 7% := Sf - SN < 8N is generated by
homogeneous G-invariants of positive degree at most b-[G: N]. Consequently, by
Hilbert’s Finiteness Theorem applied to G/N, we conclude that S is generated
by homogeneous invariants of degree at most b - [G: NJ.
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b) Let G be finite such that char(K) { |G| again, and let S be generated
by the finite set F consisting of homogeneous elements of degree at most b.
(It S = S[V], where V is a K[G]-module, then we may of course take the
indeterminates of degree b = 1 as homogeneous generators.) Then there is
a finite generating set of S consisting of homogeneous invariants of degree at

most b-|G|, thus being contained in the K-subspace @Zlcf‘ S¢ = @fol RE(Sq).

Hence we may algorithmically find a minimal homogeneous generating set of S
by evaluating RE successively at all monomials in the generators F of degree
{1,2,...,b- |G|}, and for a given degree pick suitable indecomposable homoge-
neous invariants, that is which are not contained in the K-subalgebra generated
by the homogeneous invariants of strictly smaller degree.

(5.5) Remark: Degree bounds. Let K be a field, let G be a finite group,
and let V be a faithful K[G]-module such that n := dimg (V) € Np.

a) In the non-modular case char(K) t |G|, Noether’s bound 8(S[V]%) < |G| is
best possible inasmuch no improvement is possible in terms of the group order
alone: For the case of cyclic groups we have equality, see (3.3) and (3.4).

But if char(K) = 0 and G is not cyclic, then Schmid’s Theorem [1991] says
that B(S[V]%) < |G| — 1, and the Domokos—Heged{is Theorem [2000] says
that 3(S[V]®) < 2.|G| if |G| is even, and B(S[V]®) < 2 - |G| if |G| is odd. In
practice, Noether’s bound and its improvements typically are not at all sharp.

In view of Schmid’s Theorem, the relative version of Noether’s degree bound
can be improved to (S[V]9) < B(S[V]YN) - (|G: N] — 1) whenever G/N is non-
cyclic; note that this in particular holds for if G is a non-cyclic nilpotent group,
with respect to the last but one step of its upper central series.

Still, the relative version of Noether’s degree bound needs the assumption of
N < G being normal. Actually, as was already mentioned, NOETHER’s original
proof works more generally for subgroups H < G, but needs the assumption
that ([G: H])! is invertible in K. Alone, the new elegant technique does not
seem to yield this result as well. Hence there still is a baby Noether gap left.

b) In the modular case char(K) | |G|, Noether’s bound does not hold in general,
as we will see by an example in (5.7). Similarly, neither Benson’s Lemma nor
Hilbert’s Finiteness Theorem hold in general, as the example in (5.7) also shows.
The counterexample mentioned actually is smallest with respect to group order,
while one smallest with respect to dimension is given by the regular represen-
tation of Cy4 in characteristic 2 [BERTIN, 1965]; see (9.8).

Even worse, there cannot be a global bound for 3(S[V]%) in terms of |G| alone,
as is indicated by the example given in (5.7). Indeed, for any field K, it follows
from Richman’s lower degree bound [1996] that if there is a common bound
for B(S[V]Y), for all K[G]-modules V, then we necessarily have char(K) 1 |G|.
Moreover, BRYANT, KEMPER [2005] have shown, that if G is a linear algebraic
group having such a common bound for all algebraic G-modules V, then G is
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necessarily finite (such that char(K) { |G|).

The best, but astronomical general degree bound in terms of |G| and n is
given by Hermann’s Theorem [1926], saying that 3(S[V]9) < n(|G| — 1) +
|G |"'2n_1+1 .n2" "' +1. Much better results are known under additional assump-
tions, where supported by substantial computational evidence, the even stronger
subsequent conjecture should actually be true:

i) G6bel’s degree bound [1995], see (9.6), says that whenever V is a permu-
tation K[G]-module, then we have B(S[V]%) < max{n, (})}.

ii) Broer’s degree bound [1997], see (16.4), says that whenever K is infinite
and S[V]% is Cohen-Macaulay, then 3(S[V]%) < max{|G|,n(|G| — 1)}.

iii) Symonds’s degree bound [2009] says that whenever K is finite, then
again we have B(S[V]%) < max{|G|,n(|G| — 1)}.

Conjecture [KEMPER].

a) The Broer-Symonds bound B(S[V]%) < max{|G|,n(|G| — 1)} always holds.
b) If S[V]¢ is Cohen-Macaulay, then Noether’s bound 3(S[V]¥) < |G| holds.
¢) For the Hilbert ideal, Noether’s bound 5(Z¢(S[V])) < |G| always holds.

We remark that FLEISCHMANN [2000] has shown that Noether’s bound holds
for Hilbert ideals, if V' is a trivial-source K|[G]-module, see (6.5), thus in
particular if V' is a permutation K[G]-module.

(5.6) Example: The cyclic group of order 2. Let K be a field, and let
G = (z) 2 Oy act on K2 by z E (1)} By (3.4), letting S := K[X,Y] we
have S¢ = K[X + Y, XY], being a polynomial algebra.

Hence the Hilbert ideal is given as Zg := (X + YV, XY) = (X + Y, X?) < S.
Thus for the coinvariant algebra we have Sg = S/Z¢ = K[X]/(X?) as K-
algebras, the isomorphism being inherited from the K-algebra homomorphism
S — K[X]: X —» X,Y = —X; note that dimg(Sg) = 2, and actually Sg =
K|G] as K[G]-modules, the isomorphism being inherited from the K-algebra
homomorphism K[X] — K[G]: X — z + 1.

In particular, Hilbert’s Finiteness Theorem holds in any characteristic. From
Si = (X2,XY,Y?) < S we conclude that S%r C Zg C Sy, that is Benson’s
Lemma holds for I = S, in any characteristic. Similarly, Noether’s degree
bound holds in any characteristic, and is sharp.

i) If char(K') # 2 then we recover the generating set given above as follows: For
d =1 we have Tr%(X) = Tr%(Y) = X + Y, so that S¢ = (X +Y)x. For d = 2
we have (X +Y)? € S§; moreover, we have Tr% (X?2) = Tr®(Y?) = X2+Y? and
REY(XY) = XY, where from (X +Y)? = (X2+Y?)+2XY we infer that S§ =
(X24+Y2, XYk = (X +Y)%, XY)g. Hence we have S¢ = K[X + Y, XY].

ii) If char(K) = 2, we determine the trace ideal S’{Gl} C S¢: For d € Ny odd
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and even, respectively, we have

56 _ (X4 yd Xd-ly £ Xyd-1 XSV +XTVT )k,
d (X7 +Yyd Xd-ly 4 Xyd-1 X

Fori € {0,...,[%]} we get Tr®(XV4~) = X?V4~" 4 X9y 50 that we infer
Tr%(Sy) = S§ if d is odd, while SG/Tr (S4) is one-dimensional if d is even;

note that Tr® ((XY)Q) = 2(XY)? = 0. Thus from Zd>OT2d s € Q(T)

1 _ —
we get Hgs = Hgo — 1= = = =TT — o7 = =TT 6 Q7).

Since X +Y = Tr%(X) we have (X +Y) .S C S{Gl}, where the principal ideal
(X +Y) <8Y is the free S%-module generated by X + Y, so that Hxiy) =

T-Hge = % = Hsﬁ} € Q(T). Thus we infer S{Gl} =(X+Y)<8%.

Finally, letting R := K[XY] C S% be the polynomial algebra generated by
XY, we have RN S{Gl} = {0} and Hg = —= € Q(T), from which we infer
that S = R @ S’{Gl} as graded K-vector spaces, so that SG/S{l} = R is the
univariate polynomial algebra generated in degree 2.

(5.7) Example: Vector invariants. a) Let K be a field, let G := (z) =
Cy, and let V := K? be the permutation K|[G]-module given by z [(1) (1)]
We consider the faithful K[G]-module V" := V & ... @V for n > 2; hence
dimg (V®") = 2n. (We have considered the case n =1 in (5.6).)

Letting S := K[X], where X := {X1,Y1,...,X,,Y,}, the group G acts on S
by X;-z=Y,and Y; -z = X, for i € {1,...,n}. Hence G permutes the
K-basis Xy C Sy consisting of the monomials of degree d € Ny, so that writing
Xy = ]_[fil Xy as a disjoint union of G-orbits, where kg = |X;/G| € N, we
conclude that {Zfexd,j feSyjef{l, .. ka}} €SS is a K-basis; see (9.1).

Since z exchanges X; and Y;, for all ¢, we conclude that a monomial f is fixed
by z, if and only if X; and Y; occur with the same multiplicity in f, for all ¢,
that is f is a monomial in the invariants ¢; := X;Y; € S¢. Otherwise, f belongs
to an orbit of length 2, yielding an invariant f-(1+2) =¢-(g- (1 + 2)), where
¢ is a monomial in the ¢;, and ¢ is a monomial which is not divisible by any ¢;.

Hence, for d € N odd, we conclude that z has no fixed points in Xy, so that we

have dimK(SG) 1 dimg(Sg) = 3 - (d;snzl). For d € Ny even, we conclude

that z has (2 :” 1) ﬁxed points in Xy, hence there are 3 - ((d;f’_t;l) — (%:fl_l))
orbits of length 2, so that dimg (S$) = & - ((“42"7") + (* :fl_l)) From this,
since 5 (d;“z";l) T = e and 3 g5 (Hn ity 72 = ey we infer
that Hse = § - (b + opey) = 3 - Sopiriagmer € Q(T).

More speciﬁcally: For d = 1 we have dimg (S{) = 3 - dimg(S1) = n, where
letting I; :== X; +Y; be the orbit sums, we get S = (I1,...,l,)x. For d = 3 we
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have dimg (S§) = 1 - dimg (93) = 2n(n+1)(2n + 1).

For d = 2 we have dimg (S2) = n(2n + 1) and dimg (S§) = n(n + 1). Since z
fixes precisely the monomials g; of degree 2, and letting p; := X2 + Y2, for all 4,
as well as r;; := X; X; +Y;Y; and s := X;Y; + XY, for 1 <i < j <mn, be the
orbit sums for the orbits of length 2, we get S = (i iy Tij, 8355 for all 4, j) k.
Moreover, for the products of two of the I; we get [? = p;+2¢; and lilj = rij+5i4,
so that the latter products span a K-subspace of S$ of dimension %n(n +1),

and we get S = (I2,1;1;,q;,745; for all i, j) .
b) From now on let char(K) = 2.

i) We determine the Hilbert ideal Zg: From [; = X; +Y; € Zg and ¢; = X,Y; €
Za, letting I := (l;,q;;1 € {1,...,n}) <8, we have I C Zg. If a monomial
f € Xy, where d > 2, is fixed by z, then we have ¢; | f for some i, thus
f € I. Otherwise, f belongs to an orbit of length 2, where f - z is obtained
from f by exchanging X; and Y;, for all ¢, so that since X; =Y; (mod I) we get
f-(1+2) € I. Thus we conclude that Zg = I; in particular saying that Zg is
generated by homogeneous invariants of positive degree at most 2.
Letting R; := K][l;, ¢;], which is polynomial with degrees [1,2], we have R :=
Kll;,qi;i€{1,...,n}] = Q;_, Ri, so that Hg = m € Q(T). Hence
we have R C SY, so that Hilbert’s Finiteness Theorem does not hold for any
n > 2. Moreover, from X X5 € Sf_, but X3 X5 ¢ Zg we conclude that Benson’s
Lemma does not hold either for any n > 2.
Using the homomorphism of K-algebras S — K[X1,...,X,] given by X; —
X; and Y; — X;, for the coinvariant algebra we get Sq = S/Zg = S/I =
KIX1, . Xa)/(X2, .., X2) = @, K[X,)/(X2) = (K[X]/(X?))®" as graded
K-algebras; in particular we get dimg (S¢) = 27, where actually we have Sg =
K[G])®" = K[C}] as K[G]-modules.
ii) We determine the trace ideal S{Gl} <5 An orbit sum of a monomial belongs
to S{Gl} if and only if it corresponds to an orbit of length 2. Thus for d odd
we have (Sﬁ})d = 5S¢, while for d even we get dimg(S$) — dimK((Sg})d) =
d d
(EZEII), so that dimK((S{Gl})d) = %((d’;gle)—(fzle)), in particular, for d =
2 we have (S{Gl}>2 = (pi,rij, sij; for all i, ) = (I2,1;1;,7;5; for all 4, j) . From
this we get HsG/S{Gl} = ﬁ%” € Q(T), and thus HS{Gl} = Hgo — Hgeyga =

{1}
1, ( 1 1 ) 1 a+T)"-a-17)" c Q(T)

2 '\(a=mz» — a-1?)" 2 A=T)y"(1-T?)~

Letting J == (l1,...,ly) < S, we have J C S{j,. If a monomial f belongs
to an orbit of length 2, then the associated orbit sum is given as f - (14 2) =
q-(g-(1+z)), where ¢ is a monomial in the ¢;, and ¢ is a monomial which is
not divisible by any ¢;. Since ¢; € S¢ and X; =Y; (mod J), for all 4, from this
we conclude that f - (1+ z) € J, so that we infer Sﬁ} =J.

Letting P := Kl[q1,...,q,] C S¢ we observe that P N S{Gl} = PnJ = {0},
and since Hp = ﬁ € Q(T) we conclude that S¢ = P @ Sﬁ} as graded
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K-vector spaces, so that SG/SE} = P is polynomial with degrees [2,...,2].

iii) We finally turn to algebra generation of S¢: Letting S; := K[X;,Y;], we
have S = @, S;. Let H := Hy x -+ x Hy, = (21) X - -+ X (2,) = C%, where H;
actson S; by X; -z, =Y; and Y; - z; = X;, and fixes the other tensor factors.
Then we have S = K[l;,¢;] = R, so that S7 = @7, S/" = Q" , R, = R,
where Hr = m € Q(T). Moreover, we have G < H, so that H acts
on S¢, and we have R = S = (§¢)¢/H C §C,

Let first n := 2. Then from o = X1 X0 + Y1Ys € S¢ and r12 - 2, = X1Ys +

Y1 X5 = s12, saying that 12 is not fixed by H, we conclude that RNri2 R = {0},
2

which entails R&ri2R C S9. From Hparpr = (14+T%)-Hr = qorpqoroy =

Hgc we infer that S = R @ r15R as graded R-modules; in particular we have

S¢ = K][ly,12,q1,q2,712], so that Noether’s degree bound holds in this case.

Now let n := 3. Then we have dimg (S{) = 3, and dimg (S§) = 12, where the
decomposable elements form a K-subspace of dimension 6, and dim g (S3G ) = 28.
There are (g) = 10 products of three of the I; € S&, and 3 - 6 = 18 products of
one of the I; € S and one of the g;, ri; € S§ | giving rise to 28 elements of SS.
But the identity 1793 + lor13 + l3712 = l1l2l3 + 2 - (X1X2X3 + }/1Y2Y3) € S??
entails that these are K-linearly dependent, so that S is not generated by them
as a K-vector space. Hence there is an indecomposable homogeneous invariant
of degree 3, so that Noether’s degree bound does not hold in this case. (Recall
that if char(K) # 2 then Noether’s degree bound holds, implying that S§ is
generated as a K-vector space by the above products, in turn saying that the
latter are K-linearly independent in this case indeed.)

For n > 3, CAMPBELL, HUGHES, SHANK, WEHLAU [1997-2010] have shown
that Tr% ([, X;) € SS belongs to a minimal generating set of S¢, in other
words is an indecomposable invariant. (Unfortunately, we are not able to present
a proof here.) Indeed, for n = 3 it turns out that {l;,q;,ri;; for all ¢ # j} U
{Tr®(X, X5X3)} is a minimal homogeneous generating set of S&, see (17.6).

Note that this implies that Noether’s bound does not hold in any of these cases,

that there cannot be a bound in terms of |G| alone, and that the Broer-Symonds
bound in Kemper’s conjecture actually is sharp.

6 Hilbert series

(6.1) Theorem: [HILBERT; SERRE|. Let K be a field, let R := K|[fi,..., fi]
be a finitely generated commutative graded K-algebra, where k € Ny and the
fi € Rq, are homogeneous, and let M be a finitely generated graded R-module.
Then we have Hys = W € Q(T), where f € Z[T*!].

Proof. We proceed by induction on k € Ny. If £ = 0, then we have R = K,
and thus M is a finitely generated K-vector space, entailing Hy, € Z[T*!].
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Hence let k > 1, and for the R-module endomorphism of M given by multiplica-
tion with fy let M’ := @ ., kerar, (- fr) and M" := @, coknr, (- fr). Then M’
and M”, being an R-submodule and a quotient R-module of M, respectively,
where R is Noetherian, are finitely finitely generated graded R-modules. More-

over, since M'fr, = {0} and M" f;, = {0}, these are actually finitely generated
f/

K[f1,..., fk—1]-modules, so that by induction we have Hyy = ) €

1"

Q(T) and Hpyr = W € Q(T), where f', f" € Z[T*"].

We have an exact sequence of graded R-modules {0} — M’ — M LN Mld] —
M"[dy] — {0}, that is for any d € Z we have an exact sequence of K-vector

spaces {0} — M} — M, LN Mgya, — MY, , — {0}, entailing T~% H s —

T=%Hy + Hy — Hyr =0, thus Hy = %;;;HM' € Q(T) is as asserted. f
(6.2) Complexity and degree. a) For z € C let v,: C(T)* — Z be the
discrete valuation of C(T') at T' = #z, that is writing 0 # f € C(T) as f = (2 —
T)*- 4, where a € Z and 0 # g, h € C[T] are coprime such that (z —T') J[ gh, we
let v.(f) = a; we let v,(0) = co. Then R, := {f € C(T)*;v.(f) > 0} U {0} =
{f € C(T); f(2) well-defined} C C(T') is the associated valuation ring, being
a local ring with maximal ideal p, := {f € C(T)*;v.(f) > 1} U {0} = {f €

C(T); f(z) € C*}<AR,. For f € C(T)* we have f, := W € R \p. =RE,
hence we let 8. (f) := f.(z) € C*; we let §.(0) := 0.

Alternatively, from an analytical viewpoint, if a Laurent series 0 # f € C((T))
converges in the pointed open unit disc {z € C;0 < |z| < 1} C C, say, then it
gives rise to a meromorphic function f(z) on its closure, so that for |z] < 1 we
let v.(f) € Z denote the order of z as a root of f; again we may let v,(0) := oco.

W is holomorphic at z, having neither a root nor a pole

at z, so that we let 8.(f) := f.(2) = lim,_,. f-(z) € C*; again we let 6,(0) := 0.

Moreover, f, :=

b) Now let K be a field, let R be a finitely generated commutative graded
K-algebra, and let M # {0} be a finitely generated graded R-module with
Hilbert series Hy € Q(T) C Q((T)). Then the complexity of M is defined as
Y(M) := —v1(Hyp) € Z, that is the order of the pole of Hyy at T — 1; and the
degree of M is defined as §(M) := 61 (Hyps) = (1 —T)"™M) . Hy ) (1) € Q*. For
completeness we let y({0}) := —oc and §({0}) := 0; note that Hypy = 0. The
complexity v(R) := v(Rr) € Z and the degree §(R) := §(Rr) € Q" of R are
defined as the order and the degree of the regular R-module, respectively.

We show that we actually have v(M) > 0, where v(M) = 0 if and only if
M is a finitely generated K-vector space: Assume that v(M) < 0, that is
vi(Hp) > 0. Writing Hy = 34, dimg (M) - T € Q((T)) we get Har(1) =
Y oaez dimg (M) € N, showing that v1(Hy) = 0 and that M is a finitely
generated K-vector space. Conversely, if M is a finitely generated K-vector
space, then Hps(1) = o, dimg (Mg) € N says that vy (Hy) = 0. i
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Note that, viewing Hilbert series as Laurent series, which due to the Hilbert-
Serre Theorem converge on the pointed open unit disc, the above definitions
coincide with those in the analytical sense. (The terminology of complexity is
reminiscent of a similar notion used in representation theory, which is based on
the idea of considering the growth behavior of the coefficients of formal power
series; for Hilbert series this viewpoint is elucidated in Exercise (19.20).)

Example. For the polynomial algebra S := K[Xi,...,X,] having degrees

[d1,...,d,], where n € Ny, we have Hg = H?:l?lwi € Q(T), hence we

get ¥(S) = =X (=) = Yimyni(l — T%) = n, and subsequently
6(9) = 01 ([T~ ) = (ITi—y ﬁ)(l) = [I}=, 7 in particular for the
j=0

standard grading we get 0(5) = 1.

(6.3) Degree theorem. Let K be a field, let R be a finitely generated commu-
tative graded K-algebra, and let M be a finitely generated graded R-module.

Proposition. If M’ < M is a graded R-submodule, or if M’ is a graded quo-
tient R-module of M, then we have v(M') < v(M). Moreover, if v(M') = v(M)
then we have 0 < §(M') < 6(M).

Proof. We may assume that M’ # {0}; hence we have M # {0} as well.
For d € Z we have dimg (M) < dimg(My), hence for 0 < z < 1 we have
0 < Hy(z) < Hpy(2) € R, entailing 0 < lim, ;- ((1 — z)7(M) - Hyp(2) <
lim,_,;— ((1—2)YM) . Hy(2)) = §(M) € Q*, where the latter limit indeed exists.
Hence (1 — 2)Y™) . Hyp () does not have a pole at z = 1, thus y(M’) < ~v(M).

If v(M') = (M) then from the above inequalities we get 0 < §(M') =
tim. - (1 — 2)0) - Hypo(2)) = Tin - (1 — 20D - Hyp(2) < 6(M). ¢

Theorem. Let R C S be finite, where S is a commutative graded K-algebra.
a) Then we have y(R) = v(95).
b) If S is a domain, then we have §(S) = [Q(S): Q(R)] - §(R).

Proof. a) Since S is a finitely generated R-module, where R is a finitely gen-
erated K-algebra, S is a finitely generated K-algebra; thus v(S) = ~(Ss)
is well-defined. Moreover, v(Sg) is well-defined as well, and thus we have
~v(S) = v(Sg). Since R < S as R-modules, we infer that y(R) < v(S). (Thus
this holds more generally, as soon as S is finitely generated as a K-algebra.)

The R-module S is a quotient of a free graded R-module F = @le fiR, for
some k € N, where the f; are homogeneous such that d; := deg(f;) € No.
Hence we have v(S) < ~(F'). Moreover, from Hp = (Zle T%) . Hg, since
(Zle T4)(1) = k # 0, we conclude that v(F) = v(R), entailing v(S) < v(R).
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b) We consider the field extension L := Q(R) C Q(S) =: M. The mini-
mum polynomial f € L[X] of any s € S being irreducible, the L-subalgebra
L[X]/(f) & L[s] C M already is a field. Hence we conclude that M = S - L.
Thus we infer that any homogeneous generating set of S as an R-module gen-
erates M as an L-vector space. Hence there is an L-basis {f1,..., fm} C M
consisting of homogeneous elements of S, where m := [M: L] € N. The f; be-
ing L-linearly independent, we have U := @, f;R C S as graded R-modules.
Letting d; := deg(f;) € N, we get Hy = (Y;-,T%) - Hr € Q(T), where
S, T% (1) = m, so that v(U) = y(R) and §(U) = m - §(R).

Since any element of a homogeneous generating set of S as an R-module is an L-

linear combination of the f;, choosing a common denomlnator shows that there is
0 # f € S homogeneous such that S C U% =pr, L R as graded R-modules.

Letting d := deg(f) € Ny, we get HU_% =T"4Hy =", T% d)-HR € Q(7),

where (3°;%, T4=4)(1) = m, so that v(U - ch) ~v(R) and §(U ) m - d(R).

Hence in conclusion from U < § < U - % we get y(R) = ’y(U) < v(9) <
~(U - %) = V(R)7 which entails y(R ) = (S ) again, and m - 6(R) = 6(U) <
5(S) < (U - ) m - §(R), so that §(S) = m - 6(R). 1
Example. If G is a finite group, and V is a K[G]-module such that n :=

dimg (V) € Ny, then the extension S[V]¢ C S[V] is finite, where S[V]
K[Xy,...,X,] as graded K-algebras, with respect to the standard grading on
the latter, so that v(S[V]%) = v(S[V]) = v(K[X1,..., X,]) = n.

Moreover, if G acts faithfully on V, then S(V)& = Q(S[V]%) € Q(S[V]) = S(V)
is Galois with respect to G, thus [S(V): S(V)9] = |G|, so that §(S[V]) = 1
implies that §(S[V]%) = ﬁ

(6.4) Molien’s formula. a) Let G be a finite group, let K be a field such that
char(K) t |G|, and let V' be a K[G]-module such that n := dimg (V) € Ny.

Theorem: [MOLIEN, 1897]. For the graded character of g € G we have

1
) = ;}XS[V]CL(Q) T = o € KD,

where xs1v),(9) € K denotes the trace of the K-linear map pgpyy,(9)-

Proof. We may assume that K contains a primitive |G|-th root of unity (.
Then the polynomial TIGl — 1 € KT splits into pairwise non-associate linear
factors as T1¢1 — H‘G‘ - C\iGI) € K|[T). Since we have gl®l =1 € G, the
matrix pgpy,(9) of the action of g with respect to any K-basis of S[V]4 is a root

of TIGl — 1. Hence psiv),(g) is diagonalizable, for any d € Ny. In particular,
we may assume the isomorphism S[V] — K[X7,...,X,] chosen such that the
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indeterminates correspond to an eigenvector K-basis with respect to py(g).
Letting A1, ..., A, € K be the associated eigenvalues, we have det(E,, — pv(g) -
T) =11, (1= X\T) € K[T]\ {0}. We relate this to the graded character:

Considering the K-basis of S[V], consisting of the monomials of degree d,
which are eigenvectors of pgpy,(g), we observe that the eigenvalues of pgpy1,(g)
are given as [[;_, A} € K, where ai,...,a, € Ny such that Y .  a; = d,
thus Xs[v] (g) = EdZO XS[V]d(g) ’ Td = Ed20(2a1,...,an€No;Z?:1 ai:d(]._[:'b:l A(zll) !
T = > >0 Zal,...,anGNo,Z L i dIl (T = > araneNo [ (T =
H?:1(ijo()‘iT)j> = H? 11— A T € K(T). f

Corollary. If Char( ) =0 then Hs[v] % . ZgGG m S Q(T)

Proof. The Reynolds operator RS = ‘1 Y gec 9 € K[G] induces a K-linear

projection from S[V]4 onto S[V]§, for d > 0. Hence since char(K) = 0 we
have dimg (S[V]$) = xspv),(RY) = ﬁ . deG s[v1a(g). Using this we obtain
we get Hgpyjo = Zdzo dimg (S[V]$) - T % Zd>0 deG Xsv]a.(9) - T4 =
1 Lgea Xsvi(9) = &1 Lgec mmm—prmm € KT NQUT) =QT). 4

b) We describe a method to evaluate Molien’s formula, in terms of ordinary
characters of G, letting still char(K) = 0:

For g € G we have det(E,, —py(g)-T) = det(=T-(py(g9) =T~ E,)) = (=T)"-
Xpv (g)(T™1) € K(T), where x,, () € K[T] is the characteristic polynomial of
pv(g); note that T -x ., () (T~1) is the reversed polynomial of Xpv (g)- Hence

we have XS[V] (g) = W S K(T)

Assuming that K is large enough, and letting A1, ..., A, € K be the eigenvalues
of py(g), we have X, () = [1;—1 (T — Ai), so that using the elementary symmet-
ric polynomials e, ; € K[X], where X := {X1,..., X, }, and deg(eni) = ¢ for
i €{0,...,n}, we obtain x,, (g) = i o(—1)€n,i(A1, ..., An)T" % see (9.3).

By the Newton identities, see Exercise (18.36), the e, ;, for i € {1,...,n}, can
be determined recursively from the power sums p, ;= > ., X} € K[X], for
ke {1,...,n}. Thus x,, 4 can be computed from p, r(A1,...,A,) € K, for
k€ {1,...,n}. Since py(g*) has eigenvalues \¥,... Ak € K, we conclude that
Prk(Mse s An) = 20 AF = xv(¢¥) € K equals the trace of the K-linear map
pv(g*¥), where xy denotes the character of G afforded by V.

Recalling that any character of G is constant on each conjugacy class of G,
we conclude that Molien’s formula can be evaluated once the character xy is
known, together with the power maps py: Cl(G) — CI(G): g% — (g*)¢ on the
set CI(G) of conjugacy classes of G, for k € {1,...,n}.

(6.5) Lifting modules. Molien’s formula, interpreted appropriately, remains
valid in the following more general situation, where we use freely some facts
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from modular representation theory of finite groups:

a) Let G be a finite group, and let F' be a finite field such that p := char(F) # 0.
We may assume that F' is a splitting field of F[G], and that if moreover p 1 |G|
then any p-modular representation of G is equivalent to a representation over F'.
Let Q C K C Q C C be an algebraic number field, having a discrete valuation
ring R C K with maximal ideal p <R such that R/p = F,and let : R = R/p
be the natural epimorphism. We may assume that K is a splitting field of K[G]|
as well, in which case (K, R, F) is called a splitting p-modular system.

Let V be a trivial-source or p-permutation F[G]-module such that n :=
dimp(V) € Ny, that is V is a direct summand of a permutation F[G]-module.
In particular, this holds true if V' is projective, that is a direct summand of
a free F[G]-module, and even more specifically if p { |G| in which case any
F[G]-module is projective. Then V has a unique lift to an R-free trivial-source
R[G]-module V, that is V := V@g F 2 V as F[G]-modules; let Vi := V @x K,
which is a semisimple K[G]-module. Then we have dimg (Vi) = rke(V) = n.
Note that for the trivial F[G]-module we have F = R, the trivial R[G]-module.

We now generalize the definitions in (2. 1) (2.3), and (3.2) as follows: For d € N
let V¥ be the d-fold tensor power of V over R, which is an R-free trivial-
source R[G]-module, such that V&I = (V)®d = V®d; let V0 .= R be the
trivial R[G]-module. Using the action of Sg by permuting the tensor factors,
we get the R[G]-submodule V¥4~ < V¥4 and the symmetric power S%(V) :=
Ved Ve giving rise to the symmetric algebra S[V] := @ 5, S[V]a, which
is a commutative graded R-algebra.

By the right exactness of tensor products, for d € Ny we have (S[V]s)x =
(Vo) /(VELT) e = S[Vik]g as K[G]-modules, and S[V]; & V&d/V®d— =
S[?]d ~ S[V]4 as F|G]-modules. Moreover, since dimg (S[Vila) = ("t =
dimp(S[V]4), we conclude that 17A®d7’ < V@d g R-pure, hence S[V]4 is R-free
such that dimp(S[V]4) = tkr (S[V]a) = dimg (S[Vk]a)-

Since S[V] = Daso S [V]4 as R[G]-modules, we conclude that G acts on S[V]

by automorphisms of graded R-algebras, so that S [‘A/] becomes a graded G-
algebra. This gives rise to the invariant algebra S [ 9= >0 Fixgp, (G) -

S [V], being a graded R-algebra again, so that S [ ] becomes a graded S [ 1¢-
module. Moreover, S[ 1§ = FiXS[‘A/]d(G) < S[V]a is R-torsion free, hence is

~

R-free such that rkg (S [V]g) < rkg (S [‘7]) In particular, the Hilbert series
Hgip16 = a0 rkR(S[V} )- T4 € Q((T)) is well-defined.

b) We show that Hgjyjc = Hgipo = Hgp, 0 € Q(T):

Let W be a permutation F[G]-module such that W =V @ U as F|G]-modules,

and let W be the permutation R[G]-module lifting W. Hence we have W =
VaU as R[G]-modules, and Wik = Vg @ Uk as K[G]-modules. Then S[W], is a
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permutation F[G]-module, for d € Ny, where G acts by permuting monomials.
Since S[W]q = EB?ZO(S[V]i ®F S|Ul4—;) as F[G]-modules, we conclude that
S[V]q is a trivial-source F[G]-module, where S[W]; = @f:O(S[V]i ®@r S[U]a-:)
as R[G]-modules entails that S[V], is the trivial-source lift of S[V],.

Hence by liftability of homomorphisms between trivial-source modules we
get dimF(S[V]g) = dimF(HomF[G](F,S[V]d)) = I‘kR(HOInR[G](R,S[V]d)) =
rkR(S[V]g), which equals dim g (Hom g (K, S[Vkla)) = dimK(S[VK}da). 1
c) In the non-modular case p t |G| we may alternatively argue as follows:
Since |G| € R\ p = R*, there is a Reynolds operator R := ﬁ "Ygecd €
R[G], which induces a projection of graded S[V]%-modules S[V] — S[V]¢.
Interpreting R as Reynolds operator in K[G] and in F[G], we get (S[V]$)x =
S[XA/K]EI; as K[G]-modules, and S[‘A/]g ~ (5[V]q)¢ = S[V1]§ as F[G]-modules,
thus dimg (S[Vk]$) = 1kr (S[V]§) = dimz(S[V]$), for d € Ny.

To evaluate Molien’s formula we may assume that K contains a primitive |G/|-th
root of unity (. Then we have (g € R\ g, and thus Cjg| € F' is a primitive
|G|-th root of unity as well. Thus the map —: R — F induces an isomorphism
(Ca)) = (Cg)) between the cyclic groups of |G|-th roots of unity in K and F,
respectively; the inverse of the latter map is called the associated Brauer lift.
For g € G we have det(E, — pp, (9) - T) = [[[=,(1 = NT) € K(T), where
Al;..., Ap € K are the eigenvalues of pg; (g), being |G|-th roots of unity. Since

F contains a primitive |G|-th root of unity, we may assume that the F-basis of
V is chosen (depending on g) such that g acts diagonally, so that by uniqueness

of lifts we may assume that g acts diagonally on V' and thus on Vi as well.
Hence to determine the eigenvalues of py (g) in K, it suffices to determine the
eigenvalues of py (g) in F, and subsequently applying the Brauer lift to them.

(6.6) Example: Dihedral groups. Let K be a field such that char(K) t k,
for some k € N, containing a primitive k-th root of unity (x, let G = (z, s) & Doy,
be the dihedral group of order 2k, where z*¥ = s> = 1 and 2° = 2~!, acting on
V = K2 by z + diag[Cy, ¢, '] and s — {(1) (1)], and let S := K[X,Y]; note that
V is a simple projective K[G]-module (in particular if char(K) =2 1 k).

i) Hence in order to determine Hgs € Q(T') we may assume that char(K) = 0,
and even that K C C. Then the given representation is equivalent to the com-
plexification of the faithful orthogonal real representation of G' coming from the
embedding of the regular k-gon into the Euclidean plane, centered at the origin;
in this sense the elements of G can be divided into rotations and reflections.

We consider the normal subgroup H := (z) & C} of rotations ﬁlfst: In order
to apply Molien’s formula, we observe that det(Es — diag[¢x, ¢, ') - T) = (1 —

GT)(1—¢,'T) € K[T], for i € {0,...,k — 1}. From this we get Hgn = 1 -

E’?*% - 1.2’?—1% - 1.2’?—1+
=0 (1-¢T)(1-¢,'T) ~ k =0 1—(¢i+¢, )T+T? k i=0 1-2cos(LZZ)T+T2"
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Unfortunately, number theoretical sums of this type are notoriously hard to

evaluate, but fortunately by (3.3) we have Hgn = % This actually
e k—1 k
shows the identity 7 - >, 17(C,i+<j1?")T+T2 - (1_T1;;(T1_Tk) e QD).

Now we consider G = H U Hs, where the coset Hs consists of reflections: From
(2'5)? = 1 and det(py(2's)) = —1, we infer that py(z's) has eigenvalues 41
indeed, so that we get det(Ey — py (2's)-T) = det(diag[l —T,1+T]) = (1-T?),
for i € {0,...,k—1}. Thus by Molien’s formula we obtain Hgc = 5 - (1= +

k=1 1 1 1 147k _ 1
Zi:o W) =32 (17T2 + (1—T2—§(1—T’€)) - A=TH(-TF) € Q(T)

ii) Letting K be arbitrary again such that char(K) 1 k, in view of Hge =

m we show that S is polynomial, with degrees [2, k]: Recalling that

SG = (SHYG/H — (§H)(s) = Y% (SH) = Tr'(SH), from (3.3) we get f :=
XY =1 Tr®(XY) € §¢ and g := X* + V* = Tr(® (XF) = el (vF) € €.

Moreover, the Jacobian matrix of {f, g} is given as

oo B[t o] e
) ) [) - k—1 k—1 )
=4 % kX kY
so that det(J(f,g)) = k- (Y* — X¥) # 0 € S. Hence by the Jacobian cri-
terion, which will be proven in (7.1) below, we conclude that {f,g} is alge-
braically independent indeed. Thus the Hilbert series of K[f,g] C S¢ is given
as HK[fyg}:m:Hsc,so that we infer S¢ = K[f, g]. i

7 Polynomial algebras

(7.1) Jacobian criterion. We first collect a few general observations con-
cerning polynomial algebras: Let K be a field, let S := K[X] be the poly-
nomial algebra in the indeterminates X := {Xi,...,X,}, where n € Ny,
and let {f1,...,fn} € S. The associated Jacobian matrix is defined as
J(f17 v 7fn) = JX(f1> e 7fn) = [%]7]] € Sn><n7 and det(‘](fla v 7fn)) €S
is called the associated Jacobian determinant.

Proposition: Jacobian criterion. a) If det(J(fi,..., fn)) # 0, then the set
{f1,--., fn} is algebraically independent.
b) If {f1,..., fn} is algebraically independent, where char(K) = 0, then we

have det(J(f1,..., fn)) # 0.

Proof. a) If char(K) # 0 we may assume additionally that K is perfect, which
holds anyway if K is finite, or otherwise by going over to an algebraic closure of
K. Now assume to the contrary that there is 0 # h € K[Y1,...,Y,] such that
h(f1,...,fn) =0, where we assume h to be chosen of minimal degree.



37

Then differentiation % with respect to X;, for j € {1,...,n}, using the chain

rule yields Y7, 8Y h(fr fa) 6fl = 0, that is we get the system of linear
equations [ay (f1 s fu)li - (fla cee fn) =0e Q95"

Assume that we have @ =0¢€ K[X], for all i € {1,...,n}. Since deg(h) >0
this implies char(K) = p 7£ 0, and since K is perfect we have h = (h')P for some
0 # 1/ € K[X]. Thus we have deg(h') < deg(h), and since h(f1,..., fn) =0 we
have h/(f1,..., fn) =0 as well, contradicting the minimality of h.

Hence there is ¢ € {1,...,n} such that 2% # 0. Since deg(2& ) < deg(h),

we have 19%( fis-oosfn) ;é 0. Thus the above system of linear equations has a
non-trivial solution, hence we have det(J(f1,..., fn)) =0, a contradiction.

b) Let {f1,..., fn} be algebraically independent. Since trdeg, (Q(S)) = n, the
sets {f1,..., fn, Xk} are algebraically dependent, for all k € {1,...,n}. Let 0 #
hi € K[Y1,...,Y,,Yy] be of minimal degree buch that hr(f1,..., fn, Xk) = 0.
D1fferent1at10n a% with respect to X, where 2 87 = Jij, using the chain rule

ylelds [ahk (fla t -7fnan)]kZ (.f17 Tt fn) = _dlag[g% (fla s afank)]k

Since {f1,..., fn} is algebraically independent, the indeterminate Yy occurs in
hi, from which since char(K) = 0 we get 3 ahk = (. Since deg(ah") < deg(hy),

we have ‘giy’g(fl, ooy fny X&) # 0, so that det(dlag[ah" (f1s- s frn, Xi)lk) # 0 as
well, entailing that det(J(f1,..., fn)) # 0. i
Note that the condition char(K) = 0 in (b) is necessary: If char(K) = p # 0,
then {XP} C K[X] is algebraically independent, but we have det(.J(X?))
det([p- XP71]) =0 € K[X].

(7.2) Theorem: [CHEVALLEY, 1967]. Let K be a field, let n € Ny, let S :=
K[X1,...,X,], and let R C S be a graded K-subalgebra, having a minimal
homogeneous generating set F := {f1,..., fx}, where k € Ny, and such that the
degrees d; := deg(f;) € N fulfill char(K) t d;, for all i € {1,...,n}. If Sis a
finitely generated free graded R-module, that is S has a homogeneous R-basis,
then F is algebraically independent, that is R is polynomial.

Proof. Since S is a finitely generated R-module, the extension R C S is finite,
and hence R necessarily is a finitely generated K-algebra. Moreover, the as-
sumption on F is equivalent to F being a minimal generating set of the ideal
Ry <R, and likewise to F C R, /(R4)? being a K-basis; since the latter prop-
erty is retained under field extensions we may assume that K is perfect.

Assume to the contrary that there is 0 # g € K[Y1,..., Y] such that we have
g(F) = 0, where we may assume that g is homogeneous of degree d := degs(g) €
N with respect to the degree vector § := [dy,...,d], and g is chosen with d
minimal. Let g; := g—%(]—') € Ryg—g,, for i € {1,...,k}. Since K is perfect and
¢ is minimal, we infer that there is ¢ such that g; # 0. (Recall that we have
already used this kind of argument in the proof of (7.1).) Up to reordering we
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may assume that (g1,...,9x) = (91,...,91) IR, where l € {1,...,k} is minimal;
1
fort € {{+1,...,k} let g;; € Rq,—q, such that g; = >",_; g1i9; € R.

Let S = @::1 hsR, where » € N and the hs; are homogeneous such that eg :=
deg(hs) € Ny, and where we may assume that hy := 1, thus e; = 0 while
es > 1 for s > 2. Let R: S — hiR = R be the projection of graded R-
modules associated with the above direct sum decomposition; note that R may
be considered as the associated (generalized) Reynolds operator.

Let 7T := R4S = (F) <5 be the (generalized) Hilbert ideal of the extension
R C S. We show that F C Ry is a minimal generating set of Z (mimicking
part of the proof of Hilbert’s Finiteness Theorem): Let 7' C F such that Z =
(F') 4S5 then we have Ry =INR =R(Z) =R ser fS) =2 per [R(S) =
> ser JR=(F') < R, hence by minimality we get ' = F.

Let fi; == g}{] € Sg,—1, fori € {1,...,k} and j € {1,...,n}, and let f]; =

Jij + Ef:ul 9tiftj € Sa,—1, for i € {1,...,1}. Hence there are f/;; € Ra,—1-e,
such that f{; =37, fi;;hs € Sa,—1. We show that f];_ € Ry, so that f/; € T:
Differentiation yields %Xj(g(}')) = 0, so that by the chain rule we get 0 =
) afi _ ok _ ! k l
27321 33% (]:) : a)J;j = Zi:1 gifij = 21':1 gifij + Zt:l+1(zz':1 gtigi)ftjv hence
! ! k l k
0= Z¢:1 gifij + Zi:1(zt:l+1 gtiftj)gi = Zi:l(fij + Zt:l+1 gtiftj)gi> thus
! l ! .
0= Zi:l i/jgi = Zi:l(Z;:l z'/jshS)gi = 22:1(21':1 Gi iljs)hs- Since the h
are R-linearly independent, we conclude that 22:1 9ifijs =0, fors e {l,...,r}.
Since the f;;; € R are homogeneous, by the minimality of [ none of the latter
can possibly be a non-zero constant, so that they all belong to R . i

Since the f; € R are homogeneous, the Euler identity says d; f; = 2?21 fij X; €

Sais 50 that iy dofi+ 300, (Cicy 9e)defe = Yimy (difi+ oy grdefi) =
l n k l n n l

Zi:l(Zj:l(fij + Zt=l+1 gtiftj)Xj) = Zi:l Zj:l i/ij = Zj:l Zi:l i/ij'

Since f;; € T = (F) < S there are s;; € S (not necessarily homogeneous) such

l k n l n k

that >, fi; = >oiy sjifi, thus 300 (O, i) X, = 2252, (i siifi) X =
k n

Zi:l(Zj:l sjiX;j)fi €T 4S.

Thus letting Z; := (F \ {fi}) < S, we conclude that S/Z; is a graded alge-

bra. Hence for i € {1,...,1} we get difi = (37_; 5;iX;)fi (mod Z;), where

the left hand side belongs to (S/Z;)q4;, while the right hand side belongs to

EBe>di(S/L-)e, from which we infer that d; f; € Z;, which since d; € K* contra-
dicts the minimality of F as an ideal generating set of Z. i

Actually, Chevalley’s Theorem holds in general, without any assumption on the
degree of the generators [SERRE, 1967]. (Unfortunately, we are not able to
present a proof here.)

Note that from R = K|[fi,..., fx] being polynomial, and R C S being finite, we
conclude that k = y(R) = v(S) = n anyway. Then the converse of Chevalley’s
Theorem holds as well: If R = K|[fi,..., fn] is a polynomial subalgebra of
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S = K[Xy,...,X,] such that R C S is finite, then S being Cohen-Macaulay,
see (15.4), implies that S is a free graded R-module.

From S = @)_, hsR we get Hg = ﬁ =", T%) -Hg = (3_,T%)-

s=1 s=1
[T, .= € Q(T), where e, := deg(hs) € No. Hence 1 = §(S) = r-§(R) =
N | d% says that S is a free graded R-module of rank r = []"_, d;. Since
{h1,...,h,} C S is a minimal homogeneous generating set of S as a graded
R-module, we conclude that the (generalized) Hilbert algebra S/R,S is a
finitely generated graded K-vector space of K-dimension r, having a homoge-

neous K-basis with degrees [eq, ..., e.].

(7.3) Polynomial invariant algebras. We now turn to the question of when
invariant algebras are polynomial: Let K be a field, let G be a finite group, let
V be a faithful K[G]-module such that n := dimg (V) € Ny, and let S[V]¢ =
K[f1,..., fr], where k € Ny is chosen minimal, and the f; are homogeneous
such that deg(f;) = d; € N. Then the Hilbert-Serre Theorem implies that
7(S[V]¥) < k, thus since v(S[V]%) = n we infer that k > n.

Proposition. We have k = n if and only if {f1,..., fx} is algebraically inde-
pendent, in other words S[V]¢ = K[fi,..., fx] is a polynomial algebra.

Proof. If S[V]¢ = K|[fi,..., f1] is a polynomial algebra, then we have k =
Y(K[f1,---, fx]) = 7(S[V]¥) = n. Hence let conversely k = n, and assume to
the contrary that {fi,..., fn} is algebraically dependent: Then, by Noether’s
Finiteness Theorem, for the invariant field we have S(V)¢ = Q(S[V]%) =
K(f1,..., fa), so that it has transcendence degree trdeg; (S(V)%) < n, while
S(V) is a field of rational functions in n indeterminates, so that trdegy (S(V)) =
n, which since [S(V): S(V)¢] = |G| being finite is a contradiction. 1

Hence S[V]% is as a K-algebra generated by a homogeneous set {fi,..., fn} of
cardinality n, if and only if it is a polynomial algebra. In this case, {f1,..., fn}
is a minimal generating set, so that the multiset of degrees d1, ..., d, is uniquely
defined. Moreover, since G acts faithfully, from ], d% = 0(K|[f1,...,fn]) =

§(S[V19) = ﬁ we infer that [, d; = |G].

The f; are called basic invariants or fundamental invariants, the d; are
called the associated (polynomial) degrees, and the numbers m; :=d; — 1 €
Ny are called the associated exponents; note that, contrary to the degrees and
the exponents, basic invariants are in general not uniquely defined, even not up
to reordering and multiplication by scalars.

The degrees can be determined algorithmically from the Hilbert series: From

h = H%% =[I-,(1 = T%) € Q[T), where d; | |G|, we infer that h is a product
of cyclotomic polynomials ®,4, where d | |G|. Hence letting k£ € N run through
the divisors of |G|, for d := % we check whether ®,; divides h, and if so, as

long as 1 — T divides h, we repeat to record d and to replace h by ﬁ
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Finally, we remark that the converse of the above observation holds as well: If
{fi,.--, fa} € S[V]¢ are homogeneous and algebraically independent, such that
[T, d; = |G|, then it is a (minimal) generating set, so that S[V] is polynomial:
If char(K) = 0 or char(K) > |G|, then this follows from the Shephard-Todd
Theorem, see (8.3); for arbitrary fields K, see (16.2).

Example. i) Let G := (z) = Cy, where k € N such that char(K) { k, and let
¢k € K be a primitive k-th root of unity; see (3.3). Letting G — K*: z — (g,
we have S[V]¢ = K[X]|% = K[X*] C K[X] = S[V]. Similarly, letting G —
GLy(K): z +— diag[Cx, 1], we have S[V]¢ = K[X*,Y] C K[X,Y] = S[V].

ii) Let K be arbitrary, let G := (z) = Cs, and let G — GLy(K): z — [(1) (1)]
Then we have S[V]¢ = K[X +Y, XY] C K[X,Y] = S[V]; see (3.4).

iii) Let G = (2, s) = Dy, where k € N such that char(K) t 2k, let (, € K be a
primitive k-th root of unity. Letting G — GLa(K) be given by z ~ diag[C, ¢ ']

%},We get S[V]¢ = K[XY, Xk +Y* C K[X,Y] = S[V]; see (6.6).

and s — [1

8 Pseudoreflection groups

(8.1) Pseudoreflections. a) Let K be a field, let G be a finite group, and let V'
be a faithful K[G]-module such that n := dimg (V) € Ng. An element s € G <
GL, (K) is called a pseudoreflection, if for its fixed point space Fixy (s), that is
its eigenspace with respect to the eigenvalue 1, we have dimg (Fixy (s)) = n—1;
in this case Fixy (s) is called its reflecting hyperplane. Let S(G) C G be the
set of pseudoreflections in G, and let 0(G) := |S(G)| € Ny be their number.

A pseudoreflection s which is diagonalizable is called a homology or gener-
alized reflection; in other words s has an exceptional eigenvalue A # 1 of
multiplicity 1, or equivalently char(K) 1 |s|. A homology s such that s* = 1, or
equivalently having exceptional eigenvalue —1, is called a reflection. A pseu-
doreflection s which is not diagonalizable is called a transvection; in other
words s has 1 as its only characteristic root such that its Jordan normal form has
a unique block of dimension 2, or equivalently s? = 1 where char(K) = p # 0.

b) Given a pseudoreflection s, let (s — F,)(V) = (ts)x < V; hence if s is a
homology then t, is an eigenvector of s with respect to its exceptional eigenvalue,
while if s is a transvection then ¢, is a distinguished eigenvector of s with respect
to its unique eigenvalue 1. Then, in both cases, there is §; € Homg (V, K) such
that v - s = v + d5(v)ts, for all v € V; in particular we have ker(ds) = Fixy (s).

Letting S := S[V], in order to describe the action of s on S, we show that there
is a unique Demazure operator ¢; € Endg(S) homogeneous of degree —1,
extending the map defined above, such that f-s = f43:(f)ts € S, for all f € S:

To this end, it suffices to show that t, € V = S; divides f - (s — 1) € S for
all monomials f := [, X/ € S = K[Xq,...,X,], where a; € Np; unique-
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ness then follows from S being a domain: We may assume that Fixy(s) =
(X2,...,Xn)k and a1 > 1. If s is a homology with exceptional eigenvalue A,
then we may assume that ¢, = X1; thus we have f-(s—1) = (A —1)-[[}_, X,
which is a multiple of X;. If s is a transvection, then we may assume that t; =
X5 and X;-s = X1 +Xo; thus we have f-(s—1) = (X1 +X2)" —X1") - [[iy X,
which is a multiple of X5.

In particular, we have ker(d,) = S{*) C S. Moreover, d, is a twisted deriva-
tion: For f,g € S, from (fg)* = f*-¢° we get fg+ 0s(fg)ts = (f + 05(f)ts) -
(9 + ds(9)ts). Hence since S is a domain we get d5(fg) = fos(g) + 0s(f)g +
05(f)0s(9)ts = fos(9) + 0s(f)(g + 0s(9)ts) = f - s(9) + 05(f) - g° € 5.

Thus §, is a homomorphism of S%-modules: For f € S and g € S¢ we have
g° = g and thus d5(g) = 0, so that 05(fg) = f-0s(g) +s(f) - g =ds(f)-g € S.
In particular, letting Z < S be the Hilbert ideal, which is a homogeneous S¢-
submodule, we conclude that §, induces a K-endomorphism of the coinvariant
algebra Sg = S/Z¢, which again is homogeneous of degree —1.

(8.2) Non-modular pseudoreflections. Let G be a finite group, let K be
a field such that char(K) { |G|, let V be a faithful K[G]-module such that
n:=dimg (V) € Ng, and let S := S[V].

Theorem. There is f € Q(T') such that v1(f) > 0, and such that we have
Hgo = & o - (1+ 2 (1=T)+ (1 =T)2- f) € QD).

Proof. In view of Molien’s formula we may assume that K contains a primitive
|G|-th root of unity, so that in order to consider the elements g € G in turn we
may further assume that ¢ is a diagonal matrix. Hence g is a pseudoreflection
if and only if it has eigenvalue 1 with multiplicity n — 1, and an exceptional
eigenvalue A # 1 with multiplicity 1. Note that 1 € G is the unique element
having eigenvalue 1 with multiplicity n.

Thus we have det(E,, —¢g-T) = (1 — T)" if and only if ¢ = 1, as well as
det(E, —g-T) = (1 =T)" Y1 — \T) if and only if g is a pseudoreflection
with exceptional eigenvalue A, while otherwise vy(det(F,, —¢g-T)) < n — 2.
Hence by Molien’s formula there are f € Q(T) such that v1(f) >0, and € € Q
such that the Hilbert series of S is given as Hgo = ﬁ . deG m =
ﬁ-(l%ﬂn-(l—i—e-(l—T)—i—(l—T)lf) € Q(T). It remains to find € € Q:

Precisely the summands associated with a pseudoreflection g contribute to e,

n—1
in which case we have dc(:(ETlg_T) = 171>\T, where )\ is the exceptional eigen-
n—1
value, yielding (%)(1) = ﬁ Since ﬁ + 1_1l = 1, pairing off mu-
n A

tually inverse pseudoreflections, where for a (self-inverse) reflection we have
1

= = %, and summing over all the pseudoreflections § = S(G), we get

_ryn—1 S;g?
€= (Dges o) (1) = LS 2l 1 4 (g e 82 =1} 4 = 1 -|8]. ¢
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Note that the above argument also provides an alternative proof of the facts

that 7(S%) = n and §(S¢) = ‘—61”, in the case char(K) { |G].

Theorem. Let {fi,..., f.} C S be algebraically independent and homoge-
neous, such that the degrees d; := deg(f;) € N fulfill [[", d; = |G|. Then we
have "7 (d; — 1) < (@), where if S¢ = K[f1,..., f,] then equality holds.

Proof. Let R := K[fi,...,f,] € S Then R is polynomial with degrees

[di,...,d,], hence we have (1 —T)" - Hg =[], % = H?Zlﬁ

Q(T). Differentiation 8% with respect to T, and evaluation at T" = 1, yields
) n - n 1 n E?L}leﬂ"l o n 1

37((1—?) He)(1) = (- Ilimy ST (X iz1 W))(l) =-Ili 3
or, Gy o L 1S (4 1), Thus we have (1— T)" - Hy =

i=1"d; -
|%| 1+ 530 (di—1)-(1-T)+(1=T)%g) € Q(T), where vi(g) > 0.

From (1-T)"Hge = k- (14 252 -(1=T)+(1-T)2 ) € Q(T), where v (f) > 0,
we get 2-|G|-(1-T)""'-(Hge —Hg) = o(G)=> 1, (d;—=1)+(1-T)-h € Q(T),
where vi(h) > 0. Since for d € Ny we have dimg(Ry) < dimg(SY), we get
Hp(z) < Hge(z) € R for 0 < z < 1, thus we conclude that lim,_,;- ((1—2)""1-

(Hse — Hg)(2)) > 0, and evaluation at 7' =1 yields o(G) > Y., (d; — 1).

If R =S¢, then Hg = Hgo entails lim,_,;- ((1 — 2)" ' - (Hge — Hg)(2)) = 0,
thus o(G) = Y. (d; — 1). i

(8.3) Non-modular pseudoreflection groups. Let G be a finite group, let
K be a field such that char(K) J |G|, let V be a faithful K[G]-module such that
n = dimg (V) € Ny, let S := S[V], and let R := S¢.

Theorem: [SHEPHARD, ToDD, 1954; CHEVALLEY, 1955; SERRE, 1967].
Assume that char(K) = 0 or char(K) > |G|. Then the following are equivalent:
i) G is a pseudoreflection group, that is G = (S(G)).

ii) S is a (finitely generated) free graded R-module.

iii) R is a polynomial algebra.

Proof. (i)=(ii). Let G = (S(G)), where we only assume that char(K) 1 |G|.

We first consider the coinvariant algebra Sg := S/(R4S), being a graded G-
algebra again, and being acted on by all Demazure operators. For s € S(G),
we infer that J; € Endg(Sg) is homogeneous of degree —1, and for v € Sg
we have d5(v) = 0 if and only if v-s = v. Since G = (S(G)), we infer that
Nses(a) kerse (0s) = (S¢)€. Since (Sg)¥ = (Sa)o = K, we infer that for any
0# h € (Sg)+ there is s € S(G) such that d,(h) # 0.

Now assume to the contrary that S is not a free graded R-module; recall that
by Noether’s Finiteness Theorem S is a finitely generated R-module. Thus
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any minimal homogeneous generating set {hy,...,h,} of S as an R-module,
where r € N, contains a minimal R-linearly dependent subset of cardinality
l € {2,...,r}, where we may assume the h; to be chosen such that [ is as
small as possible amongst all admissible generating sets. Then we may assume
that {hi,...,h} is such a smallest R-linearly dependent subset, where for ¢; :=
deg(h;) € Ng we have e; < --- < ¢, and necessarily ey > 1.

Hence let ¢1,...,9; € R be homogeneous such that Zézl higi =0 € S. Then
there are pseudoreflections sq,...,s. € S(G), where e := ¢; > 1, such that
for the R-module endomorphism 6 := ds, - -- 65, of S, which is homogeneous of
degree —e, we have §(h;) = 0 whenever e; < e, while §(h;) € Sy = K whenever
e; = e, and d(h;) € K*. Hence we get 0 = 5(Zi 1higi) = Zi 10(hi)gi € S,
thus g; = —Zi %g(zg gi, so that letting h; := h — 222) h; € S.,, for

i€ {1l — 1}, we get T g = YT H(hy — S0 hy)g, = YU g,

(Zi } ggzl; gi)hy = Zi:l hig; = 0. Since {h},...,hj_1, hi, by, ..., by} also is
an admissible generating set, this contradicts the minimality of [. i

(ii)=(iii). Let S be a free graded R-module, and let {f1, ..., fr} be a minimal
homogeneous generating set of R, where k € Ny and d; := deg(f;) € N. To
proceed, we only need the fact that d; € K* for all ¢ € {1,...,k}; then by
Chevalley’s Theorem we conclude that {f1,..., fi} is algebraically independent:

Indeed, by Noether’s degree bound (which holds whenever char(K) 1 |G|) we
have d; < |G|, so that by the assumption on char(K) (as made in the statement
of the theorem) we have d; € K*. i

(iii)=(i). Let R = K[fi,..., fx] be polynomial, where the f; are homogeneous,
and we may assume that the degrees d; := deg(f;) € N fulfill d; < --- < d,,.
Moreover, we infer that [, d; = |G|.

Let H := (S(G)) < G be the subgroup generated by the pseudoreflections in
G. Noting that |H| < |G|, by the implication ‘(i)=-(iii)’ already shown, we have
R C 8" = K[g1,...,9,] C S, where the g; are algebraically independent and
homogeneous, and we may assume that the degrees e; := deg(g;) € N fulfill
e1 <--- <ep. Then we actually have d; > ¢; for alli € {1,...,n}:

Letting the polynomial algebra K[Y7,...,Y,] be equipped with the grading with
degrees § := [ey,...,e,], there are h; € K[Y1,...,Y,] homogeneous such that
degs(h;) = d; and f; = hi(g1, ..., 9n). Now assume to the contrary that d; < e;
for some j € {1,...,n}. Then we have {h1,...,h;} € K[Y7,...,Y;_1], so that
{fi,--, i} CKlg,...,gj-1], thus {f1, ..., f;} cannot possibly be algebraically
independent, a contradiction. i

Finally, we show that |H| = |G|, entailing G = H = (§(G)): By (8.2) we have
S (di—1)<o(G)=0(H)=>_,(e;—1), so that we conclude that d; = e;
for all i. Thus we have Hgr = Hgn € Q(T), in particular implying |G| = |H]|. {
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Corollary. Let still char(K) = 0 or char(K) > |G|, and let {f1,...,fn} C R
be algebraically independent and homogeneous, such that []}_; deg(f;) = |G|.
Then we have R = K|[f1,..., fa].

Proof. Proceeding as for the implication ‘(iii)=(i)” above, but for the polyno-
mial K-algebra P := K[f1,...,f,] C R C SH C S, where H := (S(G)) < G,
we still infer Hp = Hgn € Q(T), so that we have equality P = R = S, #

Originally, SHEPHARD, TODD proved the above theorem in characteristic 0,
by first classifying the finite irreducible complex pseudoreflection groups, and
subsequently verifying the polynomiality of their invariant algebras in a case-
by-case analysis. Later, CHEVALLEY gave a conceptual proof for real reflection
groups, which was generalized by SERRE to the complex case.

(8.4) Complex pseudoreflection groups. We present the classification of
the finite pseudoreflection groups over the field C [SHEPHARD, TODD, 1954],
which extends their classification over the field R [COXETER, 1928], and has
been generalized to the non-modular case [CLARK, EWING, 1974]:

Let G be a finite group, and let V' # {0} be a faithful C[G]-module such that
G = (S(@)) is generated by pseudoreflections. We first reduce ourselves to the
(absolutely) irreducible case:

By Maschke’s Theorem we have V = @._, V; as C[G]-modules, where the V; are
(absolutely) irreducible. By considering the eigenvalues of the pseudoreflections
s € §(G) it follows that py; (s) # idy, for a unique ¢ € {1,...,7}, where py;, (s) is
a pseudoreflection again. Hence letting S; := {s € S(G); pv;(s) # idy, } we get
S(G) = 11—, Si, and letting G; := (py;(s);s € S;) < G, we have G = [[;_, G;,
where G; acts trivially on €, V;, while V; is a faithful (absolutely) irreducible
C[G;]-module such that G; is generated by pseudoreflections. In particular, for
the associated invariant algebras we have S[V]¢ 2 @!_, S[V;], so that S[V]¢
is described in terms of the S[V;]%¢; see Exercise (18.5). i

Hence we may further assume that V is (absolutely) irreducible, and let xy be
the associated character of G. We show that yy is realizable over its character
field K := Q(xv), that is the algebraic number field generated by the values of
Xv, so that K is the unique minimal realization field:

For s € S(G) let 1 # XA € K be its exceptional eigenvalue, let H := (s) <
G, and let py: H — K*: s — X be the associated one-dimensional repre-
sentation. Then by Frobenius reciprocity we have dime(Homgeg)(p§,V)) =
dim¢ (Homez)(px, Vir)) = 1. Since p§ is a K[G]-module, we conclude that V' is
realizable as a quotient K [G]-module of the latter. (In other words, the Schur
index of V over K, which divides dim¢(Homg(g)(p§, V), equals 1.) 1

Now the classification of the finite (absolutely) irreducible complex pseudore-
flection groups is given in Table 2, where the classes 1, 2a, 2b, and 3 consist
of infinite series, while the 34 groups Gy, ...,Gs7 are called the exceptional
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Table 2: Irreducible complex pseudoreflection groups.

l G ‘ n ‘ |G1| ‘ dl,...,dn ‘ Q(X) ‘ G ‘ type
1|n| m+1)! 2,...,n+1|Q Snt1 An
2a [n| 2 onl | m,...,(n—1m, 2% | Q(Cm) Gmkm | BnyDn (m=2)
2b | 2 2m 2,m | Q(Cm + ') | Dam | I2(m)
311 m m | Q(¢m) Cm
[Gi][n] |Gl | di,...,dn [ Q(x) | Gi/Z(G.) [ type |
412 24 4,6 [ Q(¢3) Ay
5 2 72 6,12 | Q(¢3) Ay
62 48 4,12 | Q(Gi2) Ay
712 144 12,12 | Q(¢12) As
8|2 96 8,12 | Q(¢4) Sa
9|2 192 8,24 | Q(¢s) Sy
10 | 2 288 12,24 | Q(¢12) S4
11| 2 576 24,24 | Q(C24) S4
12| 2 48 6,8 | Q(v—=2) S4
13| 2 96 8,12 | Q(¢s) Sy
14| 2 144 6,24 | Q(¢3,v/=2) | Sa
15 | 2 288 12,24 | Q(C24) S4
16 | 2 600 20,30 | Q(¢s) As
17| 2 1200 20,60 | Q(C20) As
18 | 2 1800 30,60 | Q(Cis) As
19 | 2 3600 60,60 | Q(¢o0) As
20 | 2 360 12,30 | Q(¢5,vVB) | As
21 | 2 720 12,60 | Q(Ci2,V5) | As
2212 240 12,20 | Q(¢a,VB) | As
23| 3 120 2,6,10 | Q(v/5) As H;
24| 3 336 4,6,14 | Q(v/=7) GL3(2)
25| 3 648 6,9,12 | Q(¢3) 3%: SLo(3)
26 | 3 1296 6,12,18 | Q((3) 32: SLa(3)
27| 3 2160 6,12,30 | Q(¢s,v5) | As
28 | 4 1152 2,6,8,12 | Q 2% (S5 x S3) | Fu
29 | 4 7680 4,8,12,20 | Q(¢a) 2%: S5
30 | 4 14400 2,12,20,30 | Q(v/5) (As x As): 2 | Hy
31| 4 46080 8,12,20,24 | Q(¢4) 2%: Ss
32| 4 155520 12,18,24,30 | Q(¢3) PSp,4(3)
33] 5 51840 4,6,10,12,18 | Q(¢3) SO5(3)
34| 6| 39191040 6,12,18,24,30,42 | Q((3) PSO; (3).2
35| 6 51840 2,5,6,8,9,12 | Q SO (2)' Es
36 | 7] 2903040 2,6,8,10,12,14,18 | Q SO+(2) Fr
37 | 81696729600 | 2,8,12,14,18,20,24,30 | Q SO5 (2) Fg
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complex pseudoreflection groups. We give the dimension n of the associated
pseudoreflection representation, the group order, the polynomial degrees, and
the character fields, where (j := exp(2¥Y=L };1) € C is a k-th primitive root of

unity for k£ € N, and we collect some structure information.

The finite real reflection groups, also called Coxeter groups, are those
whose character field is a subfield of R; the real reflection groups having char-
acter field Q are called crystallographic. In Table 2 we indicate the Dynkin
type of the real reflection groups as well. Note that a real reflection group is
indeed generated by reflections, but this property does not imply to be a real
reflection group, as the example of the group Gay4 shows; see Exercise (18.31).

i) The groups in class 1, being real of Dynkin type A, for n > 1, are the
symmetric groups S, 11 acting by the deleted permutation representation:
The group Sp,+1 = ((1,2), ..., (n,n+1)) is generated by adjacent transpositions,
which act by reflections with respect to the natural permutation representation
on W := Q""!; see also (9.2). As S,.1 acts doubly transitively, we have
dimg(Ends, , (W)) = 2. Thus we have W = K @V, where Fixy (S,41) = K is
the trivial representation, and V' is an absolutely irreducible faithful Q[S,,+1]-
module, with respect to which S,, 11 is generated by reflections. Hence we have
V = W/Fixw (Sp+1) as Q[Sp41]-modules. For basic invariants, being derived
from the elementary symmetric polynomials in Q[W]5»+, see Exercise (18.29).

ii) The groups in class 2a encompass the imprimitive cases, and are given as

follows: For m > 2, and k > 1 such that k& | m, and n > 2, let T kn =

{diag[¢%]; € GL,(C);a; € Z,k | Y1, a;} < GL,(C); note that the condition

k | Y°, a; is equivalent to saying that ([]}_, (%)% = 1. Letting S,, < GL,(C)

be the natural permutation representation, we let Gy, k. := T kn: Sn, that

is the group of all monomial matrices, whose non-zero entries are m-th roots of
m

unity, and whose product is an (%*)-th root of unity. (We have to exclude the
case Gg 2,2 which is reducible.)

We show that G, 1 », is a pseudoreflection group indeed: The group S, is gener-
ated by reflections; the diagonal group T, i n is generated by the pseudoreflec-
tion diag[¢” ,1,...,1], together with the S,-conjugates of diag[¢,,, ¢t 1, ..., 1],
-1
where diag[(m, ¢} = 0 110 G is the product of two reflections.
1 0| |¢n O
The group Gy, is real if and only if m = 2. In this case, £ = 1 yields Dynkin
type By, where Ga1,, = 2": S, is the group of signed permutations; and
k = 2 yields Dynkin type D,,, where 2"~ !: S,, = Ga2n IGo 1y is the subgroup

of index 2 consisting of the elements having an even number of entries —1.

iii) The groups in class 2b are real, and isomorphic to the dihedral groups
Dy, for m > 3; see (6.6). The group Da,, is crystallographic if and only if
m € {3,4,6}; in these cases we get Dynkin types As again, Bs again, and
finally G3, being equal to I53(3), Iz(4), and I5(6), respectively.

The groups in class 3 are the cyclic groups C,, for m > 1; see (3.3). The group
Cyy, is real if and only if m < 2; in these cases we get the trivial group and
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Dynkin type A; again, respectively.

iv) The exceptional groups in dimension n = 2, that is the groups G; < Uy(C)
for i € {4,...,22}, are centrally amalgamated products of the binary polyhe-
dral subgroups 2.44, 2.5, and 2.45 of SU5(C) with certain cyclic groups of
scalar matrices. Note that counting the pseudoreflections in G = G; yields the
degrees dy < dy from the conditions did; = |G| and dy + da = |o(G)| + 2.

The binary polyhedral subgroups arise from the polyhedral subgroups Ay,
Sy, and As of SO3(R), as preimage with respect to the group homomorphism
p: SU3(C) — SO3(R) which is given as follows:

Let H:={B € Cc2x2. B = B, Tr(B) = 0} be the R-vector space of traceless
Hermitian matrices, where : C — C denotes complex conjugation. Then H

“ b+zc] € H, where a, b, c € R;
b—ic —a

note that det(B) = —(a2 + b2 + ¢2). Moreover, SU3(C) := {A € SLy(C); A~ " =
A} acts continuously on H by pa: H — H: B — A"BA = A"'BA.

Hence identifying H with R3, and noting that det(pa(B)) = det(B), yields a
continuous group homomorphism p: SU3(C) — O3(R). Since SU5(C) is con-
nected we infer that p(SU2(C)) < O3(R)° = SO3(R). Since ker(p) = {+E-},
and both SU3(C) and SO3(R) are 3-dimensional R-manifolds, we conclude that
p: SU2(C) — SO3(R) is surjective, so that actually PSU,(C) = SO3(R), also
being called the Cayley parametrisation of SO3(R). #

can be identified with R® by writing B = [

The polyhedral subgroups are the rotational symmetry groups of the five Pla-
tonic solids, that is the regular 3-dimensional polyhedra; these are given in
Table 3, where n is the number of edges a face is incident with, k is the number
of edges a vertex is incident with, v is the number of vertices, e is the number
of edges, and f is the number of faces. Note that there is a duality between the
octahedron and the hexahedron, and between the icosahedron and the dodec-
ahedron, while the tetrahedron is self-dual: Connecting the barycenters of the
faces one of the mutually dual polyhedra yields the other one; hence polyhedra
in duality have the same symmetry group. The polyhedral groups are consid-
ered in more detail in Exercise (18.30) as far as the tetrahedron and octahedron
are concerned, and in (12.1) as far as the icosahedron is concerned.

(8.5) Remark: Pseudoreflection groups in prime characteristic. Ac-
tually, (8.3) remains valid completely in the non-modular case, as does the
implication ‘(iii)=(i)’ in the modular case [SERRE, 1967]; recall that we have
already indicated that the equivalence ‘(ii)<(iii)’, which essentially is Cheval-
ley’s Theorem, holds in general, without any assumption on the characteristic.
(Unfortunately, we are not able to present proofs here, which require more
machinery from commutative and homological algebra; in particular they are
related to the proof of the ‘purity of the branch locus’ [AUSLANDER, 1962].)

Unfortunately, in the modular case the implication ‘(i)=-(ii)’ does not hold in
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Table 3: Platonic solids.

(n[k] v] e] f] [ |
313| 4| 6| 4| tetrahedron Ay
43| 8[12| 6 | hexahedron Sy
3|14 6|12| 8| octahedron Sy
513120130 |12 | dodecahedron | As
315]12]30] 20 | icosahedron As

general; we present the counterexample given by NAKAJIMA [1979] in Exer-
cise (18.28). Still, the invariant algebra of a pseudoreflection group is factorial
[DrESS, 1969]. Using the classification of the finite irreducible pseudoreflec-
tion groups in prime characteristic [KANTOR, 1979; WAGNER, 1978, 1980;
ZALESSKII, SEREZKIN, 1976, 1981], the classification of polynomial invariant
algebras in the irreducible modular case is known [KEMPER, MALLE, 1997].

9 Permutation groups

(9.1) Permutation groups. Let K be a field, for n € Ny let S,, denote the
symmetric group on n letters, let V' := K™ be its (faithful) natural permutation
module, and let S := S[V] = K[X], where X := {Xy,...,X,}. Then S,
permutes X, and thus acts on K[X]g, for d € Ny, by permuting its K-basis X,
consisting of the monomials of degree d.

Let G < &, be a permutation group. Writing X; = Hfil Xg; as a disjoint
union of G-orbits, where kg = |X3/G| € Ny, let X;:j =Y rex,, | € Sabe the
associated orbit sum; note that ij = TrSGtabG(f)(f) for any f € Xy ;.

Then we have S; = EBjil Sa,; as K[G]-modules, where Sy ; 1= (Xy )k, and
since G acts transitively on Xy ; we infer that Fixs, ;(G) = (X, )x. Hence
we conclude that dimg (SY) = kq = |X4/G]; recall that the Cauchy-Frobenius-
Burnside Lemma says that |X;/G| = Tcl:| Ygec | Fixa,(9)].

Thus we have Hge = 3_ ;5 [Xa/G]| T = ﬁ “Das0(Xgeq [Fixx, (9)]) - T =
1 Lgec(XCaso [Fixa, (9)] - T%) = & - Lyea xs(g) € Q(T), where xs(g)
> aso |Fixa, (9)] - T% € Q(T) is the associated graded permutation character.

This only depends on the permutation action considered, but is independent
of the field K chosen, so that in particular Hge can be computed by applying
Molien’s formula to the associated ordinary permutation representation. Indeed,

. o o 1 . .
assuming that char(K) = 0 we have ys(g) = Ty o) T and letting
A= [A1,..., A1 be the cycle type of g, we have X, (4) = Hizl(T)‘i —1), so that

l
we get xs(g) = [Ti (1_1TA7:)'
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Example: The cyclic group of order p. Let K be afield, let G := (z) = C,,,
where p is a prime, and let V' be the regular K[G]-module, which with respect
to the K-basis {1,z,...,2P7'} C KI[G] is given by G — Sp: z — (1,...,p).
Hence 2° € G has cycle type [p], fori € {1,...,p—1}, and 1 € G has cycle type
[17]; this yields Hse = 2 - ({55 + q257) € Q(T).

Alternatively, more explicitly, for f € Xy, where d € Ny, we have f# = f if and
only if all the indeterminates occur with the same multiplicity in f. Hence we
have Fixy,(z) = 0 whenever p { d; thus in this case Xy consists of G-orbits
of length p only, so that dimg(S$) = % -dimg (Sq) = (p+g—1). If p | d, then

f#=fifand only if f = ([T"_, Xi)%; thus in this case we have |Fixy,(2)| = 1,
the other G-orbits having length p, so that dimg (S§) = 1+ % (dimg (Sq)—1) =

142 (("*971) =1); thus Hge = % a0 [Fixa, (2)]-T445 -3 15 |Xa| - T =

-1 d 1 +d—1 d _ 1 -1 1
pT'Zdonp +5'ngo(p d )'T *5'(1p—Tp+(1—T)p)-

(9.2) Symmetric groups. Let K be a field, and let V := K™ be the natural
permutation K[S,]-module, where n € Ny.

We determine the pseudoreflections in S,: For g € S,, the K-dimension of its
K-space of fixed points coincides with the number of cycles of g. Hence g is
a pseudoreflection if and only if it has precisely n — 1 cycles, in other words if
and only if it is a transposition; note that the latter are reflections if and only
if char(K) # 2. In particular, there are (Z) pseudoreflections in S,,, all of which
do not belong to A,,.

We have S,, = (s1,...,8n,-1), where s; := (i,1+1) € S, for i € {1,...,n — 1},
are the adjacent transpositions. Hence S,, is generated by pseudoreflections,
thus the invariant algebra S[V]5" is polynomial, whenever char(K) { n!, that
is whenever char(K) = 0 or char(K) > n. (Recall that we have only shown this
explicitly for char(K) = 0 or char(K) > nl.) Actually, it will turn out below
that K[X] is polynomial for any field K.

(9.3) Symmetric polynomials. a) Let K be a field, let X := {X;,...,X,,}
where n € Ny, and let S,, act naturally on K[X]. The elements of K[X]%" are
called symmetric polynomials. A distinguished set of symmetric polynomials
is given as follows:

We consider the algebra K[X,Y], for an additional indeterminate Y. Then
we have [/, (Y — X;) = Y1 o(—1)en(X)Y"™" € K[X,Y], with the ele-
mentary symmetric polynomials or Vieta polynomials e, ; = e, ;(X) :=
>aci, nnr=illljes X;) € K[X], for i € {0,...,n}. The e,; are homo-
geneous such that deg(e, ;) = ¢, where in particular we have e, = 1, and
€n1 =Y iy Xi, and ey, ,, = [[1—, X;. Since S,, permutes (transitively) the sub-
sets of {1,...,n} of a fixed cardinality, we conclude that actually e, ; € K[X]5".

b) We show that K[X]5" = K[e,1,...,en.n], implying that it is a polynomial
algebra independently of char(K); for completeness we present an explicit proof
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of algebraic independence. Hence {e, 1,...,e,.n} are basic invariants, and the
associated degrees are [1,...,n], entailing Hycxjsn = [[1—; =7 € Q(T):

To this end, we consider the auxiliary polynomial algebra K[Y]°, where ) :=
{Y1,...,Y,}, being equipped with the grading with degrees § := [1,...,n]; hence
we have deg;(Y;) = i = deg(en,;). Using this we have:

Theorem. Let f € K[X]5" be homogeneous, where d € Ny. Then there is a
unique g € K[V]% homogeneous such that f = g(en.1,-..,enn) € K[X].

Proof. i) In order to show existence, we proceed by induction on n € Ny;
the cases n < 1 being trivial, let n > 2. We in turn proceed by induction on
d € Np; the case d = 0 being trivial, let d > 1. Let ay,: K[X,Y] — K[X',Y],
where X’ := X'\ {X,,}, be the K-algebra homomorphism given by Y — Y, and
X;— X;forie{l,...,n—1}, and X, — 0.

This yields .1 (—1)’an (€)Y = an(zg;o(*l)ien,iy'”*i) = an ([T, (Y-
X)) =Y [N - X)) = Y (- Dien—14(X)Y"" € K[X',Y], hence
ap(eni) =en_1,, fori € {0,...,n —1}, and ay,(epn,n) =0- H;:ll X; =0.

We have a,(f) = f(X1,...,Xn-1,0) € K[X’]ds"’l. By induction there is ¢’ €
K[V, where V' := Y\ {V,} and & := [1,...,n — 1], such that a,(f) =
g (en—11,.-.,en—1,n—1) € K[X']. Letting g := ¢'(en,1,...,nn-1) € K[X], we
recover a,(g) = an(g'(en1,. - €nn-1)) = ' (én—1,1,--.,€n—1,n—1), and since
the e, ; are homogeneous and deg(e,, ;) = %, we conclude that g € K[X]4.
Letting f':= f — g € K[X]4, from a,,(f’) = 0 we conclude that X,, | f’. Since
f'is Sp-invariant, and S,, acts transitively on X, where the X; € K[X] are
pairwise non-associate primes, we infer that e, , = H?=1 X; | f', sothat f' =
enn - " € K[X], for some f"” € K[X]4—p. Since K[X] is a domain we conclude
that f” is S,-invariant as well, so that by induction there is ¢” € K[V]5_,, such
that f” =g¢"(en1,..-,€nn)-

Hence in conclusion we have f = g+ en, - f” = g'(€n1,---,€nn-1) + €nn -
" (ents- - senn)=(9"+Yn 9" )(en1, - enn), where ¢’ +Y, - g" € K[J]5.
ii) Uniqueness amounts to showing that {e, 1, ..., e, n} C K[X] is algebraically

independent: We proceed by induction on n € Ny, the cases n < 1 being trivial,
let n > 2. Assume to the contrary that there is 0 # f =Y, fi(V)Y,i € K[V]°
homogeneous such that d := degs(f) > 1 is minimal, and f(en1,...,€nn) =0.
Assume that fo = 0, then we have f =Y, - f' € K[V], where 0 # f' € K[V]}_,,
and f'(en.1,--.,€nn) =0, a contradiction. Thus we have 0 # fo € F[)'].

From f(en,la sy 6n,n) = 27;20 fi(en,l, cee 7en,n—1)€;7n = 0, using o, again,
we get 0= an(f(en,la ceey en,n)) = Zizo an(fi(en,la ceey en,n—l)) . an(en,n)l =
fo(€én—11,-..,en—1,n—1), which by induction contradicts the algebraic indepen-

dence of {€n—11,---,€n—1,n-1}- i
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Note that the above proof is constructive, so that given f € K[X]" the polyno-
mial g € K[Y] such that f = g(ey1,...,€en,n) can be computed algorithmically.

(9.4) Alternating polynomials. a) Let K be a field, let X := {X1,..., X,}
where n € Ny, and let S,, act naturally on K[X]. Let V,, := [X;_l]ij e K[x|xn
be the Vandermonde matrix associated with X, and using the Vandermonde
formula let A, := det(V;,) =[], <;j<n (Xj — X; ) € K[X] be the discriminant
polynomial. Hence A, is homogeneous such that deg(A,) = (3), where A =
Ay =1; and for n > 1 we have A, (X1,..., X,-1,0) = (=1)"ep_1,n-18,_1.

Letting S,, act entrywise on V,, we observe that s; = (j,j + 1) € S,, for
j€{1,...,n— 1}, interchanges columns j and j + 1 of V,,. Hence we conclude
that A, -s; = —A,,, so that A,,-g = sgn(g)-A, for g € S,,. Thus if char(K) # 2
and n > 2, then we have A,, € K[X]A» \ K[X]5"; if char(K) = 2 then we have
A,, € K[X]5. Moreover, we have A2 € K[X]5", so that A2 can be expressed
(uniquely) as a polynomial in {€,1,...,€nn}

Example. We have Ay = Xg — X1; thus A2 = (X, — X1)? and A3(X;,0) =
X7 = el ,, hence letting g := €3 | = (X1 + X3)* we get AZ—g=(Xy—X;)2—
(X1 + X2)? = —4X; X5 = —4eq o, entailing AZ = 62 1 — 4dego.

MOI'EOVGI‘ A3 (X2 — Xl)(Xg - Xl)(Xg — XQ) (XB?XQ + X22X1 + X12X3) —
(X;)?Xl +X2X3 +X2X2) ylelds AQ (XQ - Xl) (X3 - X1)2(X3 — X2)2, where

A2 —463’163,3 + 63,163’2 + 18e3,1€3,2€3,3 — 463,2 - 27@%,&
Finally, A4 = (XQ7X1)(X37X1)(X47X1)(X37X2)(X47X2)(X47X3) yields
A2 = —2764 164 a4t 1864 1€4,2€42€4 4 — 464 162 2 464 162 2€4, 4 +eq 162 264 9+

2 2
14464 164 264 4 664 164 se4,4 — 80ey, 164 0€4,2€4 4 + 1864 1€4 264 Pl 1664 0€4 4 —
464’264’2 — 19264’164’264’4 12864’264’4 + 14464,264’264,4 2764’2 + 256€y 4.

b) We consider the alternating group A,, <S5,,, where we may assume n > 2: We
have Klen 1, .-, enn] = K[X]S = (K[X]A)Se/An = (K[X]A7)() C K[X]An,
where s € S, is any transposition; for example s = 5,1 = (n — 1,n).

i) Let char(K) # 2. Since s> = 1 € G, considering the eigenspaces of the action
of s on K[X]A», with respect to the eigenvalues 1 and —1, respectively, we get
K[XA = (K[X]A) T @ (K[X)A)™ = K[X]5 @ K[X]$), as K[X]S-modules,
where the latter summand consists of the semi-invariant alternating elements
f € K[X], that is fulfilling f9 = sgn(g) - f for all g € S,; recall that the trivial

and sign representations are the only one-dimensional representations of S,,.

In particular, we have A, € K[X]S:, so that An - K[X]5 C K[X]S2,. Con-

sgn» sgn*
versely, we show that K[X]Sn C A, - K[X]5"
For f € K[ng"h we obtain f(Xi,...,X,) = —f(X1,..., Xp_1, X)) =

—f(X1,..., Xn—2,Xn, Xn_1), so that the K-algebra homomorphism K[X] —
K[X1,...,X,—1] given by X; — X, for ¢ € {1,...,n— 1}, and X,, — X,,_1,
yields f(X1,..., Xn—1,Xn-1) = = f(X1,..., Xn—1,Xn—1) = 0. Hence we infer
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that (X,, — X,—1) | f € K[X]. Since f is semi-invariant, and S,, acts transi-
tively on the subsets of {1,...,n} of cardinality 2, where the (X; — X;) € K[X]
are pairwise non-associate primes, we conclude that A,, = H1§i<j§n(Xj —-X;) |
f € K[X]. Writing f = A, - g, for some g € K[X], since K[X] is a domain we
get g € K[X]%", showing that f € A,, - K[X]". #

Hence we have K [X]4" = K[X]5» ®A,,- K[X]5", with Hilbert series Hp (x4, =

Hycpsn + Hypyysy = (1+ TG)) - Hygags, = (104 TG)) I, 2 € Q(T).
ii) Let char(K) = 2. We already know that Hyxjan = (1+TG)) . Hyppps, €
Q(T), where Klen 1. .., enn] = K[X]5" C K[X]*" and Hy(yjsn = [[12) 7277
Thus we are looking for an additional homogeneous A, -invariant of degree (;‘)
Let Ty =[] i jen (X +X5) € Q[X]5», and let A], := (A, +T,,) € QXA
[BERTIN, 1970]; then we have Al -s = £ -(—=A, +T,) = A, — A, € Q[X]. Now
A, + T',, has integral coefficients, where reduction modulo 2 shows that these
are even, so that A/ has integral coefficients as well.

Reduction modulo 2 yields a polynomial A/, € K[X]4" (with a slight abuse of
notation), so that we have A/, - (s + 1) = A,, € K[X], while A,, € K[X]®".
Hence we have (Al - f)s*1 = A, - f, for f € K[X]5", implying (A - K[X]5)N
K[X]5» = {0}. This entails that K[X]5» @ A/, - K[X]5» C K[X]*", where
the Hilbert series of the left and right hand sides coincide, so that we have
K[X]A = K[X]S @ A, - K[X]5" as K[X]5"-modules. i

For example, for n = 2 we get Ay = 1. (X2 — X1) + (Xo + X1)) = Xo, so
that K[Xl,XQ]'A2 = K[€2’1,62727A/2] = K[Xl —+ XQ,X1X27X2} = K[Xl,XQ].
Moreover, for n = 3 we get Ay = (X2X2)* + €33, so that we have K[X]4 =

Kles1,e32,es3, (X2 X3)T] = K[X]% @ (X X3)T - K[X]%.

3
For n = 4 we get A} = (XoX2XH)T + (X1 Xo X3 XH) T + (X3X3X3)T +2-
(X1X2X2X2)", where the associated orbit lengths are [12, 4, 4, 6], respectively;
since the lengths of the associated Sj-orbits are [24,4,4,6], respectively, we

conclude that the latter three summands belong to K[X]54, so that we have
K[X]A = Klea, ..., eqq, (X2 X5XF) V] = K[X]5 @ (X X5XT) T - K[X]1

iii) Note that if char(K) # 2 then we have A/ - (s — 1) = —A,, € K[X], hence
(AL )=t = —A,-f, for f € K[X]5", implying that (A] - K[X]5»)NK[X]%" =
{0} in this case as well. Thus, letting K be arbitrary again, in any case we have
K[X]A = K[X]S @ A, - K[X]5" as K[X]5"-modules.

We conclude that K[X]“" is not a polynomial algebra, for n > 3: Assume

to the contrary it is. We have (g) > n for n > 4, and (3) 3, so that

K[X]}" = K[X]5" for d < n, and for d = n > 4, while K[X]3* = K[X]5* @
(A%)g. This entails that minimal generating set of K[X]*" can be chosen to
contain {en1,...,€nn}, where polynomiality implies that the latter already is
a generating set, a contradiction. (Alternatively, since A, is not generated by
pseudoreflections, in fact does not contain any, by Serre’s Theorem K[X]4n
cannot possibly be a polynomial algebra, but we have not proven this.)
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(9.5) Special partitions. We now turn to arbitrary permutation groups, for
which we need a few preparations from the combinatorics of partitions first:

a) Let P, be the set of partitions of d € Ny, that is the set of non-increasing
sequences A = [A1, Ag,...], where A\; € Ny such that > .o A; = d; then [ =1, :=
max{i € N; \; > 1} is called the length of ), B

A partition A € Py, where d > 1, is called special or column 2-regular, if
Ai — Aix1 < 1 for all ¢ > 1; equivalently we have \; =1 and A\; — \; <1 — ¢, for
i€ {l,...,1l}. A special partition A of length I =, < k is called k-special, for
k € Ny. Then we have d = 22:1 A < Eizl(l —i+1)= Zi:li = (1451>_ Note
that we have [ < d anyway, where for d = [ the partition [1!] is [-special, and
for d = (1-52-1) the staircase partition [, — 1,...,1] is l-special as well.

If X € P4, where d > 1, is not special, then s = sy := min{i € N; \; — ;11 > 2}
is well-defined, and we have s € {1,...,l}. Using this, the partition \ :=
M =1, 05 — 1, Agq1, ..., Ai] € Pa—s, obtained from A by decreasing each of
its first s parts by 1, is called the (s-)reduction of \; we write A\ — X. Note
that X and X have the same length, and that )\ can be recovered from X together
with s. Since 1 < A\ — Agy1 < As — Agy1, iterating reduction after finitely many
steps ends up with a special partition; see also Table 4.

Let A € Py and ¢4 € P.. Then we have A I p in the dominance partial order,
if 21 A; < 325_ypy for all & > 1; in particular we have d < e. Note that
A< <X implies A = p, so that this indeed defines an anti-symmetric, reflexive,
and transitive relation on the set P := HdENo Py of all partitions, which is
well-founded, that is it does not have infinite strictly descending chains.

b) We now consider combinations rather than partitions: Let o = [a1,...,ap] €
N§, and let 0 = 0, € S, such that o’ := [ay,-1,...,0,,-1] € Nj is non-
increasing, that is we have ay5-1 > -+ > «,,,—1 > 0; note that a? is independent
of the ordering of the parts of a;, but ¢ is uniquely defined if and only if « has
pairwise distinct parts. We may consider a? as a partition of d = d,, := Z?:l ;.

Then o € N} is called (k-)special if a” € Py is (k-)special; note that being
(k-)special is independent of the ordering of the parts of a. If a” is not special,
and has s-reduction a® € P,_g, where s = s, := S40, then @ := (?)‘771 e Ny,
is called the (s-)reduction of «. Note that, since s-reduction affects precisely
the s largest entries of a, so that @ has its s largest entries at the same positions,
the reduction of « is well-defined independently of the choice of o, and « can
be recovered from @ together with s; moreover we have a% = a9 for all g € S,,.

Let o, 8 € Nij. Then we have ae < in the dominance relation, if for the asso-
ciated partitions we have o> < 378, The dominance relation again is reflexive
and transitive, but neither anti-symmetric nor symmetric. Letting o = g if
a<pda, that is @~ = 398 or equivalently (3 is obtained from « by reordering
its parts, we get an equivalence relation; hence the induced dominance partial
order on the set of equivalence classes is well-founded as well. Note that the
property of being (k-)special only depends on equivalence classes.
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Table 4: Special partitions for d < 7.

’ d \ l \ special \ non-special
11171 —[n] (n>2)
2217 — N (n>2)
312|[21] — [n,1] (n>3)
—[nn—-1]+«n+mn—-1 (m>1)
3317 — ] (n>2)
43| [2,17] +—[n,1%2] (n>3)
(=12 ntm, (n =12 (m=1)
5131[2%1] — [n%,1] (n>3)
—Mmin—1]«[n+m?*n-1 (m>1)
613][3,21] |+ [n21 (n>4
+— [n,n —1,1]
— [n,n—1,n—2]
41414
5141 [2,13 — [3,1%] « [4,13]
6|4/ [2%17
7141[23%1]
71413,2,1%
5[5 [1°]
652,11 |+ [3,1Y
715219
7152213
616 [1°
71717

(9.6) Permutation groups. Let K be a field, let X := {X;,...,X,,} where
n € N, let §,, act naturally on K[X], and let G < S, be a permutation group,
with respect to which orbits sums on monomials are formed in the sequel. For
a=[o,..., o] € NJ let X*:=T[, X € X, be the associated monomial,
where dy, := Y | a; € Np.

Lemma. Let o, 8 € Njj, where a # 0 is non-special, let s = s, € {1,...,n}.
a) Then the monomial X” occurs in (X®)* - e, , € K[X] only if 8 < .

b) The monomial X* belongs to the G-orbit of X, that is X occurs in (X*)* €
K[X], if and only if 3 = @ and X8 occurs in (X®)* - e, . € K[X]; in this case
XP occurs precisely once in either sum.

Proof. a) Since X” occurs in (X" nyij=sTLjes Xj), there is J =
{j1,---,9sF € {1,...,n} of cardinality s, and g € G such that § =a9+05 € Njj,
where d 7 € Nj is the associated indicator function. Letting 0 = o, € S, we get
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6971" = + 0 7o-1,. Since the the truth of the assertion § < « only depends
on the equivalence classes « and 8 belong to, we may assume that both 0 =1
and g = 1, so that the parts of « are already sorted non-increasingly, and
8 = [51,...,0n] is obtained from « by first decreasing the entries {1,...,s}
by 1, and subsequently increasing the entries J by 1 again. Thus we have
b’izai—l—i—éi’g lf’LSS, andﬂj :ij—f—(sj'“j 1f]28+1

We derive a suitable sorting permutation 7 = og € S,,: We have a1 > -+ >
Qs > Qg1 > -+ > O, Where ag > ag41 + 2. For i < s and j > s+ 1 we have
o> B> —12>2a—12> 0441 +12a;+1 2> p; > «;. Thus, whenever
k < 1 such that ap > «g, distinguishing the cases [ < s, and s +1 < k, and
k<s<s+1<I, we conclude that 8, > ;. Hence 7 can be chosen such that
« has constant entries on each 7-orbit, that is o’ = «, so that we may assume
7 =1, in other words the parts of § are already sorted non-increasingly.

Hence for i < s we have Y.t Bx < Si_, ax, where moreover S5_, B =
22:1 Br = 22:1(ak_1)+|{1a .. ,s}ﬁj| For j > s+1 we have Ei:pﬂ B =
Dtmssr Gkt s+, GINT | thus 305 B =304y (e —1)+{L,.. .. sINT |+
Y= et s+ 1 ENT = Oio ) s +{L - JINT] < 5 e

b) If A8 belongs to the G-orbit of X', that is 8 = af for some g € G, then 3
is obtained from « by reordering its parts, that is § = a. Moreover, we have
B+ds=B=a=(@+6r) =a +6} =ad + 8,1, where Z C {1,...,n}
consists of the positions of the s largest entries of «, such that @ still has its s
largest entries at the positions Z, and J C {1,...,n} consists of the s largest
entries of 3, so that § still has its s largest entries at the positions 7. Hence we
conclude that @9 = 3 and Z = J9, so that the monomial X? occurs precisely
once, and thus without any cancellation, in the expansion of (XY%)" - e, ;.

Conversely, if X# occurs in (X®)* - e, , then B is obtained from « by first
decreasing the s largest entries Z of a by 1, so that @ still has its s largest
entries at the positions Z, subsequently permuting the entries by some g € G,
and finally increasing some s entries J by 1 again. If 8 = «, that is § is
a reordering of a, and thus /3 is a reordering of @, then we conclude that J
consists of the s largest entries of 3, so that 3 still has its s largest entries at
the positions J. Thus we infer 79 = Z, so that 8 = 9. i

Theorem: Gébel’s degree bound [GOBEL, 1995]. Then the set {e,.,} U
{(X*)";a € N (n — 1)-special} is a homogeneous K-algebra generating set of
K[X]®, consisting of elements of degree at most max{n, (3)}.

Proof. Let R C K[X] be the K-algebra generated by {e,,} U {(¥Y*);a €
N7 (n — 1)-special}; then we have R C K[X]“. To show the converse inclusion,
let 0 # a = [aq,...,a,] € NJ be not (n — 1)-special; we show that (XY*)* € R
by induction on d = d, = Y., a;, and for fixed d on the dominance partial
order on the set of equivalence classes on Nj:
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Let first a; > 1 for all i € {1,...,n}. This implies that e, , = [[}—, X; | X%,
thus we have (X?)T = e, - (X%)T € K[X]%, where 8 = [a; — 1,...,a,, — 1].
Since dg = d — n we by induction have (X?)* € R, and since e, ,, € R anyway
we infer that (X*)" € R as well.

Hence let now « have at most n — 1 non-zero parts. Since « is not (n — 1)-
special, it cannot be special at all. Thus let s = s, € {1,...,n — 1}, and let
fi= (X" = (X% 7T e, € K[X]®. Since G permutes the subsets of {1,...,n}
of cardinality s, the summands of e, = ZJ;{L...,n},}j\:s X979 consist of a
union of G-orbits, where since s < n — 1 the indicator functions § 7 occurring
are (n — 1)-special, thus we have e, s € R. Since dg = d — s we by induction
have (XY*)* € R, so that (XY*)* - e, s € R as well.

Finally, for all monomials X? occurring in f, where 8 € NZ (such that dg =da),
by the above lemma we have 8 <« and 8 # «, that is the equivalence class of
is strictly smaller than the equivalence class of «, with respect to the dominance
partial order. Thus by induction we have f € R. i

Corollary. {(X*)*;a € N} (n — 1)-special} is a homogeneous generating set of
K[X] as K[X]®"-module, consisting of elements of degree at most max{n, (})}.

Proof. Letting R C K[X] be the K[X]5"-module generated by {(X*)T;a €
NZ (n — 1)-special}, recalling that K[X]5" = K[e, 1, ..., €], and noting that
the reduction steps essentially consist of dividing off elementary symmetric poly-
nomials, we may proceed entirely similarly to the above proof, i

(9.7) Example: Symmetric and alternating polynomials. Let K be a
field, let X := {X1,..., X, } where n > 2, and let S,, act naturally on K[X]. We
apply Gobel’s Theorem to the symmetric and alternating groups: The column
partition [1¥] and the staircase partition A\ := [k, k—1,..., 1] are (n—1)-special,
for ke {l,...,n—1}.

a) Let G = S,,. Since S,, acts n-transitively, we only have to consider partitions
rather than combinations. We get (X1"1)* = ([T, Xi)T = e, x, thus Gobel’s
generating set encompasses the generating set {e,1,...,en,} of K[X]5"; in
particular, for n > 4 Gobel’s degree bound is not sharp.

But we get additional (actually unnecessary) generators: For example, the stair-
case partition \j, yields X = Hle Xik*”l7 having degree (k'QH). Since Ag has
pairwise distinct non-zero parts, we have Stabg, (X*¢) = Stht1,my = Sk

and hence (X))t = Tlrgszrl ,

[Sn: Sn—k] = (nﬁi‘k)' = Hf:ol (n—1); for example we recover (X))t = (XH)+ =

en,1, while XAn-1 gives rise to an S,,-regular orbit.

(X**) is the sum over an orbit of length

b) Let G = A,. Then for any combination g having multiple parts (in-
cluding its zero parts) we infer that Stabs, (X*) is not contained in A,, so
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that [Stabs, (X*): Stab4 (X*)] = 2, and hence (X#)* = Trz» (xH) =

StabAn(X“)
Tr‘sgt"abs (xmy(XH), saying that actually (X*)* € K[X)5n.

The only special partition with n pairwise distinct parts equals A := \,,_1 =
[n—1,n—2,...,2,1,0], giving rise to monomials of degree (Z) Since A,, acts
(n — 2)-transitively, it suffices to consider the combinations A and A := [n —
1,m—2,...,2,0,1]; note that this also holds for n = 2. We have Stabgs, (X*) =
Stabs, (X*) = {1}, so that X* and X" give rise to A,-regular orbits, which
are joined under S,-action, implying that (X*)* + (X)* e K[X]S".

Hence, using K[X]%" = K[en1,...,en.n], we get the K-algebra generating set
{ents - sennt U{(XNT} of K[X]A; in particular, Gobel’s degree bound is
sharp. Since Stabs, ((X*)T) = A, we infer that K[X]5»N(&XN)* K[X]5» = {0},
so that K[X]A» = K[X]% @ (AN - K[X]5 as K[X]%*-modules; see (9.4).

For example, for n = 2 we get (Xm)Jr = X" = Xy, and for n = 3 we get
(X = (X?2Xo)t = XPXo + X3X3 + X2X,.

(9.8) Example: Transitive groups of degree 4. Let K be a field, let X :=
{X1,...,X4}, and let 84 act naturally on K[X]. The transitive subgroups of
G < 8, are (up to conjugation) given as {C4, Vy, Dg, A4, S4}, with inclusions
Cy < Dg and V4 < DgnN Ay. The 3-special partitions A, which hence fulfill
dy < 6, are given as {[1], [1%], [1%],[2,1],[2, 1?],[22,1],[3,2, 1]}; see Table 4. The
orbit lengths of the various groups G on monomials associated with the various
3-special combinations are given in Table 5, where since Sy acts 4-transitively, it
suffices to consider partitions A, rather than combinations, to provide the orbits
of 84, and to describe how the latter split into G-orbits.

Molien’s formula yields the associated Hilbert series, and explicit checking up
to degree 6 (computing over Z, and omitting the details) yields the follow-
ing algebra generating sets, consisting of orbit sums associated with suitable
3-special combinations, as well as the R-module structure of the invariant alge-
bras in question, where R := K[X]% = Kles1,...,e44] and H := Hyxys =

H?:l ﬁ € Q(T); note that Gobel’s degree bound in general is not sharp:

i) We have Hyyjas = (1 + T - H € Q(T), and by (9.7) we have K[X]A+ =
R{(X?X3X3)*] = R (X{X3X5)" - R

ii) Let Dg := ((1,2)(3,4),(1,3)). We have Hy(yps = (1 +T%+T*) - H, and
KX|Ps = Ro f - R f?- R, where f = (X1 X3)t = X1 X3 + X5X,, and
{es1,...,ea4, f} € SP% is a minimal homogeneous K-algebra generating set.
iii) Let Vi == ((1,2)(3,4),(1,3)(2,4)). We have Hyxpvs = (1 + 277 + 2T +
TS) - H, and K[X]"* = @, .;pR, where G = {1,9,f,¢% f*,¢*f}, and g :=
(X1X2)+ = X1X2 + X3X4, and f = (X1X3)+ = X1X3 + X2X4. Moreover,
if char(K) # 2 then {e41,€4,2,€43, f, g} is a minimal homogeneous K-algebra
generating set, while if char(K) = 2 then we have to take {es1,...,e44, f, g}

iv) Let Cy := ((1,2,3,4)). We have Hyxjos = (1 4+ T2+ T2 +27T* +T°) - H.
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Table 5: Transitive groups of degree 4.

’ A ‘ d)\ ‘ Stab34()\) H 84 ‘ .A4 ‘ Dg ‘ ‘/4 04 ‘
] 1 [S; 4 4 4 4 4
[12] 2 | C2 6 6| 4,2 2,2,2 4,2
[13] 3183 4 4 4 4 4
2,1] |3 |Cy 12 12| 8,4 4,4,4 4,4,4
2,12] |4 | Cy 12 12 8,4 4,4,4 4,4,4
[22,1] |5 | Cy 12 12 8,4 4,4,4 4,4,4
[3,2,1] | 6 | {1} 24 112,12 | 8,8,8 | 4,4,4,4,4,4 | 4,4,4,4,4,4

y | Jorbits [ 7] 8] 13] 20 | 19 |

Then for char(K) # 2 we get K[X]¢* = @D, g PR, for G = {1, f,9,f% h, fg},
and f = (X1X3)+ = X1X3 + X2X4, and g ‘= ()(VIZA)(Q)Jr = X12X2 +X22X3 +
X2X4 + X3Xy, and h = (X3XoX3)" = X2XoX3 + X3X3Xy + X2Xy4 X +
X2X1X,. Finally, {e41,...,e44, f,g,h} is a minimal homogeneous K-algebra
generating set; hence Noether’s degree bound is sharp in this case.

If char(K) = 2, we observe that z := (X?X2X3)" = X2X2X5 + X2X2X, +
X2X2X, + X2X?%X, is an indecomposable homogeneous invariant of degree 5,
hence Noether’s degree bound does not hold in this case. We get K[X]%t =
Zpegp R, where G = {1, f,g, %, h, z, fh}; actually, K[X]°* is not Cohen-
Macaulay, see (17.5), so that K[X]% is not a free graded R-module. Moreover,
{e41,...,€44,f,9,h,z} is a minimal homogeneous K-algebra generating set.

10 Application: Galois groups

We indicate how invariant theory helps in the determination of Galois groups.

(10.1) Discriminants. Let K be a field, let f := X"+ | a,_;X""* € K[X]
be a monic polynomial of degree n € N, let f =[], (X — x;) € L[X], where
K C K(x1,...,2,) = L is a splitting field of f, let X := {X3,..., X, }, and let
S, act naturally on L[X]; hence S,, also acts on L[X, X] by fixing X.

Using the L-algebra homomorphism e : L[X, X| — L[X] given by X — X, and
X; — x; for i € {1,...,n}, for the elementary symmetric polynomials e, ; €
K[X] we get €f(eni) = eni(@1,...,2n) = (=1)'a,—; € K, for i € {1,...,n}.
Thus the elementary symmetric polynomials in the roots {z1,...,z,} of f can
be expressed in the coefficients {aq, ..., a,—1} of f alone, without knowing the
roots, and actually are elements of K, which typically is considerably smaller
than the splitting field L. In particular, since A2 € K[X]%*, the discriminant
of f given as A(f) := ef(A}) = A% (21, ..+, 20) = [[1<icjen (2 —2:)* € K can



59

be expressed in the coefficients of f alone; indeed we have A(f) = 0 if and only
if f has a multiple root.

Example. For n = 2 and writing f = X2 +pX +¢q = (X —11)(X —22) € L[X],
we get ez 1(x1,x2) = —p and eg 2(21, x2) = ¢, so that we recover the well-known
discriminant A(f) = A3(21,22) = (€3, — 4ez2) (21, 22) = p* — 4q.

For n = 3, if char(K) # 3, writing f = X® + ¢X? + aX + b € K[X] and
applying the K-algebra automorphism of K[X] given by X — X — £, we get
Fro(X =P 4+e(X =92 +a(X - &) +b=X34(~% +a) X + (2 — 2 1)
Thus we may assume that f = X3+aX +b= (X —z1)(X —22)(X —x3) € L[X]
is in Weierstraf form; in other words we may assume that =1 + x5 + 23 =
es,1(x1,x2,23) = 0. Hence we get es2(x1,22,23) = a and e33(z1,22,23) =
—b, so that we recover the well-known discriminant A(f) = A%(z1,22,73) =
(—4e3 5 — 27€3 3) (w1, 22, x3) = —4a® — 270%.

(10.2) Galois groups. Let K be a field, let f € K[X] be monic and separable
of degree n € N, that is f has n pairwise distinct roots {z1, ..., z,} in a splitting
field K C L, or equivalently A(f) € K*, or equivalently ged(f, g—)f() € K*. Then
letting A := Autg (L), by Artin’s Theorem the field extension K C L is finite
Galois, that is LA = K.

Moreover, let X := {X4,...,X,}, and let S,, act naturally on L[X]. Since A
acts faithfully on the roots of f, the group A can be identified with a subgroup
of Sy, such that ef: X — {1,...,2,} is an A-isomorphism; note that A < S,
is transitive if and only if f is irreducible, and that A < §,, is only unique
up to S,-conjugation. In particular, if ' € K[X]4, then we have (e;(F))? =
€;(F%) =¢;(F) € L, for all a € A, so that actually e;(F) € L4 = K.

Let H < G < S, then for F € K[X]H let the associated (relative) resol-
vent polynomial be given as the relative norm p%(F) := N§(X — F) =
yermeX = F)? = [IemaX — F9) € KX, X]9 = K[X]9[X], where g
runs through a set of representatives for the right cosets of H in G; hence as a
polynomial in X the resolvent p% (F) is monic of degree [G: H].

Proposition: [STAUDUHAR, 1973]. Assume that A < G, and that the re-
solvent p := e;(p%(F)) = [eme(X — F(z1,...,2,)) € K[X] is separable.
Then we have F9(xq,...,2,) € K if and only if A < H9. In particular, A is
G-conjugate to a subgroup of H if and only if p has a root in K.

Proof. Since p is separable, its roots F9(x1,...,x,) € L, where g € H\G, are
pairwise distinct. Moreover, comparing the action of a € A on {x1,...,2,} and
on X we get F(xy,...,2,)% = F(z§,...,2%) = F(%14,.-.,%na), which equals
F(Xig-1,. .y Xpa-1)(@1,. .., 2n) = F*( Xy, ..., X,)(21,...,2,), which in turn
equals F%(x1,...,2,); hence we have F(z1,...,2,)* = F*(x1,...,2,) € L.
Thus for g € G we get F9(x1,...,2,)% = F9%xy,...,x,) = F'%9(x1,...,1,).
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Hence, if 9A < H, then we have F9(xy,...,2,)* = F9(x1,...,x,) foralla € A,
thus F9(zy,...,z,) € LA = K. Conversely, if F9(zy,...,z,) € K, then for all
a € A we have F9(zy,...,2,) = F'%9(xy,...,2,), thus 9a € H. i

Corollary. Let char(K) # 2 and n > 2. Then we have A < A, if and only if
the discriminant A(f) € K* has a square root in K.

Proof. Since A, - g = sgn(g) - A, for all g € S, we have A, € K[X]A»,
and we get pj;(An) = (X - A)X +A,) = X% - A2 € K[X]°[X], so that
er(p5(A,)) = X2 — A(f) € K[X], which is separable. Hence the assertion
follows. Note that since A, < S, is normal we have or have not A < A,
independently of the chosen identification. i

A few comments are in order: If F9(xy,...,x,) € K, where g € G, then YA < H

says that reordering the roots along [z1,... ,xn]g_l yields an identification of
Autg (L) with a subgroup of H, instead of a G-conjugate of H.

Note that for g € Stabg(F) we have ¢7(F9) = ¢;(F) anyway, so that the separa-
bility condition implies that necessarily Stabg(F) = H. Homogeneous polyno-
mials F' having the latter property always exist: Letting f := H?;ll X't e
Xy of degree d = (3), which is associated with the (n — 1)-special parti-
tion [n — 1,n — 2,...,1], then we have Stabs, (f) = {1}, entailing that F :=
ft=mH = > gen [? € K[X], belonging to a regular H-orbit, fulfills
Stabg, (F') = H (although this choice might not be computationally efficient).

Still, this property does not imply that the separability condition is fulfilled, but
this can always be remedied by applying Tschirnhausen transformations to
the roots of f; recall that the Galois group looked for depends only on L, but
not on a specific choice of a polynomial having L as a splitting field.

(10.3) Example: Galois groups in degree 3. Let f € Q[X] be monic,
separable, and have integral coefficients. Then the roots of f are algebraic
integers, and if the check polynomial F' has integral coefficients as well, then
the roots of the associated resolvent are algebraic integers, too. Thus in this
case, since Z is integrally closed, Stauduhar’s criterion amounts to looking for
integral roots. If additionally f is irreducible, then A = Aut(L), where L is a
splitting field of f, acts transitively on the roots of f.

Let now f have degree 3. Then f is irreducible if and only if it has no root in Q,
or equivalently if it has no root in Z, where any root in Z divides f(0). In this
case A can be identified with a transitive subgroup of S3, which are {Aj3, Ss}.
Hence A is determined by a consideration of A(f) alone.

i) Let f:= X3+ X2 —2X — 1: since f(£1) = F1 we infer that f is irreducible.
From ez = —1, and e3 2 = —2, and e3 3 = 1 we get A(f) = 72, thus G = As.

ii) Let f := X3+ 2; since f has no root in Q, we conclude that f is irreducible.
Fromes; =0, and e3 2 = 0, and e3 3 = —2 we get A(f) = —22-3%, thus G = Ss.
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Actually, we may also argue as follows: The polynomial f has a unique root in
R, so that it additionally has a pair of complex conjugate roots; thus complex
conjugation induces an involutory automorphism of L, so that we have G = S3.

(10.4) Example: Galois groups in degree 4. Let f € Q[X] be monic,
irreducible, have integral coefficients, and have degree 4. Hence A = Aut(L),
where L is a splitting field of f, can be identified with a transitive subgroup of
Sy, which are {C4, V4, Dg, Ay, S4}, with inclusions Cy < Dg and V, < Dg N Ay.
We have the following check polynomials; see (9.8):

i) For G = Dg let Fp := (X1 X3)" = X1 X3+ X2X4; then we have Stabg, (Fp) =
Ds, and its Sy-orbit is {Fp, Fjy, F}}, where Fj, = FOY = X1 X, + X3X,
and F, = F9? = XX, + X,X5. Hence we have pSt(Fp) € K[X]S[X],
Where 63’1(FD,F]/3,FB) = 64)1, and 6372(FD,F/D,FB) = 647164’3 — 46474, and
6373(FD, F/D’ Fg) = 62716474 — 464,26474 + 642173.

ii) For G = Vy let Fy = (X3 X))t = X1Xo + X35X, = F},; then we have
Stab .4, (Fv) = Stabp, (Fv) = Vi, and its A4-orbit is { Fy, F{,, F{} }, where F{, =
F‘(/1’2’3) = F} and F|] = F‘(/1’3’2) = Fp. Hence we have pi*(Fy) = p‘%g(FD),
and eg ;(Fy, F{,, F{}) = e3(Fp, Fp, Fp), for i € {1,...,3}.

iii) For G = Oy let Fo = (X2X)*t = X2X5 + X2X3 + X2X4 + X2Xy; then
we have Stabpy(F¢) = Cy, and its Dg-orbit is {F¢, F/}, where F/, = Fél’g) =
XPX4+ X3X1 + X3X0 + X7 X3,

B/IOI'QOVGI‘7 let ﬁc = (X%X2X3)+ = X12X2X3+X22X3X4—|—X§X4X1 —|—X2X1X2,
then we have Stabp,(F¢) = C4, and its Dg-orbit is {F¢, F}, where FL, =
FEY = X2Xo0 Xy + X2X1 X4+ X2X4 X3 + X2X3X,. 4
Here are a few examples, see Table 6: For the various polynomials f we record
the discriminant A(f) = €;(A}) € Z, and the factorization of the resolvent

p(f) = es(pPL(Fp)) = es(pi* (Fv)) € QIX].

i) Let f := X*+ X + 1; then reduction modulo 2 shows that f is irreducible.
From A(f) and p(f) we conclude that A £ A4 and A € Ds, hence A = Sy.

ii) Let f := X% +8X +12; then reduction modulo 5 shows that f does not split
into quadratic factors, since f has no root in QQ implying that f is irreducible.
From A(f) and p(f) we conclude that A < Ay, but A £ Vy, hence A = A,.
iii) Let f := X*+1; then we have f(X —1) = X* —4X3+6X2%2—4X +2, hence
by the Eisenstein criterion f is irreducible. From A(f) and p(f) we conclude
that A < A4 and A < Vj, hence A = V. Note that since V3 < A4 is normal the
resultant it necessarily splits.

Actually, f is the 8-th cyclotomic polynomial, which is well-known to be irre-
ducible, having splitting field L = Q((g) of degree 4, where A = 7% = V,, being
generated by (s — —(g and (g — Cgl.

iv) Let f := X* — 2; then by the Eisenstein criterion f is irreducible. From
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Table 6: Galois groups in degree 4.

I/ [ AU [plh) [ Al
Xt X +1 229 [ X3 —4X —1 Sy
X4 48X +12 212.3%4 | X3 —48X —64 Ay
X*+1 28 | X(X +2)(X —2) Vi
Xt -2 —2l X(X2+8) Dg,Cy
X+ X34+ X2+ X +1 5 | (X —1)(X2+ X —1) || Ds,Cy

A(f) and p(f) we conclude that A £ A4, but A is a subgroup of precisely one
of {Dg, Dél’4), Dém)}; we have to determine which one, and whether A ~ Cy:
The roots of f are x; := (% - v/2 € C, for i € {1,...,4}. This yields ¢;(Fp) = 0,
while €7 (Fy)) = —2(4 - V2, and €;(FJ) = 2¢4 - v/2, entailing A < Dg. Moreover,
we get €(Fo) = —8(4 and €5 (F(,) = 8(4, thus the resultant (X +8(4)(X —8(4) =
X2 4+ 64 is irreducible over Q. Hence we have A £ Cy, entailing A = Dg. (We
get €7(F¢) = 0 and ey (F,) = 0, which does not help.)

v) Let f:= X*+ X3 + X2 + X + 1; then reduction modulo 2 shows that f is
irreducible. From A(f) and p(f) we conclude that A £ A4, but A is a subgroup

of precisely one of {Dg,Dé1’4),Dé1’2)}; we have to determine which one, and
whether A ~ Cjy:

The roots of f are z; := ({ € C, fori € {1,...,4}. This yields ¢;(Fp) = (5 + (2,
while €7(F},) = (2+¢3, and e;(F}}) = 2. Hence we have A < D{"? and letting
[1'1, e ,$4] = [C5a <52> Cga Cg](1’2)'(1’2)(3’4) = [Cf)a C52; Cé» Cg] we get A S DS-
Moreover, we get €¢(Fc) = —1 and €¢(F(,) = 4, thus the resultant (X+1)(X —4)
is separable, and has a root in Q; since Cy < Dg is normal it necessarily splits.
Thus we have A < Cy, entailing A = Cy. (We get e7(Fc) = —1 and €7(F) =
—1, which does not help.)

Actually, f is the 5-th cyclotomic polynomial, which is well-known to be irre-
ducible, having splitting field L = Q((5) of degree 4, where A = Z} = Cy, being
generated by (5 — (2, which is reflected by the adjusted ordering of the roots.

11 Application: Self-dual codes
We indicate how invariant theory helps in coding theory.

(11.1) Weight enumerators. a) Let F, be the finite field with ¢ elements,
and let n € N. Letting v = [v1,...,2,] € F} and w = [y1,...,yn] € F}, then
dlv,w) = |{t € {1,...,n};z; # y;}| € {0,...,n} is called their Hamming
distance. This defines a discrete metric on Fy, that is we have positive
definiteness and symmetry, and the triangle inequality holds.
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Let 0, := [0,...,0] € Fy, for v = [z1,...,7,] € F} let wt(v) := d(v,0,) €
{0,...,n} be the Hamming weight of v, let supp(v) := {i € {1,...,n};x; #
0} be the support of v; hence we have wt(v) = |[supp(v)|. Moreover, we have
translation invariance d(v +u,w +u) = d(v,w), for all u,v,w € Fy, thus we
have d(v,w) = d(v —w, 0,) = wt(v — w).

b) An F,-subspace C < FZIL is called a linear code of length n over Fg; if
q = 2 or ¢ = 3 then C is called binary and ternary, respectively. Let k :=
dimp, (C) € {0,...,n} be the dimension of C; if £ = 0 then C is called trivial.

If C is non-trivial then d(C) := min{d(v,w) € N;jv # w € C} € {1,...,n}
is called the minimum distance of C, and wt(C) := min{wt(v) € N;0,, #
v € C} € {1,...,n} is called the minimum weight of C; if C is trivial we
let d(C) := oo and wt(C) := oco. Then due to translation invariance we have
d :=d(C) = wt(C), and C is called an [n, k, d]-code over F,.

c) For i € Ny let w; = w;(C) := |[{v € C;wt(v) = i}| € Ng. Hence we have
wo < 1, and w; = 0 for i € {1,...,wt(C) — 1}, and wyyc) > 1, and w; = 0 for
i>n+1,and Y i w; = |C| = ¢%. We consider the sequence [wp, w1, . .., wy]:

Let {X,Y} be indeterminates. Then the associated homogeneous generat-
ing function is given as W¢ := >0 w, X'Y"™0 = 30 XWt0)yn-wtlv) ¢
Z[X,Y], being called the (Hamming) weight enumerator of C. Hence W
is homogeneous of degree n and has non-negative coefficients. By dehomog-
enizing, that is specializing X — X and Y — 1, we obtain the (ordinary)
generating function W¢(X,1) =37 jw; X' =Y o XV € Z[X].

For example, for the trivial code C := {0,} < F}' we get We = Y™; and for
the code C := Iy by elementary counting we get w; = () (g — 1) € Ny, thus
We =310 () (g = 1) XY" = (Y + (¢ — 1)X)".

(11.2) Duality. Let F, be the finite field with ¢ elements, and let n € N. Let
(o) Fy x Fy = For [[21,- 0zl [y, yn]] = @ y" = >, x;y; be the
standard F,-bilinear form on Fy; it is symmetric and non-degenerate.

For a code C < Fy, the orthogonal space ct = {v € Fyi(v,w) = 0 €
F, for all w € C} < IFZ with respect to the standard IFy-bilinear form is called
the associated dual code. Letting k := dimg (C) € {0,...,n}, we have
dimg, (C+) = n — k, and we have (C*)* = C. If C < C* then C is called
weakly self-dual, and if C = C then C is called self-dual; in the latter case
we have n — k = dimg, (C*) = dimg, (C) = k, thus n = 2k is even.

The weight enumerators Wz and We. are related by MacWilliams’s Theo-
rem [1963], saying that ¢* - Wer = We(Y — X, Y +(¢—1)X) € Z[X,Y]. In par-
ticular, if C = C* is self-dual, then ¢ -We = We (Y — X, Y +(¢—1)X) € Z[X,Y].
For example, for C := {0,} < F} we have ct = Fy, and indeed from W¢ = Y™
we recover Wrp = Wer = We(Y — XY + (¢ — 1)X) = (Y + (¢ — D)X)™



64

(11.3) Invariants for weight enumerators. Let F, be the finite field with
q elements, and let n € N. By MacWilliams’s Theorem, phrased in terms of
invariant theory, the weight enumerator We of a self-dual code C = C*+ < Fy
is a non-zero homogeneous invariant of degree n in S := K[X,Y], where K :=

-1 1
i1 1] € GLy(K).

Q(,/q), with respect to the involutory map s := ﬁ . {

Moreover, W¢ has degree n = 2k, which is even. To exclude precisely the
homogeneous components of S of odd degree, we only allow for invariants with
respect to z := —F3 € GLy(K). Thus we consider the group G := (s,z) = Vj:
Since both s and sz have eigenvalues {£1}, the group G is a reflection group.
Hence the invariant algebra S¢ is polynomial generated in degrees [dy, dy], where
from didy = |G| =4 and d1 +do —2 = 0(G) = |{s, sz}| = 2 we get dy = do = 2.
Thus we have Hge = ﬁ € Q(T); in particular, dimg (S§) = 2 shows that
we may choose any pair of K-linearly independent homogeneous invariants of
degree 2 as basic invariants.

We have f := Tr{l, (¢X?) = Tr¥(¢X?) = (¢ + 1)X? — 2XY + Y2 € S€, and
g :=Tey(q¥?) = Tl (¢V?) = (¢—1)2X?+2(¢— 1) XY +(¢+1)Y? € S¢, and
h:= Tr&(—qXY) =Tl (—¢XY) = (q—1)X2-2(¢q—1)XY —Y2 € S¢. Hence
letting f1 := 21—61~(f+h) =X?2-XY,and fo := %-(g—&—h) =(g—1)X%2+Y? we
infer that {f1, f2} is a set of basic invariants. Thus We € S¢ = K|[fi, f2] can be
written uniquely as a polynomial in {X?— XY, (¢—1)X?%+Y?}, with coefficients
in K = Q(,/q); note that, if ¢ € Z is not a square, then since Q € Q(,/q) is
Galois we conclude that actually We € Q[ f1, f2]-

Since We € S we have We = E?:o ajff 5‘3', where a; € Q. Since 0,, € C is

the only element of weight 0, that is Y™ occurs with coefficient wg = 1 in W,
we infer that ap = 1. Hence We = Y™ + 37" | w; X"V, which is defined by
the n = 2k numbers [wy, ..., w,], only depends on the k numbers [aq, ..., ag].
In the sequel, we look more closely at the binary and ternary cases, where we
refer to computational checks (whose details we spare):

(11.4) Invariants for binary weight enumerators [GLEASON, 1970]. We
consider the case ¢ = 2. Let C = C* < F%, where n € N, be a self-dual code;

ﬂ € GLy(K) and

2 1= —Fsy, where K := Q(1/2); recall that s and sz are reflections.

a) Since C is an even-weight code, We € Q[X? — XY, X? +Y?] is invariant with
respect to d := diag[—1,1]. We consider the group H := (s, z,d) < GLy(K):

-1
i i in s = L.
then C is an even-weight code. Let again s := 7 [ 1

Since d is a pseudoreflection, H is a real reflection group. It can be checked
that H 2 Dyg, and that o(H) = 8. Since H does not possess any common
eigenvectors, we conclude that H acts (absolutely) irreducibly. Thus H is of type
2b in the Shephard-Todd classification, having (non-crystallographic) Dynkin
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type I2(8). The invariant algebra S¥ is polynomial generated in degrees [dy, da],
where from dides = |H| = 16, and dy + dy — 2 = o(H) = 8, we conclude that

d1 = 2 and dy = 8. Thus we have Hgn = m e Q(T).

We proceed to find basic invariants: We observe that f; := X2 + Y? actually is
H-invariant. Observing that Staby(Y) = (d) = Cs, we get fo :=4- N{j) Y)=
X?2Y2%(X?% - Y?)2 Since {ft, fo} is K-linearly independent, we conclude that
{f1, f2} is a set of basic invariants. Thus We € SH# = K[fi, f2] can be written
uniquely as a polynomial in {X? + Y2, X2Y?(X? — Y?2)2}, with coefficients in
K = Q(v/2); note that since Q C Q(+/2) is Galois we infer that We € Q[f1, f2].

b) We now assume further that C is 4-divisible, that is we have 4 | wt(v) for
all v € C; then C is also called a (doubly-)even self-dual code. Note that C
is 4-divisible if and only if C has a 4-divisible Fa-basis; and if C is cyclic then
the latter is the case if and only if the number of monomials occurring in the
generating polynomial of C is divisible by 4.

Hence the weight enumerator We € Q[X? + Y2, X2Y2(X?2 — Y?2)?] is even in-
variant with respect to d := diag[(4, 1], where {4 € C is primitive 4-th root
of unity. Thus we now consider the group H := (s,z,d) < GLy(K), where
K = Q(V2,¢4) = Q((s), and (g € C is primitive 8-th root of unity:

Since d is a pseudoreflection, H is a (non-real) complex pseudoreflection group.
It can be checked that H has order 192. Since H does not possess any com-
mon eigenvectors, we conclude that H acts (absolutely) irreducibly. Moreover,
it turns out that Z(H) = ((s - F3) = Cs; hence the degree of any non-zero
homogeneous H-invariant is divisible by 8.

Hence the invariant algebra S is polynomial generated in degrees [d1, da], where
from dydy = |H| = 192 = 82 -3, and 8 | d;, we conclude that d; = 8 and
dy = 24. (Alternatively, we could check that o(H) = 30.) Thus we have
Hgn = Wll—T“) € Q(T). Moreover, we infer that H is the group Gy in
the Shephard-Todd classification, being of shape H = 2.(4 x &y).

We proceed to find basic invariants, observing that Staby (Y) = (d) = Cy4: This
yields f; := T%-Tr{é> (Y8) = X8+14X4Y*4+Y8. Moreover, we get 216~N<IZ;> V)=
X8Y8(X* — Y4B thus taking square roots we let fo = X4YV4(X* — Y44,
which turns out to be H-invariant. Since {f}, fo} is K-linearly independent, we
conclude that { f1, fo} is a set of basic invariants. Thus We € S# = K[fy, f»] can
be written uniquely as a polynomial in {X8+14X4Y* +V?® X4Y4 (X4 -Y*4)1},
with coefficients in K = Q({g); note that since Q C Q((g) is Galois we conclude
that We € Q[fy, fol-
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Example. Let H < FS be the extended Hamming [8,4,4]-code, whose
generator matrix we may assume to be equal to

o111 1
11 11 i
1 1.1 . 1| | €RT
T 11 11111

Then # is self-dual and 4-divisible. Hence we necessarily have Wz = fi. (The
weight enumerator already follows straightforwardly from 4-divisibility, provid-
ing an alternative way to find the basic invariant f; in the first place.)

Example. Let Goy := Gos < F2* be the extended binary Golay [24,12,8]-
code, where the binary Golay [23,12,7]-code Gz < F23 is the cyclic code
with generator polynomial X1 + X9 + X7+ X6 + X% + X + 1 € F5[X]. Then
Gay is self-dual and 4-divisible.

Hence we have Wg,, = a- f{ +b- fo, where a,b € Q. Since 0,, € Goy4 is the only
element of weight 0, that is wo(G24) = 1, and Gay4 does not possess any elements
of weight 4, that is w4(G24) = 0, we conclude that ¢ = 1 and b = —42. Hence
we have Wg,, = X4 + 759X 10Y® 4+ 2576 X12Y12 + 759 X8Y16 + Y24, (This is
an efficient way to compute the weight enumerator, compared to combinatorial
methods. Or, if the latter is already known, this provides an alternative way to
find the basic invariant fy in the first place.)

(11.5) Invariants for ternary weight enumerators [GLEASON, 1970]. We
consider the case ¢ = 3. Let C = Ct < F%, where n € N, be a self-dual code;
then C necessarily is 3-divisible, that is we have 3 | wt(v) for all v € C. Let
again s := % : [_21 ﬂ € GLy(K) and z := —E», where K := Q(v/3); recall
that s and sz are reflections.

Hence the weight enumerator We € Q[X?2— XV, 2X?2+Y?] is also invariant with
respect to d := diag[(s, 1], where (3 € C is primitive 3-rd root of unity. Thus we
consider the group H := (s,z,d) < GLy(K), where K := Q(v/3,(3) = Q((12),
and (o € C is primitive 12-th root of unity:

Then H is a (non-real) complex pseudoreflection group. It can be checked
(computationally) that H has order 48. Since H does not possess any com-
mon eigenvectors, we conclude that H acts (absolutely) irreducibly. Moreover,
it turns out that Z(H) = ({4 - F2) = Cjy; hence the degree of any non-zero
homogeneous H-invariant is divisible by 4.

Hence the invariant algebra S* is polynomial generated in degrees [d1, da], where
from didy = |H| = 48 = 4% -3, and 4 | d;, we conclude that d; = 4 and
dy = 12. (Alternatively, we could check that o(H) = 14.) Thus we have Hgn =
Wll—ifn) € Q(T). Moreover, since H is not metabelian (thus excluding the
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case G2,6,2 in the Shephard-Todd classification), we infer that H is the group
G in the Shephard-Todd classification, being of shape H =2 2.(2 x Ay).

We proceed to find basic invariants, observing that Stabpy(Y) = (d) = Cj
and Staby (X) = {1}. This yields f; := & - Tr) (Y*) = 8X3Y + Y4 € §H.
Moreover, we get 3% - NH(X) = X'2(X? — Y3)!2 thus taking 4-th roots we
let fo := X3(X3 — Y3)3, which turns out to be H-invariant. Since {f}, fa} is
K-linearly independent, we conclude that {fi, fo} is a set of basic invariants.
Thus We € SH = K[fi, f2] can be written uniquely as a polynomial in {8X3Y +
Y4, X3(X3—Y3)3}, with coefficients in K = Q((i2); note that since Q C Q(¢12)
is Galois we conclude that We € Q[f1, f2].

Example. Let # < F3 be the Hamming [4, 2, 3]-code with generator matrix

R U I I
{1 1 —1]€F3 '

Then H is self-dual. Hence we necessarily have Wy, = f1. (The weight enumera-
tor already follows straightforwardly from 3-divisibility, providing an alternative
way to find the basic invariant f; in the first place.)

Example. Let Gy := 511 < Fi? be the extended ternary Golay [12,6,6)-
code, where the ternary Golay [11,6,5]-code G;; < Fi! is the cyclic code
with generator polynomial X°— X3+ X?— X —1 € F3[X]. Then G2 is self-dual.

Hence we have Wg,, = a- f{ +b- fo, where a,b € Q. Since 0,, € Gy5 is the only
element of weight 0, that is wo(G12) = 1, and G2 does not possess any elements
of weight 3, that is w3(G12) = 0, we conclude that a =1 and b = 24. Hence we
have Wg,, = 24X12 4+ 440X°Y3 + 264X6Y % 4 Y!2. (This again is an efficient
way to compute the weight enumerator, compared to combinatorial methods.
Or, if the latter is already known, this provides an alternative way to find the
basic invariant f, in the first place.)

12 Example: The icosahedral group

We present an elaborated classical example, the invariants of the icosahedral
group, due to KLEIN [1884] and MOLIEN [1897]. This in particular shows how
geometric features are related to invariant theory. (The other polyhedral groups
are considered in Exercise (18.30).)

(12.1) Symmetries of the icosahedron. Let Z C R? be the regular icosahe-
dron, one of the platonic solids, see Table 3. The faces of Z consist of regular
triangles, that is n = 3, where at each vertex k = 5 faces meet. Let f be
the number of faces, let e be the number of edges, and let v be the number of
vertices. By Euler’s Polyhedron Theorem we have f — e + v = 2, hence since
2e =nf and kv = nf, we conclude that f = 20, and e = 30, and v = 12.
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Let G :={g € O3(R);Z-g =T} < O3(R) be the the symmetry group of Z, being
called the icosahedral group, where we assume Z to be centered at the origin,
and the orthogonal group O3(R) is the isometry group of Euclidean 3-space.
Let H = GNSO3(R) < G be the group of rotational symmetries of Z, where
SO3(R) := {g € O3(R); det(g) = 1} < O3(R).

By regularity of Z, the group H acts transitively on its vertices, where the
associated point stabilizers have order 5, hence |H| = 60. Recalling Euler’s
Theorem, saying that any rotation of Euclidean 3-space has an axis, the axes of
the elements of H are given by the lines joining opposite vertices, and midpoints
of opposite edges, and midpoints of opposite faces, respectively. This yields
- (k — 1) = 24 elements of order k£ = 5, and § = 15 elements of order 2, and

(SN TS

- (n—1) = 20 elements of order n = 3, accounting for all elements of H \ {1}.

We show that H & As: By regularity we infer that H has a unique conjugacy
class of elements of order 2; since the Sylow 2-subgroups are abelian, Ny (Vy)
controls 2-fusion, implying that Ng(Vy) = A4. Moreover, H has 10 Sylow 3-
subgroups, hence Ny (C3) = Ss, so that there is a unique conjugacy class of
elements of order 3; and H has 6 Sylow 5-subgroups, hence Ny (C5) = Dyg, so
that there are two conjugacy classes of elements of order 5, of length 12 each.
From the lengths of the conjugacy classes we conclude that H is simple, so that
the permutation action of H on the cosets of A4 induces an isomorphism to As.

For s := —FE3 € O3(R), that is the inversion with respect to the origin, we have
s € G\ H. Since s € Z(O3(R)), we have G = H x (s) & A5 x Co, in particular
|G| = 120; note that s is not a reflection. Since the elements of H are rotations,
its elements of order 2 have eigenvalues {1, —1, —1}, hence are not reflections
either. Since H, being simple, is generated by its elements of order 2, we con-
clude that the set of reflections S(G) = {gs € G;1 £g€ H,g> =1} CG\ H
generates a subgroup of G having As as an epimorphic image, which hence coin-
cides with G. Thus G is a real reflection group. Since the elements of H do not
possess any common (real) eigenvector, H acts (absolutely) irreducibly. From
this we infer that G is the group Gag in the Shephard-Todd classification, having
(non-crystallographic) Dynkin type Hs, and having character field Q(v/5).

(12.2) Invariants of the icosahedral group. Let H := A5 < GL3(K) and
G := H x (s) < GL3(K), where s := —FE3 and K := Q(v/5), let V := K3 and
let S := K[X] be the associated polynomial algebra, where X := {XY, Z}.

Since G is a reflection group, its invariant algebra S¢ = K[f1, f2, f3] is polyno-
mial generated in degrees [dy, d3, d3], where dydads = 120 and d; +da+d3 —3 =
o(G) = 15. Hence we have d; = 2, and do = 6, and d3 = 10, so that
Hge = (1_T2)(1_}6)(1_T10) € Q(T). Since H does not contain any reflections,

its invariant algebra S¥ is not polynomial; we determine the Hilbert series H g :

The 15 involutions in H have eigenvalues {1, —1, —1}; the 20 elements of order
3 have eigenvalues {1, (3,3}, where (3 € C is a primitive 3-rd root of unity; the
12 + 12 elements of order 5 have eigenvalues {1, (s, (2} and {1, (2, (3}, respec-
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tively, where (5 € C is a primitive 5-th root of unity. Thus Molien’s formula
15

entails Hgn = T ATy € Q(T). Hence we are tempted to look for a

homogeneous H-invariant g of degree 15 such that S = K|[f1, fo, f3, g].

Leta=CG+E =34 (Vi-1)eRand =G +¢=-3-(Voi+1)eR;
hence K = Q(a) = Q(B). Being a real reflection group of Dynkin type Hs,
choosing the K-basis of V' consisting of the fundamental roots associated with
the Cartan matrix
2 B0
o= |5 2 -—1| €GL3(K),

-1 0 0 1 -8 0 10 0
a=-B 1 0|, b:=|0 -1 0|, c:=l0 1 1],
0 0 1 0 1 1 00 -1

where (ab)® = (ac)? = (bc)> = 1. Since G acts transitively on the associated
root system, entailing that all roots have the same length, ® is the Gram matrix
of a G-invariant scalar product on V, that is we have g-®-¢'* = ® for all g € G.
Note that det(®) = 2 - (1 — «), and that since G acts absolutely irreducibly, ®
is as an G-invariant scalar product uniquely defined up to scalar multiples.

Fromg-®-g" =® weget g - ®1.g7 =1 thus g% - &~ 1. g=&" 1 for
all g€ G. Let f:=X-®71.X" € S. Then we have f9 = (X -®~1.x")9 =
Xg.q)fl.(Xg)tr — (X.gtr).q)fl,()(.gtr)tr — X~(gtr~(1)71~g)~)(tr — X.(pfl.‘)(tr — f;
so that as first basic invariant we may take

fi:=det(®) - f =3X2 —4BXY —2BXZ +4Y? +4Y Z + (3 + )22

Note that since H acts irreducibly, f; cannot possibly be the product of two
linear factors, thus f; is irreducible in S.

ii) Next, G permutes the § = 6 lines joining opposite vertices of 7 transitively,
which are given as the axes of the rotations of order 5 in H. Hence a vector
spanning one of these lines is found as an eigenvector of ab € H, with respect
to the eigenvalue 1; then the associated G-orbit has length 12. Therefrom we
pick the following vectors, up to taking scalar multiples:

[01,0,1], [*04,0,1], [04,271]7 [2+a,2,1], [7ﬂ727a}’ [7632a3+ﬂ]'

Let fo € S the product of the latter elements, being homogeneous of degree
6. Hence (f2)x is a one-dimensional K[G]-submodule. Since H is perfect,
and s € G fixes all elements of degree 6 anyway, we conclude that fs is G-
invariant. Since {f3, fo} is K-linearly independent, we may take f» as second
basic invariant, where fy up to scalar multiples equals

X6 —48X°Y - 28X°7 + (—12 — 166) X *Y?
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+(=12-16B8) XY Z+ (—17—-118)X*Z* + (64 +328) XY + (96 + 488) X*Y?Z
—8X3Y Z? 4+ (=20 — 88) X373 + (—48 — 328) X2Y* 4 (=96 — 643)X?Y3Z
+(8 4+ 240)X2Y?Z2 + (56 + 5608) X2Y Z3 + (22 + 198) X2 Z* — 32XY3Z?
—48XY2Z3 + (=4 +128)XY Z* + (6 + 68) X Z° + (16 + 168)Y* Z?
+(32+32B8)Y?Z3 + (-8 +4B)Y?Z* + (24 — 12B)Y Z° + (—7 — 48) Z°.

iii) Similarly, G permutes the g = 10 lines joining the midpoints of opposite
faces of 7 transitively, which are given as the axes of the rotations of order 3
in H. Hence a vector spanning one of these lines is found as an eigenvector of
bc € H, with respect to the eigenvalue 1; then the associated G-orbit has length
20. Therefrom we pick the following vectors, up to taking scalar multiples:

[1,0,1—a], [1,0,a—1], [1,2,-8], [1,2,1—aq, (8,-2,q],
B,-2,8-1], [30,2,1], [B+8,2,1], [14+20,2,—8], [142a,2,1—al.

Let f3 € S the product of the latter elements, being homogeneous of degree
10. Hence (f3)k is a one-dimensional K [G]-submodule. Since H is perfect, and
s € G fixes all elements of degree 10 anyway, we conclude that f3 is G-invariant.
Since {f7, f2f2, f3} is K-linearly independent, we may take f3 as third basic
invariant, where f3 up to scalar multiples equals

(105 — 1658) X ™ + (1100 — 18008) X°Y + (550 — 9008)X° Z
+(5148 — 83648) X®Y? + (5148 — 83648) X®Y Z + (1098 — 18398) X ° 2>
+(13632 — 218883) XY + (20448 — 328328) XY >Z + (8976 — 141608) XY Z*
+(1080 — 16088) X" Z* + (21984 — 355208) XY™ + (43968 — 710408)X°Y*Z
+(28320 — 457443)X°Y? 2% 4 (6336 — 102248) X°Y Z° + (354 — 4088)X° Z*
+(22336 — 364808) X°Y® + (55840 — 912008)X°Y*Z + (46720 — 773768)X°Y?> Z*
+(14240 — 248648)X°Y? Z® 4 (224 — 18963) X°Y Z* + (—400 + 1568) X° Z°
(14272 — 22976 3) X 'Y° + (42816 — 689285) XY Z + (43680 — 707208) X *Y* Z*
+(16000 — 265608) X*Y> Z% 4 (360 4 4808) X ‘Y2 Z* + (=504 + 22726) XY Z°
+(—38 +2948) X" Z° + (5120 — 81928) X®Y ™ + (17920 — 286723)X°Y°Z
+(21376 — 318728) X*Y® Z% + (8640 — 80003)X®Y* Z® + (—1920 + 73608) X°Y?>Z*
+(—2560 4+ 47048) X*Y 2 Z° 4+ (—560 + 8328) X®Y Z° + (8 4+ 488)X> Z"
+(768 — 12808)X°Y® + (3072 — 51208) XY " Z + (2304 — 47363) XY ° Z2*
+(—3840 + 37128) X *Y° 2% 4 (—6720 + 88008) X *Y* Z* + (—3456 + 54408) X *Y° Z°
+(—688 +12008)X*Y?2° 4+ (—112 — 488)X°Y Z" + (—10 — 278) X > Z°
+(—1024 + 10248) XY " Z% 4 (—3584 + 35848) X Y° Z® 4 (—4608 + 48008)XY° Z*
+(—2560 + 30408) XY * Z° 4 (—448 4+ 8328)XY*Z° + 96 XY*Z"
+(36 —44B)XY Z% + (2 — 68) X Z° + 2568Y° 2% +10248Y " Z°
+(—64 4 15368)Y°Z* + (=192 + 10248)Y° Z° 4 (—192 + 2248)Y* Z°
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+(—64 —648)Y3Z7 + (8 —368) Y22 + (8 —4B)Y Z° + Z'°.

iv) Finally, G permutes the § = 15 lines joining the midpoints of opposite edges
of 7 transitively, which are given as the axes of the rotations of order 2 in H.
In other words, these are spanned by eigenvectors of the reflections in G, with
respect to the eigenvalue —1, where the latter can be chosen to coincide with
the positive roots of G. Picking the root [1,0,0], the associated G-orbit has
length 30. Therefrom we pick the following roots, up to scalar multiples:

[0,0,1], [0,1,0], [1,0,0], [0,1,1], [1,1,0],
[1,1,1], [, 1,0], [-5,1,0], [o,1,1], [-8,1,1],
1,1,¢], [1,1,1—¢], [1,-8,1], [1,-B8,qa], [-5,2,1].

Let g € S the product of the latter elements, being homogeneous of degree 15.
Hence (9)x € Si5 is a one-dimensional K[G]-submodule. Since H is perfect,
but s negates all elements of degree 15, we conclude that g is G-invariant such
that g - s = —g, where g up to scalar multiples equals

XYZ- (X”Y + X" 7 —88X"Y? —128X"Yv Z — 48X "0 Z% + (22 — 338)X°Y?

+(44 — 668)X°Y>Z + (22 — 448)X°Y 2% — 118X° Z® + (86 — 1083) X *y*
+(215 - 2708) XY * Z + (220 — 2208) X®Y? Z° + (115 — 608) X°Y Z° + (24 — 28) X Z2*
+(153 — 2738) XY® 4 (459 — 8198) XY Z + (480 — 9608) X 'Y * Z*
+(195 — 5553) X Y22 + (27 — 1538) XY Z* + (6 — 128) X" Z°
+(240 — 4328)X°Y° + (840 — 15128)X°Y° Z + (1152 — 21128) X°v* Z*
+(780 — 15008) X°Y? 2% 4 (216 — 6008) X°Y?Z* + (=36 — 1568) XY Z°
+(—24 — 248)X°Z° 4 (309 — 4568) X°Y T + (1236 — 18246)X°Y°Z
+(2100 — 29408) X°Y° 2% + (1974 — 24368) X°Y* Z* + (1176 — 10503) X° Y3 2*
+(504 — 1688)X° Y Z° + (144 4+ 24B)X°Y Z° + (15 + 68)X° Z"
+(238 — 3628)X*Y® + (1071 — 16298) X Y7 Z + (1968 — 30963) X 'Y 22
+(1890 — 32348) X*Y° Z* + (1008 — 20168) X *Y* Z* + (294 — 7568) X *'Y* Z°
+(72 = 1448) X Y2 Z° 4 (45 4+ 98) XY Z7 + (14 + 88) X * Z°
+(110 — 2098) XY 4 (550 — 10458) X°Y*® Z 4 (1170 — 22208) X°Y " Z*
+(1380 — 26108) X*Y°®Z® + (924 — 18908) X°Y° Z* + (252 — 9248)X°Y* 2°
+(—120 — 3608) X*Y?Z° + (=150 — 1353)X°Y?Z" + (=60 — 408) X*Y Z°
+(=8—-53)X°Z" + (44 — 728) X*Y"° + (242 — 3968) X*Y Z
+(600 — 9208) XY ® Z* + (885 — 11708) XY Z® + (840 — 8883) XY Z*
+(504 — 4208)X?Y° Z° + (192 — 1208)X°Y* 2% + 75X%Y*Z"
+(40 +208)X°Y?Z% 4+ (10 + 68) XY 2° + (13 — 138) X V!
+(78 — T83)XY '’ Z + (176 — 2208) XY’ Z* + (165 — 3858) X Y® Z°
(45 — 4238) XY Z* + (48 — 2408)XY°Z° + 168X Y Z°
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+(171 4+ 818)XY*Z" + (70 + 408)XY> 2% + (10 + 68) XY > Z°
—28Y"? —138YM Z + (8 —328)Y'° 2% 4 (44 — 338)Y° Z?
+(84 —108)Y®Z* + (48 — 12B)Y" Z° + (—48 — 483)Y° Z°

(=84 —57B)Y°Z" + (—44 — 288)Y*Z5 + (—8 — 5 Y3Z9).

Since S is the graded direct sum of the eigenspaces of s with respect to the

eigenvalues {1}, we conclude that R := S¢ @ ¢S C SH. Hence from Hp =

(1+T¥) - Hge = Hg,, € Q(T) we conclude that S = S¢ @ ¢S, being is a

free graded S%-module of rank 2, generated in degrees [0, 15].

Alternatively, since {f1, fa, f3} is algebraically independent, by the Jacobian
criterion for the Jacobian determinant we have h := det(J(f1,..., f3)) # 0.
Moreover, since H is perfect we have dety (g) = 1 for all g € H, but dety (s) =
—1, so that from Exercise (18.8) we infer that h € S being homogeneous of
degree dy +dg +d3 — 3 = 15, but h-s = —h. Since dimg (S) = 1 we conclude
that h is associate to g; using the elements given above we find h = —2'8 . g.

(12.3) Modular invariants of the icosahedral group. Let K be a field,
such that 72 + T — 1 = (T — «)(T — B) € K|T] splits. Hence we have {«, 8} =
{1 (-1+V5)}if Q(v5) € K C C, which we may assume if char(K) = 0; and
modular reduction of the latter algebraic integers yields {«, 8} if char(K) # 0.

Keeping the notation of (12.2), let G = (a, b, ¢) < GL3(K); then G is a reflection
group if char(K) # 2, while G is generated by transvections if char(K) = 2.
Thus G is an epimorphic image of A5 x Cs. Since Aj is simple, we have G =
H x (s), where H = Aj and s = —Fj3, if char(K) # 2; while G = As, if
char(K) = 2. (Recall that by Serre’s Theorem, which we have not proven, G
possibly but not necessarily has a polynomial invariant algebra.)

a) Let char(K) # 2. Then G acts irreducibly on V', where V is unique up to
outer automorphisms of G. Let fi be as in (12.2)(i), where ® still is the Gram
matrix of a non-degenerate symmetric G-invariant K-bilinear form on V; let fo
be as in (12.2)(ii), where the G-orbit of a fixed vector of ab € H still has length
12; let f3 be as in (12.2)(iii), where the G-orbit of a fixed vector of bc € H still
has length 20; and let g be as in (12.2)(iv), where the G-orbit of the root [1, 0, 0]
still has length 30.

i) For the Jacobian determinant of { f1, f2, f3} we have det(J(f1, fo, f3)) = —2'8-
g # 0. Hence by the Jacobian criterion { f1, f2, f3} is algebraically independent,
and since the f; have degree product 2-6-10 = 120 = |G/, by Kemper’s Theorem,
see (16.2) below, we conclude that S¢ = K[fi, fa, f3] is polynomial with basic
invariants { f1, fa, f3}; hence we have Hge = (I_TQ)(I_lTG)(l_Tm) € Q(T).

ii) Taking the determinant representation into account, where dety (H) = {1}
and dety (s) = —1, we have SH = §¢ @ S{, as graded S%-modules. We show
that for the set of semi-invariants we have S§, = g - S¢:
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We have g € Sg’;t, so that g - S¢ C S’fet. Conversely, let f € S(?et. Then
for the reflection a € G with respect to the root [1,0,0] we have f(X,Y,Z) =
—f(X,Y,Z)a=—f(—X,Y—BX,Z) € S, so that the K-algebra homomorphism
S — K[Y,Z] given by X — 0, and Y — Y, and Z — Z, yields f(0,Y,2) =
—f(0,Y,Z) = 0. Hence we infer that X | f € S. Since f is semi-invariant,
we conclude that g, being the product of a set of representatives of the roots
up to scalar multiples, divides f. Writing f = gf’, for some f’ € S, since S is
a domain we get f’ € S¢, showing that f € g- S“. (Note that the preceding
argument is strongly reminiscent of the reasoning in (9.4).) i

Hence SH = 8% @ g - SY is a free graded S“-module generated in degrees
[1,15], so that Hgn = (1 + T*5) - Hge. Moreover, {f1, f2, f3,9} is a minimal
homogeneous K-algebra generating set of SH.

b) Let char(K) = 2. Then V = [W/K] is uniserial as a K[G]-module, where G
acts trivially on K, and W is irreducible of K-dimension 2; then V' is uniquely
defined by these properties up to outer automorphisms of G. Moreover, the
contragredient K[G]-module V* 2 [K/W] is obtained by 2-modular reduction
of the G-action on the weight lattice, instead of the root lattice.

i) We consider the K[G]-module V first. Hence we have dimf (S{) = 1, and we
let fi := X + 37 € S¢. (Actually, the rotation axes of the elements of order 5
and of those of order 3 all coincide with (f1)x. Moreover, ® is degenerate, and
V is not self-contragredient as a K[G]-module.)

Searching explicitly, degree by degree, for indecomposable homogeneous invari-
ants we get fo € SY of degree 5, which we may choose as

X3Y? + X3YZ + X32% + BX?Y?Z + BX?Y Z? + BX?% 73
+BXYY + XY2Z2 + aXYZ3 + X244+ YA Z + Y2 Z3 + BZ°.
Subsequently we get f3 € S of degree 12, which we may choose as
XYV2Z + X0V 72 + BX8Y2 22 + BXBY Z3 + BXY4Z + BXY Z* 4+ X6y
+X5Y°Z 4+ pXOY4 2% + XOV323 + XOY? 2% + pXOY 75 + X676
+aX°Y5Z + aX5Y5 722 + XY Z3 4 aXPY3 24 + 2 X°Y?2 25 + pX5Y 75
+6X4Y8 + BX4Y6Z2 4 6X4Y5Z3 + ﬁX4Y4Z4 + /8X4Y3Z5 + ﬁX4Y2Z6
+X178 + XY 7P + XY 7 4+ BXPYAZ° + XPYPZ0 + aX3Y 78
+a X2V + aX?Y2Z + aX?YSZ* + aX?YPZ° + BX2Y 420 4 pX2Y2 78
+ X270 4 XY Z + BXY?Z? + BXYBZ3 4+ BXYCZ° 4+ pXY5Z6
+6XYZ10 + Y12 + Y10Z2 + Y6Z6 + Y2210 + ZlQ.
For the Jacobian determinant of { f1, f2, f3} we get det(J(f1, fa, f3)) # 0. Hence

by the Jacobian criterion {f1, f2, f3} is algebraically independent, and since the
fi have degree product 1-5-12 = 60 = |G|, by Kemper’s Theorem, see (16.2)
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below, we conclude that S¢ = K|[f1, fa, f3] is polynomial with basic invariants
{f1, f2, f3}; hence we have Hge = (17T)(17%5)(17T12) e Q(T).

(Picking the root [1,0, 0], the associated G-orbit has length 15, so that by taking
the product of the latter elements we still get a homogeneous invariant g of
degree 15; it turns out that det(J(f1, f2, f3)) = ¢.)

ii) We consider the K[G]-module V*. Hence we have dimg (S¢) = 0, but it
turns out that dimg (S§) = 1, and we let f; := X2+ XY +Y24+YZ+ 2% € SC.
(Note that f; is a degenerate quadratic form associated with ®.) Proceeding
degree by degree as above, we find an indecomposable homogeneous invariant
of degree 5, which we may choose as

for=XY + XY 4oV Z +aYZ = XY(X3+Y3) +aY Z(Y? + Z%) € 5€.

We observe that there is an indecomposable homogeneous invariant of degree 6,
which turns out to be accessible as follows: The rotation axes of the elements of
order 5 are all G-conjugate, thus choosing an eigenvector of ab € G with respect
to the eigenvalue 1, we obtain a G-orbit of length 6. We pick the following
vectors, up to taking scalar multiples:

[0,0,1], [o0,1,1], [1,1,0], [1,B,0], [B,0,1], [B,1,1].

Let f3 € S the product of the latter elements, being homogeneous of degree
6. Hence (f5)k is a one-dimensional K|[G]-submodule. Since G is perfect we
conclude that f3 is G-invariant, and up to scalar multiples equals

Z-(XY +X'Z +aX?Y?Z 4+ aX?Z3 + XY+ XY Z3 + YA Z 4 BY 2 Z3).

For the Jacobian determinant of { f1, fa, f3} we get det(J(f1, f2, f3)) = B-f3 # 0.
Hence by the Jacobian criterion {fi, f2, f3} is algebraically independent, and
since the f; have degree product 2-5-6 = 60 = |G|, by Kemper’s Theorem,
see (16.2) below, we conclude that S¢ = K[fi, fa, f3] is polynomial with basic
invariants { f1, fa, f3}; hence we have Hga = (17T2)(171T5)(17T6) € Q(7).

(The rotation axes of the elements of order 3 give rise to a homogeneous invariant
of degree 10, being equal to f?f3 + f2; the transvection a € G associated with
[0,1,0] gives rise to a homogeneous invariant of degree 15, being equal to f3.)

II More commutative algebra

13 Dimension theory

(13.1) Krull dimension. Let R be a commutative ring. Then the height
ht(P) € Ng U {oo} of a prime ideal P < R is defined as the maximum length
r € Ny of a strictly ascending chain Py C P, C --- C P. = P of prime ideals
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P, < R. The (Krull) dimension dim(R) € Ny U {cco} of R is defined as the
maximum height of a prime ideal of R, where dim({0}) := —cc.

The height ht(I) € Ny U {co} of an ideal I <1 R is defined as the minimum
height of a prime divisor of I, that is the prime ideals of R containing I. for
completeness we let ht(R) = oo. The (Krull) dimension of an ideal I < R is
defined as dim(I) := dim(R/I).

Example. If R is not Noetherian, there are straightforward examples hav-
ing infinite dimension: Let K be a field, and let R := K[X;, Xa,...] be the
polynomial algebra in countably infinitely many indeterminates. Then letting
P, = (Xy,...,X;) 4R, for i € Ny, yields an infinite strictly ascending chain
{0} = Py C P, C --- 4R of ideals, which since R/P; = K[X; 1, X211,...] are
all prime ideals. Hence we have dim(R) = occ.

Similarly, letting R := K[X4,...,X,] where n € Ny, and P; := (X1,..., X;)<4R,
for i € {0,...,n}, yields a strictly ascending chain {0} = Py C P, C --- C
P, < R, which since R/P; = K[X,1,...,X,] are all prime ideals. Hence we
have ht(P;) > 4, so that ht(P,) > n implies that dim(R) > n; actually it is
surprisingly difficult to prove that dim(R) = n, see Theorem (14.2).

Actually, even a Noetherian K-algebra may have infinite dimension; an example
given by NAGATA [1962] is given in Exercise (19.16). Despite this, by Krull’s
Principal Ideal Theorem shown in (13.7) below, whenever R is Noetherian and
I < R is a proper ideal we have ht(I) < oo; and for the above examples we
indeed have ht(P;) < i, so that equality holds.

(13.2) Lemma: Prime avoidance. Let R be a commutative ring, and let
Py, ..., P, < R be prime ideals, for n € N, and let I < R be an ideal such that
I C;_, P;. Then thereis i € {1,...,n} such that I C P,.

Proof. We proceed by induction on n € N; the case n = 1 being trivial, let
n > 2, and assume that there does not exist an ¢ such that I C P;. Thus by
induction we may assume that for all j € {1,...,n} thereis f; € I\ U, Ps
Hence we have f; € P;, thus since P,, < R is prime we infer that H;:ll fij €
(M= P)\ Py and f,, € P, \U!Z,' Pi. Thus for f := f, + ][/} f; € I we have
f & P,. Moreover, assume that f € U?;ll P;, then there is i € {1,...,n — 1}

such that f € P;, since H;:ll fij € P; entailing f, € P;, a contradiction. Hence
we have f ¢ \JI—]' P; as well, so that f € I\ |J/_, P;, a contradiction. i

(13.3) Localization. a) Let R be a commutative ring. A subset U C R is
called multiplicatively closed, if 1 € U and fg € U whenever f,g € U.

Letting M be an R-module, let ~ denote the equivalence relation on M x U
given by [m,u] ~ [m/, ], for m,m’ € M and u,u’ € U, if there is v € U such
that (mu — m/u)v = 0 € M. Then the localization of M at U is defined
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as the set of equivalence classes My := (M x U)/~.; the equivalence class of
[m,u] € M x U being denoted by ™ € My.

b) We collect a few basic properties of localizations of ideals of R, in particular
of prime ideals; see Exercise (19.7): The localization Ry becomes a commutative
ring, such that the natural map v =vy: R — Ry: f — % is a homomorphism
of rings. For an ideal J < Ry we have (v~1(J))y = J, hence the contraction
map v~ ': {J < Ry} — {I < R} is an inclusion-preserving and intersection-
preserving injection, mapping prime ideals to prime ideals. In particular, if R
is Noetherian, then Ry is Noetherian as well.

For an ideal I <R we have I C v~ (Iy) = {f € R; fu € I for some u € U} < R.
Hence for the extended ideal Iy we have Iy # Ry if and only if INU = (). For
a prime ideal P < R we have P = v~ (Py) if and only if PNU = {); in this case
Py < Ry is a prime ideal as well. Hence extension and contraction are mutually
inverse bijections between {P < R prime; PNU = (} and {Q < Ry prime}.

In particular, if P<<R is a prime ideal, then the set R\ P C R is multiplicatively
closed, and Rp\p is a local ring, that is R\ p has a unique maximal ideal,
namely Pr\p < Rg\p. Moreover, the prime ideals of Rp\p are given as the
extensions Q g\ p IR g\ p of the prime ideals Q<R such that @ C P; in particular
we have ht(P) = dim(Rpg\ p).

(13.4) Radicals. a) Let R be a commutative ring, and let I < R be an ideal.
Then VT := {f € R; f" € I for some n € N} < R is called the radical of I;
note that I C v/I. In particular, the nilradical nil(R) := 1/{0} < R is the set
of nilpotent elements of R; if nil(R) = {0} then R is called reduced.

Proposition. We have v/I = (){I C P < R; P prime}; where we let the empty
intersection being R. In particular, we have nil(R) = ({P < R; P prime}.

Proof. We may assume that [ # R, let f € VI, and let P € P := {I C
P < R; P prime}; then f™ € I C P for some n € N, thus f € P, hence f € P.

Conversely, let f & v/I. Then consider the multiplicatively closed set U :=
{f"neNy} CR,and let J:={I CJIR;JNU = (}. Since INU = 0 we
have I € J # (), and since any chain in J has a least upper bound in J by
Zorn’s Lemma there is a maximal element J € 7.

Since JNU = 0 we have Jy # Ry. Since for any proper ideal J <1 Ry we
have V_l(j )N U = 0, and the contraction map is injective, by maximality
we conclude that Jy < Ry is a maximal ideal, thus is a prime ideal. Hence
v~1(Jy) < R is a prime ideal as well, and since J C v~!(Jyy) by maximality we
get J =v"1(Jy) € P. Thus f ¢ J implies f € N P. i

b) The Jacobson radical of R is defined as rad(R) := ({J < R; J maximal};
where we let the empty intersection being R. Recall that for R # {0} by Zorn’s
Lemma there is a maximal ideal of R.
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In particular, if f € R such that f =1 (mod rad(R)), then f =1 (mod J) for
any maximal ideal J < R, hence we infer (f) = R, that is f € R*.

Proposition: Nakayama Lemma [NAKAYAMA, AZUMAYA, KRULL]. Let I <
R such that I C rad(R), let M be a finitely generated R-module, and let N < M
be an R-submodule. Then we have M = N if and only if M = N + M1.

Proof. We may assume that M = N 4+ M I, and hence M = N + M J, where
J :=rad(R) < R. Then we have (M/N)-J = (MJ+ N)/N = M/N. Hence it
suffices to show that MJ = M implies M = {0}; then we have M/N = {0}:

Hence assume that MJ = M. Let {mg,...,m,} C M, for some r € N, be an R-
module generating set. Then there are a;; € J such that m; = 22:1 mia;; € M.
Letting A := E, — [a;;];j € R™*" we have [mq,...,m;]- A=0¢& M", implying
[ma,...,m;] - det(A) = [mq,...,m,|- A-adj(4) =0 € M". From det(4) =1
(mod J) we infer that det(A) € R*, so that [my,...,m,|] =0¢€ R". i

In other words (comparing ~with the wording of the graded Nakayama Lemma),
letting ~: M — M/M1I =: M be the natural epimorphism of R-modules, then a
subset S C M generates M, if and only if S C M generates M, as R-modules.

(13.5) Theorem: [KrRULL, 1937; COHEN, SEIDENBERG, 1946]. Let R C S
be an integral extension of commutative rings.

a) Let P < R be a prime ideal, and let J < S is an ideal such that JN R C P.
Then there is a prime ideal @ < S going up from J, that is J C @, and lying
over P, thatis QN R = P.

b) Let Q # Q' <.S be prime ideals such that @ N R = Q' N R, that is both lying
over the same prime ideal of R. Then we have incomparability Q € Q' € Q.

Proof. a) By going over to the integral extension R/(J N R) C S/J we may
assume that J = {0}, hence we have to show the existence of a prime ideal Q<S5
such that QN R = P. By going over to the integral extension Rr\p C Sg\ p, and
noting that the ideal Q<1S we are looking for fulfills QN(R\P) = (QNR)\ P = 0,
we may assume that R is local with maximal ideal P.

Assume that PS = S. Then let 1 = >\, p;s; € S, for some r € N, where
p; € P and s; € S, and let {0} # T C S be the R-subalgebra generated by
{s1,...,8-}. Hence T is a finitely generated R-algebra, and integral over R,
thus it is a finitely generated R-module. We have PT = T, where P = rad(R),
hence the Nakayama Lemma implies T' = {0}, a contradiction.

Thus PS<1S is a proper ideal. Hence by Zorn’s Lemma there is a maximal ideal
PSCQ<«S. Since PCQNR<R, and P <R is maximal, we have P = Q N R.

b) Assume to the contrary that @ C Q’. By going over to the integral extension
R/(QNR) C S/Q, we may assume that @ N R = Q' N R = {0}. By going over
to the integral extension R & (R+Q)/Q C S/Q, we may assume that = {0},
so that R C S is an integral extension of domains and {0} # Q' < S is prime.
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Let 0 #£ s € Q, and let f = Z?:o fiX* € R[X] be monic such that d > 1 and
f(s)=0¢€S. Since S is a domain, we may assume that fy # 0 € R. Hence we
have fo € (s)N R C Q' N R = {0}, a contradiction. i

Actually, the above theorem has been proven by KRULL for the case of domains,
while COHEN, SEIDENBERG generalized it by allowing for zero-divisors.

Corollary. Let J < S be an ideal, and let I := J N R < R. Then we have
dim(R/I) = dim(S/J). In particular, we have dim(R) = dim(S).

Proof. Let I C Py C --- C P. < R be a strictly ascending chain of prime
ideals P; 9 R, where r € Ny. By going up and lying over, there is a chain
JC Qo C - C Q<9S8 of prime ideals Q; < S, such that @, "R = P;
for i € {0,...,r}. Hence the latter chain is strictly ascending, and we have
dim(R/I) < dim(S/J).

Conversely, let J C Qo C --- C Q- IS be a strictly ascending chain of prime
ideals @; < S, where r € Nyg. Then by incomparability the chain I = JN R C
(QoNR)C - C(Q-NR)<IR of prime ideals Q; "R R, fori € {0,...,r},is
strictly ascending. Hence we have dim(R/I) > dim(S/J). i

(13.6) Ideals associated with a module. We set out to study the relation-
ship between the prime ideals of a (Noetherian) commutative ring, and its action
on modules. Actually this is merely the beginning of a long story, related to the
notion of primary decomposition, which has first been examined by LASKER
[1905], but whose modern description is original work by NOETHER [1921].

a) Let R be a commutative ring, and let M be an R-module. Given m € M,
we have a natural homomorphism R — M : f — mf of R-modules, with image
mR < M, and kernel anng(m) := {f € R;mf = 0} < R, being called the
associated annihilator.

For § € M we let anng(S) := [),,cs anng(m) < R, where anng(0) := R. In
particular, the dimension of M is defined as dim(M) := dim(R/anngr(M)).

b) An element 0 # f € R is called a zero-divisor on M, if there is 0 #m € M
such that f € anng(m). A prime ideal P < R is called associated with M, if
there is 0 # m € M such that anng(m) = P; in particular we have anng(M) C
P. Let assg(M) be the set of prime ideals associated with M, whose minimal
elements are also called isolated; in particular we have assg({0}) = 0.

We have P € assg(M) if and only if R/P = mR < M, for some 0 # m € M,
which holds if and only if R/P is isomorphic to an R-submodule of M. In this
case, for any 0 # u € mR, letting f € R\ P such that w = mf, since P is prime
we have anng(u) = anng(mf) ={g € Rymfg=0} ={g € R; fg € P} = P.

Let I <R be an ideal; we have anng(R/I) = anng(1+ I) = I. Then the prime
ideals associated with I are defined as ass(I) := assgp(R/I). In particular we
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have ass(R) = assgr(R/R) = assg({0}) = 0; and if P<R is a prime ideal, then we
have anng(f + P) = P whenever f € R\ P, hence ass(P) = assg(R/P) = {P}.

Theorem. Let R be Noetherian, and let M # {0} be finitely generated.

a) Then assgr(M) is a finite non-empty set, whose minimal elements are the
minimal prime divisors of anng(M) I R, and (Upeass,(ary) P) \ {0} € R is the
set of zero-divisors on M.

b) If R is a graded K-algebra, where K is a field, and M is graded, then assg(M)
consists of homogeneous ideals.

Proof. a) i) Let 0 # m € M such that anng(m) < R is maximal amongst the
(proper) ideals {anng(u) < R;0 # w € M} < R, and let f,g € R such that
fg € anng(m) and g & anng(m). Since anng(m) C anng(mg) we infer f €
anng(mg) = anng(m); thus anng(m) < R is a prime ideal, hence assg (M) # 0.

Moreover, by construction P\ {0} consists of zero-divisors on M, for any P €
assp(M). Conversely, if f € anng(u) for some 0 # u € M, then by the above
argument there is 0 # m € M such that anng(u) C anng(m) < R is maximal
amongst all annihilators, hence f € anng(m) € assp(M).

ii) Next we show that for any R-submodule N < M we have assp(M) C
assp(N) Uassg(M/N): Let P € assg(M), and let R/P=U <M. IHUNN =
{0}, then we have R/P = (U + N)/N < M/N, and thus P € assgp(M/N); if
0# m € UNN, then we have anng(m) = P € assr(N).

In order to show that assg(M) is finite, we choose P; € assr(M) and let {0} #
M, < M such that M; = R/Py, hence we have assg(M;) ={P}. If My < M,
we choose P, € assp(M/M;y), and let My < My < M such that My/M; =
R/ Py, hence we have assg(Ma/M7) = {P2}. This successively yields a strictly
ascending chain {0} = My < My < My < --- < M. Since M is Noetherian, we
have M, = M for some r € N, so that assg(M) C {P1,..., P-}.

iii) Let P < R be a prime ideal. First, we show that we have anng(M)p\p =
anng,, ,(Mp\p): For f € anngr(M) we have Mf = 0 € Mpg\p, hence we
conclude that anng(M)gr\p C anng,, ,(Mg\p).

Conversely, let f € v~'(anng,, ,(Mp\p)). Then for any m € M we have
mf - vy = 0, for some v, € R\ P. Thus since M is finitely generated there
is v € R\ P such that M fv = {0}, that is fv € anng(M), implying that
f € anng(M)g\p. Thus we have anng,, ,(Mg\p) C anng(M)pg\p as well.
Next we show that P € assg(M) if and only if Pr\p € assrg, ,(Mg\p): Let
0 # m € M such that P = anng(m); hence anng,, ,(m) = {f € Rymfv =
0 for some v € R\ P}r\p = U,ecp\ p(annr(mv) g\ p) = anng(m)r\p = Pr\p-

Conversely, let 0 # %% € Mg\ p such that Pr\p = anng,, (%) = anng,, ,(m),
hence we have anng(m) C v~ ' (anng,, ,(m)) = v~ (Pr\p) = P, where we may
assume that 0 # m € M is chosen such that anng(m) is maximal amongst the
(proper) ideals {anng(mv) < R;v € R\ P}; then for f € P we have mf =0 €
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Mp\ p, hence mfv = 0 € M for some v € R\ P, thus f € anng(mv) = anng(m),
entailing P C anng(m), hence P = anng(m). 1

Finally, we show that all the minimal prime divisors P < R of anng(M) are
actually associated with M: For such a prime ideal we conclude that Pr\p <
Rp\p is a minimal prime divisor of anng(M)g\p < Rp\p, and hence is its
unique prime divisor. Since anng(M)r\p = anngrg, ,(Mpg\p), we infer that
Mp\p # {0} and that assg,, ,(Mg\p) = {Pr\p}, entailing that P € assp(M).

b) Let 0 #m =Y ,_, m; € M, where r € N and m; € My,, where d; € Z such
that dy < -+ < d,. We show that if anng(m) < R is a prime ideal, then it is
homogeneous: Let 0 # f = >>°_, f; € anng(m), where s € N and f; € R.,,
where 0 < e; < -+ < es. We proceed by induction on » € N: Let r = 1; then
from mf = mif =0 we get mf; =0, hence f; € anng(m) for all j.

Let r > 2; we show that f; € anng(m), and then proceed by induction on s € N:
We have my fi = 0, and thus anng(m) C anng(mfi) = anng(>.;_,mifi). If
anng(m) = anng(mf1), then the latter is a prime ideal, hence by induction is
homogeneous, so that f; € anng(m); if anng(m) # anng(mfi), then letting
g € anng(mfi) \ anng(m) we get f1g € anng(m), hence f1 € anng(m). 1

Corollary. Let R be Noetherian.

a) Then any ideal I < R has only finitely many minimal prime divisors.

b) If R is a graded K-algebra, where K is a field, and I < R is homogeneous,
then the minimal prime divisors of I are homogeneous as well.

(13.7) Theorem: Krull’s Principal Ideal Theorem [KRrRULL 1928]. Let R
be a Noetherian commutative ring, let I := (f1,..., fr) < R where r € N, and
let P < R be a minimal prime divisor of I. Then we have ht(P) < r.

Proof. By going over to R\ p we may assume that R is local with maximal
ideal P. Let : R — R/I =: R be the natural epimorphism. Since P is a

minimal prime divisor of I, it is the unique one. Hence we have nil(R) = P,
and since P is finitely generated there is n € N such that P" = {0}. Thus
we have the chain of R-submodules R D P D P’ >..-D Pt > P" = {0},
whose subquotients are finitely generated R/P-vector spaces. By refining, there
is a finite chain of R-submodules whose subquotients are one-dimensional R/ P-
vector spaces, thus being a finite R-module composition series of R. Now we
proceed by induction on r € N:

i) Let r = 1; we show that for any prime ideal @ < R such that @ C P (if there
is any at all) we have ht(Q) = 0; this implies ht(P) < 1:

Let v: R — Rp\q, and for i € Ny let the i-th symbolic power of @) be the

contracted ideal Q) := v~ X( 3{\@) ={g € R;gu € Q* for some u € R\Q}<R.

Since by the Jordan-Hélder Theorem each finite chain of R-submodules of R
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can be refined to a finite composition series, we conclude that the chain of R-
submodules R O Q = W ) W D .- stabilizes. Hence letting m € Ny
such that Q(m) = Q(m+1) we show that Q") = Q"+ 4+ QU™ . Indeed, for
g € QU™ by assumption there are ¢’ € Q"+ and h € R such that g = ¢’ +hfi,
hence hf; € QU™; and since f; € R\ Q we infer that actually h € Q™).

Since I C P = rad(R), the Nakayama Lemma implies Q™) = Q("+1). This
yields Qg o = Q) p\g = Q) g\ = ’;;\2 = Q% o @r\@- Since Rp\q
is local with maximal ideal rad(Rg\q) = Qr\@, the Nakayama Lemma again
implies Q7 o = {0}. Hence we have Qp\g C nil(Rg\g), thus the maximal ideal

QRr\q is the unique prime ideal of Rp\ ¢, hence ht(Q) = dim(Rp\q) = 0.

ii) Now let » > 2, and let @ < R be maximal amongst the prime ideals of R
being properly contained in P. Hence we have I Z @, thus we may assume that
fr € Q. Hence P is a minimal prime divisor of J := Q + (f,;) < R, thus it is the
unique one, hence we have P/J = nil(R/J) IR/ J.

In particular, there are m; € N, and g; € @, and h; € R such that f/™ =
gi + frhi, for i € {1,...,r — 1}. We show that @ < R is minimal prime divisor
of I := (q1,...,9r—1) < R; then by induction ht(Q) < r — 1, thus ht(P) < r:

Let J :=I'4+(f;) <R. Since P" C I, and f/™" € J' fori € {1,...,r —1}, there
is m € N such that P™ C J'. Hence P/J’ C nil(R/J'), thus the maximal ideal
P/.J’ is the unique prime ideal of R/J’ . Hence P/I' <R/I’ is a minimal prime
divisor of J'/I' (actually the unique one), and since J' = I’ + (f,.) by part (i)
we conclude that ht(P/I’) < 1. Hence I’ C Q C P implies ht(Q/I') = 0. i

14 Noether normalization

(14.1) Lemma. Let K be a field, let R := K[X] = K[X1,...,X,] where
n € N, and let 0 # f € R\ R*. Then there is Y := {V7,...,Y,_1} C R such
that Y U {f} is algebraically independent and S := K[V, f] C R is finite.

i) We may choose e € N such that ¥; = X; — (X,,)', for i € {1,...,n —1}.
ii) If K is infinite, then we may choose a; € K such that ¥; = X; — a; X,,.
iii) If f is homogeneous, then we may choose the Y; homogeneous as well.

Proof. i) Assume that Y U {f} C R such that S C R is finite. Then K (Y, f) C
K(X) is a finite field extension, hence algebraic. Thus we conclude that n =
trdegy (K (X)) = trdegy (K (Y, f)), hence Y U {f} is algebraically independent.
Thus it remains to specify ) C R suitably such that S C R is finite:

Let e € N be strictly greater than any part of any combination a associated with
any monomial X occurring in f. Letting Y; := X; — X¢', fori € {1,...,n—1},
and YV :={Y1,...,Yn_1}, we have S := K[), f] C S[X,] = K[V, X,,] = R, thus
R is a finitely generated S algebra; we show that X, is integral over S:

We have X = X2» - H?:_ll (Y; + X&)% and expanding with respect to X,

we observe that X' is monic of degree d, = Z?z_ol a;et with respect to X,,,
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where aqg := ay,. If X% occurs in f, then by the choice of e the above sum
coincides with the e-adic representation of d,. Hence the degrees with respect
to X, of the various monomials occurring in f are pairwise distinct. Thus
f € K[V, X,] has positive degree and is monic, with respect to X,. Hence

1

g = f(Y1+T¢....Y,_1 +T¢" ,T) — f € S[T] has positive degree and is
monic, with respect to T, such that g(X,) = 0. #

ii) Now assume that K is infinite. Let f = Z?:o f; € K[X], where the f; are
homogeneous of degree j, and d := deg(f) > 1. Letting ¥; = X; — a;X,,, for
a;€ Kandie {l,...,n—1},and Y :={Y3,...,Y,_1}, we have S := K[, f] C
S[X,) = K[Y,X,] = R, thus R is a finitely generated S algebra; we show that
the a; can be specified suitably such that X, is integral over S:

Writing f; = f(Yi4+a1Xn, ..., Yoo1+an—1Xn, X)) € K[V, X,,], we observe that
f; is homogeneous of degree j, and expanding with respect to X,, shows that
f; has degree j and leading coefficient f;(ai,...,an—1,1) € K. In particular,
since fq # 0 and K is infinite, there are aq,...,a,-1 € K such that a :=
falai,...,an_1,1) € K*; note that for n = 1 we have f; € K* anyway. Hence
g=fWMi+aT,....Yn1+a,1T,T)— f € S[T] has degree d > 1 and leading
coefficient a € S* with respect to T', such that g(X,,) = 0. #

iii) Finally, assume that f is homogeneous. If K is infinite, then we have just
seen that the Y; can be chosen homogeneous of degree 1. To deal with the case
of finite fields, we let K be arbitrary again:

Forie {l,...,n—1} we successively choose Y; € Ry homogeneous such that
the ideal I; := fR+Y_,_} Y;R C Ry of R has height ht(I;) = i:

Since R is a domain, by Krull’s Principal Ideal Theorem we have ht(l;) =
ht(fR) = 1. Now let P1,...,P; C R. be the (homogeneous) minimal prime di-
visors of I;, where s € N. Assume that | J;_, P = R4; then by prime avoidance
we have Ry = Py for some k, hence Ry is a minimal prime divisor of I;, and
thus by Krull’s Principal Ideal Theorem we have ht(R,) < 4; since ht(R4) =n
this is a contradiction.

Thus we may choose Y; € Ry \J;_; Pr homogeneous, so that by Krull’s Princi-
pal Ideal Theorem again we have ¢ < ht([;11) < i+1. Assume that ht(7;41) = 4;
then let @ <9 R be a minimal prime divisor of ;11 such that ht(Q) = 4; since
I; € @ and ht(I;) = i, we conclude that @ is a minimal prime divisor of I;,
hence coincides with Py for some k, thus Y; € Q; since Y; € I;11 C @ this a
contradiction. Thus we have ht(l; 1) =i + 1, as desired i

Hence we have ht(I,,) = n, and since ht(R;) = n we conclude that Ry < R
is a minimal prime divisor of I,, and thus is its unique prime divisor. As
R <R is finitely generated, we conclude that R, /I, <R/I, is nilpotent. Hence
R/I, has a finite filtration consisting of finitely generated R/R-modules, since
R/R; = K entailing that R/I, is a finite-dimensional K-vector space. Since
S = KI[Y, f] is a graded K-algebra as well, we have I, = (f,)) = StR<R.
Thus R/S+R being finite-dimensional, by the graded Nakayama Lemma we
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conclude that R is a finitely generated S-module, hence R is finite over S.
(14.2) Theorem. Let K be a field. Then dim(K[X1,..., X,]) = n, for n € Ny.

Proof. We proceed by induction on n; the case n = 0 being trivial, we let
n > 1, and let R := K[Xy,...,X,]. We have already seen that dim(R) > n.
Hence for any strictly ascending chain of prime ideals {0} = P, C --- C P. <4 R,
for r € Ny, we have to show that r < n:

For 0 # f € Py let S:= K[f,Y] C R be as in (14.1). Since S C R is finite,
by incomparability we conclude that {0} = SNPyC SNP, C--- CSNP,is
a strictly ascending chain of prime ideals of S, yielding the strictly ascending
chain of prime ideals fS = (SNP)+ fS C--- C(SNP)+ fS<LS/fS = K[Y).
Since by induction we have dim(K[Y]) =n — 1, we infer r — 1 <n — 1. 1

Corollary. Let R := K|[fi,..., fn] be a finitely generated commutative K-
algebra, for n € Ny. Then dim(R) < n, with equality if and only if {f1,..., fn}
is algebraically independent.

Proof. We have R = K[Xq,...,X,]/I, for some ideal I QK [Xy,...,X,]. This
shows that dim(R) < n. Moreover, if I = {0} then equality holds, while for
I # {0} we have ht(I) > 1 so that dim(R) < n. i

(14.3) Theorem: Noether’s Normalization Theorem [NOETHER, 1926;
ZARISKI, 1943; NAGATA, 1962]. Let K be a field, let R := K[f1,..., f], for
r € Ny, be a finitely generated commutative K-algebra, let n := dim(R) €
{0,...,r},and let {0} = Iy C I; C --- C I, for s € Ny, be a strictly ascending
chain of ideals I, < R such that n > ny > -+ > ny > 0, where ny := dim(R/I}).

Then there is Y := {¥1,...,Y,} C R algebraically independent such that S :=
K[Y] C Ris finite and SN I = (Yo, 41,..-,Yn) IS, for 0 € {1,...,s}.

i) If K is infinite, we may choose the Y; as K-linear combinations of { f1,..., f-}.
ii) If R is graded and the ideals I, ..., I; are homogeneous, we may choose the
Y; homogeneous as well.

Proof. We may assume that R = K[X;,...,X,]/I, where I C I; C --- C
I, < K[Xy,...,X,], hence dim(K[Xy,...,X,]/T) = dim(R) = n > ny. Thus we
may assume that R = K[X] = K[X,...,X,]. Moreover, we may assume that
s > 1, and hence that I is maximal, so that ns = 0.

Now it is sufficient to find Y := {Y¥1,...,Y,} C R such that R is finite over
S:=K[]) and {Yo,41,---,Yn} C Iy, for k€ {1,...,s}:

Indeed, since S C R is finite, we conclude that K()) C K(X) is an algebraic
field extension, hence we have n = trdeg(K (X)) = trdeg(K(}))), thus Y is
algebraically independent. Moreover, we have dim(S/(S N I)) = dim(R/I;) =
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ng = dim(K[Y1, ..., Yy, ]) = dim(S/(Ya, 41, -, Yn)), where (Y, 41,...,Y,) S
is a prime ideal, hence (Y, 11,...,Y,) =S N I. 1

To do so, we construct the Y; € R successively for i € {n,n —1,...,1}, using
auxiliary elements Y; ; € R, for j <14, where welet Y, ; := X for j € {1,...,n}.
Letting S; = K[Y;1,...,Yis,Yit1,...,Ys] be polynomial such that S; C R is
finite, and {Yj41,...,Y,} C I where j := max{ng,i}, for k € {1,...,s},
we introduce Y;,Y;_11,...,Y;—1:-1 € 9, retaining the above conditions, and
decrease ¢. Finally, we let S := Sy. We proceed as follows:

Given 4, let k£ > 1 be minimal such that n, < i. Assume that K[Y;1,...,Y;;]N
I, = {0}; since {Yit1,...,Yn} C Ii, computing modulo (Yiy1,...,Y,) < S;
shows that any element of S;NI has a representative in K[Y; 1, ..., Y; ;]; thus we
infer (Yiq1,...,Y,) = S;NI;<S;, which since dim(S;/(S;N1y)) = dim(R/I}) =
ng <i=dim(K[Y;1,...,Y;;]) = dim(S;/(Yit1,...,Yy)) is a contradiction.

Hencelet 0 #Y; € K[Y;1,...,Y;;|NI; if I and the Y; ; are homogeneous, then
Y; may be chosen homogeneous as well. By (14.1) let {Y;_11,...,Yi_1,-1} C
K[Y;1,...,Y;;] such that {Y;_11,...,Yi—1,-1} U {Yi} is algebraically inde-
pendent such that K[Y;_11,...,Y;—1,-1,Y;] C K[Y;1,...,Y; ;] is finite; if ¥; is
homogeneous the Y;_; ; may be chosen homogeneous as well, and if K is infinite
the Y;_1 ; may be chosen as K-linear combinations of {Y; 1,...,Y;;}.

Thus lettmg Si—l = K[}/i—l,17 ey }/i—l,i—la }/i7 Y;'_;,_l, NN ,Yn} we conclude that
S;_1 C S is finite, and since S; C R is finite, we infer that S;_1 C R is finite as
well. Moreover, we have {Y;,...,Y,} C I where i — 1 = max{ny,7 — 1}. i

Actually, in proving the above theorem, NOETHER dealt with infinite fields only,
while ZARISKI treated arbitrary fields, and the refined version, actually involving
only a single ideal, was given by NAGATA.

(14.4) Theorem. a) Let K be a field, and let R be a finitely generated commu-
tative graded K-algebra. Then for the complexity of R we have y(R) = dim(R),
and if R is a domain then we have dim(R) = trdeg(Q(R)).

b) Let M be a finitely generated graded R-module. Then for the complexity of
M we have y(M) = v(R/anng(M)) = dim(R/anng(M)) = dim(M).

Proof. a) Let K[Y] = S C R be a Noether normalization, which is a finite
extension. Hence we have y(R) = v(5) and dim(R) = dim(S), where dim(S) =
|Y] = 7(S). Moreover, if R is a domain, since Q(S) C Q(R) is algebraic, we
have dim(R) = dim(S) = |Y| = trdeg(Q(S)) = trdeg(Q(R)).

b) We may assume that M # {0}. Then note first that annp(M) < R is
homogeneous, so that R/anng(M) is a finitely generated commutative graded
K-algebra indeed. Now, since M is a quotient of a finitely generated free graded
R/anng(M)-module, we have v(M) < v(R/anng(M)) = dim(R/anng(M)).

Conversely, if P < R is a (homogeneous) minimal prime divisor of anng(M),
we have P € assg(M). Thus there is an R-submodule N < M such that
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R/P = N, entailing that dim(R/P) = v(R/P) < v(M). Hence we conclude
that dim(R/anng(M)) < (M) as well, so that we have equality. 1

(14.5) Homogeneous systems of parameters. a) Let K be a field, let R be
a finitely generated commutative graded K-algebra, and let {f1,...,f,} C R
be homogeneous of positive degree and algebraically independent, such that
K[fi,..., fn] € Risfinite. Then {f1,..., f»}is called a homogeneous system
of parameters, or h.s.o.p. for short, of R.

Note that necessarily n = dim(K[f1,..., f,] = dim(R) € Ny, and that by
Noether normalization homogeneous system of parameters always exist. But the
multiset of the degrees of the elements of a homogeneous system of parameters
is in general not uniquely defined:

For example, {X1,...,X,} C K[X] = K[Xq,...,X,] is a homogeneous sys-
tem of parameters, but {X?, Xo,..., X,,} C K[X] is algebraically independent
such that K[X] = 1-S @ X; - S, where S := K[X?, Xo,...,X,], saying that
{X% Xo,...,X,} is a homogeneous system of parameters as well.

b) Let G be a finite group, and let V' be a K[G]-module; then we have n :=
dim(S[V]¥) = v(S[V]¥) = dimg(V) € Nyg. A homogeneous system of pa-
rameters F := {f1,..., fu} of S[V]% is called a set of primary invariants;
note that since S[V]¢ C S[V] is finite F C S[V]¥ is a homogeneous system
of parameters of S[V]% if and only if F is a homogeneous system of parame-
ters of S[V]. Moreover, a homogeneous generating set {gi, ..., gm} of S[V]¢ as
K[f1,..., fn]-module, for m € N| is called a set of secondary invariants.

i) In particular, if S[V]¢ is polynomial, then a set of basic invariants is a set of
primary invariants, a set of secondary invariants being given by {1}.

ii) If V is a permutation K[G]-module, then R := Klep 1,...,enn] C S[V]Y,
where R is polynomial and R C S[V] is finite, so that the elementary symmetric
polynomials {e, 1,...,€nn,} form a set of primary invariants of S[V]¢, and by
Gobel’s Theorem the orbit sums of monomials associated with (n — 1)-special
combinations form a (typically non-minimal) set of secondary invariants.

15 Cohen-Macaulay algebras

(15.1) Regular sequences. a) Let K be a field, let R be a finitely generated
commutative graded K-algebra, and let M # {0} be a finitely generated graded
R-module. Then a homogeneous element 0 # f € Ry is called regular or
a non-zerodivisor on M, if for the associated multiplication map we have
kerps(-f) = {0}. In particular, an element of R being regular on the regular
R-module R is called regular. Note that, by the graded Nakayama Lemma, for
any f € Ry the multiplication map on M # {0} is not surjective.

Proposition. We have dim(M) — 1 < dim(M/M f) < dim(M), where if f is
regular on M then we have dim(M /M f) = dim(M) — 1.
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Proof. We have dim(M) = (M) € Ny; moreover, since M f # M we have
0 < dim(M/Mf) < dim(M). From the exact sequence of graded R-modules

{0} > N = keras (-f) » M —L5 M — cokpr(-f) = M/Mf — {0} we obtain

_pdeg(f)
Hypynagp—Hy+T98 ) (Hy—Hy ) = 0, that is Hy = HM/AﬁTdTegm LLiyS Q(T);

see also the proof of (6.1). Hence we have v(M) < y(M/M f) + 1; moreover, if
f is regular on M, then Hy = 0 yields (M) = v(M/Mf) + 1. 1

In particular, if dim(M) = 0 there cannot possibly be a regular element on M.
Alternatively, this can also be seen as follows: If v(M) = dim(M) = 0, then M
is a finitely generated K-vector space, so that any injective K-endomorphism
of M is surjective as well, so there is no regular element on M.

b) A homogeneous sequence [f1, ..., fr] C R4+, where k € Ny, is called regular
on M, if f; is regular on M/M(f1,...,fi—1) = M/(E;;ll Mf;), for all i €
{1,...,k}; in particular we have M(f1,...,f;) # M for all i € {0,...,k}. The
depth depth(M) € Ny U {co} of M is defined as the maximum length of a
regular sequence on M.

Indeed, it follows by induction from the above proposition, and depth(M) = 0 if
dim(M) = 0, that the length of any regular sequence on M is bounded above by
dim(M), so that we have depth(M) < dim(M) € Ny as well. In view of this, M
is called Cohen-Macaulay, if we actually have equality depth(M) = dim(M).

In particular, if dim(R) = 0 then we have depth(R) = 0 as well, so that R
is Cohen-Macaulay. Moreover, if R is a domain such that dim(R) > 1 then
depth(R) > 1, so that any domain R such that dim(R) = 1 is Cohen-Macaulay.

Example. Let R = K[X1,...,X,], for n € Ny, and let P; := (X4,...,X;) <R,
for ¢ € {0,...,n}, yielding the strictly ascending chain {0} = Py € P, C
-+ C P, <R. Since R/P;_; = K[X;,...,X,] is a domain, we conclude that
0 # X; € R/P;_; is regular, for i € {1,...,n}, hence [X;,...,X,] C Ry is a
regular sequence of length n = dim(R), thus R is Cohen-Macaulay.

(15.2) Theorem: [MACAULAY, 1916; COHEN, 1946]. Let K be a field, let
R be a finitely generated commutative graded K-algebra, and let M # {0}
be a finitely generated graded R-module. Then for the depth of M we have
depth(M) < min{dim(R/P) € No; P € assg(M)}.

Proof. Recall that assg(M) # () indeed. We proceed by induction on dim(M) €
Np; since for dim(M) = 0 we have depth(M) = 0, we may assume that
dim(M) > 1. Let [f1,..., fr] € R4 be aregular sequence on M, for some k > 1,
and abbreviate f := fi. Then by induction we have k — 1 < depth(M/M f) <
min{dim(R/Q) € No; Q € assg(M/M f)}. We show that for each P € assg(M)
there is Q € assg(M/Mf) such that P C Q; then k¥ < 1 + min{dim(R/Q) €
No; Q € assgp(M/M f)} < min{dim(R/P) € No; P € assg(M)}:
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Since f is regular on M we have f € P. Let N:={m &€ M;mP < Mf} < M,
then N is an R-submodule such that M f < N. Assume that M f = N; then we
consider the R-submodule U := {m € M;P < anng(m)} < N = M f. Hence
for each u € U there is m € M such that u = mf, thus we get mfP = uP = {0},
since f is regular on M entailing mP = {0}, that is m € U. Thus we conclude
that U = U f, hence by the graded Nakayama Lemma we have U = {0}, which
since P € assgr(M) is a contradiction.

Hence we have M f # N, that is {0} # N/M f < M/M f, where we have P C
anng(N/Mf), and f € anng(M/M f) anyway. We have () # assp(N/Mf) C
assg(M/Mf), and for any @ € assg(N/M f) we have PC Q and f € Q\ P. {

Since assp(M) encompasses the minimal prime divisors of anng (M), in general
we have depth(M) < min{dim(R/P) € No; P € assp(M)} < max{dim(R/P) €
No; P € assg(M)} = dim(R/anng(M)) = dim(M) < dim(R) € Ny. Hence
if M is Cohen-Macaulay then it has the unmixedness property dim(R/P) =
dim(M), for all P € assr(M); this entails that assg(M) consists precisely of
the minimal prime divisors of anng (M), which all have the same dimension.

The unmixedness property was found by MACAULAY for polynomial algebras,
and by COHEN for regular local rings, which is the reason for the terminology
used today. We remark that we only treat a special class of Cohen-Macaulay
rings here, inasmuch we only allow for graded algebras and homogeneous regular
sequences; these behave kind of similar to local Cohen-Macaulay rings.

(15.3) Cohen-Macaulay modules. Let K be a field, let R be a finitely gen-
erated commutative graded K-algebra such that n := dim(R) € Ny, and let
M # {0} be a finitely generated graded R-module. We show that in the Cohen-
Macaulay case the converse of the assertion in (15.1) also holds:

Proposition. If M is Cohen-Macaulay, then a homogeneous element 0 # f €
Ry is regular on M, if and only if dim(M/M f) = dim(M) — 1.

Proof. We may assume that 0 # f € R, homogeneous is not regular on M,
and we have to show that dim(M/M f) = dim(M):

To do so, we first show that anng(M/M f) C y/anng(M) + (f): To this end,
let g € anng(M/M f), and letting {m,...,m,} C M, for some r € N, be an R-
module generating set, there are a;; € (f)<Rsuch that m;jg = >.._; ma;; € M.
Letting A := X - E, —[a;;];; € R[X]™*", we have det(A) = X"+, _, ap X" F €
R[X], where aq,...,a; € (f). Specifying X — g, we have [mq,...,m;]- A(g) =
0, implying that [mq,...,m,] - det(A(g)) = [m1,...,m;] - A(g) - adj(A(g)) =
0. Thus we have det(A(g)) € anng(M), implying that ¢" = det(A(g)) —
S heiakg” " € anng(M) + (f). (Note that so far we have not used the fact
that f is a zero-divisor on M)

Now, since f is a zero-divisor on M, there is P € assg(M) such that f € P. Thus
we have anng(M/M f) C \/Janngr(M) + (f) C P, hence using unmixedness we
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infer dim(M) = dim(R/P) < dim(M/M f) < dim(M). 1

(15.4) Cohen-Macaulay algebras. We relate regular sequences to homoge-
neous sets of parameters, and proceed to the main structure theorem for Cohen-
Macaulay algebras, saying that the latter are characterized by having particu-
larly nice Noether normalizations. To this end, let K be a field, and let R be a
finitely generated commutative graded K-algebra such that n := dim(R) € Np.

Proposition. Any regular sequence [fi,..., fx] C Ry, for k € {0,...,n}, can
be extended to a homogeneous set of parameters. In particular, a regular se-
quence of length n is a homogeneous set of parameters.

Proof. Let F := {fi,..., fx}, and let ": R — R := R/(F) denote the natural
epimorphism. By Noether normalization let G C R, homogeneous, such that
G C R, is a homogeneous set of parameters of R, where by regularity we have

|G| = dim(R) = n — k. Moreover, let # C R be finite and homogeneous, such
that H generates R as a K[G]-module.

Let S := K[F,G] C R. By the graded Nakayama Lemma we conclude that H
generates the K-vector space R/(G) = R/(F,G). Thus by the graded Nakayama
Lemma again we conclude that H generates R as an S-module. Hence S C R is
finite, thus we have dim(S) = dim(R) =n = k + |G|. Since S is as a K-algebra
generated by r + |G| elements, we conclude that S is polynomial. Hence the
concatenation of [f,..., fx] with G is a homogeneous set of parameters of R. f

Theorem. The following assertions are equivalent:

i) R is Cohen-Macaulay, that is there is a regular sequence of length n.
ii) Any homogeneous set of parameters is regular (for any ordering).

iii) R is a free graded S-module, for any Noether normalization S C R.
iv) R is a free graded S-module, for some Noether normalization S C R.

Proof. Let {fi,...,fn} € R+ be a homogeneous set of parameters of R, let
S:=K|[f1,..., fn] C Rbe the associated Noether normalization, and let ": R —
R:= R/(f1,..., fn) be the natural epimorphism. Since R is a finitely generated
S-module, by the graded Nakayama Lemma we conclude that R is a finitely
generated K-vector space; thus we have dim(R) = ~v(R) = 0.

Moreover, let G = igl, ..., gm} € R homogeneous such that G C R is a K-basis,
where m = dimg (R) € Ng. Thus G C R is a minimal generating set of R as an
S-module, where we may assume that g; = 1. Having this in place we get:

i)=ii). Since dim(R) = 0 and R is Cohen-Macaulay, [fi,..., f.] is regular.

ii)=-iii). Assume to the contrary that G is not S-free. Then there are polyno-
mials h; € K[X1,...,X,], for j € {1,...,m}, such that [hi,...,hy] # 0 and
> e 9ihi(fis-.., fa) = 0 € R. Let o € Ny be maximal such that X{* divides
all the hj, and let h; = X{* - h} € K[Xy,...,X,]. Since f1 € R is regular, we
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have 3770, g5 (fi, ..., fa) = 0 € R, entailing 377" g;h/(0, fo, ..., fa) = 0 €
R/(f1), where by construction [h](0, Xo,...,X,),...,h,(0,Xs,...,X,)] #0.
Hence G C R/(f1) is not K[fs,..., fa]-free. By iteration this finally yields
YimiAg; = 0 € R, where \; € K such that [Ar,...,\y] # 0; since G is
K-linearly independent, this a contradiction.

iii)=iv) is trivial.
iv)=1). Assume that R = @Tzl g;95 is a free S-module. Since S is a domain,

f1 €S =g¢g1-5CR isregular, and we have R/(f1) = EB?:l(gj ~K[fa,.-y fn])-
By iteration we conclude that the sequence [f1,..., fn] is regular. 1

(15.5) Hironaka decomposition. a) Let K be a field, let R be a finitely
generated commutative graded K-algebra such that n := dim(R) € Ny, let
F:={f1,.--, fn} C R be a homogeneous set of parameters, let S := K[F] C R,
let {g1,...,9m} C R, where m € N, be a minimal homogeneous generating set
of R as a graded S-module, and let d; := deg(f;) € N and e; := deg(g;) € No.

Let R be Cohen-Macaulay. Then we have the associated Hironaka decompo-
sition R = @;ﬂ:l g;S as a free graded S-module. Hence the Hilbert series of

Ris given as Hp = (3.7, T%) - Hg = (31, T%) - [T, 1= € Q(T). Since
¥(R) = v(S) = n we have §(R) = m-8§(S) = m -], d% € Q; and if Ris a
domain then by the degree theorem we have [Q(R): Q(S)] = % =m.

b) If a Noether normalization S of R is given, since S is polynomial the associ-
ated degrees are uniquely defined and can be read off from Hg, see (7.3). Then
the cardinality m of a minimal homogeneous generating set of R as an S-module,
and the associated degrees, can be read off from Hg. Alone, the degrees of the
elements of a homogeneous set of parameters are not uniquely defined; thus a
certain amount of educated guesswork is needed to find a Noether normalization
in practice, where Hp typically yields hints where to look.

We have the following method to check whether we have actually found a
Noether normalization of R: The homogeneous sets of parameters coincide with
the regular sequences of length n, where the latter can be built up successively,
checking the regularity condition in each step. Indeed, a homogeneous sequence
[f1,---, fx] € Ry, for some k € {0,...,n}, is regular, and thus can be fur-
ther extended regularly for k < n, if and only if dim(R/(f1,..., frx)) = n — k;
recall that dim(R/(f1,...,fx)) = n — k anyway. In particular, a homoge-
neous sequence [f1,..., fn] € Ry is regular if and only if v(R/(f1,...,fn)) =
dim(R/(f1,...,fn)) = 0, that is R/(f1,..., fn) is a finitely generated graded
K-vector space. In this case, by the graded Nakayama Lemma, a homogeneous
set G :={g1,...,9m}, for some m € N, is a minimal homogeneous generating
set of R as an S-module, if and only if G C R = R/(fi,..., f») is a K-basis.

(15.6) Cohen-Macaulay invariant algebras. We proceed to show how the
notion of Cohen-Macaulayness relates to invariant algebras. Let K be a field.
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Proposition. Let R be a finitely generated commutative graded K-algebra,
and let M be a finitely generated graded R-module which is a homogeneous
direct summand of a finitely generated free graded R-module (that is M is
projective graded). Then M is a free graded R-module.

Proof. Let {m1,...,m,} € M be a minimal homogeneous generating set of
M, where r € Ny and d; := deg(m;) € Z, and let F = @,_, f;R be the free
graded R-module generated in degrees d;, so that there is an epimorphism of
graded R-modules ¢: F' — M : f; — m;. We show that ¢ is an isomorphism:

By assumption there is a free graded R-module F’ = @jzl [iR, where s € Ny,
such that there is an epimorphism of graded R-modules w: F' — M together
with a splitting ¢: M — F, that is ¢ = idps. For j € {1,...,s} choose h; € F
homogeneous such that ¢(h;) = 7(f}), and let 1): F' — F' be the homomor-
phism of graded R-modules given by f; + h;. Then we have (Y¢)(f;) = 7(f),
thus ¥ = 7m. Hence we have 1y - ¢ = v = idyy, saying that 1yp: M — F is a
splitting of ¢, so that F' = (1))(M) @ ker(p).

Since F is Noetherian, ker() is a finitely generated graded R-module. More-
over, for >"'_, f;gi € ker(ip), where the g; € R are homogeneous, applying ¢ we
get >.i_, m;g; = 0 € M. Since by the graded Nakayama Lemma we infer that
{mi,...,m,} C M/MR, is K-linearly independent, we conclude that ¢g; € R
for all i. Thus we have ker(¢) < FRy = (1)(M)R4+ @ ker(p)R4, so that
ker(p) = ker(p) R4, by the graded Nakayama Lemma entailing ker(p) = {0}.

Theorem: [HOCHSTER, EAGON, 1971; CAMPBELL, HUGHES, POLLACK, 1991].
Let G be a finite group, let H < G be a subgroup such that char(K) t [G: H],
and let V be a K[G]-module. If S[V]# is Cohen-Macaulay, then so is S[V]€.

Proof. Let S := S[V],and let {f1,..., fn} C S be a set of primary invariants,
where n := dimg (V) € Ny. Hence we have R := K[f1,..., f,] CS¢ C SH C S.
Both extensions R C S¢ C S are finite, hence S is a finitely generated R-module.
Since R is Noetherian, the R-submodule S¥ < S is finitely generated as well,
hence {f1,..., fn} C SH is a set of primary invariants of S as well. Now we
have to alternative ways to proceed:

i) More abstractly, since S¥ is Cohen-Macaulay, S is a free graded R-module.
The relative Reynolds operator R : SH — S is a projection of graded R-
modules. Hence S¢ is a direct summand of S, thus is a free graded R-module,
entailing that S¢ is Cohen-Macaulay.

ii) Alternatively, more concretely, we show that the sequence [fi,..., f,] C
S¢ is regular, using the fact that, since S¥ is Cohen-Macaulay, the sequence
[fi,---, fn] C SHisregular: Let k € {1,...,n},andlet Iy := (f1,..., fe_1) =
Sl fi -SG9 <SG, Then we have fi, & Iy_1 - SH S so that fi, & Iy_1.

Moreover, let g, € S such that frgr =0 € SG/Ik_l, that is frgr € Ix—1 C
I._1-SH. By regularity in S¥ we conclude that g € I_;-S™, that is there are
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hi,...,hi_1 € SH such that g = Zf;ll fih;. Applying the relative Reynolds
operator RS : SH — SY yields gr = RG () = Ei:ll fi - R%(hi) € Ix_1, that
is g = 0 € S¢/I},_1. This shows that f; € S¢/I;_; is regular. i

Corollary. i) If char(K) { |G|, then S[V] is Cohen-Macaulay.
ii) If p := char(K) | |G|, and H is a Sylow p-subgroup of G such that S[V]# is
Cohen-Macaulay, then so is S[V]¢.

The absolute version of the previous theorem is due to HOCHSTER, EAGON,
while the relative version is due to CAMPBELL, HUGHES, POLLACK.

(15.7) Remark: Depth of invariant algebras. Compared to the non-
modular case, in the modular case the picture is much more complicated. We
give a few indications: To this end, let G be a finite group, let K be a field such
that char(K) | |G|, and let V be a faithful K[G]-module.

a) The depth of S[V]¢ is at least min{3,dimx(V)} [CAMPBELL, HUGHES,
KEMPER, SHANK, WEHLAU, 2000]. In particular, if dimg (V) < 3 then S[V]¢
is Cohen-Macaulay [SMITH, 1996].

Moreover, the depth of S[V]¢ is at least min{dim g (Fixy (G)) + 2,dimg (V)}
[ELLINGSRUD, SKJELBRED, 1980]. If dimg (Fixy (G)) > dimg (V) — 1, then
S[V]¢ is even polynomial [LANDWEBER, STONG, 1984].

b) Let V be the regular K[G]-module. Then S[V]¢ is Cohen-Macaulay if and
only if G € {Cs,C5,Vy} [KEMPER, 1999]; for the ‘if’ direction see (3.4), and
(9.7), and (17.4) below, respectively. (For the example G = Cy, see (17.5).)

c) Let G be a p-group. (Here we expect the most complicated phenomena.)

i) If G is cyclic, then the depth of S[V]% is equal to min{dimg (Fixy (G)) +
2,dimg (V)} [ELLINGSRUD, SKJELBRED, 1980].

In particular, if V is the regular K[G]-module, then the depth of S[V®"]¢,
where n € N, is min{n + 2,n - |G|}; thus S[V®"]¢ is Cohen-Macaulay if and
only if n- (|G| —1) < 2, that is G = Cy and n < 2, or G = C3 and n = 1.
(Again, for the smallest counterexample G = Cy, see (17.5).)

ii) An element 1 # s € G is called a bireflection, if we have dimg (Fixy (s)) >
dimg (V) — 2. Then S[V]¥ is Cohen-Macaulay only if G is generated by bire-
flections [KEMPER, 1999]. (The converse does not hold.)

In particular, if G then S[V®"]¢ is not Cohen-Macaulay whenever n > 3 [CAMP-
BELL, GERAMITA, HUGHES, SHANK, WEHLAU, 1999]. (This is another incar-
nation of the philosophy that vector invariants tend to be badly behaved.)

16 Cohen-Macaulay invariant algebras

(16.1) Cohen-Macaulayness of invariant algebras. Let K be a field, let G
be a finite group, let V be a faithful K[G]-module such that n := dimg (V') € Ny,
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let F:= {f1,...,fn} € SY C S := S[V] be a set of primary invariants such
that d; := deg(f;) € N, and let d := [[!_; d; € N be their degree product. Then
F is called optimal if its degree product d is minimal.

Theorem. a) Let m € N be the cardinality of a minimal set of secondary
invariants associated with F. Then we have |G| | d and m - |G| > d, where
equality m - |G| = d holds if and only if the invariant algebra S¢ is Cohen-
Macaulay. Moreover, we have m = 1 if and only if d = |G|.

b) For the coinvariant algebra we have dimg (Sg) > |G|, where we have equality
dimg (Sg) = |G| if and only if S is a free graded S“-module.

Proof. a) Both extensions R := K[F] C SC¢ C S are finite, hence F is a
homogeneous set of parameters of S; thus we have y(R) = v(S%) = 7(S) = n,
and 6(R) = 1, and §(5¢) = \%'I and §(S) = 1. From the field extensions

Q(R) € S(V)¢ C S(V), by the degree theorem we get gg% = [S(V): Q(R)] =
[S(V): S(V)C-[S(V)G: Q(R)] = 555 {g(R)) € Z, entailing d = |G| -2 m €z

Let G := {g1,...,9m} € SY be a set of secondary invariants such that ej =
deg(gj) € No. Now the minimum polynomial of any f € S is irreducible over
Q(R), hence the Q(R)-subalgebra Q(R)[f] C S(V) already is a field, entailing
that S(V)¢ = S%.Q(R); see also the proof of (6.3). Thus G generates S(V)€ as

a Q(R)-vector space, hence m = |G| > [S(V)9: Q(R)] = % = |G| Moreover,
we have m - |G| = d if and only if G is Q(R)-linearly independent, that is G is

R-linearly independent, in other words S is a free graded R-module.

Finally, we have already shown that m = 1 implies d = |G|; hence let d = |G|.

Then we have [S(V)%: Q(R)] = 55((SR)) =1, thus S(V)% = Q(R), hence we get

R C 8¢ C (V)% = Q(R). Since R is factorial, thus is integrally closed, see
Exercise (19.11), from R C S¢ being integral we get R = S, that is m = 1.

b) Let X := {hy,...,h,} be a minimal homogeneous generating set of S as a
graded S%-module, for r € N, such that ¢; := deg(hs) € Ny. By the graded
Nakayama Lemma we conclude that S¢ = S/Zg = S/(S§ - S) is a graded
K-vector space of K-dimension r. As we have seen above, we have S(V) =
S - S(V)C, thus H generates S(V) as an S(V)%vector space, hence we have
r=|H| > [S(V): S(V)¥] = |G|. Moreover, we have r = |G| if and only if H
is S(V)C-linearly independent, that is H is S%-linearly independent, in other
words S is a free graded S%-module. #

i) In particular, if m = 1 then S¢ is polynomial; conversely, if S& is polynomial
then choosing F as a set of basic invariants entails m = 1.

If S is polynomial, then S being Cohen-Macaulay entails that S is a free graded
S% module. Conversely, by Chevalley’s Theorem (which we have proven in (7.2)
for the case char(K) = 0 or char(K) > |G|, but which actually holds in general),
it follows from S being a free graded S“-module that S is polynomial.
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ii) If S is not polynomial, but F can be chosen such that d = 2-|G| and m = 2,
then S¢ is Cohen-Macaulay. Choosing g € S¢\ K[F] homogeneous of minimal
degree e := deg(g) € N, we get S¢ = K[F] @ g- K|F| as graded K[F]-modules.

Letting P := K[X4,...,X,, X] with degrees [d1,...,d,,¢€], since g is integral
over K[F], there are F, F' € K[X1,...,X,] homogeneous such that deg(F') = e
and deg(F') = 2¢, and (X?+FX +F')(f1, f2,9) = >+ F(f1, f2)9+F'(f1, f2) =
0. Thus we have S¢ = P/(X? + FX + I’) as graded K-algebras, via X; — f;
and X — g¢; hence S¢ is a hypersurface.

(16.2) Polynomial invariant algebras. a) Let K be a field, let G be a fi-
nite group, let V' be a faithful K[G]-module such that n := dimg (V') € Ny, let
F={f1,...,fn} € 8¢ C S := S[V] be algebraically independent and homo-
geneous, such that d; := deg(f;) € N, and let d := [[\_, d;. In order to ensure
polynomiality, we show that the (strong) finiteness assumption on K[F] C S¢
can actually be replaced by an (apparently weaker) degree assumption on F:

Theorem: [KEMPER, 1996]. Assume that d = |G|. Then we have S = K[F],
that is S¢ is polynomial having F as a set of basic invariants.

Proof. Let S = K[X], where X = {X1,...,X,}, and where we may assume
that n > 1, let Y := {Y1,...,Y,} be indeterminates, and let L be an algebraic
closure of K(Y). Hence we have a field isomorphism K(Y) — K(F): Y; — f;.
Since trdeg(K (F)) = trdeg(K (X)) = n, the field extension K(F) C K(X)
is algebraic; hence there are z1,...,2, € L such that K(Y,z1,...,2,) —
K(X):Y; = fi,z; — X; is a field isomorphism. Let ¢;(¥,T) € K(Y)[T] be
the minimum polynomial of x; over K()); hence g;(F, X;) =0 € K(X). More-
over, since K(F) C K(X)%, letting G act trivially on K (), there an action
of G by field automorphisms on K (Y, z1,...,2,) such that the identification
K(Y,z1,...,2,) = K(X) is an isomorphism of G-sets.

Letting Z := {Z;, ..., Z,} be indeterminates, we consider the system of equa-
tions f;(Z2) —Y; = 0 € L[Z]. Its solutions are precisely the identifications
of K(X) with a subfield of L, being compatible with the fixed identification
K(F) — K(¥); hence in particular [z1,...,2z,] € L™ is amongst the solu-
tions. Given any solution [z1,...,2,] € L™, we conclude that {z1,...,2,} C L
is algebraically independent, and we get ¢;(V,2) = gi(F(z1,...,2n),2i) =
9i(F(2),Z;)(z1,...,2n) = 0. Hence there are at most deg(g;) possibilities for
2;, so that the above system of equations has at most [];_, deg;(g;) solutions.

Moreover, for [x1,...,2,]? € L", where g € G, we have f;(z,...,2%) - Y; =
(fi(x1,...,zn) — Y;)9 = 0. Since X C V is a K-basis, and G acts faith-
fully, we conclude that [X,...,X,] gives rise to a regular G-orbit. Hence

{[x1,...,2,]9 € L"™; g € G} provides |G| solutions.

We consider the homogenized system of equations f;(Z)— YiZgi =0¢€ L[Z, Zy],
and let V C P := P™(L) be the associated projective variety. Being the inter-
section of hypersurfaces of degree d;, by Bézout’s Theorem V has at most
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[T;-, d; = d = |G| irreducible components, with respect to the Zariski topology.
Since the above system has at least |G| isolated solutions in the affine open sub-
set A:={[z1: -+ zn: 20] € P;z; € L, z9 # 0} C P, we conclude that these are
all solutions, thus V = {[z1: --+: z,: 1] € P;g € G} C A such that |V| = |G].

Moreover, there are no solutions in the closed subset P\ A = {[z1: ...: 2z,: 0] €
P;lz1, ..., 2n) # 0} C P, saying that the system of equations f;(Z) =0 € L[Z]
has only the solution 0 € L™. Thus by Hilbert’s Nullstellensatz [1893] we
conclude that L[Z]; <L[Z] is the only maximal ideal dividing (F(Z)), thus is its
only prime divisor, so that /F(Z) = L[Z],. This implies that vF = K[X],,
hence dim(K[X]/(F)) = 0, thus F C K[X] is regular, hence is a homogeneous
set of parameters. Finally, we conclude m = \%’I =1, that is K[X]% = K[F].

Since the degrees of a set of basic invariants are uniquely defined, this yields
the following straightforward algorithm to check for polynomiality: We run the
standard algorithm to collect indecomposable homogeneous invariants, and look
for an n-set of them having degree product |G|. If such a set does not exist, by
exceeding n or |G|, we conclude that S is not polynomial; if such a set exists
then we decide polynomiality of S by checking for algebraic independence of
the set found, by using the Jacobian criterion. For example, this approach yields
for the pseudoreflection representation of G = As in characteristic 2, see (12.3).

b) Let now S be polynomial. Then the coinvariant algebra Sg, which is
a finite-dimensional graded K-algebra anyway, not only has K-dimension |G|,
but its structure as a K[G]-module can be explicitly determined:

Theorem: [CHEVALLEY, 1955]. Let S¢ = K[F| be polynomial. Then the
Hilbert series of the coinvariant algebra is Hg, = H?Zl(z;li;()l T7) € Z[T), and
if char(K) t |G| then the K[G]-module S¢ is equivalent to the regular module.

Proof. Letting R := S¢, the algebra S is a free graded R-module, of rank
r := dimg(Sg) = |G|. More precisely, let H := {hy,...,h,} be a minimal
homogeneous generating set of S as a graded R-module. Then we have S =
@._, hsR as graded R-modules, and RS = @._, hyRy C S, so that Sg =
S/R,S has homogeneous K-basis H := {hy,...,h,}, where : S — Sg is the
natural epimorphism. Hence we have S = Sg ® R as graded R-modules, the
isomorphism being given by h, — hs ® 1. Moreover, since G acts trivially on
R, and naturally on S and S, we conclude that the above isomorphism is an
isomorphism of graded G-algebras.

Hence for the associated Hilbert series we have (1771)” =Hg=Hg,-Hr = Hg,-

n .1 n —_7% n i— i
Hi:l ﬁ € Q(T), entailing HSG = Hi:1 11,TT = Hizl(Z?zol Tj) € Q(T)v

For g € G let A(g) := [aij(9)]i; € R™" be the representing matrix of its
action on S with respect to the R-basis H; note that the matrix entries are
homogeneous such that a;;(g) = 0 or deg(a;;(g)) = deg(h;) — deg(h;) € No,
in particular we have a;;(g) € Ry = K. Noting that ~: S — Sg restricts to
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the natural epimorphism R — R/R, = K, we infer that A(g) € K"*" is the
representing matrix of the action of g on Sg with respect to the K-basis H.

Since H is an S(V)%-basis of S(V), see (16.1), we conclude that A(g) also is a
representing matrix of the action of g on S(V'). Now the field extension (V)¢ C
S(V) is Galois with respect to G, so that by the normal basis theorem S(V)
carries the regular G-permutation action. Hence for the associated matrix traces
we get Xsq(9) = Yty ass(9) = 2l ass(9) = xso(9) = |G| - d14 € K,
saying that S affords the regular character. Since char(K) 1 |G|, from this we
conclude that Sg carries the regular representation. i

In particular, we have deg(Hgs,) = >+ ,(d; — 1). Recall that if char(K) = 0
or char(K) > |G| then G is a pseudoreflection group having precisely o(G) =
i1 (d; — 1) pseudoreflections. (Again, this actually holds whenever char(K) ¢
|G|, but we have not shown this.) From the viewpoint of representation theory,
this shows that the group algebra K[G| of a pseudoreflection group G also carries
the structure of a commutative graded K-algebra, with degrees {0,...,0(G)},
unraveling hidden combinatorial information about G (to say the least).

Note that, although Hg, is unchanged, the characteristic dependent result
above cannot possibly hold whenever char(K) | |G|: In this case the unique
one-dimensional trivial K[G]-submodule of the regular module is not a direct
summand, while we have Sg = K @ (S¢)+ as K[G]-modules.

(16.3) Finding primary invariants. Let K be a field, let G be a finite group,
let V' be a faithful K[G]-module such that n := dimg (V) € N.

Since S¢ C S := S[V] is finite, a subset {fi,...,f,} € S¢ C S is a ho-
mogeneous set of parameters of S¢ if and only if it is a homogeneous set of
parameters of S; see (15.4). Since the polynomial algebra S is Cohen-Macaulay,
this is equivalent to [fi,..., fn] being a regular sequence in S. (Although this
does not imply that it is a regular sequence in S¢.) Letting (fi,...,fn) < S
be the associated (generalized Hilbert) ideal of S, this in turn is equivalent to
dim(S/(f1,--., fn)) = 0, which by the graded Nakayama Lemma amounts to
S/(f1,..., fn) being a finitely generated graded K-vector space.

This paves the way to the following generic method to finding primary invari-
ants, which typically are far from being optimal:

Theorem: [DADE, 1996]. Let {Xq,...,X,,} CV be a Dade K-basis, that is

Xi ¢ U (X191, Xic1 - gim1) K,

g1,--,9i—1€G

fori e {1,...,n}, and let f; := erX"c f € SY be the associated orbit product.
Then {f1,...,fn} € S% is a set of primary invariants, such that deg(f;) | |G|.
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Proof. We indeed have f; € S¢ such that deg(f;) = |f&| =
I:=(f1,...,fn) <8, we proceed to show that dim(S/I) =

Let K C K be an algebraic closure of K, let V:= V@K, let S = S[V] = S®K,
andlet [ :=T® K = (f1,...,fn) <S. Now let [ € V" be a K-linear form on
V such that I(f;) = 0, for all i € {1,...,n}. Then we have I(X; - g;) = 0, for
some g; € G. Since the set {X; - g1,...,Xpn - gn} C V is a K-basis, and thus is
a K-basis of V, this implies [ = 0.

7\Stmbc(f I Letting

Thus by Hilbert’s Nullstellensatz, saying that the maximal ideals of S are
in correspondence with the elements of V*, we infer that S, < S is the only
maximal ideal dividing I, thus is the only prime divisor of I, hence we have
VI = S, <S. This entails that /T = S, <5, which is a maximal ideal, hence
is the only prime divisor of I. Thus we have dim(S/I) = dim(S/S;) = 0. i

Corollary: Dade’s degree bound. Let K be infinite. Then there is a set of
primary invariants of degree at most |G|.

Proof. We show that V is not the union of finitely many proper K-subspaces;
thus there is a Dade K-basis of V', hence an associated set of primary invariants:

We proceed by induction on n € N; the cases n < 1 being trivial, let n > 2, and
assume that V = U:Zl V;, for some r € N and maximal K-subspaces V; < V.
Since K is infinite, there are infinitely many maximal K-subspaces V' < V.
Choosing V' # V; for all i, we get V. =V N (U,_, Vi) = U._,(V NV;), where
V' NV; <V are maximal K-subspaces, which by induction is a contradiction. f

The assumption on the field cannot generally be dispensed of: If K is finite, V'
need not have a Dade K-basis, as for example the pseudoreflection representa-
tion of G = Aj over the (splitting) field K = F4 (having a polynomial invariant
algebra) shows; see (12.3).

(16.4) Broer’s degree bound. Let K be a field, let G be a finite group, let
V be a faithful K[G]-module such that n := dimg (V) € Ny, let {f1,..., fn} be
a set of primary invariants such that d; := deg(f;) € N, and let {g1,...,gm} be
a minimal set of secondary invariants such that e; := deg(g;) € Ny, for m € N.

Theorem: [BROER, 1997]. If S[V]¢ is Cohen-Macaulay, then for the degrees
of the secondary invariants we have e; < > " (d; — 1), for all j € {1,...,m}.

Proof. Let R := K[f1,...,fa] € S¢ C S := S[V], since R C S is finite let
{h1,...,h.} €S, where r € N, be a minimal homogeneous generating set of S an
an R-module, such that ¢, := deg(hy), where hy = 1 and where we assume that
0=c; <---<g¢,. Since S is Cohen- Macaulay we have S = @271 hkR as graded
R-modules, hence we have Hg = = T)n = (o1 T) - Ty =52 € Q).

Thus we have >, _, T =[]\, 11T hence ¢, = Y1, (d; — 1).
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The elements of Hompg(S, R) are determined by the image of {hy,...,h,}, thus
Hompg (S, R)q = {0} for d < —c,. Similarly, by assumption we have S¢ =
EB;nzl g; R as graded R-modules, where we may assume that 0 =e; < -+ < ep;
hence we have Homp(S%, R) # {0}. We have to show that e,, < ¢,

—€m

Since G acts faithfully, the trace map Tr: § — S is a non-zero homomorphism
of graded S¢-modules, that is 0 # Tr% € Homge (S, 8%). Extending yields the
non-zero S(V)C-linear map Tr®: S(V) — S(V)%, which hence is surjective.
Since the field extension Q(R) C S(V) is generated by S, there are f € S and
0 # h € R such that TrG(g) = 1. Since R C S, this entails Tr®(f) = h € R.

Let 0 # ¢ € Homp(SY, R) ., , and let g € S¢ such that ¢(g) # 0. Hence we
have o(Tr%(fg)) = (Tr%(f)g) = @w(hg) = ¢(g9)h # 0 € R. Thus we conclude
that 0 # (Tr% - @) € Hompg(S, R)_,, , entailing that —e,, > —c,. 1

Corollary: Broer’s degree bound. Let K be infinite. Then, if S[V]% is
Cohen-Macaulay, there is homogeneous generating set of S[V]“ as a K-algebra
consisting of elements of degree at most max{|G|,n(|G| — 1)}.

Proof. By Dade’s degree bound we have d; < |G| for all ¢ € {1,...,n}, hence
we have e; < n(|G|—1) for all j € {1,...,m}, i

17 Examples: Some small groups

(17.1) Example: Cyclic groups. Let K be a field, let & € N such that
char(K) t k, and assume that K contains a primitive k-th root of unity (g, let
G :=(z) 2 Cf, and let S := K[X,Y]; see (3.3).

i) We consider G — GLo(K): z + diag[Cy, (] Then R := K[X* Y*] C §¢
is a Noether normalization, where S¢ = R ® @' _'(X*~'Y . R) as graded R-

modules, hence Hge = % € Q(T). Thus {X* Y*} is a set of primary
invariants, and {1, X¥~1Y,...  XY*~1} is a minimal set of secondary invariants.

Indeed, the primary invariants have degree product d = k2, and there are m = k
secondary invariants. Since there are no homogeneous invariants of positive
degree smaller than k, the degree product d = k? is as small as possible, so that
{X* Y*} is an optimal set of primary invariants.

ii) We consider G — GLa(K): z +— diag[(x, ¢ ']. Then R = K[X* Y*] C
S¢ = K[XY, X* Y*¥] is a Noether normalization, and S¢ = EB?;(]I(XiYi~R) as
graded R-modules, hence Hge = (Ei:ol T%) . (1_;”2 = (1—T12+)(T1k—Tk) e Q(7).
Thus {X*,Y*} is a set of primary invariants, and {1, XY,..., Xk¥~1y*k=1} is
an associated minimal set of secondary invariants; we have d = k% and m = k.
Alone, this set of primary invariants is not in general optimal:

Let G < H := (z,8) = Day, where s — [? (1)] € GLy(K); see (6.6). Then we
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have S¥ = K[XY, X* +Y"*], which is polynomial with degrees [2, k]. (Note that
to show equality, by Kemper’s Theorem it suffices to verify that { XY, X* +Y*}
is algebraically independent.) Thus Q := S C S is a Noether normalization,
where d = 2k and m = 2. Hence Hgc implies that there is an associated minimal

set of secondary invariants of degrees [0, k]. Since Y* € S¢ is indecomposable,
we conclude that S¢ = Q @ (Y* - Q) as graded Q-modules.

Hence { XY, X*+Y*} is a set of primary invariants, with associated minimal set
{1,Y*} of secondary invariants. Since S is not polynomial, this set of primary
invariants is optimal for all k& > 2, while the former one is so only for £ < 2. #

(17.2) Example: Symmetric and alternating groups. a) Let K be a field,
let S := K[X] = K[X1,...,X,] where n > 1, and let F := {en1,---,€nn}-
Then R := S5 = K[F] C S is a Noether normalization, thus F is a universal
set of primary invariants of K[X]%, for any subgroup G < S,,.

If char(K) J |G|, then, since 327 (deg(en) —1) = Sy i = (%), Broer’s
Theorem entails that S has a homogeneous K-algebra generating set consisting
of elements of degree at most max{n, (3)}. This coincides with Gébel’s degree
bound; but note that the latter holds for arbitrary permutation groups, while
their invariant algebras are in general not Cohen-Macaulay.

b) For n > 2 we have S4» = R@ (X*)T- R, where A\ = [n—1,n—2,...,2,1,0];
see (9.7). Thus {1, (X*)*} is an associated minimal set of secondary invariants;
we have d = [[/_, i =n! = 2 |A,| and m = 2. This shows that S* is Cohen-
Macaulay for any field K. Moreover, since S is not polynomial for n > 3,
we conclude that in this case F is an optimal set of primary invariants; recall
that for n = 2 we have S42 = S. Note that if char(K) # 2, then we have
SAn = R@ A, - R as well, where A, is the discriminant polynomial, so that
{1, A, } also is an associated minimal set of secondary invariants. i

In the sequel we consider the transitive permutation groups of degree n = 4
again; see (9.8): In order to do so, let S := K[Xi,...,Xy4], and let R :=
Kleqn,...,eq4]. (We again need computational checks, whose details we spare.)

(17.3) Example: The dihedral group of order 8. We consider G := Dg =
((1,2)(3,4),(1,3)) < 8. Let f := (X1 X3)" and g := (X1 X2)"; note that
es2 = f+g. Then we have S¢ = EB?:O(fi - R). We have d = 24 and m = 3,
hence S¢ is Cohen-Macaulay for any field K; and {e4 1,. .., €44, f} is a minimal
K-algebra generating set, with degrees [1,2,3,4,2], thus S¢ is not polynomial.
We have Hga = (kT)(lj;g?ltT;B)(kTﬂ = (17T><11+TT232<17T4> € Q(T), which
indicates that there might be primary invariants of degree [1,2,2,4], and asso-
ciated secondary invariants of degree [1,3]; then d = 16 and m = 2, so that the
putative primary invariants are optimal:

Let f1 =641 = )(fr7 and f2 = f, and f3 =g, and f4 = €644 = X1X2X3X4,
and g2 = eg3 = (X1X2X3)". Letting R := K]|f1,..., f4], we check that
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S¢ = R' @ goR'. Hence R’ C SY is finite, so that {es1, f,g,e44} is a set of
primary invariants, with associated minimal set of secondary invariants {1, e4 3};
moreover, {e41, f, g, €43, €44} is a minimal K-algebra generating set.

(17.4) Example: The Klein 4-group. We consider the regular represen-
tation of G := Vy = ((1,2)(3,4),(1,3)(2,4)) < S4. Let f := (X1X3)", and
g := (X1 X2)*, and h := (X1 X4)"; note that e; o = f + g + h. Then we have
S¢ = @®,cc PR, where G := {1, g, f,9% f%,g*f}. Thus we have d = 24 and

m = 6, hence S¢ is Cohen-Macaulay for any field K.

Moreover, if char(K) # 2 then {es1,e42,€43,f,¢} is a minimal K-algebra
generating set, having degrees [1,2,3,2,2]; but if char(K) = 2 then actu-
ally {es1,... €44, f,g} is a minimal K-algebra generating set, having degrees
[1,2,3,4,2,2]. Hence, in both cases, S¢ is not polynomial.
2 4 6 3 2 4

We get HSG - (1—T)1(ﬁj:;2;r(21T—T+3)T(1—T4) = (1—T1)JE1T—T2)3 = (1—T)1(;F—TT;r)Z(1—T3) =
(1_}J)“(T12_+:,£;2+(1T:T4) € Q(T), which indicates that there might be primary invari-
ants of degree [1,2,2,2], and associated secondary invariants of degree [1, 3]; or
primary invariants of degree [1,2,2, 3], and secondary ones of degree [1, 2, 4]; or
primary invariants of degree [1,2,2,4], and secondary ones of degree [1,2, 3, 5].

i) Let char(K) # 2, let fi := es1 = X, ', and fy := f, and f3 = g, and
f4 = h, and g2 ‘= €43 = (X1X2X3)+, and let R/ = K[fl, N .,f4]. Then we
check that S¢ = R’ @ goR'. Hence R’ C S¢ is finite, so that {es1, f,g,h} is a
set of primary invariants, with associated minimal set of secondary invariants
{1,e4,3}; we have d = 8 and m = 2, so that the primary invariants are optimal.
From this we get the minimal K-algebra generating set {es 1, f, g, h,e43}.

ii) Let char(K) = 2. Since S is not generated in degrees at most 3, there
cannot possibly be primary invariants of degree [1,2,2,2], excluding the case
m = 2. Next we check that there cannot possibly be primary invariants of
degree [1,2,2, 3], excluding the case m = 3:

By considering the homogeneous components of Sf / (S_f)2 of degree at most
4 we observe that {e4 1, f, g, h,€43,€4.4} are indecomposable invariants. Hence
assuming to the contrary that there are primary invariants of degree [1,2,2, 3],
we conclude that S is generated by {1,e44} as an R’-module, where R’ :=
Klea, f,g,h,ea3] € SY (which is not polynomial). But we observe that 612174 is
not contained in the right hand side, a contradiction. #

Hence let f; :=eq4,1, and fo :=es 2, and f3 := f, and f4 :=eq 4 = X1 X2 X35Xy,
as well as go := g, and g3 := €43, and g4 = 2z = (X7X3X3)T, and let R’ :=
K[fi,..., fi]. Then we check that S¢ = R’ & @?:2 giR'. Hence R’ C S% is
finite, so that {es1,e4,2, f,ea4} is a set of primary invariants, with associated
minimal set of secondary invariants {1, g,e43,2}; we have d = 16 and m =
4, so that the primary invariants are optimal. This yields the minimal K-
algebra generating set {e4,1, €42, f,g,€4,3,€4,4}. (The latter sets are suitable for
char(K) # 2 as well, but they are neither optimal nor minimal.)
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(17.5) Example: The cyclic group of order 4. We consider the regular
representation of G := Cy = ((1,2,3,4)) < Sy. Let f := (X1X3)*", and [/ :=
(X1X5)T, and g := (X?X5)", and h := (X?X2X3)T; note that e o = f + f'.

a) Let char(K) # 2. Then S¢ = Gapeg pR, where G := {1, f, g, %, h, fg}. We
have d = 24 and m = 6, where S¢ is Cohen-Macaulay by the Hochster-Eagon
Theorem. Moreover, {e41,...,€44, f,9,h} is a minimal K-algebra generating
set, having degrees [1,2,3,4,2,3,4], hence S¢ is not polynomial.

We have Hgo = qomfi—ihiirmiaors = toriarin—ry € Q(T), which
indicates that there might be primary invariants of degree [1,2,2,4], and asso-
ciated secondary invariants of degree [1,3,3,4]; then d = 16 and m = 4, and
since Hge contradicts m € {2,3}, the putative primary invariants are optimal:

Let fl =641 = Xii_, and fg = f, and f3 = f/, and f4 = €44 = X1X2X3X4,
and go = eg3 = (X1 X2X3)", and g3 := ¢, and g4 := h, and let R’ :=
K[f1,..., fi]. Then we check that S¢ = R’ ® @:_,¢;R'. Hence R’ C SC
is finite, so that {e4 1, f, f’,€s,4} is a set of primary invariants, with associated
minimal set of secondary invariants {1, es 3,9, h}, and {es 1, f, f', €43, 9, €44, h}
is a minimal K-algebra generating set.

b) i) Let char(K) = 2 and 2z := (X?X2X3)*. We get S¢ = > peg PR, where
G :={1,f,9,f% h,z fh} is a minimal set of secondary invariants. Hence d = 24

and m = 7, thus S¢ is not Cohen-Macaulay. Moreover, {e41,..., €44, f,g,h, 2}
is a minimal K-algebra generating set, having degrees [1,2,3,4,2,3,4,5].

We show that there are primary invariants of degree [1,2,2,4]; since by the
Hilbert-Serre Theorem Hgc contradicts the existence of primary invariants of
degree [1,2,2,2] or [1,2,2, 3], the putative primary invariants are optimal:

Let again f1 := eq1, and fo := f, and f3 := f’, and f4 := eqgq, and g :=
es3, and g3 = ¢, and g4 = h, and g4 := z, and let R := K[f1,..., fa.
Then we check that S¢ = R’ + Z?:z g;R'. Hence R’ C S¢ is finite, so that
{ea1,f, [ eaa} is a set of primary invariants, with associated minimal set of
secondary invariants {1,e4 3, g, h, z}; thus we have d = 16 and m = 5, also indi-
cating that S¢ is not Cohen-Macaulay. Moreover, {e41, f, f',€4.3, 9, €44, h, 2}
is a minimal K-algebra generating set.

Note that, being an invariant algebra of a finite p-group in defining charac-
teristic, S¢* is factorial; see Exercise (18.6). Hence this disproves Samuel’s
conjecture, saying that a factorial finitely generated graded K-algebra should
be Cohen-Macaulay [BERTIN, 1965].

ii) We show that actually depth(SY) = 3, by showing that the sequences

[ea1, €44, f] and [eq 1, €44, f'] are regular in SC:

First, since S is a domain we have e4 15N SC¢ = 64’1SG, and since eq; € S is

irreducible and S is factorial, we conclude that e4 1.5<S and thus 64’1SG§]S G are
. == —=G - . = .

prime, so that SG/64715G =: 8¢ =S5 CS:=5/ey1S are domains, where S is

a polynomial graded G-algebra again. Next we show that e4 4S¢ < SE is prime
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as well: Since X; € S is irreducible, hence X;S < S is prime, it suffices to show
that Xi§ﬂ§G = 6474§G, where 6474§G C X;S anyway; hence letting conversely
a€X;SN ?G, then since G acts transitively on {X7,..., X4}, where the latter
are pairwise coprime, we conclude that a € ﬂ?zl X;S = H?Zl X;S = 64,4§,
hence a € 6474§ﬁ ?G = 64)4?61. Finally, since gG/e474§G is a domain, both
fife §G/e4’4§G are regular. i

Since S¢ is not Cohen-Macaulay, the sequence [e4 1,€4.4, f, f'] cannot possibly
be regular in S¢. We check this explicitly:

We observe that eqo-e43 =22+ f-(2e43+9)+ea1-(2e44—h) € Z[X1,. .., X4],
which reduces to the relation ess - es3 = f-g+es1-h €5, in degree 5,
thus we have f'-es3 = f - (ea3 +9g) +es1-h € S¢. This shows that f €
SG/(€471SG + €4.45% + £SY) is a zero-divisor.

Note that this is related to the fact that, compared to the non-modular case,
an additional homogeneous generator of degree 5 is necessary; and that it even
shows that f' € S¢/(es1S¢ + fS¢) is a zero-divisor. 1

(17.6) Example: Vector invariants. Let K be a field such that char(K) = 2,
let G := (2) = Cy, and let V := K? be the permutation K|[G]-module given by
(1) (1)] We consider the faithful K[G]-module V™ for n > 2; see (5.7):
Forie {1,...,n} let S; := K[X,,Y;] 2 K[V], let S := Q. S; = K[V®"], let
H:=H x - x Hy=(21) x - X (2,) 2 CF, let R; := K[l;,q;] = S, where
li = X; +Y; and ¢; := X;V;, and let R:= @I, Ri = Q7_, S/* = s C S€¢.
Then R is polynomial, where Hg = W € Q(T), and we have Hge =
1 (1+T)"+ (1 —=T)")- Hr € Q(T). Moreover, since R C S is finite, we
conclude that R C S¢ is finite as well, saying that R is a Noether normalization
of SY, and that {ly,...,ln,q1,-.-,qn} is a set of primary invariants. Since
Klean i, eanan] = S5 C R C SY from Gébel’s degree bound we infer
that S¢ has a set of secondary invariants with respect to R consisting of orbit
sums associated with (2n — 1)-special combinations, thus having degree at most
B :=n(2n —1); note that I; := X" and ¢; := (X;Y;)T are orbit sums associated
with the special partitions [1] and [1, 1], respectively.

i) Let first n := 2; hence 8 = 6. Then we have Hge = % € Q(T),
and we recover 113 == (X1 X2)T = X1 Xo+V1Y; € SE\SH | being associated with
the special partition [1,1]. Comparing Hilbert series shows that S¢ = R®rioR,
being Cohen-Macaulay, having {1,712} as a minimal set of secondary invariants.

N

ii) Now let n := 3; hence 8 = 15 (so that we revert to computations whose
details we spare). Then Hge = % € Q(T'), and we recover r;; :=
(X;X;)* for i # j, being associated with the special partition [1,1]. We observe
that {712, 713,723} is a K-linearly independent set of indecomposable invariants.
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From this, it already follows that S is not Cohen-Macaulay: Assume to the
contrary that S¢ is Cohen-Macaulay. Then S¢ is a free graded R-module of
rank 4, with minimal set of secondary invariants of degrees [1,2,2, 2]; hence we
conclude that {1,712,713, 723} is R-linearly independent, which by the identity
l1r93 4 lar13 4 3112 = 11313 is a contradiction.

Alternatively, Cohen-Macaulayness implies that [l1,l2,13] € SY is a regular
sequence; but ly793 4 lor13 + 13710 = l1lol3 shows that I3r1o € (I1,13) <.SY, while
since 712 is indecomposable we have rio & (I1,12)2 = (13,1112, 1113, 12,1213) K, SO
that 0 # I3 € S9/(I1,12) is a zero-divisor, a contradiction. i

It remains to find a complete set of secondary invariants: It turns out that
r123 = (X1X2X3)", being associated with the special partition [1,1,1], is an
indecomposable invariant, that {1,r12,713,723,7123} is a minimal set of sec-
ondary invariants indeed, and that {l;, ¢;,r;; for all i # j}U{r123} is a minimal
homogeneous generating set of S¢.
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IIT Exercises and references

18 Exercises: Invariant algebras

(18.1) Exercise: Quadratic forms.
For n € N let V be the set of n-ary complex quadratic forms over C. Show that
any GL,, (C)-invariant continuous complex-valued map on V is constant.

(18.2) Exercise: Binary quadratic forms.

Let g be a binary quadratic form over K € {C,R} having discriminant A.

a) For K = C show that A = 0 if and only if ¢ is the square of a linear form.
b) For K = R, show that A =0 if and only if ¢ or —¢ is a square.

(18.3) Exercise: Congruence of triangles.

A triangle A(P;, Py, P3) C R? in the Euclidean plane R? is uniquely determined
by its vertices P; = [x;,v;] € R%. Hence the set of triangles can be identified
with the state space R® via A(Py, Py, P3) = [21, Y1, T2, Y2, T3, Y3).

a) Triangles A and A'(Py, Pj, P}), where P! = [z}, y]], are called congruent, if
there are a permutation 7 € Sz and a Euclidean transformation o on R? such
that [z}, yl] = [@in, yin|® fir ¢ € {1,2,3}. Describe the structure of the latter
symmetry group G, and show that congruence is an equivalence relation.

b) Show that G acts naturally via automorphisms on the R-algebras A :=
Maps(R®,R) and R := ANR[X;, Y1, Xo, Y, X3, Y3].

A function F € A is called geometric, if it is G-invariant, that is we have
F9 = F for all g € G. Show that the sets A% and R® of geometric (polynomial)
functions are R-subalgebras of A.

c) Show that letting

1 Yy 1
A(A) :=|det | [z2 y2 1 )
z3 ys 1

and C(A) := Sio+ S13+ Sa3, where S;;(A) := \/(x; — x;)% + (y; — y;)?, defines
geometric functions A and C. What is their geometric interpretation? Are they
polynomial? Are the functions S;; geometric as well?

d) A set of geometric functions which uniquely determines all congruence classes
of triangles is called defining. Show that both the (three) elementary sym-
metric functions in Syo, S13, 5923, and the elementary symmetric functions in
S32,,5%,, 53, are defining sets. What is the geometric interpretation?

e) Show that any R-algebra generating set of R® is defining. Actually, the
elementary symmetric functions in S%,, S%;, S2; are an R-algebra generating set
of RY; try to prove this. Write A2 as a polynomial in S%,, S%;, S2,.
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(18.4) Exercise: Geometric functions.
Keeping the notation of Exercise (18.3), find defining sets, and the R-algebra of
geometric (polynomial) functions for i) the points in R2, and ii) the lines in R2.

(18.5) Exercise: Invariant algebras.

a) Let G and H be groups, let V be a K[G]-module, and let W be a K[H]-
module. Show that V & W becomes a K[G x H]-module, that S[V & W] =
S[V]® S[W], and that S[V @ W]¢*H = S[V]¢ @ S[W]H.

b) Let G be a finite group, and let V be a K[G]-module. For d € Ny show that
S[V1§ # {0} only if |py (G) N Z(GL(V))] divides d.

(18.6) Exercise: Factorial invariant algebras.
Let K be a field, let G be a group having only the trivial one-dimensional
K-representation, and let V be a K[G]-module. Show that S[V]¢ is factorial.

Hint. For f € S[V] consider the G-action on the associated primary ideals.

(18.7) Exercise: Invariant fields.

Let K be a field, let G be a finite group, let V be a K[G]-module such that
n = dimg (V) € No, and let {f1,..., fn} € S[V] be algebraically independent.
(Why does such a set always exist?) Show that there is f € S(V)¢ such that
S(V)¢ = K(f1,..-, fa, f). Can this be achieved with less than n polynomials?

(18.8) Exercise: Jacobian and Hessian determinants.

Let K be a field, let G be a group, let V be a K[G]-module with associated
determinant representation dety: G — K*: g — det(py(g)), and let S :=
K[X3,...,X,] be the associated polynomial algebra, where n := dimg (V).

a) For fi,...,fn € S let det(J(f1,.-., fn)) :i= det([g—)ﬁ]ij) € S be their Jaco-
bian determinant. If the f; are homogeneous, show that det(J(f1,..., fn)) is
homogeneous as well, and express its degree in terms of the degree of the f;.

Show that for g € G we have det(J(f{,..., f9)) = dety (g) -det(J(f1,- .., fn))9.
Conclude that whenever dety is the trivial representation, and fi,..., f, € SY,
then we have det(J(f1,..., f.)) € S¢ as well.

b) For f € Slet H(f) := det([aXLaij ) € S denote the corresponding Hessian
10X i

determinant. If f is homogeneous, show that H(f) is homogeneous as well,
and express its degree in terms of the degree of f.

Show that for g € G we have H(f9) = dety (g9)%-H(f)¢. Conclude that whenever
det} is the trivial representation, and f € S¢, then we have H(f) € S as well.

(18.9) Exercise: The cyclic group of order 2.
Let K be a field such that char(K) # 2, and let G := (z) & Cy, where z :=
diag[—1,—1] € GLo(K). Letting S := K[X,Y] be the associated polynomial
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algebra, show that as graded K-algebras we have the presentation
SY = K[X?,XY,Y? = K[A, B,C]/(AC — B?),

where K[A, B, C] is the polynomial algebra with degrees [2, 2, 2].

(18.10) Exercise: The cyclic group of order 3.
Let K be a field such that char(K) # 3, let G := (z) = C3 act on K? by

. 0 1
SR S G
and let S := K[X,Y] be the associated polynomial algebra. Compute a minimal

homogeneous generating set of S, and show that Noether’s degree bound is
sharp in this case. How does this relate to Exercise (18.13)7

(18.11) Exercise: The dihedral group of order 8.
Let K be a field such that char(K) # 2, and let G := (s,t) = Dg, where

0 1

-1 0

5= hl ﬂ € GLy(K) and t:= [

] € GLy(K).

Letting S := K[X,Y] be the associated polynomial algebra, show that S¢ =
K[X? +Y? X?Y?]. Determine the Hilbert series of S¢. Is S polynomial?
How does this relate to (6.6)?

(18.12) Exercise: The dihedral group of order 2(p + 1).

Let K be a field such that char(K) = p > 0, where p = 3 (mod 4), and let
(a+bT) € F,[T]/(I?* + 1) 2 F2 have order p + 1. Moreover, let V := K2, let
S := K[X,Y] be the associated polynomial algebra, and let G := (s, t), where

5= hl ﬂ € GLy(K) and t:= {fb Z] € GLy(K).

a) Show that ¢ has order p+ 1, such that ¢t = ¢!, Conclude that G = Dapy1y-
b) Show that S¢ = K[X? + Y2 XP*! 4 YP+l] How does this relate to (6.6)?

(18.13) Exercise: Cyclic groups.

Let K be a field, let k € N such that char(K) 1 k, let {x € K be a primitive k-th
root of unity, and let G := (z) = C},. We consider representations G — GL2(K),
and let S := K[X,Y] be the associated polynomial algebra.

a) We consider the representation given by z +— diag[(x,(x], for which we
have already seen that S¢ = K|fy,..., fx], where f; == XYk~ € S for
i €{0,...,k}. Show that as graded K-algebras we have the presentation

ok
S¢ = K[Fy,...,Fp]/(FoF, — FiFp_i;1 <i < L§J),
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where K[Fy,..., Fy] is polynomial with degrees [k, ..., k].

b) We consider the representation given by z + diag[Cy, ¢, '], for which we
have already seen that S¢ = @i:ol (XY . R) as graded K-algebras, where
R := K[X* Y*]. Show that as graded K-algebras we have the presentation

k
S¢ = K[F,...,Fy, F}]/(FyF|, — F;F_i;1<i < L5
where K[F1,..., Fy, F]] is polynomial with degrees [2,4,...,2(k — 1), k, k].

(18.14) Exercise: Generic representations of cyclic groups.

Let G := (z) = Cy be the cyclic group of order k € N, and let K be a field such
that char(K) { k containing a primitive k-th root of unity (.

a) We consider the representation G — GL,,(K): z — diag[(;;i € {1,...,n}],
where e1,...,e, € Z and n € N. Letting S := K[X1,...,X,] be the associated
polynomial algebra, show that S¢ is generated by the monomials

{HX;Z €S;ay,...,a, €40,...,k}, Zaiei =0 (modk)}.
i=1 i=1

b) In particular, letting kq,...,%k, € N be pairwise coprime such that k =
17, ki, and 2 v diag[Cy,;4 € {1,...,n}], show that S¢ = K[X}*,..., X}n].

(18.15) Exercise: Number of generators.

Let K be field, let G be a finite group such that char(K) 1 |G|, and let V be a
K[G]-module such that n := dimg (V) € Ny.

a) Show that S[V]¢ is generated by at most (”Jrn‘Gl) homogeneous elements.
b) Let G := (z) = C} be the cyclic group of order k£ € N, let K contain
a primitive k-th root of unity (x, and let G act on V = K" by z — (i - Ey.
Show that the minimal homogeneous generating sets of S[V]¢ consist of (":E;l)
elements of degree p. (Thus the above bound is essentially sharp.)

(18.16) Exercise: The cyclic group of order p.

Let K be a field such that char(K) =p > 0, let V := K?, and let S := K[X,Y]
be the associated polynomial algebra.

a) Let G := (2) =2 C), act by

N E ﬂ € GLy(K).

Show that S¢ = K[X,Y? — XP~1Y], so that S is polynomial and Noether’s
degree bound holds. Show that the trace ideal equals Sﬁ} = (XP~1) <8¢

b) Let H := (z,s) = Cp: Cp_1 act by s — diag[gpill,gp,ﬂ € GL3(K), and let
U:=(z,s,t) 2 (Cp: Cp_1) X Cp_1 act by t — diag[(,—1,1] € GL2(K). Deter-
mine generating sets of S¥ and SY. Are these invariant algebras polynomial?
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(18.17) Exercise: The dihedral group of order 2p.

Let K be a field such that char(K) =p > 3, let V := K2 let S := K[X,Y] be
the associated polynomial algebra, and let G := (s,t) = Dy,,.

i) Show that S¢ = K[X, (Y? — XP~'Y)2], where G acts by

1 0] 1 0]

5 € GLy(K) and ¢t~ 11 € GLy(K).

ii) Show that S¢ = K[X?2,Y? — XP~1Y], where G acts (contragrediently) by
-1 0 1 0]

5+ € GLy(K) and tw— 11 € GLy(K).

Moreover, for both actions, determine the Hilbert series of S&. Is S polyno-
mial? Show that G is a pseudoreflection group. How many pseudoreflections
are there? Does Theorem (8.2) hold?

(18.18) Exercise: Bertin’s example.

Let K be a field such that char(K) = 2, let G := (z) = Cy, let V := K|[G] be
the regular K|[G]-module, with respect to the K-basis {1, 2,22, 23} C V, and
let S := K[X;,...,X4] be the associated polynomial algebra. Determine the
Hilbert ideal of S¢. Does Hilbert’s Finiteness Theorem hold? Does Benson’s
Lemma hold for Sf <867

(18.19) Exercise: An inadmissible counterexample.
Let K be a field, let G := KT act on K2 by

K — GLo(K): t — [1 ﬂ ,

and let S := K[X,Y] be the associated polynomial algebra.

a) Show that (X?) < S is a G-invariant ideal, so that R := S/(X?) becomes
a graded K-algebra, on which G acts faithfully by automorphisms of graded
K-algebras. Is R a domain, or factorial, or a polynomial algebra?

b) Show that the set R C R of G-fixed points in R is a K-algebra again, which
is generated by the image of {XY™ € S;n € Ny} with respect to the natural
epimorphism S — R. Conclude that R® is not a finitely generated K-algebra.

(18.20) Exercise: Nagata’s counterexample.
Let {a;; € C;i e {1,...,16},5 € {1,...,3}} be algebraically independent over
Q, and let G < GL32(C) be the group of all block diagonal matrices

diag 1

c - [(1) bl} € GLy(C)i € {1,...,16} |,

where H;il ¢; = 1 and E}ﬁl bia;; = 0, for j € {1,...,3}. Show that the
invariant algebra S[C32] is not a finitely generated C-algebra. (At least try.)
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(18.21) Exercise: Contragredient modules.

Let K be a field, let G be a finite group, let V be a K[G]-module, and let V*
be the associated contragredient K[G]-module.

a) Show that S[V*]q = (S[V]q)* as K[G]-modules, for d € Ny.

b) Assume that char(K) { |G|. Show that we have Hgyje = Hgpy+je € Q(T).
c) Assume that char(K) = 0. Show that S[V]¢ is polynomial if and only if
S[V*]¢ is polynomial. In this case, are S[V]¢ and S[V*]¢ (graded) isomorphic?

(18.22) Exercise: Birman’s identity.
Let G be a finite group, let K be a field such that char(K) 1 |G|, let V be a K[G]-
module such that n := dimg (V) € Ny, and let xy: G — K be the associated

character. Show that Hgjyjc = ﬁ Ygea D (Xgs1 L xv(gHT?) € Q[[T]].

(18.23) Exercise: Molien’s formula for semi-invariants.

Let G be a finite group, let K be a field such that char(K) 1 |G|, let A\: G — K*
be a one-dimensional representation, and let V be a K[G]-module such that
n = dimg (V) € Ny. Show that the set of semi-invariants S[V]{ C S[V]
is a graded S[V]%module, and that its Hilbert series is given as H SVis =

—1
ﬁ DI m € Q(T), where we identify A\ with its Brauer lift.

(18.24) Exercise: Stanley’s identity.

Let G be a finite group, let K be a field such that char(K) 1 |G|, let V be a K[G]-
module such that n := dimg (V) € Ny, and let \: G — K*: g — det(py(g)) "
be the contragredient of the associated determinant representation. Show that
Hgpye(T™) = (=T)™ - Hgye € Q(T). In particular, conclude S[V1§ # {0}.

(18.25) Exercise: Sums of roots of unity.

For k € N find Zi:ol m € C, where (i € C is a primitive k-th root of unity.
k

(18.26) Exercise: Regular representation of cyclic groups.
Let G := (z) = C,, be the cyclic group of order n € N, and let V := C[G] be the
regular C[G]-module, given by the action of G on the C-basis {1,z,...,2" '}.

Show that the Hilbert series of S[V]¢ is Hgpye = %'Edel\h dln (11";?)% € Q(7),

where ¢: N — N is Euler’s totient function.

(18.27) Exercise: Abelian groups of order 8.

Let K be a field such that char(K) # 2 containing a primitive 4-th root of unity
Ca, let V:= K3, and let S := K[X,Y, Z] be the associated polynomial algebra.
Moreover, let G := (y) x (z) &2 Cy x Cy act on V by y — diag[—1,—1,1] and
z +— diag[l,1,¢4], and let H := (a,b,c) = C3 act on V by a — diag[—1,1,1] and
b — diag[l,—1,1] and ¢ — diag[1,1, —1].

Determine S¢ and S, show that S and S¥ are not isomorphic as K-algebras,
but have the same Hilbert series Hge = Hgr = ﬁ € Q(T),
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(18.28) Exercise: Nakajima’s example.
Let p be a prime, and let

1 0 a+b b

=14 L b e G F,)ab e F, ) < GLy(F,).
00 1 0
00 o0 1

Show that G is generated by pseudoreflections, where |G| = p?, but the associ-
ated invariant algebra S [Ff)]G is not polynomial.

(18.29) Exercise: Reflection representation of S,,.

Let n € N and let W be the natural permutation Q[S,,]-module, having permu-
tation Q-basis {by,...,b,} C W.

a) Show that W’ := (3" bi)g < W is a trivial Q[S,]-submodule, and that
V := W/W' is an absolutely irreducible faithful reflection representation of S,,.
b) Determine {fi,..., fn—1} C S[V]» homogeneous and algebraically indepen-
dent such that deg(f;) =i+ 1 and S[V]» = Q[f1,. .., fn_1]-

(18.30) Exercise: Polyhedral groups.

We consider the regular tetrahedron and the regular octahedron, embedded
into Euclidean 3-space, centered at the origin. Let 7 < O3(R) and O < O3(R)
be their full symmetry groups, respectively, let 7 := 7N SO3(R) and O :=
on SO3(R) be their rotational symmetry groups, also called the tetrahedral
and octahedral groups, respectively. Let S := S[R3].

a) Show that 7 = {+FE3} x T, where T = Ay, and that 7T is generated by
reflections and irreducible. Conclude that S7 is polynomial with degrees [2, 3, 4].
(It is the group G223 in the Shephard-Todd classification.)

Show that Hgr = (1_T2)(}f§§)(1_T4) € Q(T)l and E)rovide a homogeneous
invariant f € S7 of degree 6, such that S7 = S7 @ fS7.

b) Show that O = {£FE3} x O, where O = &, and that O is generated by

reflections and irreducible. Conclude that SO is polynomial with degrees [2, 4, 6].
(It is the group G213 in the Shephard-Todd classification.)

Show that Hgo = (17T2)(%1L7T“i)(17T6) € Q(T), and provide a homogeneous

invariant g € S© of degree 9, such that S© = SO @ 956. How is this related to
the irreducible reflection representation of S4?

(18.31) Exercise: A complex reflection group.
We consider the group G := GL3(F3), which is the (up to isomorphism) unique
(non-abelian) simple group of order 168.

a) Show that G has conjugacy classes having elements of order [1,2,3,4,7,7|,



110

b) Let V' be one of the (faithful) 3-dimensional irreducible C[G]-modules, and
let S C G be the set of involutions. Show that |S| = 21, and that s € S has
trace v (s) = —1 on V. Conclude that G := (—py (S)) < GL3(C) is a non-real
complex pseudoreflection group, which is generated by reflections, and show
that G = {£E3} x G. (It is the group Ga4 in the Shephard-Todd classification.)

c) Show that S[V]“ is polynomial with degrees [4,6,14]. Moreover, show that
Hgpyje = (17T4)(17;Z;(17Tl4) € Q(T), and provide a homogeneous invariant

g € S[V]¢ of degree 21, such that S[V]¢ = S[V]a ®g- S[V]@.

(18.32) Exercise: Invariant forms.

Let G be a finite group, and let n € N.

a) If G < GL,(C), show that there is A € GL,,(C) such that A='GA < U, (C).
If G < GL,(R), show that there is B € GL,(R) such that B"'GB < O, (R).
b) If G < GL,(C) is irreducible, show that there is C' € GL,(C) such that
C~1GC < GL,(R) if and only if there is a non-zero quadratic G-invariant.

(18.33) Exercise: Pseudoreflection groups.

Let K be a field such that char(K) = 0, let G be a finite group, let V be a faithful
K[G]-module such that G is generated by pseudoreflections, let dy,...,d, € N
be the associated degrees, where n := dimg (V) € Ny, and let ,, € K be a
primitive m~th root of unity, where m € N. Show that (,, - E,, € G, if and only
ifm | d; forallie{l,...,n}.

(18.34) Exercise: Basic invariants.

Let K be a field such that char(K) = 0, let G be a finite group, let V be a
K[G]-module such that n := dimg (V) € Ny, and let S[V]® = K[f1,..., f.] =
K[f{,..., f]] be polynomial. Use Jacobian matrices to give an alternative proof
that the associated multisets of degrees coincide.

(18.35) Exercise: Jacobian criterion.

Let K be a field of char(K) = 0, let K[X] = K[X1,...,X,] for n € Ny, let
Pk = Yy XF € K[X] be the power sums for k € N, and let e, 1,..., €y, €
K[X] be the elementary symmetric polynomials, where deg(e, ;) = i. Use the
Jacobian criterion to show directly that {pn.1,...,Pnn} and {en1,...,€nn} are
algebraically independent.

(18.36) Exercise: Newton identities.

a) Let K be a field, let K[X] = K[X;,...,X,] where n € Ny, let p, =
S, XF € K[X] be the power sums for k € N, and let e, 0,...,e,, € K[X]
be the elementary symmetric polynomials, where deg(e, ;) = ¢. Show that for
ke {1,...,n} we have ke,, , = Zle(—l)iflpmenyk_i.

b) Let char(K) = 0 or char(K) > n. Determine all solutions [z1,...,z,] € K"
of the system of equations > i, ¥ = 0, where k € {1,...,n — 1}.
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(18.37) Exercise: Symmetric polynomials.

Let K be a field, let S,, act naturally on K[X]:= K[X7,...,X,], where n € Ny,
and let p, == > i, XF € K[X] be the power sums, for & € N. Show that
K[X]|5" = K[pn1,--.,Pnn] whenever char(K) = 0 or char(K) > n. Is the
assumption on the characteristic necessary?

(18.38) Exercise: Elementary symmetric polynomials.

Let K be a field, let S,, act naturally on K[X] = K[X3,...,X,], where n € Ny,
and let the monomials X* € K[X], for « € Njj, be totally ordered lexico-
graphically by letting X7 > --- > X,,. Then the largest monomial occurring
in a polynomial 0 # f € K[X] is called its leading monomial.

a) Let 0 # f € K[X]%, and let X* be its leading monomial, where a =

[a1,...,a,] € NJ. Show that « is a partition, that is a3 > -+ > «a,,. Moreover,
show that [T}, er’i_a"l € K[X]%", where g := 0, has leading monomial X'®.

b) Give an algorithm utilizing the lexicographic order on the set of monomials
to write a symmetric polynomial as a polynomial in the elementary symmetric
polynomials {e, 1,...,€nn}. Compare this algorithm (which is actually due to
GAuss) with the algorithm given in (9.3).

c) Forne {1,...,4} and k € {1,...,4}, write the symmetric polynomials A2
and py, 1 as polynomials in the elementary symmetric polynomials.

(18.39) Exercise: Gobel’s algorithm.

Let K be a field, let S,, act naturally on K[X] = K[X71,...,X,], where n € Ny,
and let G < §,. Give an algorithm utilizing Go6bel’s Theorem to write a G-
invariant polynomial as a polynomial in the elementary symmetric polynomials
{€n1,---1€nn} and the orbit sums (X*)*, where a € Ny is (n — 1)-special.

(18.40) Exercise: Direct products of symmetric groups.

a) Let §$ :=8,, x -+ xS§,. <S8, be aYoung subgroup, where r € N and
n=>3y._,n €N,let K be a field, and let S act on K[X,...,X,], where
X; = {Xi1,...,Xin,}, and where the i-th direct factor acts naturally on X;
and fixes the other indeterminates. Show that K[X),...,X,]S is a polynomial
algebra, and determine a set of basic invariants.

b) Use this to give improved versions of the algorithms in Exercise (18.38)
for Young subgroups, and to give an improved version of Gobel’s algorithm in
Exercise (18.39) for intransitive permutation groups.

(18.41) Exercise: Trace ideal.

a) Let K be a field, let S, act naturally on K[X] = K[X;,...,X,], where n €
Ny, and let G < S,,. Show that the trace ideal Tr% (K[X]) Q K[X]€ is generated
by Tr%(X®), where a € Ny is (n — 1)-special such that p { [G: Stabg(X®)].
b) Let char(K) = 2 and n > 2. Show that Tro" (K[X]) = A, - K[X]5

c) Let char(K) = 2 and n > 2. Give a similar description of Tr" (K[X]).

Hint for c). Consider (n — 1)-special partitions of length at least n — 3.



112

(18.42) Exercise: Galois resolvents.

Let K be a field, let f € K[X] be separable of degree n € N, having roots
{z1,...,z,} in a splitting field K C L, let Autx(L) =2 A < S,, be the Galois
group of f. Moreover, for H < G < §,, such that A < G let 7TIC_7}S G — Su\q be
the action homomorphism of G with respect to H, and for F € K[Xq,..., X,
let p := p%(F)(z1,...,7,) € K[X] be the associated resolvent. If p is separable,
show that p has Galois group isomorphic to 7% (A).

(18.43) Exercise: Generalized quaternion groups.
Let K be a field containing a primitive 2k-th root of unity (o, where k& > 2, let
G =2 Q4 be the generalized quaternion group of order 4k, where

on( &[4 fyseuem

and let S := K[X,Y] be the associated polynomial algebra.

a) Show that the Hilbert series of S¢ is given as Hge = Ujﬁﬁ% € Q(T).
b) Find primary invariants {f1, fo} € S¢ such that deg(f1) = 4 and deg(fs) =
2k, and secondary invariants {gi,g2} C S[V]¢ such that deg(g;) = 0 and
deg(g2) = 2k+2, yielding the Hironaka decomposition S& = EB?:l(gi'K[fl, f2]).
Conclude that {fi, fo} are optimal primary invariants, and that {f1, f2, g2} is
a minimal generating set of S¢.

c) Show that as graded K-algebras we have the presentation
SY =~ K[A, B,C]/(C* — AB? 4 4A*1),

where K[A, B, (] is the polynomial algebra with degrees [4, 2k, 2k + 2].

(18.44) Exercise: An abelian group of order 8.

Let K be a field such that char(K) # 2 containing a primitive 4-th root of unity
G, let V := K3 let S := K[X,Y,Z] be the associated polynomial algebra,
and let G := (y) x (2) 2 Cy x Cy act on V by y — diag[—1,—1,1] and z —
diag[1, 1, (4]; recall that the Hilbert series of S¢ equals Hge = ﬁ € Q(7).

a) Show that there is no set of primary invariants {fi, fa, f3} € S such that
deg(f1) = deg(f2) = deg(f2) = 2.

b) Find primary invariants {f1, fa, f3} € S¢ such that deg(f1) = deg(fa) = 2
and deg(f3) = 4, and secondary invariants {gi,...,gm} C S¢ for some m €
N, yielding the Hironaka decomposition S¢ = @], (g; - K[f1,..., f3]). Are
{f1, f2, f3} optimal primary invariants? Find a minimal generating set of S¢.

(18.45) Exercise: Depth of invariant algebras.
Let K be a field, let G be a finite group, let V' be a K[G]-module such that
dimg (V) > 2. Show that depth(S[V]%) > 2.
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(18.46) Exercise: Depth of invariant algebras.

Let K be a field, let G be a finite group, let H < G, let V' be a K[G]-module
such that n := dimg (V) € Ny, and let S := S[V].

a) Show that depth(S*) = depthge (S*), where the latter denotes the depth
of S7 as an S%-module.

b) Assume that char(K) t [G: H]. Show that depth(S%) > depth(S™).

c) Conclude that S is Cohen-Macaulay whenever n < 2.

(18.47) Exercise: Cohen-Macaulay property.

Let p be a prime, let K be a field such that char(K) = p, and for the following
p-groups G let V' be the natural K[G]-module, and let V* be the associated
contragredient K [G]-module. For both S[V]% and S[V*]¢ provide a set of
primary invariants and an associated minimal set of secondary invariants, as
well as a minimal homogeneous generating set; moreover, decide about their
Cohen-Macaulayness and polynomiality:

a) Let G = C? be given as

1 a b
G = { 0 1 0| € GL3(F,);a,b€ ]Fp} < GL3(Fyp).
0 0 1

Show that S[V*]¢ is polynomial, while S[V]¢ is not, but is Cohen-Macaulay.
b) Let G = C, be given as

100 a00d
01000b 0d
00100 c¢d

G::{OOO 1O00€GL7(IE‘p);a,b,c,d€IFp}<GL7(IE‘p).
0000 T100
00000O0T10
00000 0 1

Show that S[V]¢ is polynomial, while S[V*] is not even Cohen-Macaulay.

(18.48) Exercise: Cohen-Macaulay property of vector invariants.
Let p be a prime, let G := (m) = C), be the cyclic group of order p, let K be a
field such that char(K) =p,let V=W & W & W as K[G]-modules, where

pw: G — GLy(K): [(1) ﬂ ,
let S[V] = K[X1,Y1, Xs,Ya, X3,Y35] be the associated polynomial K-algebra.
a) For1<i<j <3 let hL] = XiY} — Xj}/i S S[V] Show that hij S S[V]G
b) Show that {Y7,Ys, Y3} C S[V]% can be extended to a homogeneous system
of parameters of S[V]“, but [Y7,Ys, Y3] is not a regular sequence in S[V].
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(18.49) Exercise: The dihedral group of order 10.

The dihedral group D¢ is the symmetry group of the regular 5-gon in the
Euclidean plane, hence its action on the vertices gives rise to the embedding
Dyp 2 G := (t,s) < S5, where t := (1,2,3,4,5) and s := (1,4)(2,3). Let K be
a field, let V' be the associated permutation K[G]-module, and let S := S[V].

a) Compute the Hilbert series Hgo of the invariant algebra S¢, and show that
Noether’s degree bound holds for S¢, independently of the characteristic of K.

b) Let char(K) # 5. Show that S¢ is Cohen-Macaulay. Moreover, show that
SE has an optimal set of primary invariants of degrees [1,2,2,3,5], and an
associated set of secondary invariants of degrees [1,3,4,4,5,8]. Conclude that
S¢ has a minimal homogeneous generating set of degrees [1,2,2,3,3,4,4,5,5].

c) Let char(K) = 5. Show that S¢ has an optimal set of primary invariants
of degrees [1,2,3,4,5], and an associated set of secondary invariants of degrees
[1,2,3,4,4,5,5,6,6,7,8,10]. Conclude that S is Cohen-Macaulay, and has a
minimal homogeneous generating set of degrees [1,2,2,3,3,4,4,5,5,6].

(18.50) Exercise: The dihedral group of order 8.
Let K be a field such that char(K) # 2, and let G := (s,t) = Ds, where

0 1

-1 0

8= [_01 ﬂ € GLy(K) and t:= [

:| € GLQ(K)
Letting S := K[X,Y] be the associated polynomial algebra, by Exercise (18.11)
it is known that the invariant algebra S is polynomial with degrees [2, 4].

Find a homogeneous K-basis of the coinvariant algebra S, and show that its
Hilbert series equals Hg, = 1+2T+2T%+2T3+T* € Q(T). Moreover, describe
the action of G on the homogeneous components of S, and show that S¢g is as
a K[G]-module isomorphic to the regular module.

(18.51) Exercise: Broer’s degree bound.

Let G be a finite group, let K be a field such that char(K) { |G/, let V be a K[G]-
module such that n := dimg (V) € Ny, let \: G — K*: g — det(py(g))7 !,
let d € Ny be the minimum degree of a non-zero homogeneous semi-invariant
with respect to A (which by Exercise (18.24) exists), let {f1,...,f.} be a
set of primary invariants such that d; := deg(f;) € N, let {g1,...,9m} be a
minimal set of secondary invariants such that e; := deg(g;) € No, and let
e :=max{er,...,em}

Show that e +d = >""" ,(d; — 1). What happens in the case py (G) < SL(V)?

19 Exercises: Commutative algebra

(19.1) Exercise: Tensor products.
Let K be a field, let V and W be K-vector spaces, and let V' ® W be a tensor
product of V and W over K (which we assume to exist).
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a) Show that V' ® W is uniquely determined up to isomorphism of K-vector
spaces, and that V@ W = W ® V as K-vector spaces. Moreover, if U be a
K-vector space, show that (V@ W)U 2V @ (W ® U) as K-vector spaces.

b) Let V and W be finitely generated, having K-bases {v1,...,v,} C V and
{wy,...,wyn} C W, where n := dimg (V) and m := dimg(W). Show that
{fviww,eVeoW;ie{l,...,n},je{l,...,m}} CV®W is a K-basis.

c) Let R and S be K-algebras. Show that R® .S becomes a K-algebra by letting
(fe(f'®g):=ff ®ggd, for f,f € Rand g,¢" € S; show that if R and S
are commutative then so is R® S, and if R and S are graded then so is R® S.

(19.2) Exercise: Symmetric algebras.
Let K be a field, let V' be a finitely generated K-vector space, let T(V) =
Do V@4 be the associated tensor algebra, and let T(V)~ = Do y@d—

Show that T'(V)~ is a homogeneous ideal of T'(V'), which is generated by

fvew-weve Vv weV} C VO,

(19.3) Exercise: Exterior algebras.

Let K be a field, let V' be a finitely generated K-vector space, and let T'(V) =
@D, V¥ be the tensor algebra. Moreover, let T'(V)* <T(V) be the (homoge-
neous) ideal generated by {v@v € V®% v € V}, andlet A(V) :=T(V)/T (V)" =
@D, >0 A4V) be the associated graded exterior K-algebra, whose homoge-
neous components are called the exterior powers of V.

a) For d € Ny let VOt = (1 @ -+ ®@vq) - (1 +7);01,...,04 €V, m € Sa)k <
V@ Show that V®2+ < T(V)*. Moreover, show that if char(K) # 2 then
T(V)?* is as an ideal generated by V®2* and we have T(V)+ NV ®d = y®d+,
so that A4(V) = V®4/y @4+ (What happens in the case char(K) = 27?)

b) Show that A(V) is graded commutative, that is for a € A%(V) and b €
A¢(V) we have ab = (—1)% - ba € A(V). Which universal property does A(V)
have? Moreover, provide a K-basis of A4(V), for d € Ny, in terms of a given
K-basis of V, and determine dimg (A4(V)). Is A(V) finite-dimensional, and if
so, what is its K-dimension? What is the Hilbert series of A(V)?

c) Let G be a group, and assume that V is a K[G]-module. Show that A(V)
naturally becomes a graded G-algebra. Moreover, if G is finite such that
char(K) { |G|, show that the Hilbert series of the invariant algebra A(V)¢

is given as Hy(y)c = |—Cl;‘ “Ygeq det (pv(1) + pv(g) - T) € Q(T).

(19.4) Exercise: Noetherian modules.

Let R be a commutative ring and let M be an R-module.

a) Let N < M be an R-submodule. Show that if M is Noetherian, then so are
N and M/N; and conversely if both N and M/N are Noetherian, then so is M.
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b) Show that M is Noetherian if and only if each submodule of M is finitely
generated. Conclude that if R is Noetherian, then M is Noetherian if and only
if M is finitely generated.

c) Let S C R be a subring, such that S is a direct summand of R as an S-module.
Show that if R is Noetherian then so is S.

(19.5) Exercise: Prime avoidance.

Let R be a commutative ring.

a) Let Pi,..., P, < R be ideals, for n € N, and assume that R is a K-algebra
for an infinite field K, or that at most two of the P; are not prime. Given I <R
such that I C |J!_, P; , show that there is ¢ € {1,...,n} such that I C P,.

b) Let I1,...,I, < R be ideals, for n € N, and let P < R be a prime ideal such
that N, I; C P. Show that there is i € {1,...,n} such that I; C P.

c) Let R be Noetherian, let I < R be an ideal, and let M # {0} be a finitely
generated R-module. Show that either I contains a non-zerodivisor on M, or
there is 0 # m € M such that I C anng(m).

(19.6) Exercise: Prime avoidance.

We present a few examples to show how prime avoidance cannot be improved:
a) Let R := F3[X,Y]/(X,Y)% Show that (X,Y) < R is the union of three
properly smaller ideals.

b) Let K be a field, let R := K[X,Y]/(XY,Y?), and let P := (X) < R, and
Q= (Y)<R,and I := (X2,Y)<R. Show that the homogeneous elements of I
are contained in PUQ, but I € P and I € Q. Which of these ideals is prime?
c¢) Let K be an infinite field, let R := K[X,Y], and let I := (X,Y) < R. Show
that I is contained in the union of an infinite set of prime ideals, neither of
which contains I.

(19.7) Exercise: Localization.

Let R be a commutative ring, let U C R be a multiplicatively closed subset
such that 1 € U, and let M be an R-module.

a) Show that Ry is a commutative ring, and that v: R — Ry:r + 1 is
a homomorphism of commutative rings. Moreover, show that My is an Ry-
module, and that M — My : m +— 7t is a homomorphism of R-modules.

b) Show that the localization Ry has the following universal property: If
¢: R — S is a homomorphism of commutative rings such that p(U) C S*,
then there is unique ring homomorphism @: Ry — S such that v - @ = .

c) Show that for J < Ry we have (v~1(J))y = J, and conclude that the map
v~ {J<Ry} — {I <R} is an inclusion-preserving and intersection-preserving
injection, mapping prime ideals to prime ideals.

d) Show that for an ideal I < R we have I C v~ !(Iy) = {f € R;fu €
I for some v € U} < R, and conclude that we have Iy # Ry if and only if
INU = (). Moreover, show that for a prime ideal P < R we have P = v~ (Py)
if and only if PN U = 0, in which case Py < Ry is a prime ideal as well.
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(19.8) Exercise: Local rings.

Let R be a local commutative ring, and let M be a finitely generated R-module.
Show that M is projective, that is M is a direct summand of a free R-module,
if and only if M is free.

(19.9) Exercise: Nakayama Lemma.

Let R be a commutative ring, let I <R be an ideal, let M be a finitely generated
R-module, and let ¢ € Endg(M).

a) If (M) < MI, show that there are aq,...,a, € R, for some n € N, such
that a; € I and ©" + Y., a;¢" " =0 € Endg(M).

b) If MI = M, show that there is a € anng(M) such that a =1 (mod I).

c) Show that ¢ is surjective if and only if ¢ is bijective [VASCONCELOS, 1969].

(19.10) Exercise: Lemma of Gauss.
Let R be a factorial domain. Show the Lemma of Gauss, saying that the
polynomial ring R[X] is factorial again.

(19.11) Exercise: Integral closure.

Let R C S be an extension of commutative rings.

a) Show that for R = R = {s € S;s is integral over R} C S we have R = R.
b) Show that if R is a factorial domain, then it is integrally closed.

(19.12) Exercise: Integral extensions.

Let R C S be an integral extension of commutative rings.

a) Let S be a domain. Show that R is a field if and only if S is a field.

b) Let Q <5 be a prime ideal. Show that @) is a maximal ideal of S if and only
if @ N R <R is a maximal ideal of R.

c) Let P < R be a maximal ideal. Show that there is a prime ideal @ < .S such
that P = @ N R, and that any such @ is maximal.

(19.13) Exercise: Going up.

Let R C S be an integral extension of domains, such that R is integrally closed.
a) Assume that S is integrally closed as well, and that the field extension K :=
Q(R) € Q(S) =: L is normal. Given a prime ideal P < R, show that the Galois
group Autg (L) acts transitively on the set of prime ideals of S lying over P.
b) Let P’ C P<R be prime ideals, and let Q <S be prime such that QR = P.
Show that there is a prime ideal Q' <.S such that Q' C Q and Q' N R = P'.

(19.14) Exercise: Krull’s Principal Ideal Theorem.

Let R be a Noetherian commutative ring, and let P < R be a prime ideal such
that ht(P) = r, for some r € Ny. Show that there are fi,..., f, € R such that
P is a minimal prime divisor of (f,..., fr) <R.
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(19.15) Exercise: Zero-dimensional algebras.
Let K be a field, and let R be a finitely generated commutative K-algebra.
Show that dim(R) = 0 if and only if dimg (R) < oo.

(19.16) Exercise: Infinite dimension.

Let K be a field, let R = K[X;, Xo,...] be the polynomial algebra in countably
infinitely many variables, let dy := 0 and d; € N such that d; < d;y1, let
P = (X4, ,41,...,Xq,) IR, for i € N, and let U := R\ (U,>, Pi) € R. Show
that Ry is Noetherian such that dim(Ry) = sup{d; — d;_1 € N;i € N}.

(19.17) Exercise: Graded fields of fractions.

Let K be a field, and let R be a finitely generated (non-negatively) graded
K-domain. Then the associated graded field of fractions is defined as the
(non-connected) Z-graded K-algebra GrQ(R) := L = @ ., Ls € Q(R),
where Ly := {5 €Q(R);f € Rita,g € R, fori € Z}k

a) Show that L is a K-domain containing R, which is graded in the appropriate
sense, and that any non-zero homogeneous element of L has a homogeneous
inverse, such that Lg is a field, but that L in general is not a field.

If L # Lo, then let Lo[X*!] be the algebra of Laurent polynomials over L in
the indeterminate X, where deg(X) := min{d € N; Ly # {0}}. Show that we
have L = Lo[X*!] as Z-graded K-algebras, and that Q(R) = Q(L) = Lo(X).

b) Let R C S be finite, where S is a finitely generated graded K-domain, and
let M := GrQ(S). Show that L C M is a finite extension of graded fields,

where actually M is a free L-module of finite rank [M: L] := rky(M) € N,
having an L-basis consisting of homogeneous elements of S.

Comparing with the (genuine) field extensions Ly C My and Q(R) C Q(S), show
that [My: Lo] = [M: L] = [Q(S): Q(R)]. Give a reformulation of (the proof of)
the degree theorem for R C S in terms of their graded fields of fractions.

(19.18) Exercise: Carlson’s Lemma.

Let K be a field, let R be a graded K-algebra, and let M and N be finitely
generated graded R-modules. Show that any short exact sequence {0} - M —
M@ N — N — {0} of graded R-modules splits.

Hint. Consider {0} — Hompg (N, M)y — Hompg(N,M & N)o — Endr(N)o.

(19.19) Exercise: Hilbert series.

Let K be a field, and let K[X] := K[X;,...,X,], for n € Ny, be the polynomial
algebra in the indeterminates Xi,..., X,,.

a) For the standard grading show that dim g (K[X]q) = ("i;l*l), for d € Ny.
b) Given any grading, letting dy, ..., d, € Ny, show that K[X]/(Xfl, e, X
becomes a graded K-algebra, and determine its Hilbert series.
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c) Show that R := K[X, Xo, X3]/(X? — X2) becomes a graded K-algebra with
respect to the degrees [1,1,2], having Hilbert series Hp = ﬁ € Q(T), but
R is not a polynomial algebra. Is R a domain or factorial?

(19.20) Exercise: Coefficient growth.
Let H := m =Yz aaT? € Q((T)), where f € Z[T*!], dy, ... dx €
N, and ag > 0. Show that there is ¢ € Ny such that the sequence [§¢ € Q;d > 0]
is bounded, where for v(H) := —v;(H) > 1 the minimal choice is ¢ = y(H) — 1.

(19.21) Exercise: Hilbert polynomials.

Let K be a field, let R be a commutative graded K-algebra, having a homoge-
neous generating set of cardinality & € Ny, and let M be a finitely generated
graded R-module. Show that there is a (unique) Hilbert polynomial h € K[T
of degree at most k& — 1, such that dimg (My) = h(d) for all d > 0.

Hint. Mimic the proof of Hilbert’s Theorem on the shape of Hilbert series.

(19.22) Exercise: Noether normalization.

Let K be a field, and let R be a commutative graded K-algebra. Show that
the following assertions are equivalent: i) R is Noetherian. ii) R is a finitely
generated K-algebra. iii) The irrelevant ideal Ry < R is finitely generated.

(19.23) Exercise: Homogeneous sets of parameters.

Let K be a field, and let F; := {X, XY} and Fp := {X? XY}.

a) For i € {1,2}, show that F; C K[X,Y] is algebraically independent, but is
not a regular sequence. Conclude that dim(K[F;]) = 2, but K[F;] C K[X,Y]
is not a Noether normalization.

b) Find a homogeneous generating set of K[X,Y] as a K[F;]-module, and de-
termine the field of fractions K (F;). How does K (F;) relate to K(X,Y)?

(19.24) Exercise: Regular sequences.

Let K be a field.

a) Let R:= K[X? X?Y,Y2 Y3 C K[X,Y]. Show that {X?2 Y?} is a regular
sequence in K[X,Y], but not a regular sequence in R.

b) Let R := K[X* X3Y, XY3 Y% C K[X,Y]. Show that {X* Y*} is a homo-
geneous system of parameters of R, and that R is not Cohen-Macaulay.
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