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I SHANNON

0 Introduction

(0.1) Communication. The basic model of communication is that of sending
information between communication partners, Alice and Bob say, who commu-
nicate through some channel, which might be anything like, for example, a
telephone line, radio, an audio compact disc, a keyboard, and so on. This leads
to the following questions:

e Information theory. What is information? How much information can be
sent through a channel per time unit?

e Coding theory. The channel might be noisy, that is information might
be changed randomly, or parts might even be completely erased, when sent
through the channel. How is it possible to recover all or at least a sufficiently
large fraction of the original information from distorted data?

e Cryptography. The channel might be insecure, that is information which
is intended to be kept private to Alice and Bob might be caught by an opponent,
Oscar say, or even be changed deliberately by Oscar. How can this be prevented?

(0.2) Alphabets. A finite set X such that |X| > 2 is called an alphabet,
its elements are called letters or symbols. A finite sequence w = [z1,...,z,)
consisting of n € N symbols z; € X is called a word over X of length I(w) = n.
The empty sequence € is called the empty word, and we let [(e) := 0. Let X™

be the set of all words of length n € No, and let X := [[, ., &A™

For v,w € X* let vw € A" be their concatenation. We have ve = ev = v
and (uwv)w = u(vw), for u € X*. Hence X'* is a monoid, being called the free
monoid over X. Moreover, we have [(vw) = I(v) 4+ I(w), hence the length
function I: X* — (Np, +): w — I(w) is a monoid homomorphism.

To describe numbers, typically alphabets Zg := {0,...,¢—1} for ¢ € N\ {1} are
used; for example ¢ = 10, whose elements are called digits. In computer science,
the alphabet Zy = {0, 1}, whose elements are called binary digits or bits, the
alphabet Zg, whose elements are called Bytes, and the hexadecimal alphabet
{0,...,9,A,B,C,D,E,F} being in bijection with Zs are used. For interchange
of written texts the Latin alphabet {A,...,Z} being in bijection with Zsg, and
the American Standard Code for Information Interchange (ASCII)
alphabet being in bijection with Zjqg are used.

Then, to transmit information, it has to be encoded into words over an alphabet
X suitable for the chosen channel, and words have to be decoded again after
transmition. Thus, most generally, a code is a (finite) subset (§ # C C X*; then
C is interpreted as the set of all words over X representing sensible information.
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Table 1: Typing errors.

’ error \ \ frequency ‘
single a—b 79.0%
adjacent transposition | ab — ba 10.2%
jump transposition abc — cba 0.8%
twin aa — bb 0.6%
jump twin aca — beb 0.3%
phonetic a0 — la 0.5%
random 8.6%

1 Parity check codes

Parity check codes are used to detect typing errors. They are not capable of
correcting errors, and thus are used whenever the data can easily be reentered
again. Typical typing errors and their frequencies are given in Table 1; an
example of a phonetic error is replacing ‘thirty’ by ‘thirteen’.

(1.1) Example: The ISBN [1968, 2007]. The International Standard
Book Number is used to identify books, where up to the year 2006 the stan-
dard was ISBIN-10, which from the year 2007 on has been replaced by ISBN-
13. The ISBN-10 is formed as follows:

The alphabet is Z11, where 10 is replaced by the Roman letter X, and words
[1;22,...,%6;T7,. .., T9; ¥10] € ZJy X Z11 have length 10, where X might pos-
sibly occur only as a last symbol. Here x1,...,x9 are information symbols,
where z; is the group code, x; € {0,1} referring to English, 1 = 2 referring
to French, and x; = 3 referring to German, [z2,..., 2] is the publisher code,
and [x7,...,29] is the title code. Finally, 219 is a check symbol fulfilling
T19 = Z?:l ix; € Zq1. Hence a valid ISBN-10 is an element of the Z;;-subspace
{[w1,. . m0) € Z4% 30,2 iy = 0 € Zun} < Z49.

From 2007 on the ISBN-13 is used: After a 3-letter prefix, being a country
code 978 or 979 referring to ‘bookland’, the first 9 symbols of the ISBN-10
are taken, and then a check symbol is added such that the EAN standard
is fulfilled, see (1.2). For example, a valid ISBN-10 is ‘1-58488-508-4": We
have 1-14+2-5+3-84+4-4+5-84+6-8+7-54+8-0+9-8 =246 =
4 € Z11. The corresponding ISBN-13 is ‘978-1-58488-508-5"; indeed we have
9+3-74+84+3-1+54+3-8+4+3-84+8+3-54+0+3-8=145=5= —5 € Zqo.

(1.2) Example: The EAN [1977]. a) The International Article Number
(EAN), formerly European Article Number, is formed as follows: The
alphabet is Zig, and words [z1,...,%3;T4,...,T7;Ts, ..., 212;T13] € Zi3 have
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length 13. Here x1,...,212 are information symbols, where |21, ..., 23] is the
country code, x1 = 4 referring to Germany, [zy4, ..., 27| is the company code,
and [zs,...,x12] is the article code. Finally, 213 is a check symbol fulfilling

13 = — Z?:l(l‘gi_l + 3xa;) € Z1p. Hence a valid EAN is an element of the set
{[z1,...,213] € Z3; Z?Zl(iﬂziq + 3w2;) + 213 = 0 € Z1o} C Z13.

b) The bar code printed on goods is formed as follows: Each bar is either black
or white, and has width 1, 2, 3 or 4. Each symbol is encoded by 4 bars of
alternating colors, whose widths add up to 7; see Table 2 where 0 and 1 stand
for white and black, respectively. The odd and even type codes for each symbol
start with white and end with black, where for even type the width patterns
are just those for odd type read backwardly. The negative type code for each
symbol starts with black and ends with white, using the same width pattern as
for the odd type code, which hence amounts to just reading the even type code
backwardly. In the odd type code for each symbol the widths of the black bars
add up to an odd number, while in the even type code these sums are even.

An EAN is depicted as follows: There is a prefix 101, then the symbols o, . .., x7
are depicted by odd and even type codes, then there is an infix 01010, then
the symbols zg,...,z12 are depicted by negative type codes, and finally there
is a postfix 101. The choice of the odd and even type codes for zs,...,z7
is determined by z1; see Table 2, where — and + stand for odd and even,
respectively. Since the even type codes, that is the negative type codes read
backwardly, are disjoint from the odd type codes, this allows to read bar codes
in either direction and to swap data if necessary, or to read data in two halves.

For example, ‘4-901780-728619’ indeed yields 44+3-94+0+3-14+7+3-8+0+
3-7T4+243-84+6+3-1=121=1= -9 € Zj9, hence this is a valid EAN. The
pattern [odd, even, odd, odd, even, even] for z; = 4 yields:

101

0001011 0100111 0011001 0111011 0001001 0100111
01010 .
1000100 1101100 1001000 1010000 1100110 1110100
101

(1.3) Example: The IBAN [2007]. The German general version of the
International Bank Account Number (IBAN) is formed as follows:

Words [1, To; T3, T4; T5, - - - , X125 T13, - - - , T22] € Z3g x Z2) have length 22, where
actually x1,xo are Latin letters, and we identify the Latin alphabet with Zog
by letting A — 0, B — 1, ..., Z+— 25. Here, x1,29;%5,...,T12;T13,...,T22 are

information symbols, where [z1,z2] is the country code, for Germany being
DE — [3, 4], followed by the 8-digit bank identification number [zs, ..., 212,
and the 10-digit bank account number [zi3,...,22], where the latter is
possibly filled up by leading zeroes; the word [zs,...,x22] is also called the
Basic Bank Account Number (BBAN).
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Table 2: EAN bar code.

symbols H odd \ code | negative H even \ code H odd/even ‘
0 || 3211 | 0001101 | 1110010 || 1123 | 0100111 || — — — — ——
1| 2221 | 0011001 | 1100110 || 1222 | 0110011 || — — + — ++
2 || 2122 | 0010011 | 1101100 || 2122 | 0010011 || — — 4+ + —+
3 1411 | 0111101 | 1000010 || 1141 | 0100001 || — — 4+ + +—
41| 1132 | 0100011 | 1011100 || 2311 | 0011101 || — 4+ — — ++
5| 1231 | 0110001 | 1001110 || 1321 | 0111001 || — 4+ 4+ — —+
6| 1114 | 0101111 | 1010000 || 4111 | 0000101 || — 4+ + + ——
71| 1312 | 0111011 | 1000100 || 2131 | 0010001 || — + — + —+
8 || 1213 | 0110111 | 1001000 || 3121 | 0001001 || — 4+ — + +—
9 || 3112 | 0001011 | 1110100 || 2113 | 0010111 || — ++ — +—

Finally, [z3,x4] are check symbols fulfilling the following condition: The con-
catenation v := x5 - - - aa(x1 + 10) (22 + 10)z324 € Z% can be considered as a
non-negative integer having 24 decimal digits, where Zog + 10 = {10,...,35}.
Then v is a valid IBAN if v =1 (mod 97).

Hence allowing for the alphabet Zg7, containing the digits Z1¢ as a subset, the
check condition can be rephrased as (Zfi,) z; - 10%87%) + (21 + 10) - 10% + (22 +
10) - 102 + 23 - 10 + x4 = 1 € Zgy. Thus check symbols 23,24 € Zjo can
always be found, where [z3,z4] & {[0,0],[0,1],[9,9]} for uniqueness. Letting

w = [1024"1 € Zgr;i € {1,...,18}] € ZL&, that is
w = [56,25,51,73,17,89, 38,62, 45, 53,15, 50, 5,49, 34, 81, 76, 27),

and z; := 3 and x5 := 4, entailing (71 + 10) - 10* + (29 + 10) - 10 = 62 € Zgy,
we infer that the valid IBAN can be identified with the set {[zs,...,z22] €
Z%g, (1‘3 -10 + 1’4) + Zzli1 W;Tjyq = 36 € Zg’r}.

For example, given the bank identification number ‘390 500 00’ and the fictious
bank account number ‘0123456789’, we get the BBAN ‘3905 0000 0123 4567 89’.
For the latter we get Zilil w;Ti+q4 = 65 € Zgy, thus the check condition yields
x3 - 10+ x4 = 68 € Zg7, so that we get the IBAN ‘DE68 3905 0000 0123 4567 89’.

(1.4) Parity check codes over Z,. Let ¢ > 2 be the modulus, let n € N, and
let the weights w := [wy,...,w,] € Zy be fixed. Then v := [v1,...,2,] € Z
is called valid if vw' := Y7 | z;w; =0 € Z,.

a) We consider single errors: Let v := [21,...,%,] € Zj be valid and let v’ :=
[T1,.. .2}, ..., 2] € Zy such that o, # x; for some j € {1,...,n}. Then we
have v'w" = (v —v)w" = (¥} — xj)w; € Zq, hence 2 # x; is detected if and
only if z’w; # zjw; € Zy. Thus all single errors are detected if and only if
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all weights w; € Z, are chosen such that the map pu,: Zqg — Zg4: © — zw; is
injective, or equivalently bijective.

Lemma. For y € Z, the map p,: Z; = Z4: x — zy is injective if and only if
y € Ly := {2z € Zy;ged(z, q) = 1}, the group of units of Z,.

Proof. Let d := ged(y,q) € N. If d > 1 then we have 0 # % € Z, and
4-y=0=0-y € Zy, hence p, is not injective.

Since by the Euclidean Algorithm there are Bézout coefficients s,t € Z such
that d = ys + gt € Z, if d = 1 then ys = d = 1 € Z, thus from zy = 2’y € Z,
we get © = zys = 2'ys = 2’ € Z,, implying that p, is injective. #

For example, for the non-prime modulus ¢ = 10 used in the EAN we get
p1 = idz,, and pz = (0)(1,3,9,7)(2,6,8,4)(5) € Sz,,, hence the weight tu-
ple w = [1,3,...,1,3,1] € (Z3,)*® allows to detect all single errors. For the
prime modulus ¢ = 11 used in the ISBN-10 we have Zj, = Z1; \ {0}, hence
again the weight tuple w = [1,...,10] € (Z3;)'° allows to detect all single er-
rors. A similar consideration for the IBAN, using the prime modulus ¢ = 97,
shows that the weight tuple for the BBAN allows to detect all single errors.

b) We consider adjacent transposition errors for n > 2: Let v := [z1,...,z,] €
Zy be valid and let v := [x1,...,2j41,2),...,2,] € Zy such that x;,, # x; for
some j € {1,...,n—1}. Then we have v'w" = (v —v)w" = (z; —j41)(wj41 —

w;) € Zg. Thus all adjacent transposition errors are detected if and only if the
weights fulfill w;y1 —w; € Zy, for j € {1,...,n — 1}.

Since for the EAN we have w;1 —w; € {2,8} C Zig \ Z3, for j € {1,...,12},
adjacent transposition errors are not necessarily detected. Since for the ISBN-
10 we have w11 —w; = 1 € Z];, for j € {1,...,9}, all adjacent transposition
errors are detected; thus in this respect the transition from ISBN-10 to ISBN-13
is not an improvement. Similarly, since for the BBAN the adjacent weights in
Zg7 are pairwise distinct, all adjacent transposition errors are detected.

(1.5) Parity check codes over arbitrary groups. a) Let G be a finite group,
let n € N, and let m;: G — G fori € {1,...,n} be fixed. Then [z1,...,2,] € G"
is called valid if 7' --- a7~ = 1.

For example, letting G := Z, and m; := 1, where w; € Z, for i € {1,...,n},
we recover parity check codes, see (1.4); here the m; are group homomorphisms.

We consider single errors: Let v := [z1,...,2,] € G™ be valid and let v’ :=
[Z1,..., 2}, ..., 2] € G™ such that ) # x; for some j € {1,...,n}. Let y; :=
zi' € G fori € {1,...,n}, and yj := (2%)™. Then v’ is valid if and only if
Y1 yj,lyéyj+1 “+yn =1 =wy1 - yYn, which by multiplying from the left by
yfl, . ,y;_lp and from the right by y. 1, ... ,y;_:l, is equivalent to (xz)ﬂ =
y;- =y; = x;” . Hence we conclude that all single errors are detected if and only
it m; is injective, or equivalently bijective, for j € {1,...,n}.
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Table 3: Elements of D1g.

[zl 2] | |
oAl 1]id |[(
1|D| 2|« (1,2,3,4,5)
2G| 3]a? |(1,3,52,4)
3k 4]e® |(1,4,25,3)
alL| 5|a* |(1,5.4,3,2)
s|n| 68 | 2534
6ls| 7laB | (1,5)(24)
71U 8| %8| (1,4)(2,3)
8lY| 9|a®8|(1,3)(4,5)
9| z|l10|a*8 | (1,2)(3,5)
b) Let m; be injective, for ¢ € {1,...,n}. We consider adjacent transposi-
tion errors for n > 2: Let v := [21,...,2,] € G™ be valid and let v/ :=
[®1,...,Tjt1, 24, ., &y € G™ such that z;11 # z; for some j € {1,...,n—1}.

Let y; :=a]" € G fori € {l,...,n} and yj := :c;rjrl € Gandyj,, =" €G.
Then o' is valid if and only if Y1 Yi—1YYiaaYie2 Yn = 1 = Y1 Y,

which by multiplying from the left by y; Lo ,yj__ll, and from the right by

1 -1 . . L Tj+1 _ _ T T4l .
Yn s> Yjro, 18 equivalent to x4 27" = yiyli = Yy = x; w0y Writ-
ing g := x;rj € G and h = ac;_’H € G and letting 7; := 7T;17Tj+17 we conclude

that all adjacent transposition errors are detected if and only if gh™ # hg™, for
g#heGandje{l,...,n—1}.

(1.6) Example: Serial numbers. Let Dg be the dihedral group of order 10,
that is the symmetry group of the plane equilateral pentagon; up to isomorphism
there are precisely two groups of order 10, the cyclic group Zi¢ and the non-
abelian group Djg. Numbering the vertices of the pentagon counterclockwise,
the elements of Dy := {a, ) < S5 are as given in Table 3. Using the numbering
of the elements given there let 7 := (1,2,6,9,10,5,3,8)(4,7) € Sp,,- Then it
can be checked that gh™ # hg", for g # h € Dqg.

The serial numbers on the former German currency Deutsche Mark (DM) are
formed as follows: The alphabet is X := {0,...,9,A,D,G,K,L,N,S,U,Y,Z}, and
words [21, ..., 210;711] € X! have length 11, where z1, ..., 219 are information
symbols and z1; is a check symbol. Replacing x; € X by T; € D1 as indicated
in Table 3, a word is valid if Z] - - - F]y Z1; = id € Dyp.

For example, for GG0184220N0 we get elements [3,3,1,2,9,5,3,3,1,6; 1], hence
[37,377,17°,27" 97" 57" 37 37" 17" 67 ;1] = [8,1,9,5,1,9,5,3,2,10;1], and
it can be checked that the product of the associated elements equals id € D1g.
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(1.7) Complete maps for abelian groups. a) We briefly digress into group
theory, inasmuch the above leads to the following definition: Given a finite
abelian group G, a bijective map o: G — G is called complete, if the map
7:= (0 +idg): G — G: g+ g°T 1= ¢7¢g is bijective again.

Theorem: Paige [1947]. The abelian group G has a complete map if either
|G| is odd or G has at least two involutions.

Proof. It is surprisingly difficult to prove this completely, so that we only give
a partial proof, encompassing the accessible pieces:

Let G have a unique involution, z say, and assume that both ¢: G — G and
T := 0 +1idg are bijective, then pairing off the elements of G with their additive
inverses ylelds >3 5,9 = 2, and thus }° o9 = > cq9" = deGQUH =
> gec 9”7+ 2 4eq 9 =%+ 2 =0, a contradiction.

Recalling that G can be written as a direct sum of cyclic groups of prime power
order, to prove the existence of a complete map in the remaining cases we may
assume that G = Z, where ¢ is odd, or G = Zga @ Zgv or G = Zge @ Zigp D Zige
where a > b > ¢ > 0. If G = Z, where ¢ is odd, then both ¢ = idz, and
T = 0 +idg, = p2 are bijective; recall that 2 € Z7. Unfortunately, we are not
able to deal with the cases G = Zoa B Zgv or G = Zoa P Zgy @ Zae here. #

Anyway, we have shown that G = Z, has a complete map if and only if ¢ is odd.

b) This is related to parity check codes as follows: Given a bijective map 7: G —
G, the condition gh™ # hg™, for g # h € G, is equivalent to g7~ # k™!, for
g# h e G, that is 0 ;== 7 —idg: G — G is bijective as well.

Hence, for a parity check code over G' with respect to bijections m;, for j €
{1,...,n}, which detects all adjacent transposition errors the associated maps
5 mi+1 —idg, for j € {1,...,n — 1}, are complete. Conversely, given a
complete map o: G — G, we may let 7; := (o +idg)? for j € {1,...,n}. This
shows that there is a parity check code over G, for n > 2, which detects all single
errors and all adjacent transposition errors if and only if G has a complete map.

gj i =T

In particular, there is no parity check code over Ziy which detects all single
errors and adjacent transposition errors; thus it is not surprising that the EAN
does not detect all adjacent transposition errors.

Moreover, if m; = p.,, where w; € Z; for i € {1,...,n}, then we get 7; =
77;17@41 = u;jl,uwjﬂ, forje{1,...,n—1}, and 7; —idz, = ,u;jl(,uwj+1 — ;) =
,u;jluwj +1—w; is bijective if and only if ., w,; is bijective, or equivalently
wji1 — wj € L}, as we have already seen in (1.4).

Note that for the ISBN-10 we have 7; = p;: Z11 — Z11, fori € {1,...,10}, thus

Ty = 15 e and 7; —idg,, = py G-y = g i =y for j e {1, 9}



I SHANNON 8

(1.8) Complete maps for arbitrary groups. Let G be a finite group. A
bijective map o: G — G is called complete, if the map 7: G — G: g — gg° is
bijective again. Note that, since (¢7)"tg = (¢°)~! for ¢ € G, we may likewise
call o complete if G — G: g — ¢7¢ is bijective again. Moreover, by going over
to G — G: g+ ¢°(19)~! we may assume that 19 = 1 = 17. We are concerned
with the question of characterizing the groups having complete maps:

Theorem. The following assertions are equivalent:

i) G has a complete map.

ii) There is an ordering {g1,...,9|q|} of G such that g, ---g,q| = 1.

iii) We have [[ . g € [G,G] for some, and hence any ordering, of the factors.
iv) The Sylow 2-subgroups of G are either trivial or non-cyclic.

Proof. a) As for the latter three conditions, we proceed to show that ii)=-iii)
and iv)<iii). The missing implication iii)=-ii) is a special case of results by
DENES-HERMANN [1982] (which we are not able to present here).

ii)=iii): We have g;---g|q) = 1 € [G,G]. Since gh = hg (mod [G,G]) for
g,h € G, being an element of [G,G] is independent of the order in which the
product of the elements of G is taken. i

iii)=+iv): Let [[ < g € [G, G] for some, and hence any, ordering of the elements
of G, and assume to the contrary that {1} # S < G is a cyclic Sylow 2-subgroup
of G. Then since Aut(S) is a 2-group we infer that Ng(S) = Cq(S5), thus
S < Z(Ng(S)), which by Burnside’s p-complement theorem implies that G is
2-nilpotent, that is G has a normal 2-complement H < G, so that G =2 H x S.

Letting z € S be the unique involution, pairing off the elements of S with their
inverses yields [[,c.qs = z. Moreover, since G/H = S is abelian, we have

[G,G] < H. Hence we get [[,cq9 = [lses [lnen sh = (Ilses s)HI = AH| =
z# 1 (mod H). Thus [[,cq 9 & H, hence [[ .5 9 € [G,G], a contradiction. §

iv)=iii): We have to show that [[,c5g € [G,G] in some, and hence any,
ordering of the elements of G. To this end, let I(G) := {z € G\ {1};2% = 1} be
the set of involutions of G. Pairing off the elements of G with their inverses, we
have to show that [ ¢ ) 2 € [G, G]. We are done if G has odd order, thus we
may assume that G has even order and a non-cyclic Sylow 2-subgroup S.

Next, we observe that for G-conjugate z,z’ € I(G) we have zz' = z-29 =
27 lg7l2g = [2,9] € |G,G], for some g € G. Now I(G) is a union of G-
conjugacy classes, where for a G-conjugacy C' C I(G) of even length we hence
have [[.cq 2 € [G,G]. Thus letting I'(G) := {z € I(G); [G: Cg(z)] odd} be the
set of central involutions of G, we have to show that [],.; ) 2 € [G, G].

Letting C' C I'(G) be a G-conjugacy class, we have CNZ(S) # (). By Burnside’s
theorem saying that two normal subsets of S are G-conjugate if and only if they
are Ng(S)-conjugate, we conclude that C N Z(S) C I(Z(S)) is an Ng(9S)-
conjugacy class. Since S < Ng(5) centralizes Z(S), we conclude that C' N Z(S)
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has odd length, so that C'\ Z(S) has even length, entailing [[,c o 5(s) # € [G, G].
Hence running through all G-conjugacy classes in I'(G), leading to a covering
of I(Z(S)), we conclude that we have to show that [[,c;z(s) % € [G,G].

Since Z(S) # {1} is abelian, we have I(Z(S)) U {1} = Z4, for some d € N,
being the largest 2-elementary abelian subgroup of Z(S). Since there are 29!
vectors in Z¢ having entry 0 and 1, respectively, in their i-th component, for
i € {1,...,d}, the vectors in ZZ have vanishing sum if and only if d > 2. In
other words, in this case we have [],c;5(s)) 2 =1 € [G,G].

Hence we may assume that d = 1, that is Z(S) has a unique involution, z say,
and we have to show that z € [G, G]. Assume that S is abelian, then writing
S = Z(S) as a direct product of cyclic groups, we conclude that S is cyclic, a
contradiction. Hence S is non-abelian, thus [S,.S] < .S is a non-trivial normal
subgroup. Thus we have [S, S| N Z(S) # {1}, entailing z € [S,S] < [G,G]. 4§

b) As for the existence of complete maps, the following is straightforward:

i)=ii): Letting o: G — G be a complete map, we consider the cycles of the
bijection G — G: g+ (¢g°)~!. Picking 1 # g1 € G, for i > 1 we successively let
giv1 = (g7)"" € G, until we get g1 = (97)"" = g1; since g1g7 = g7 # 1 we
have s > 2. Then we get g7 - -- g7 = 91979295 - 9s97 = 91-9792 - Jo—19s'9s =
9197 = 1. Hence proceeding like this for all the cycles of the above bijection, we
get an ordering {g1,...,gjg} of the elements of G such that g; --- g =1. 1§

i)=iii): Letting 0: G — G be a complete map, we get ngGg = ngG gq° =
[Lecc9 1ecq9” = Tleq 9)? (mod [G, G]), thus [[jec9 =1 (mod [G,G]). §

Actually, PAIGE [1951] has conjectured that ii)=-i), and HALL-PAIGE [1955]
have conjectured that iv)=-i), only indicating that ii) implies iii), and that
iii) implies iv). The implication iv)=-i) has an involved proof which has been
completed only recently (where we are only able to present a very rough sketch):

iv)=i): If |G| is odd, then o := idg is complete, since the map G — G: g —
gg° = g% is a bijection again. Hence we may assume that |G| is even. Recall
that, by Burnside’s p-complement theorem, any non-abelian simple group has
non-cyclic Sylow 2-subgroups.

Firstly HALL-PAIGE [1955]showed that the alternating groups have complete
maps. Next DALLA-VOLTA-GAVIOLI [2001] showed that a minimal counterex-
ample is almost simple or has a center of even order. Then WiLcox [2009]
showed that a minimal counterexample is actually simple, and that simple
groups of Lie type, excluding the Tits group, have complete maps. This re-
duced the problem, by the classification of finite simple groups, to the sporadic
simple groups. Now EvANs [2009] showed that the Tits group and the sporadic
simple groups, excluding the Janko group J, have complete maps. Finally
BRAY [2018] showed that J4 has complete maps. i
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For comparison, we return to the case of abelian groups:

Let G be abelian, let I(G) U {1} = Z3 for some d € Ny, and let 2 := [ ey 9 €
G. Recalling that G can be written as a direct product of cyclic groups of prime
power order, we infer that |G| is odd if d = 0, that G has a non-trivial cyclic
Sylow 2-subgroup if d = 1, and G has a non-cyclic Sylow 2-subgroup if d > 2.

Thus we have z = 1 if and only if d = 0 or d > 2. Hence, pairing off the
elements of G with their inverses yields ngGg = ngI(G)g = z, showing
iv)=-ii). Moreover, G has precisely 2¢ — 1 involutions, by (1.7) showing iv)=-i)
(up to the unproven pieces there). i

2 Source coding

be a

(2.1) Information. Let X be an alphabet, and let p: P(X) — Rxg
= u(A) + u(B),

probability distribution, that is i) u(X) =1, and ii) u(AUB)
for A,B C X such that AN B = (.

To model the information content of a symbol x € X, we use the frequency of
its occurrence, which is given by p. Then the information content of x should
be the smaller the more often x occurs. Moreover, for independent events their
information contents should add up, while the associated probabilities multiply.
Hence letting S := {a € R;0 < a < 1}, let an information measure be a
strongly decreasing continuous map ¢: S — R such that t(ab) = v(a) + ¢(b), for
a,b € §. Then the information content of a possible elementary event z, that
is u(z) > 0, by abusing notation is given as () := ¢(u(z)).

We show that information measures are unique up to normalization: Given
an information measure ¢, we consider the continuous map n: R<g = R: a —
t(exp(a)), which hence fulfills n(a + b) = w(exp(a + b)) = t(exp(a)exp(b)) =
t(exp(a)) + t(exp(b)) = n(a) + n(b). Letting o := —n(—1) € R, we get n(—n) =
—an, for n € Ny, thus n(—=+) = —a- >, for m € N. Hence 7 being continuous we
infer that n(a) = aa, for a < 0. Thus from ¢(exp(a)) = n(a) = aa = aln(exp(a))
we get t(a) = aln(a), for a € S. Since ¢ is strongly decreasing we have o < 0,
so that ¢(a) > 0. Conversely, for any o < 0 the map & — R>¢: a — aln(a) is
an information measure.

Hence it remains to normalize: The information content of a binary digit from
the alphabet Zs, carrying the uniform distribution, is set to be 1, hence 1 =

((3) = aln(3), that is o = —ﬁ. Thus henceforth for a € S we let

a) =~ gt =~ lomala) = logs (1) € Rz,

(2.2) Entropy. Let X = {x1,..., 2,4} be an alphabet with probability distribu-
tion p. The average information content or entropy or uncertainty of X,
letting p; = p(z;) € Rsp fori e {1,...,¢}, and Z:={i € {1,...,¢},p; > 0}, is
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the expected value of the information content associated with u:

H(X) = H(u) := —»_ pilogs(pi) € Rxo.
1€

Since we have lim, o+ (alogy(a)) = limaﬁoo(_l%ﬂa)) = 0, the function & —
R>o: a +— —alog,(a) can be continuously extended to S U {0}. Thus we may
let H(X) =—>"7, p;log,(p;), saying that impossible elementary events do not
contribute to the average information content.

We have H(X) = 0 if and only if all summands in the defining sum are zero, or
equivalently we have either p; = 0 or log,(p;) =0, for i € {1,..., ¢}, the latter
case being equivalent to p; = 1. Since 23:1 p; = 1 this in turn is equivalent to
p; = 1 for a unique 7 € {1,..., ¢}, and p; = 0 for j # ¢, that is p is concentrated
in z; for some i € {1,...,q}.

Proposition. We have H(X) < log,(]X|), with equality if and only if X" carries
the uniform distribution.

Proof. The Jensen inequality, applied to the (strictly) concave logarithm
function, says that for Ai,..., Ay > 0 such that Zgzl Ai=1,and aq,...,a, >0
we have Y7 A;logy(a;) <logy (37, Aicv;), with equality (by strictness) if and
only if ¢y =+ = ay.

We have H(X) = — Ziezpi logy (pi) = Ziezpi logz(p%) < IOgQ(Ziezpi : p%) =
logy(D ;7 1) < logy(q) = logy(|X]). Moreover, if equality holds then have
|Z| = ¢, and thus Y37 pilogy(5-) = logy(3o{_, pi-5-) entails py = -+ = pg = £
conversely, in the latter case we get H(X) = —% S logQ(%) = log,(q). 1

Example: The binary alphabet. We consider the binary alphabet Zo =
{0, 1} with elementary probabilities p(0) = p and p(1) = 1 —p for some 0 < p <
1. Then the average information content equals H(u) = H(p) := —plogy(p) —
(1 — p)logy(1l — p). Differentiating yields d,H = —logy(p) + logy(l — p) =
logy(+52), for 0 < p < 1. Since H(0) = H(1) = 0 and H(p) > 0, for 0 < p < 1,
we infer that H(p) has a unique maximum forp=1—p = %, where H(%) =1.
Thus indeed the average information content of Zs is maximized if and only if
Zo carries the uniform distribution. #

The relevance of these notions is elucidated by the First Main Theorem of
information theory, Shannon’s Theorem on source coding:

(2.3) Theorem: Shannon [1948]. Let X = {z1,...,x4} be an alphabet with
probability distribution .

a) Let v: X — (Z2)* \ {€e} be any injective and prefix-free encoding, that is
for v € y(X) and w € (Za)* \ {e} we have vw & (X). Then for the average
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length of the code words in y(X) we have

b) If H(X) > 0, then there is 79 as above such that H(vyy) < H(X) + 1.

Proof. a) i) Let I; := I(y(z;)) € N, for i € {1,...,q}. We first show the
Kraft—-McMillan inequality [1949, 1956], saying that 7, 27 <1

We may assume that l; < --- < [,. Then, for i € {1,...,q}, there are 2~
words in Zlgq having ~v(z;) € le" as their prefix. Since + is prefix-free the latter

sets of words are pairwise disjoint. Thus, since there are 2!« words in Zl;, we
get Y7 2la=li <2la hence Y7 27 < 1. i

ii) Let p; := u(x;) € R>g, for i € {1,...,q}. We show the Gibbs inequality
[1875], saying that for aq,...,aq > 0 such that Y 7 | a; = 1 we have H(X) <
— > pilogy (), with equality if and only if a; = p;, for i € {1,...,¢}:

Letting Z := {i € {1,...,q},p;i > 0}, applying the Jensen inequality again
we get 327 pi(logy(ai) —loga(pi)) = Do,erpiloga () < logy(Roerpi- 5F) =
IOgQ(ZieI a;) < logy(1) = 0, implying 23:1 pilogy(pi) > Zgzlpi logy (av;).
Moreover, we have equality if and only if Z = {1,...,¢} and % =-..==%:in
the latter case > ¢, oy =1= "1 p; yields a; = p;, for i € {1,...,q}. i

iii) Now let «; := 2:1 >0, fori € {1,...,q}, where a:= > 274 > 0. Hence
we have 7| a; = 1, and by the Kraft-McMillan inequality we have o < 1, thus
log,(a) < 0. Finally, the Gibbs inequality yields H(X) < —Y7_, p;log,(a;) =

— 21 pillogy(271) — log, (@) = logy () + 320, pili < 31, pili-

b) We consider the Shannon-Fano encoding: We may assume that p; > ps >
.-+ > pg >0, where since H(X) > 0 we have 1 > p; > py > 0. In order to cover
impossible symbols as well, we let r := max{i € {2,...,¢};p; > 0}. (Actually,
the Shannon-Fano encoding only refers to the case r = g.)

For i € {1,...,7} let k; € N such that 27% < p, < 27%+1 and for i €

{r+1,...,q} let k; ==k, + (i —r). Hence we have 1 < ky <ky <--- <k, <
kr+1<"'<kq, and k1<1710g2(pz)§k1+17 fOI‘iE{l,...,T}.

Let s; := Z;;llpj, for i € {1,...,r + 1}; hence we have 0 = s1 < 59 < -+ <
Sp < Sp41 = 1. Now let yo(z;) € Zg" be given as the binary expansion of s;
truncated after position k;, for i € {1,...,r}, while for i € {r+1,...,q} we use
the expansion of 2t 4 (Z;:1 277); in particular, letting the expansion of s, 1 = 1
being defined as (.111...)s, truncating after position k1 yields vo(z,41).

Since for 1 < h < i <r+1 we have s; — s}, = Z;;ij > pp > 2% we infer
that vo(x;) and ~o(zp,) differ on at least one of the first kj, positions. Moreover,
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the same holds for 1 < h < r and r +1 < i < ¢, and by construction for
r+1 < h <i < qas well. Thus we conclude that g is both injective and prefix-
free, that is an admissible encoding. Finally, for the average word length of ~q

we get H(y0) = Yi_y piki = > i_q piki < >y pi(1 —logy(pi)) =1+ H(X). ¢

(2.4) Remark. a) The quantity H(v) in Shannon’s Theorem can be inter-
preted as follows: We consider the set (Z2)* \ {e} of possible code words.
For the set Zy of words of length n € N, carrying the uniform distribution
[tn, Which is obtained from the uniform distribution on Zs by choosing the
symbols in the words independently, we get w,(w) = 5, for w € Zj, thus
vw) = —logy(5=) = logy(2") = n = l(w). Hence summing over Zj yields
H(Z5) = —2" - & - logy(5h) = logy(2") = 1.

Thus H(7) is the average information content of the code words in v(X), with
respect to the uniform distribution p,, on Z%, for n € N, and Shannon’s Theorem
says that this cannot possibly be strictly smaller than the average information
content of the original alphabet X

b) The second part, saying that there are prefix-free injective encodings having

average word length bounded above by H(X)+1, shows that, whenever H(X) >

0, the lower bound is attained up to a factor of 1+ ﬁ Thus, replacing X by

X", where the entries are chosen independently, so that by (3.2) below we have
1

H(X™) =n-H(X), we get a factor of 1+ 7y — L for n — oo, entailing

that the lower bound actually is attained asymptotically.

A prefix-free injective encoding of X is called optimal if its average word length
is best possible amongst all such encodings of X. The Shannon-Fano encoding (a
top to bottom approach) is not necessarily optimal, but the Huffman encoding
[1952] (a bottom to top approach) always is, see Exercise (23.9).

3 Channel coding

(3.1) Noise. We describe the standard model for discrete noisy channels: The
data consists of symbols in an alphabet X such that ¢ := |X|, sent with prob-
ability distribution px, and being distorted by the channel, so that the re-
ceived symbols in V = & carry the probability distribution py. The noise
is described by the conditional probability distribution pyx, thus we have
uy(J) = 2 iex ba(Dpy)i(d), for j € Y.

The symmetric channel with error probability 0 < p < q%’l is given by

pyli(j) = qfl and py);(i) =1 —p, fori € X and i # j € Y. In other words,

writing px = [px(i);i € X] and py = [uy(j);j € V], we have py = px - Mq(p),
where py)x is given by the transition matrix

: bq p
Mqy(p) = [py)i()]i; = (1 — ﬁ) B, + Pt J,,
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where J, € Q7%? is the matrix all of whose entries are equal to 1. For example,

for the symmetric binary channel we have M (p) = [1 ;p 1 fp] .

We have det(M,(p)) = (1- q’l—ql)q_l; in particular M, (p) € GL4(R) for p < %1:
Since rkg(J,;) =1 and J, has ¢ as an eigenvalues, the characteristic polynomial
of Jg is given as det(XE, — J;) = x,(X) = X7} (X — ¢) € Q[X]. Hence from
My(p) = =2 - (= 1) By — Jy) we get det(M, (p)) = (:25)1- s, (4 151) =
()1 (~E) (g Lyt = (22 (- S0)T = (1- 2t g
The quiet channel is given by p = 0, hence from M,(0) = E, we get uy = px.
Note that if the channel is not quiet then we have py(j) # 0 for j € ).

1
o

we get py = % -[1,...,1], that is the uniform distribution, independently of 1.

The completely noisy channel is given by p = %, hence from M,(p) =

If the channel is not completely noisy, that is p < %, then if X' carries the

uniform distribution we get py = % 1,1 - My(p) = % -[1,...,1], that is
Y carries the uniform distribution as well, independently of p. Moreover, since
in this case M,(p) € GL,(R) is bijective, if Y carries the uniform distribution,
then X necessarily carries the uniform distribution as well. In conclusion, X

carries the uniform distribution if and only if ) does so.

Finally, if the channel is not quiet, that is p > 0, we provide the transition
matrix M, (p) for the conditional probability px|y:

Bayes's Theorem says that jaty (Ve (5) = oy (5) = ie(Dyya): hence
N (p)"" - diaglyuy ()], = diaglp (i));- My (p). From juy(j) # 0, for j € V), we get

M,(p) = diagluy (j)]7" - Mqy(p) - diaglu(i));.

In particular, if & carries the uniform distribution, thus Y carrying the uniform
distribution as well, then M, +(p) = My(p); note that this also holds for p = 0. {

(3.2) Capacity. We still consider a noisy channel working over an alphabet
X =), with associated probability distributions px and py, respectively.

Given an elementary event j € ), the conditional distribution py|; describes the
probability distribution on the sent symbols in X provided j is received. Then
for px; we get H(X|j) = — > icx tx); (i) loga(px; (7)), describing the average
information content of X which upon seeing j € ) is afforded by noise. Hence
the average conditional information content or conditional entropy

HX|Y) = py(HX]) = =D ) iy (i) (i) logs () (1))

jey jeEYieX

is the average information content of & which is lost by noise. This is the un-
avoidable cost of transport through the noisy channel, so that the capacity
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C(X|Y) .= H(X) — H(X|Y) is the average information content being trans-
ported through the channel.

Proposition. We have H(X' xY) = H(X|Y)+H(Y), and H(X xY) < H(X)+
H(Y), with equality if and only if X and ) are independent.

Proof. i) We first show that H(X x Y) < H(X)+ H(Y): We may assume that
pxxy(i,7) # 0, and thus px (i) # 0 # py(j), for i € X and j € Y. We have
HX xY) == cx Zjey paxy (i, 3) logy(pxxy(i,j)) and H(X) + H(Y) =
— Dicx 2jey Maxy (i, ) (108 (px (i) +10gs (ny(4))), from which we get

H(X x Y) - H(X) - H(Y) = ;%MM“’” log (W)'

By Jensen’s inequality this entails

_ H() - . . i)
B PP S T

Now the double sum on the right hand side equals >,y >~ ey pra () py(j) =
iex ux (@) - (e my(5)) =1, thus H(X x ¥) = H(X) — H(Y) < 0.

px sy () _
e xy (4,5)
m, for i € X and j € Y. In this case we get 1 = >, > iy px(D)uy(j) =

MY icx 2jey baxy(i, j) = m, saying that paxy (i, j) = pa (1) py (7).
ii) We now show that H(X x Y) = H(X|Y) + H(Y): Using Bayes’s Theorem,
saying that vy (D)uy(j) = pan(is ), we get

HXxY) = - ZieX Zjey pxxy (i, 5)1oge(axy(i,7))
= —icx 2jey Py (5 (1) (logy (uy(5)) + logy(pa;(2)))
= _Zje)} (Ny(J) : Zie){ NX\j(i) 10g2(#x|j(i)))
= ey (19(5) 10go (ny (7)) - Xica by (i)
= H(X|Y)+H(D),

Moreover, we have equality if and only if there is m € R such that

where we have used the fact that ), px;(4) = 1. i

Thus the capacity C(X|Y) = HX)-H(X|Y)=HX)+H(Y)-H(XxY) >0
is non-negative indeed, with equality if and only if X and ) are independent.
Moreover, we have C(X|)) = C(Y|X), saying that the capacity of the channel
is independent of the direction of information transport.

(3.3) Capacity of symmetric channels. We consider the symmetric channel
working over an alphabet X = ) such that ¢ := |X|, with error probability
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0<p< %. Using the transition matrix M, (p) describing py|x, we obtain

HY|X) = =3 icx D ey ba(D)pyi(d) logy(yyi ()
= —Yiexpa(i)- ((1=p)logy(1—p)+ (¢ - 1) Fylogy(;57))
— (ploga(:27) + (1 — p) loga(1 — 1)) - Sy i (i)
= plogy(q—1) — plogy(p) — (1 — p)logy(1 — p).
Thus the capacity of the symmetric channel is Cy(p) = H(X) — H(X|Y) =
H(Y) = H(Y|X) = H(Y) — plogy(q — 1) + plogy(p) + (1 — p)logy (1 —p).

In particular, for the quiet channel, that is p = 0, we have puy = pr, and
recalling that lim, o+ (plogy(p)) = 0 we get H(Y|X) = 0, entailing Cy(0) =
H(Y) = H(X), saying that the average information content of X is transported
without loss through the channel.

For the completely noisy channel, that is p = %, the alphabet ) carries the
uniform distribution in any case, hence we have H(Y) = log,(|Y|) = logy(q),
and H(Y|X) = logy(q) as well; indeed, in this case the conditional entropy on
Y should be independent of X'. This entails Cq(%) =H()-HQYX) =0,
saying that no information is transported through the channel.

In general, we have 0 < H(Y) < log,(]Y|), where the maximum is attained
precisely for the uniform distribution on ). Hence the maximum capacity of
the symmetric channel is given as

Cy™(p) = logy(q) — plogy(q — 1) + plogy(p) + (1 — p)logy (1 — p).

Moreover, if the channel is not completely noisy, that is p < <=, then ) carrying
the uniform distribution is equivalent to X carrying the uniform distribution.
Thus, the maximum capacity of the channel is attained if and only if X has
maximum average information content.

(3.4) Redundancy. The idea of error correcting channel coding, to be used
for noisy channels, is to add redundancy. This is measured as follows:

Letting X be an alphabet such that ¢ := |X]|, any subset ) # C C X" is
called block code of length n € N and order m := |C| € N. Assuming the
uniform distribution on X", and thus the uniform distribution on C as well, the
information content of a code word v € C, viewed as an element of C is given
as 1c(v) = —logy () = logy(m), while viewed as an element of X™ we have
tan(v) = — logz(q%) = nlog,(q). Hence the relative information content of the
code words in C is given by the information rate
p(C) = pan(€) 1= W) _ Joga(m) _ logy(m) _ logg(m)
van(v)  nlogy(q)  nlogy(q) n

We have 0 < p(C) < 1, where p(C) = 1 if and only if C = X™, that is no
redundancy is added at all. Thus the larger p(C) is, the better C is, in terms of
information content.
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Example. i) If X = F, is the field with ¢ elements, and C < F} is an Fy-

k
subspace such that k := dimg,_(C), then we have p(C) = % =k
i) If C := {v € Zy; vw™ = 0 € Z,} is a parity check code over Z,, with respect to
weights w = [wy, ..., w,] € Zy, where w, € Z7, for any [z1,..., 2, 1] € Zf}_l
there is a unique z, € Z, such that v := [x1,...,2,-1;2,]) € C. Hence the

log, ("™ ") _ p—1
— - =l

information rate of C is p(C) = —

(3.5) Maximum likelihood decoding. If words are sent through a noisy
channel, they are susceptible to random errors, where we assume that errors
occurring in distinct positions in a word are independent of each other, that
is we have a channel without memory. Hence if a word is received, the
question arises how to decode it:

We again consider the symmetric channel with error probability 0 < p < %1,
working over an alphabet X = ) such that ¢ := |X|. We assume that X" carries
the uniform distribution, or equivalently that ) carries the uniform distribution,
so that both the transition matrix describing py|y and the transition matrix

describing 1y are equal to Mgy (p); see (3.1).

Let C C X™ be a block code of length n € N. Since X carries the uniform
distribution, and distinct positions are independent, X" carries the uniform
distribution as well, and thus so does C.

If the word v € Y™ is received, then it is decoded to some ¢ € C which has maxi-
mum probability to be the word sent, that is we let p1xn |, (c) = max{pyn|,(w) €
R;w € C}, being called maximum likelihood (ML) decoding. This is turned
into combinatorics as follows:

For ¢ = [z1,...,2,) € X" and y = [y1,...,Yn] € X" we let
d((E,y) = HZG {]—a7n}a$z ?éyl}| € {0>7n}

be their Hamming distance. Thus for w € X™ we have

en o (w) = (—2= )] (1 = pyn=dow) — (1 —py . (

d(v,w)
q—1 ;o

p
(1-p)g—-1)

1
1-p
= 1, implying that (

g=1 3 P
Ifo<p< - <1 then since T =

< la=1)q p
q-1) ™ q(q-1) (1-p)(g—1)
decreasing with a > 0 increasing; if p = 0 then we have pxn|,(w) = J, ., anyway.

Thus, in any case, we choose ¢ € C having minimum distance to v € Y™, that is
d(v,c) = min{d(v,w) € No;w € C}, being called nearest neighbor decoding.

— 1 is increasing with p increasing, we

conclude that 0 < (1_pﬁ )* is strictly

In practice, although complete decoding is desired, if this condition does
not determine ¢ uniquely, we revert to partial decoding by only allowing for
unique nearest neighbor decoding, and otherwise mark v as an erasure.

If ¢ € C is sent, let 0 < e, < 1 be the probability that ¢ is not recovered by the

above decoding process. The expected value €(C) := \fll D eec €e is called the



I SHANNON 18

average error probability of C. Thus the smaller 0 < ¢(C) < 1 is the better
C is, as far as decoding is concerned.

The question whether there are ‘good’ (binary) block codes C, in the sense
of having a large information rate p(C) and a small average error probability
€(C) at the same time, is generally answered by the Second Main Theorem
of information theory, Shannon’s Theorem on channel coding, which we
proceed to prove.

But note that the following is a pure existence proof giving no clue how to
actually find ‘good’ codes. Moreover, we are assuming that the codes under
consideration carry the uniform distribution, while source coding might produce
codes for which this condition does not at all hold. Anyway:

(3.6) Proposition: Chernoff inequality. Let X be an alphabet with proba-
bility distribution p, let X;: X — Zo, for i € {1,...,n} and n € N, be indepen-
dent random variables such that px,(1) = p, and let X :=>"" | X;: X — No.

Then X is binomially distributed, such that u(X = d) = (1) - p?(1 — p)"~¢, for
d € {0,...,n}, and for 0 < e <1 we have

1
(X > (1+e)pn) < exp(—€’pn).

Proof. The first assertion is a matter of counting. To show the second one, we
may assume that 0 < p < 1 and 0 < € < =2, Note that the left hand side is
piecewise constant and decreasing, while the right hand side is continuous and
strictly decreasing, so that we may safely exclude the case (1 + ¢)p = 1.

i) Now, since X has non-negative values, for ¢ € R we have the following special
case of the Markov inequality (where this is non-trivial only for ¢ > 0):

t-u(X >t) = Z ()0 x (2)>¢ < Z (2)0x(2)>t < Z

reX reX zeX

where the right hand side is the expected value E(X) of X. Moreover, we have

E(exp(tX)) = E(exp(t- Y _ X;)) = E(] [ exp(tX;)) = [ [ E(exp(tX;)),
i=1 i=1 i=1
where E(exp(tX;)) = (1—p)+pexp(t), hence E(exp(tX)) = (1+(exp(t)—1)p)n.
Thus we get
M(X > (1+ e)pn) = u(exp(tX) > exp (t (1+e€ pn))
exp (= t(1+ €)pn) - E(exp(tX))
= exp(—t(L+e)pn)- (1+ (exp(t) — p)".

IN

ii) In order to obtain an optimal bound, we have to minimize the right hand
side. Letting f(t) := exp ( — t(1 + €)p) - (1 + (exp(t) — 1)p), derivation with
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respect to t yields
Ouf =exp (—t(L+e)p) - (= (L+e)p(L+ (exp(t) — 1)p) + pexp(t)).

Hence we have 9 f = 0 if and only if exp(t) = % =1+ ﬁ Since

i — 1+(exp(t)—1p _ q; pexp(t) _ 1
both hmtﬁoo f(t) = hmtﬁoo m = hmtﬁoo W = 1. .
limy 00 exp(t)!~ (9P = 00 and limg_, o f(t) = limy,_ oo % = 00,
we infer that f has its unique minimum at ¢ = In (1 + m)

iii) Letting ¢t be as above, the right hand side becomes exp (g(e) . n), where

1—p )

g(€) = —p(l+e)In(l+e)+ (1 - (1 +e)p)In (m

We have ¢g(0) = 0, and derivation with respect to e yields
0eg=—pln(l+e¢)—pln(l —p)+pln (1 -1+ e)p).

We have 9.g(0) = 0, and derivation now yields 92g = m. Hence
Taylor’s Theorem yields g(e) = % - 02g(6), for some 0 < § < €. Recalling that
€ < 1, from 92g(d) < 5 < 1 < 5 we finally get g(e) < —1€%p. 1

(3.7) Theorem: Shannon [1948]. For the symmetric binary channel over
the alphabet X = Zs = Y, where X and Y carry the uniform distribution, with
error probability 0 < p < % we have:

For any 0 < p < 1+ plogy(p) + (1 — p)logy(1 — p) = C5**(p) and € > 0 there
is a block code C C X™, for some n € N, such that p(C) > p and €(C) < e.

Proof. If p = 0, then we may take C = X, thus n = 1, fulfilling p(X) = 1 and
€(X) = 0, hence we may assume that p > 0.

For n € Nlet m := 2/l € Nand T, := {C € X™|C| = m}; note that
IT,| = (2:) > 0. Hence for C € T, we have p(C) = log:;(m) = “’—7?] > p. Now

let Cp € T',, such that €(Cp) is minimal. Hence €(Cp) is bounded above by the
expected value Er, (€), with respect to the uniform distribution on I',.

If some word in X" is sent, then the probability that the received word contains
precisely d € {0,...,n} errors is given by the binomial distribution £,(d) =
(%) -p*(1—p)"~2 Note that the equation n™ = (d+(n—d))" > (})d*(n—d)"~*
yieldS (Z) S W.

For n € Nlet 0 < a, < 1 such that lim,, . a, = 0 and lim,, o (na2) = oo; for
example we may let a,, := 10g2(++1)' Moreover, let 6 = 6, := [(1+an)np| € No;

then we have lim,, %“ =p< %, hence we have 0, < § — 1, for n > 0. Now
the Chernoff inequality yields, for n > 0:

1B > 0n) = pu(Bn = (1+ an)np) < eXp(—%ainp) <e
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Let Bs(v) := {w € X™;d(v,w) < d,,} be the sphere with radius § = ¢,, around
v € X™. Since binomial coefficients (Z) are strictly increasing for d € {0,..., %},
for n > 0 we get

n+1

=Bl i () <5-() = 5057~ s

Given C € T';;, we decode by unique nearest neighbor decoding with respect to
On, that is given v € Y™, if C N Bs(v) = {c} then we decode v to ¢, otherwise
we mark v as an erasure. For ¢ € C let x.: Y" — {0,1} be the characteristic
function of Bs(c), that is x.(v) = 1 if and only if d(v,c) < é,. Moreover, let
we: V" — Ny be given by

pe(v) = (L=xe(w) + D xelv)=

{ [CNBs)|+1, ifd(v,c)> dn,
c’eC\{c}

[(€\{e}) N Bs(v)], if d(v,¢) < 6p;

thus in particular we have @.(v) = 0 if and only if C N Bs(v) = {c}.
Hence for ¢ € C we have the error probability e. < 7 1 fiyn|c(v)@e(v). From

Z N)f”\C(U)(l —Xe(v)) = Z My"IC(U) = pi(Bn > dn) <,
vEY™ vEY™\Bs(c)
for n > 0, for the average error probability of C we get

(0= Fea<et 33 Y e ()

ceC veY™ ceC ¢’eC\{c}

Hence averaging over all (fn) subsets of I',, of cardinality m, distinct code words
being chosen uniformly and independently, since any 2-subset of X" is contained
in precisely (2m:22) of its m-subsets, we get

B, (0 < et o ot 3 5 (o) X xolo):

veY™ ceC c’eC\{c}

For v € Y™ we have ) __n Xc(v) = bs, and

2% = pyn(v) = Y pynie(v)pan (c) = 2% D Hymge(v)

ceXn cexn

shows that D _yn pyn|c(v) = 1. Thus we get

(m — 1)bs mbs 2lpnl=n=1 .y
€(Co) < Er, (6) <et r—— <et o~ <E+W’

n
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for n > 0. This entails
On

n

o log,(e(Co)—€) < o ([pn]—n—1+logy(n)) — W logy( )_(1_;) 10822“‘%),
where the right hand side tends to p — 1 — plog,(p) — (1 — p)logy(l — p) =
p — C¥**(p) < 0. Hence there is a > 0 such that €(Cp) < e +27"%, for n > 0. {

IT HAMMING

4 Block codes

(4.1) Hamming distance. a) Let X’ be an alphabet such that ¢ := |X|, and
let n € N. Letting v = [21,...,2,] € X" and w = [y1,...,yn] € ™, then
dlv,w) := |[{i € {1,...,n};2; # yi}| € {0,...,n} is called their Hamming
distance; recall that we have already used this for ¢ = 2 in (3.5).

Lemma. The Hamming distance defines a discrete metric on X™.

Proof. We have positive definiteness d(v,w) € R>o, where d(v,w) = 0 if and
only if v = w; symmetry d(v,w) = d(w, v); and the triangle inequality:

Let u = [#1,...,2,] € X" Then from {1 € {1,...,n};z; # 2z} = {i €

{L..onhyi=m#atU{ic{l,.. . nhyi#x #zuy Clice{l,...,nhy #
ziyU{ie{l,....,n}x; # yi} we get d(v,u) < d(v,w) + d(w,u). i

An isometry of X" is a distance-preserving map ¢g: X" — &A™, that is
d(v,w) = d(v9,w?), for v,w € X"; it follows from positive definiteness that any
isometry is injective, hence is bijective. Thus the set Isom(X"™) of all isometries
of X™ forms a group, called the isometry group of X".

Proposition. We have Isom(X") 2 (Sx)" x S, =: Sx 1 Sy.

Proof. Given permutations m; € Sy, for i € {1,...,n}, this yields an isome-
try [m1,...,7,] acting component-wise, and any permutation in S, induces an
isometry by permuting the components. Hence G := Isom(X™) contains the
semidirect product S := (Sx)™ % S, as a subgroup; in particular, S and hence
G act transitively on X'™.

Let 0 € X be a fixed element, and let H := Stabg([0,...,0]); hence we
have [G: H] = ¢". Let T := (Sax\(o})" ¥ S < SN H; hence we have
[S:T] = [Sx: Sx\(oy]" = ¢". For v = [x1,...,2,] € X" let suppy(v) :=
{i € {1,...,n};2; # 0}. (This is reminiscent of the notion of support to be
coined later.) Now let h € H.
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Let first v # w € X™ such that |suppy(v)| = |suppy(w)| = 1. If suppy(v) =
suppg(w) then from d(v", w") = d(v,w) = 1 we conclude that supp,(v") =
suppg (w"), while if suppg(v) # suppy(w) then from d(v", w") = d(v,w) = 2 we
conclude that supp,(v") # suppy(w”). Hence h induces a permutation of the
components of X", and permutations within the components. In other words
the action of h on {v € X™;|suppy(v)| = 1} is induced by an element of T

Now let v = [z1,...,2,] € X™ such that suppy(v) = {i1,...,is}, for some
s € {1,...,n}, and let w; := [0,...,0,2;,,0,...,0], for j € {1,...,s}. Since
d(vh,w?) = d(v,wj) = s — 1, we infer that the non-zero components of v"
are determined by the non-zero components of the various w]h Thus the ac-
tion of h on X" is induced by the element of T describing its action on {v €
X™; |suppy(v)| = 1}. Hence H is isomorphic to a subgroup of T'. Hence from

H<T<S<Gand [G:H]=¢"=[S:T|weget G=S5and H=T. i

b) Let X = I, be the field with ¢ elements, let 0,, := [0,...,0] € Fy and let 1,, :=
[1,...,1] € Fy. For v = [z1,...,2,] € F} let wt(v) := d(v,0,) € {0,...,n} be
the Hamming weight of v, and let supp(v) := {i € {1,...,n};z; # 0} be the
support of v; hence we have wt(v) = |supp(v)|.

An Fy-linear isometry of Fy! is called a linear isometry, the group Isom,, (F;) <
GL,(F,) of all linear isometries is called the linear isometry group of Fy.

Lemma. An F,-linear map g: Fy — Fy is an isometry if and only if g is
weight-preserving, that is wt(v?) = wt(v), for v € Fy.

Proof. If g is an isometry, then we have wt(v9) = d(v9,0,) = d(v,0,,) = (
conversely, if g is weight-preserving, then we have d(v?, w9) = wt(v9 —
wt((v —w)?) = wt(v — w) = d(v,w), for v,w € Fy.

\_/
nll‘-’

Proposition. We have Isom, (F,;) = (F;)" x S, =: F; 1 S,..

Proof. We have d(v + u,w + u) = d(v,w), for u,v,w € Fy, thus we have
d(v,w) = d(v — w,0,) = wt(v — w). Since Isom, (F ) fixes O € Iy, we infer
that wt(v?) = wt(v), for g € Isom,(F,). Hence for the i-th unit vector e; =
[0,...,0,1,0,...,0] € Fy, for some i € {1,...,n}, we have e/ = x;e;~, where
m € S, and x; € Fy :=F;\ {0}. Thus g is described by a monomial matrix
diag[ry,...,2,] - Pr € (F})" % S,y < GL,(F,), where P, € GL,(F,) is the

permutation matrix associated with 7 € S,,.

Conversely, any invertible diagonal matrix and any permutation matrix, and
thus any monomial matrix, gives rise to a linear isometry. Thus Isom,(F,) =
(7)™ xS, < GL,(Fy) is the subgroup of all monomial matrices. i

In other words, Isom,(F;) is the normalizer in GL,(F,) of the split maximal
torus (F;)", where Isom, (F,)/(F;)" = S, is the Weyl group of GL,(F;). In
particular, Isom, (IF;) acts transitively on the sets {v € Fy; wt(v) = i}.
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(4.2) Minimum distance. a) Let X be an alphabet such that ¢ := |X|, and
let ) # C C X™ be a block code of length n € N and order m := |C| € N.

If m = 1 then C is called trivial. Block codes C,C’ C X™ are called equivalent,
if there is an isometry g € Isom(X™) such that C9 = C’; the automorphism
group Aut(C) of C is the group of all isometries g € Isom(X"™) such that C9 = C.

If C is non-trivial, then d(C) := min{d(v,w) € N;v # w € C} € {1,...,n} is
called the minimum distance of C; if C is trivial we let d(C) := oo. If d(C) = d
then C is called an (n,m,d)-code over X. We have d(X™) = 1, and equivalent
codes have the same minimum distance.

Proposition: Singleton bound [1964]. For any non-trivial (n, m, d)-code C
we have log,(m) <n —d+ 1.

Proof. We consider the puncturing map a: X" — X794 [z1,... 2,]
[€1,. .., Tn_d+1] With respect to the last d — 1 components. Since for v # w € C
we have d(v,w) > d, we infer that the restriction a|c: C — X"+ is injective,
thus m = [C] < |x"~ 4+ = ¢n~9+1. (Note that likewise we may choose any
d — 1 components instead of the tail ones.) i

If we have equality d — 1 = n —log,(m), then C is called maximum distance
separable (MDS); in particular, X" is the only MDS code such that d = 1.

b) Let X = FF, be the field with ¢ elements, and let C < [y be a linear code;
if ¢ € {2, 3,4} then C is called binary, ternary or quaternary, respectively.

Let k := dimp, (C) € Ny be the dimension of C, and let d = d(C) be its
minimum distance, then C is called an [n, k, d]-code over F,. In particular C is
an (n,q", d)-code, and the Singleton bound for k > 1 reads d — 1 < n — k.

If C is non-trivial then wt(C) := min{wt(v) € N;0,, #v € C} € {1,...,n} is
called the minimum weight of C; if C is trivial we let wt(C) := oo.

Lemma. We have wt(C) = d(C).

Proof. We may assume that C is non-trivial. Since wt(v) = d(v,0,) > d(C), for
0, # v € C, we have wt(C) > d(C). And for v # w € C we have 0, Zv—w € C
and d(v,w) = d(v — w,0,) = wt(v — w) > wt(C), hence d(C) > wt(C). 1

Linear codes C,C’ < [y are called linearly equivalent, if there is a linear
isometry ¢ € Isom,, (FF,) such that C9 = C'. The linear automorphism group
Autg,(C) of C is the group of all linear isometries g € Isom,(F,) such that
C9 = C. Note that linearly equivalent codes have the same dimension and the
same minimum weight.
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(4.3) Packing radius. a) Let X be an alphabet such that ¢ := |X|. For
n € N and r € Ny let B,.(v) := {w € X™;d(v,w) < r} be the sphere or ball
with radius r around v € X™. Hence independently of v € X" we have

min{r,n} min{r,n}
n. n
Bol= Y lwertdnn=al= Y (})-@-vren
d=0 d=0

recall that we have already used this for ¢ = 2 in (3.7).

Let C be an (n,m,d)-code over X. Then C is called e-error correcting, for
some e € {0,...,n}, if Be(v) N Be(w) = 0, for v # w € C. The maximum
e € {0,...,n} such that C is e-error correcting is called the packing radius
e(C) of C. In particular, we have e(C) = n if and only if C is trivial.

Proposition: Sphere packing bound [Hamming, 1960]. We have

w2 (@) amvr s e

Proof. The spheres B,c)(v), for v € C, are pairwise disjoint. 1

b) We consider a slightly weaker notion: Letting e = e(C), let f € {e,...,n}
such that B.(v) N By(w) = 0, for v # w € C; in this case C is called f-error
detecting. Assume that f > e+ 2; then let v # w € C such that 4 € Beq1(v) N
Bei1(w); hence there is t € B.(v) such that d(t,u) = 1, thus the triangle
inequality implies t € Bej2(w), a contradiction. Hence actually we do not have
too much choice, namely f € {e,e + 1}.

The above notions have the following relevance for decoding purposes: Let still
e =e(C) and let C be f-error detecting. Then for u € X™ we have u € By(v), for
some v € C, if and only if u is obtained from v by at most f errors. In this case,
we have d(u,w) > e+ 1 for v # w € C. Thus, if at most f errors have occurred,
it is detected how many of them have occurred (if any at all). Moreover, if
at most e errors have occurred, then u is correctly decoded by unique nearest
neighbor decoding; while if f = e + 1 and precisely e + 1 errors have occurred,
then u is not necessarily uniquely nearest neighbor decodable.

c¢) Let now C be non-trivial. Then d = d(C) € N is related to the error correction
and detection properties of C as follows:

Proposition. i) Let e € {0,...,n}. Then C is e-error correcting if and only if
2e + 1 < d; thus the packing radlus of C equals e(C) = | 452 |.
ii) Let e = e(C) and f € {e,e+ 1}. Then C is f-error detecting if and only if

2f < d; thus C is (e+1)-error detecting if and only if d is even, where e+1 = g.
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Proof. i) Assume that u € B.(v)NB.(w), for some v # w € C; then the triangle
inequality implies d < d(v,w) < d(v,u) + d(u, w) < 2e.

Conversely, assume that d < 2e, and let v # w € C such that d(v,w) = d; then
let u € X" such that d(v,u) = |4] and d(u,w) = [%%}]. Distinguishing the
cases d even and d odd, we observe that d(v,u) +d(u, w) = d, and both [4] < e

and [%EL] < e, entailing u € B.(v) N Be(w).

ii) We may assume that f = e+ 1. Assume that u € B.(v) N Bey1(w), for some
v # w € C; then the triangle inequality implies d < d(v, w) < d(v,u)+d(u,w) <
% +1=2f 1.

Conversely, assume that d < 2f — 1 = 2e + 1, and let v # w € C such that
d(v,w) = d; then let u € X™ such that d(v,u) < e and d(u,w) < e+ 1, as well
as d(v,u) + d(u,w) = d, hence u € Be(v) N Bey1(w). i

Example: Parity check codes. Let ¢ > 2, let n > 2, and let C := {v €
Zy;vw'™ = 0 € Zy} be a parity check code, where w = [wy, ..., w,] € (Z)".

Hence for any [z1,...,2,_1] € Z;‘_l and x,,_1 # x,_; € Zg, there are z,, ), €
Zg such that both v := [21,...,Tp—2 Tp—1,2y] € Cand [x1,...,Tp_22,_1,2,] €
C, thus we have d(C) < 2.

Since w; € Zy, for i € {1,...,n}, we infer [z1,..., 21,2}, Tiy1,...,2n] € C,

whenever z; # x, € Zg. Thus Bi(v) NC = {v}, entailing that C has minimum
distance d(C) = 2, thus C is O-error correcting and 1-error detecting.

(4.4) Covering radius. a) Let X be an alphabet such that ¢ := |X|, and
let C be an (n,m,d)-code over X. The minimum ¢ € {0,...,n} such that
X" = Uyec Be(v) is called the covering radius ¢(C) of C. Hence we have
¢(C) = 0 if and only if C = X", and if C is trivial then ¢(C) = n. Letting C be
non-trivial, the covering radius is related to the minimum distance as follows:

If d is odd, letting e = e(C) = %5, we have B.(v) N Be(w) = 0, for v # w € C,
hence since B, (v) \ Be—1(v) # 0 we conclude that ¢(C) > e = ¢(C). If d is even,
letting f = e(C) + 1 = 2, we have By(v) N By_1(w) = 0, for v # w € C, hence
since By (v) \ Bf—1(v) # 0 we conclude that ¢(C) > f =e(C) + 1.

b) If ¢(C) = e(C) = |%2] =: e, that is X" = [],c Be(v), then C is called
perfect. In this case we have unique nearest neighbor decoding for any element
of X™, but C incorrectly decodes any word containing at least e 4+ 1 errors. In
other words, C is perfect if and only if the Hamming bound is an equality, that
is we have m -3¢ (1) - (¢ —1)" = ¢".

As for the existence of perfect codes, if d is even then ¢(C) > f = e + 1 implies
that there are none in this case. The picture changes if d is odd, that is e = %,
but still perfect codes are rare; fulfilling the Hamming bound is not sufficient.
In particular, C is perfect with d = 1, that is e = 0, if and only if C = A™.

If d is odd and ¢(C) = e+ 1 = %EL or d is even and ¢(C) = f = £, the code

C is called quasi-perfect. In this case there are elements of X" which do not
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allow for unique nearest neighbor decoding, and C incorrectly decodes any word
containing at least e + 2 respectively f + 1 errors, and possibly some words
containing e + 1 respectively f errors.

Example: Repetition codes. Let C := {[x,...,z] € X™;x € X}. Then C has

. . 1 . . .
information rate p(C) = ()g#(q) = L and minimum distance d(C) = n, that is an
(n, q,n)-code; it is L%‘lj—error correcting, if n is even it is F-error detecting.

In particular, if X = Fy then we have C = {0,,,1,,} < F%, an [n, 1, n]-code. Since
for v € F5 we have d(v,0,) < [2] or d(v,1,) < [ 2], we get ¢(C) = 5% if n is
odd, that is C perfect, and ¢(C) = § if n is even, that is C quasi-perfect.

Example. Let C := ([1,0,0,0,1,1],[0,1,0,1,0,1],[0,0,1,1,1,0])r, < FS, hence
X =y, and the elements of C consist of the rows of the following matrix:

1 . 11

1.1 .1

1 11 86
1 .1 1 .|
1 .11 .1
S1 1 .11
111 |

(Actually, C is obtained from the Hamming [7,4, 3]-code, see (5.3) and (6.2), by
shortening with respect to the 4-th component, see (5.8).)

Thus C has dimension k& = dimp,(C) = 3 and minimum distance d = d(C) =

wt(C) = 3, that is C is a [6,3, 3]-code. Using ¢ =2 and e = ¢(C) = 41 = 1, the

Hamming bound yields 23 - ((g) + (?)) = 56 < 64 = 25, thus C is not perfect.

Hence the covering radius is ¢(C) > e+ 1 = 2, and we show that actually
d+1

c(C)=2= 5=, saying that C is quasi-perfect:

Let u € FS. Since the Hamming distance is translation invariant, by adding
a suitable element of C we may assume that v = [0, 0,0, %, %, ¥x]. Moreover, we
may assume that wt(u) > 3, which leaves © = [0,0,0, 1,1, 1]. For the latter we
indeed have d(u,[0,0,1,1,1,0,]) = 2. 1

(4.5) Theorem: van Lint [1971], Tietdviinen, Zinovev—Leontev [1973].
Let C C Fy be a perfect (n,m,2e + 1)-code, where e € N; in particular ¢ is a
prime power, and we have C # Fy and n > 3,

a) If ¢ > 2, then C is equivalent to a linear code, and linearly equivalent to
i) the binary repetition [n, 1, n]-code {0,,1,}, where n > 5 is odd;

ii) the binary Golay [23,12, 7]-code Ga3, see (16.1);

iii) the ternary Golay [11,6,5]-code G11, see (16.2).
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b) If e =1, then n = qqk—ll and m = ¢"~*, for some k > 2. If C is linear, then

it is linearly equivalent to the Hamming [n,n — k, 3]-code Hy, see (6.1).

In particular, for ¢ = 2 and k = 2 we recover the binary repetition [3, 1, 3]-code
{03,15}. Actually, there are (perfect) non-linear codes having the parameters
of Hamming codes, and their classification still is an open problem. i

5 Linear codes

(5.1) Generator matrices. Let C < F}' be a linear code of length n € N over
Fy, and let k := dimg, (C) € {0,...,n}. A matrix G € Fi*" whose rows form an
F,-basis of C is called a generator matrix of C; hence we have C = im(G) =
{vG € Fy;v € IF’;} In particular, for £ = 0 we have G € IFSX”, and for k =n
we may choose the identity matrix G = E,, € Fy*".

Then v € F} is encoded into vG € F?, and conversely w € C = im(G) < FJ! is
decoded by solving the system of F,-linear equations [X1,...,X;]-G = w € F}

which since rkp, (G) = k has a unique solution.

Since rkp, (G) = k, by Gaussian row elimination and possibly column permu-
tation G can be transformed into standard form [E;, | A] € Fi*", where

Ae sz("_k). Row operations leave the row space C of G invariant, while col-
umn permutations amount to permuting the positions of symbols, thus trans-
form C into a linearly equivalent code.

Hence in this case [z1,...,2%] € IF’; is encoded into [z1,..., Tk Y1, -+, Yn—k| €
Fy, where [y1,...,yn—k] = [T1,...,24] - A € Fg_k. Thus the first k£ symbols
can be considered as information symbols, and the last n — k symbols as check
symbols. Since information and check symbols can be distinguished like this
C is called separable. Moreover, the projection map C — IF’;: [21, ..., 2n] —
[21, ..., 2;] onto the first k& positions is a bijection; because of this the encoding

is called systematic on the information symbols.

(5.2) Check matrices. a) Let F, be the field with ¢ elements. For n € N
let <'7'>: FZ X IF;L - th [[xlv s 71’»@], [y17 s 7yn” = x- ytr = Z?:l TiYi be
the standard F,-bilinear form on Fy. The latter is symmetric and non-
degenerate, and we have (vM,w) = (v, wM"), for v,w € Fy and M € Fp*".

Given a code C < Fy, its orthogonal space ct = 1{v e Fyi(v,w) = 0 €
F, for w € C} < Ty with respect to the standard Fg-bilinear form is called
the associated dual code. Letting k := dimg (C) € {0,...,n}, we have
dimg, (C*+) = n — k. Moreover, we have C < (C*)*, and from dimg, ((C+)*+) =
n— (n—k) =k = dimg,(C) we get (C)*+ =C.

If C < C* then C is called weakly self-dual, if equality C = C* holds then C is
called self-dual; in the latter case we have n —k = dimp, ct) = dimg, (C) = k,
thus n = 2k is necessarily even.
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b) If G € FF*™ is a generator matrix of C, then we have C+ = {v € FI'; Gv'™ =

0y} = {v € Fj};vG*" = 04 }. Hence if H € F{"F)%™ is a generator matrix of CL,
then C = (C)* = {v € F};vH™ = 0,1} = ker(H™) <F7. Thus H is called a
check matrix of C, and instead of using a generator matrix, C can likewise be
defined by a check matrix. In particular, for k = n we have H € ngn, and for

k = 0 we may choose the identity matrix H = E,, € Fy*".

If G = [E, | A] € F¥*™ is in standard form, then H = [-A™ | E,_4] €
anfk)xn is a generator matrix of C*, being called a standard check matrix
of C: We have kg, (H) = n — k, and HG" = [-A" | E, ;] - {f{“] =

—AY . Fp 4 Ep_p, - AT =0 e F{TRF

Proposition. A code C" < Ty is linearly equivalent to C if and only if its dual
(C")* is linearly equivalent to C*.

Proof. It suffices to show one direction. If C’ is linearly equivalent to C, then
there is a monomial matrix M € Isom,, (F,) such that ¢’ = C- M. Then we have
C'-(HM~")" =C- MM~1H" = {0}. Since rkp, (HM~") = rky,(H) =n — k,
we conclude that HM~% € F* ™™™ is a check matrix of C'. Thus HM~* is
a generator matrix of (C')*. Since H is a generator matrix of Ct, this implies
that (C)t =C* - M~' where M~ € Isom, (F,) indeed. i

(5.3) Example: Hamming code. Let the binary Hamming code H < F}
be given by the generator matrix G € Fg”, equivalently its standard form G’:

111 1 1 . . .11
I P T T A R R S B
G=1y 1 11 | ad G=0
1111111 1111

A check matrix H € ]Fg”, or equivalently its standard form H', is given as

11 1 1

1 1 . 1 1 .
1 1 and H:=]1 . 1 1]. 1
1 1 1 1

We have k = dimg,(H) = 4, that is m = |H| = 2* = 16. From inspecting the
elements of H, as given by the rows of the matrices below, or from (5.4) below,
we get d = d(H) = 3, thus H is a [7,4, 3]-code, hence e = e(H) = 4 = 1; note
that d cannot be read off directly from the generator matrix G.

Moreover, we have m - >.¢_o (7) = 16 - (1 + 7) = 128 = 27 = |F}|, thus by the
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Hamming bound we conclude that # is perfect; see also (6.2) and (4.5).

: 1 11

1111 1 11

1 .11 1.1 .1 .1
11 1 1 .11 .1
1 1.1 11 11
1.1 .1 11 .1 1
11 . 11 111 . . ..
L1111 | 1111 1 1 1]

(5.4) Generalized check matrices a) Let C < ) be an [n, k,d]-code, let
F, CF be a finite field extension of degree f := [F: F,] € N, and let H € F"™*",
for some r € Ny, be a generalized check matrix of C, that is C = ker(H")NF}
is the associated subfield subcode of ker( H") < F".

Theorem. Let C be non-trivial, hence we have d € N. Then any (d — 1)-
subset of columns of H is F,-linearly independent, and there is some Fg-linearly
dependent d-subset of columns of H.

Proof. Let d’ € N such that any (d' — 1)-subset of columns of H is F,-linearly
independent, while there is some Fy-linearly dependent d’-subset of its columns;
note that such a d’ indeed exists.

In order to show that d > d’, we may assume that d’ > 2. Let 0 £ v € [ such
that wt(v) < d' — 1. Hence vH"™ € F" is a non-trivial F,-linear combination of
at most d’ — 1 rows of H". Since the latter are F-linearly independent we have
vHY™ # 0, hence v € C, implying that d > d’.

Conversely, picking an F,-linearly dependent d’-subset of columns of H, there
is 0 # v € Fy such that wt(v) < d’ and vH" = 0 € F", thus we have v € C,
implying that d < d'. i

b) So far, we do not require that H has full F-rank. But by taking an F-basis
of the row space of H we may assume that rkp(H) = r.

Then, in the particular case F = F, we get r = rkg, (H) = n—dimp, (ker(H"™)) =
n — k, so that H indeed is a check matrix of C. Thus this yields a new proof of
the Singleton bound d — 1 < r = n — k for linear codes.

In general, since C is Fy-free, we have dimp(C ®r, F) = dimp,_ (C). Hence for any
F-subspace V' < F" from (VNFy)®p,F < V we obtain dimp, (VNFy) < dimg(V);
but note that equality not necessarily holds.

Proposition. We have n — fr <k <n —r.
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Proof. i) The second inequality follows from k = dimy, (C) = dimp(C ®F, F) <
dimp(ker(H"™)) =n —rkg(H) =n — r.

ii) We turn to the first inequality: Let B := {f1,..., 87} C F be an Fy-basis, let
[Y1s---,7n] € F® be arow of G, and let v; = Z£:1 ckjPr be its decomposition

into B, where ci; € Fy. Then, given [z1,...,2,] € [, the check condition
n n f f n
0= @ =2_ > wiceiBe =3 (3 wicns)Be
j=1 j=1k=1 k=1 j=1

is equivalent to the f-set of conditions 2?21 zjep; =0, for ke {1,..., f}.

frxn

Hence the blow-up matrix HY € ;"™ obtained by replacing any entry by
the column of its coefficients with respect to B, is a generalized check matrix of
C as well, thus k = dimg,(C) = dimg, (ker(HV")) =n —rkg (HY) >n— fr. f

(5.5) Syndrome decoding. Let C < I}/, where n € N, be given by a check
matrix H € Fy"¥*" where k = dimg, (C). Then for v € FJ let vH'™ € F2—F

be the syndrome of v with respect to H.

We consider the quotient F,-vector space Fy /C, whose elements 7 := v+ C =
{v+w e Fp;w e C} € Fy/C, for v € Fy, are called the cosets with respect
to C. Since C = ker(H") < F? and rkp, (H) = n — k, by the homomorphism
theorem we have F7/C = F7!/ ker(H'™) = im(H') = Fi~* as F4-vector spaces.
Thus the syndromes are in natural bijection with the cosets with respect to C,
in particular there are |[F'/C| = |[F7~%| = ¢"~* syndromes.

To decode a possibly erroneous word v € Fy', we proceed as follows: Let w € C
be the code word sent, and let u := v —w € Fy be the associated error vector,
thus we have d(v, w) = wt(u). For the syndromes we have vH" = (w+u)H" =
uH" ¢ IFZ;_’“, that is v = uw € Fy /C. Hence v is uniquely nearest neighbor
decodable if and only if the coset v € Fy /C possesses a unique element u € Fy
of minimum weight, and in this case v € Fy is decoded to v —u € Fy.

The elements of the coset v € Fy /C having minimum weight are called its
coset leaders. In general coset leaders are not unique, but the zero vector
0, € Fy always is the unique coset leader of the coset 0, € Fy /C; and if C is
e-error correcting, for some e € {0,...,n}, and the coset ¥ € I}/ /C possesses an
element u € Fy of weight wt(u) < e, then w is its unique coset leader.

In practice, coset leaders for all syndromes in im(HY) = IFZ*"? are computed
once and stored into a table, so that then coset leaders are found by computing
syndromes and subsequent table lookup. Finding coset leaders algorithmically,
being called the decoding problem for linear codes, in general is an NP-hard
problem. Hence the aim is to find codes having fast decoding algorithms.

(5.6) Example: Syndrome decoding of parity check codes. a) Let C :=
{v € Fj;ow™ = 0 € Fy} < F? be defined by the weight vector 0 # w :=
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[wy,...,wy,] € 7, where up to linear equivalence we may assume that w, =1,
that is w is in standard form; hence &k := dimy, (C) = n—1. We get d(C) € {1,2},
where for n > 2 we have d(C) = 2 if and only if w; # 0, for i € {1,...,n}.

The standard generator matrix is G := [E,—1 | —[w1,...,w,—1]"] € IE",(J"_DX",
saying that [z1,...,2,_1] € F)~!is encoded into [x1, ..., &n_1; — S ) €
Fy. For v =[z1,...,7,] € F} we get the syndrome vw' =31 zw; € Fy.

b) In particular, for ¢ = 2 and w = 1,, € Fg, any [z1,...,2, 1] € F3~ ' is
encoded into [z1,...,Tp_1; Z?:_ll x;] € F%, which indeed amounts to adding a
parity check symbol. Moreover, v = [z1,...,z,] € F% has syndrome vw" =

>oi, x; € Fy, hence we have v € C if and only if wt(v) € Ny is even, thus C is
called the binary even-weight code of length n.

For n > 2, the code C is an [n,n — 1, 2]-code, and is the unique such code: Any
such code has a weight vector w € IFy without zero entries, thus w = 1,,.

We have F§ = 0 U v, where v € F} is any vector such that wt(v) is odd,
corresponding to the syndromes 0 € Fy and 1 € o, respectively. Thus any
vector of weight 1 is a coset leader of the coset F% \ C, hence none of the words
in F% \ C is uniquely nearest neighbor decodable.

(5.7) Example: Syndrome decoding of repetition codes. a) Let C be
given by the standard generator matrix G := [1,] € Fy, hence we have k :=
dimg, (C) = 1 and d(C) = n. Then x € F, is encoded into [z, ...,z] € Fy.

The standard check matrix is H := [-1%_, | E,_4] € anil)xn. For v =
[21,...,2,] € F} we get the syndrome vH"™ = [z3 — 21,..., 2, —21] € F) 71

b) In particular, for ¢ = 2 we have C = {0, 1,,} < F%; recall that C is perfect if
n is odd, and quasi-perfect if n is even. Then C is an [n, 1, n]-code, in fact the
unique one. The code C is weakly self-dual if and only if (1,,1,) = 0, which
holds if and only if n is even. The generator matrix of C is the weight vector of
the even-weight code, hence C* is the even-weight code of length n.

Any v = [z1,...,2,) € F} has syndrome [zo+z1, ..., z,+x1] € Fgfl. The coset
affording syndrome w € F5 ™! equals [0;w] € F3/C, where wt([0;w]) = wt(w)
and wt([0; w] +1,,) = n — wt(w). Thus computing syndromes and finding coset
leaders yields the following decoding algorithm:

i) For n odd, coset leaders are uniquely given as [0;w] if wt(w) < 251 = ¢(C) =:
e, and [0;w] + 1,, if wt(w) > 5L = e + 1; in both cases the coset leaders have
weight at most e.

Thus, if wt(v) < e and x1 = 0, then v has syndrome |29, ..., z,], and is decoded
to v+ [0;29,...,2,] = 0p; if 1 = 1, then v has syndrome [z + 1,..., 2, + 1],
and is decoded to v+ ([0; 22+ 1,..., 2, + 1] + 1,,) = 0,,.

If wt(v) > e+ 1 and 2y = 0, then v is decoded to v+ ([0; 2, ..., xn] + 1n) = 1p;
if x1 =1, then v is decoded to v + [0; 22 + 1,..., 2, + 1] = 1,,.
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ii) For n even, coset leaders are uniquely given as [0;w] if wt(w) < § —1 =

e(C) =: e, and [0;w] + 1,, if wt(w) > & + 1 = e + 2, where in both cases the

coset leaders have weight at most e. But for wt(w) = § = e + 1 we have

wt([0; w]) = wt([0; w] 4+ 1,,) = wt(w), in which case coset leaders are not unique.

Thus, if wt(v) < e and 1 = 0, then v is decoded to v + [0; 29, ..., z,] = Op; if
x1 = 1, then v is decoded to v+ ([0;z2 + 1,...,2, + 1] + 1,,) = 0,,.

If wt(v) > e+2 and 7 = 0, then v is decoded to v+ ([0; za, ..., xn] + 1) = 1p;
if 1 =1, then v is decoded to v + [0; 22 + 1,..., 2, + 1] = 1,,.

But if wt(v) = e + 1 then v is not uniquely nearest neighbor decodable. #

(5.8) Modifying codes. Let C be an [n,k,d]-code over F,, with generator
matrix G € F,"" and check matrix H € Fy"™"*".

a) i) Puncturing by deleting the n-th component, for n > 2, yields C® :=
{lz1,...,xna] € FP 7N ey, .. xn] € C <TFRL

Using the Fy-linear map Fj — Fg’l sz, ..o xn] & [21, .., 1], having ker-
nel ([0,...,0,1])r, < Fy, shows that k — 1 < k* := dimg, (C*) < k. If d > 2, or
xn, =0, for [21,...,2,] € C, then k* = k, amounting to deleting a check symbol.
If C® is non-trivial, then for its minimum distance we have d — 1 < d*® < d; in
particular, if ©, = 0 for [z1,...,2,] € C, then d* = d.

ii) Extending by adding a check symbol yields the code C:= {[x1,. .., Znt1] €
FZJrli[Il’ ) €C, M e =0} < F7+1. Thus we have k := dimg, (C) = F,
and C has check matrix

s | H 05, (nt+1—k)x (n+1)
H = [ i T ] IS IFq .

If C is non-trivial, then C has minimum distance d < d < d+ 1: Since any
(d — 1)-subset of columns of H is F-linearly independent, distinguishing the
cases whether or not the last column of H is involved, we conclude that any
(d—1)-subset of columns of His F,-linearly independent as well; and since there
is an [Fg-linearly dependent d-subset of columns of H, there is an F,-linearly
dependent (d + 1)-subset of columns of H.

In particular, for ¢ = 2 the additional condition corresponding to the last row
of H amounts to wt(v) € Ny even, for v € C. Hence if C is non-trivial then d is
even, implying d=d+1ford odd, and d = d for d even.

iii) Puncturing the extended code again, we recover (C)* = {[z1,...,2n] €
Fyiloe, .o 2n;Tnga] € CE = {[z1,...,20] € Fy;[21,...,2,] €C} =C.

b) i) Expurgating by throwing away certain code words yields the code C’ :=
{[z1,...,zn] € C; 37 2 = 0} < C < F7'. Hence for the minimum distance of
C’' we have d' > d.
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We have k — 1 < k' := dimp, (C') < k. If k' = k then we have C" = C, while if
k' = k — 1 then C’ < C has check matrix

H
Ly

L n—k+1)xn
H' = [ } e F{itixn,

In particular, if 1,, € C then we have 1,, ¢ C’ if and only if ged(¢q,n) = 1, thus
in this case k' = k — 1.

In particular, for ¢ = 2 we have C' := {v € C;wt(v) € Ny even} < C, being
called the even-weight subcode of C. Hence if C’ is non-trivial then d’ is
even, and we have k' = k — 1 if and only if C contains elements of odd weight.
ii) Augmenting by adding certain code words yields C = (C,1.)r, < FY.
Hence for the minimum distance of C we have d <d.

We have k < k := dimg, (C) < k + 1, where k = k + 1 if and only if 1,, ¢ C. In
this case C has generator matrix

~ G k+1)xn
G:{ln}eﬁ‘g*)x.

In particular, for ¢ = 2 we have C := CU(1,,+C) < F?, consisting of the elements
of C and their complements. If C is non-trivial, since wt(1,, + v) = n — wt(v),
for v € FY, we get d = min{d, n— D}, where D := max{wt(v) € No; 1, # v € C};
if 1,, € C we have 1,, + C = C and thus D = n — d and J:danyway.

iii) If 1,, € C, then we have 1,, € C’ if and only if ged(g,n) > 1, thus augmenting
the expurgated code again yields C' < (/C\5 = (C',1,)r, < C; hence we get

(C")y =C if ged(g,n) =1, and (C') = " if ged(g,n) > 1.
If ged(g,n) > 1, then we have <1n>]’Fq = (1n)F,, and thus expurgating the aug-

mented code again yields (C)" = (C, 1n)p, = (C', 1n)r, = (C').

c) i) Shortening by taking a cross section, for n > 2, is the composition
of n-expurgation and subsequent puncturing, where the former is given as
c™ = {[x1,...,2,] € C;z, = 0} < [y, from which puncturing yields the
code C° := (C™)* = {[z1,...,xn_1] € FI (21, ... 0] € Capy =0} <F2 7L
Hence for the minimum distance of C° we have d° > d.

We have k£ — 1 < k° := dimp, (C°) < k, where k° = k — 1 if and only if cm <,
that is if and only if there is [z1,...,2,] € C such that x, # 0. In this case C°

has check matrix H® € Fénfk)x(n*l) obtained from H by deleting column n,

amounting to deleting an information symbol.
ii) Lengthening is the composition of augmentation and subsequent extension,

yielding the code C := C < FZI’H. For the minimum distance of C we have
d<d+1. We have k < k := dimg, (C) < k + 1, where k = k + 1 if and only if
C < C, that is 1,, ¢ C, amounting to adding an information symbol.



II HAMMING 34

iii) Shortening the extended code again yields the code (C)° = {[z; Ty) €
Fysfen, .. 2nga] € C.ony1 = 0} = {[z1,..., 2] € C, S = } = C' In

particular, shortening the lengthened code again yields (C)° = (C)'.

6 Geometric codes

(6.1) Hamming codes [1950]. a) Let P*~(F,) := {(v)r, <FF;0 # v € Fi}
be the (k — 1)—dimensional projective space over F,, where k: > 2, and let
n:=|P*1(F,)| = _1 > 3. Let Hj € F;*™ having columns being in bijection

with Pk_l(IF ); note that Hj, is unique up to linear equivalence. Thus we have
rky, (Hy) = k, and any 2-set of columns of Hj, is IF,-linearly independent, while
there are Fy-linearly dependent 3-sets of columns.

Let the Hamming code Hy, < Fy be defined by having check matrix Hj, hence
being unique up to linear equivalence. Thus Hy, is an [n,n — k, 3]-code, which

since g™~k - Z}:o (1) (a-1) =¢"*1+n(g—1)) =¢"*A+(¢—-1)- q;:11) =

q"Fq* = ¢" is perfect; see also (4.5).

Proposition. Any [n,n — k, 3]-code over F, is linearly equivalent to Hj.

Proof. Let H € IFZX” be a check matrix of the code in question. then any 2-set
of columns of H is Fy-linearly independent, that is the columns of H generate
pairwise distinct 1- dlmenmonal subspaces of F¥, and hence the n = [P*~1(F,)|

columns are in bijection with P*~1(F,). i

b) We may choose the columns of Hj, € ]F’; X" according to the g-ary represen-

tation of the integers in {1,...,¢* — 1} having 1 as their highest digit. This
allows for a fast decoding algorithm:

Since H; has minimum distance 3, the (¢—1)-n = ¢¥ — 1 vectors in [y of weight
1 belong to pairwise distinct non-trivial cosets with respect to Hy. Since there

are ¢"~("=k) — 1 = ¢¥ — 1 such cosets, this covers all of them. Thus the non-
trivial coset leaders are precisely the vectors zey,...,ze, € Fy, where z € F}
and e; € Iy is the 4-th unit vector, for i € {1,...,n}.

Now given v = w + ze; € Fy \ Hp, where w € Hy, the associated syndrome
is vH[" = ze;H' € IF";7 that is the transpose of the z-fold of the i-th column
of Hy, which can be translated into the g-ary representation of the i-th integer
with highest digit 1 and the scalar z, revealing both the position of the error
and saying how to correct it. #

(6.2) Binary Hamming codes. Keeping the notation of (6.1), let ¢ := 2.
Ordering the columns of Hy € ]ngn, where k > 2 and n = 2F — 1, according
to the binary representation of i € {1,...,n}, letting H; := [1] € F3*!, w
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recursively get

Oge-1 | Loes ,
Otr H — 2 2 c ]Fk><2 :
O | Hi] { 034 ‘ Hy—1 ‘ 04 ‘ Hy— ?
11 .. .1 1 11
for example, we get Hy = [1 1] and H3=|. 1 1 . . 1 1].
’ 1 .1 .1 1

Note that Hs is a [3, 1, 3]-code, hence is the repetition code, and that the [7,4, 3]-
code H3 has been considered in (5.3); moreover, the [6, 3, 3]-code obtained by
shortening Hs3 with respect to the 4-th component has been considered in (4.4).

In particular, we observe that for k > 2 any row of Hj, has weight 2k=1 which
is even, hence we have 1,, € Hj; thus we have Hy = Hy.

For k > 3 we get HyH = 0 € F5** that is H- < Hj, saying that H;- is

weakly self-dual: Letting Hy = [wq, ..., wg] € IFSX”, we get (w;, w;) = wt(w;) =
2F=1 =0 € Fy, for i € {1,...,k}, as well as (wy,w;) = 2872 = 0 € Fy and
(wi,w;) =0 €Ty, for j >i>2. i

We apply some of the modifications described in (5.8), see Table 4:

i) Extending Hj < F% yields the extended Hamming code Hye < F5*, an
[n + 1,n — k,4]-code, and puncturing Hy, yields (Hx)® = Hi again; note that
Ho is a [4,1,4]-code, hence is the repetition code.

For k > 3, since (1,41,1n+1) = 0 € Fy and (1,41, [w;;0]) = wt(w;) = 0 €

~

Fy, for ¢ € {1,...,k}, the associated check matrix Hy € ]P‘gk+1)x(n+1) fulfills
ﬁkﬁzr =0¢€ ngﬂ)x(kﬂ), that is (7?[;.@)L < ’ﬁk, saying that (’;':Zk)L is weakly
self-dual. In particular, since dim((#s)®) = 4 = dim(#3), we conclude that 3
is a self-dual [8, 4, 4]-code.

ii) Expurgating Hy < F3 yields the even-weight Hamming code H) < F3.
Since 1,, € Hy and n is odd, we conclude that #j, is an [n,n — k — 1, d']-code,

where d’ > 3, and augmenting #;, yields (’H/_\;:) = H}, again; note that H) < 3
is the trivial code, hence d’ = oo in this case.

For k > 3 we have d’ = 4: Since d’ > 3 is even, it suffices to show that d’ < 4.
To this end, we consider the 4-subset {ei, %, e, (e1 + ey + e3)"} C F5*! of

H
columns of Hy. Summing up the associated columns of Hj, := I k } yields
0e FékH)Xl, thus #}, has an Fy-linearly dependent 4-subset of columns. #

iii) Finally, shortening 7, < FoH yields (H1)° = H; < F% again, and length-

ening H) < Fy yields H, = Njf =Hy < ]Fg“ again.

(6.3) Simplex codes. For k > 2 and n := % let Hy, € IF’;X” be as in (6.1).
Then the code Sy := Hi < Fy; having Hj as a generator matrix is called the
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Table 4: Modified binary Hamming codes and simplex codes.

Hi - dualise Ry =Sk

extend shorten extend shorten

. augment , ~ i augment
Hy, =M, Sk=R! Sk

expurgate expurgate

associated simplex code. We show that Sy, is an equidistant [n, k, ¢*~!]-code:
Lemma. Any 0 # v € S has weight wt(v) = ¢*~ 1.
Proof. Let H; = [wy,...,w;] again. Then there is 0 # [z1,...,2%] € IF’;

such that v = Zle r;w; € Fy. Now the j-th entry of v, for j € {1,...,n},
equals (v,e;) = Ele x;{w;, e;). Hence the j-th entry of v is zero if and only
if the vector [(wj,e;)]i € Fy is an element of U, = ([z1,...,2x])x, < Fy.
The vector [(w;,e;)]t" € F&*! coincides with the j-th column of Hy. Since
) o1
q—1
qk7171 o qk71 . qk7171 o
-1 = g¢-1 -1 1

dimp, (U,) = k — 1, by construction of Hj, there are precisely columns

belonging to U,. Thus we get wt(v) =n — k=1 4

_ k— _ . _ . k
Note that Y50 [ 1] = YF 0 b= = 25 ¢ = ©=1 = 1 shows that S

fulfills the Griesmer bound, see (7.2) below. Likewise ¢*(¢"*~1 — qqk_—_ll : q;ql) =
¢*~1 = d shows that Sy, fulfills the Plotkin bound, see (7.1) below; actually the
latter also implies that Sy is an equidistant code. (In the sequel of this section
we will have to make use of the Griesmer bound already, although its discussion

is postponed to the next section.)

Proposition. Any [n, k, ¢*~!]-code over F, is linearly equivalent to Sy.

Proof. Let C be the code in question. We consider C*+ < [y, having a check

matrix H € Fy" "™ of C as a generator matrix. Letting d* := d(CL) € N, we

show that d* > 3: To this end, we assume to the contrary that d+ < 2.

If d- = 1, then we may assume that [0,...,0,1] € C*. Thus any word in C has

zero m-th entry, hence the shortened code C° is an [n — 1,k, ¢*~!]-code. Then
k—1

p— k‘f . .
the Griesmer bound yields n — 1 > Ef:ol ]’qqt 1= qq711 =n, a contradiction.

If d+ = 2, then we may assume that [0,...,0,1,1] € C*. Thus any word in C is
of the form [x,...,*, —z,z] € Fy, for some z € F,. This implies that any word
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in the shortened code C° has zero (n — 1)-st entry. Thus the doubly shortened
code C°° is an [n — 2,k°°,d°°]-code, where k — 1 < k°° < k and d°° > ¢*~L.

Hence the Griesmer bound implies n — 2 > Ziii)_l [d;:] > Zf:;)_l [q};l] =

_ .00 _ .00
k—k k—k%° _4

k
°=q —n— 4

qg—1
Hence we have d+ > 3. Since dimp, (CY) =n—k >0, and any [n,n — k, 3]
code fulfills the Hamming bound, we conclude that d*+ = 3. Hence C*, being a
[n,n — k, 3]-code, is linearly equivalent to the Hamming code Hj, = Si-. i

T =n— 1, a contradiction again.

(6.4) Binary simplex codes and Reed-Muller codes. Keeping the nota-
tion of (6.3), let ¢ := 2, hence for k > 2 we have n = 2¥ — 1, thus Sy is a
[2F — 1, k, 28~ 1]-code.

For example, the elements of So = {03,[0,1,1],[1,0,1],[1,1,0]} < F3 can be
seen (abusively) as the vertices of a tetrahedron inscribed into a cube; note that
Sy is the even-weight [3, 2, 2]-code.

We apply some of the modifications described in (5.8), see Table 4: Since the
words of Sy, have even weight, we get Si, = Sy, and Sy = {[v,0] € Fi™ v € Si.}.

i) Dualizing the even-weight Hamming code H) yields a code having Hj, :=
H, n . o -

[1:} € ]Fékﬂ)X as a generator matrix, thus () = S is the augmented

simplex code. Expurgating Sk yields (g‘k)’ = (Sk U (1, + Sk)) = Sk again.

Since for 0 # v € S we have wt(v) = 287! and wt(1, +v) = n — 2F°1 =
2k=1 _ 1, we conclude that Sk has minimum distance 2¥~1 — 1, thus Sk is
a[2F — 1,k + 11,2871 — 1]-code. In particular, for k = 2 we infer that S, is a
3,3, 1]—code thus S, = F3; for k = 3 we get the Hamming [7, 4, 3]-code Sg = 3.

Note that Y F ([20=1] = (2k~ Do 1)+ 14 S 2R - B = 2Ry

ZLOQ 2t = 2k=1 4 (2k=1 _1) = 2F —1 shows that Sy, fulfills the Griesmer bound;
but since (2871 — 1) — (2" — 1) - 3 = —1 the Plotkin bound does not yield.

ii) Dualizing the extended Hamming code ’ﬁk yields the Reed-Muller code

—~ —~ tr
Ri = (Hp)* < IF”H with generator matrix Hy = [ ijk Olk ] € ]F(kH)X(nH).

Thus Ry is obtained by extending Sk, o) that Ri = Sk = S}; note that 1, €
Ryi. Shortening Ry, yields RY = (Sg)° = (Sk) (Sk)' = Sk again.

Since Ry extends §k, which has minimum distance 2*¥ — 1, we conclude that Ry,
has minimum distance 2= thus R}, is a [2F,k + 1,2F"!]-code. In particular,

from S, = F3 we infer that Ry is the even-weight [4, 3, 2]-code, while we conclude
that R3 = H3z = Hj is the extended Hamming 8,4, 4]-code.

Note that El 0|—2%C ] = 1 + E = 2F shows that Ry, fulfills the Griesmer
bound; but since 2 5 = 0 the Plotkin bound does not yield.
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o~

iii) The punctured Reed-Muller code is R} = (S;)® = (Sk)® = Sk again,
and extending R} yields (725 =8 =S, = Ry again. i

Proposition. Any binary [2¥, k + 1,2% 1]-code is linearly equivalent to Ry.

Proof. Let C be the code in question. We use induction on k£ € N, where
Ry := F3 is the unique [2,2, 1]-code. Hence let k > 2.

Since C fulfills the Griesmer bound, it cannot possibly possess a zero component.
Hence the shortened code C° is a [2F — 1, k, d°]-code, where d° > 2F~1. Assume

that d° > 28=1 then we have Zi:ol ‘;—O] > Zi:ol 21;1 = Zi:ol 20 = 2k 1,

contradicting the Griesmer bound. Hence we have d° = 2F~1.

Thus we may assume that C° = Sj. This also shows that shortening with
respect to any component yields a code linearly equivalent to the simplex code,
thus any word in C \ {04k, 15x } has even weight 2*~!. Hence we have (C°) < C.

We proceed to show that 1o € C; then we conclude that C = <(C/?)7 Tok)w, =
gk + <12k,1>]172 = gk = gk = Ry. To this end, let

| Lok | Oge—s (k+1)x 2%
G_[* oG ]qu

be a generator matrix of C, and let C* < ngA be the residual [2¥71, k, d*]-code
generated by the rows of G* € F’;XZk*l.

Assume that d* < 282, then letting 0 # v € C* have minimum weight, we infer
that there is [w | v] € C such that, possibly by adding [lox-1 | Ogk-1], we may
assume that wt(w) < 28=2; thus we have wt([w | v]) < 2871 a contradiction.
(This is reminiscent of the Helgert-Stinaff construction used in (7.2).)
Assume that 2¥71 > d* > 2*¥=2 then Zi:ol 4] = [5] + Zi:o? 1 >
1+ 2 202 14 52291 — 961 contradicting the Griesmer bound. Hence

=0 2+
we have d* = 2872 so that C* is a [2¥~!, k, 2=2]-code.

Thus we may assume by induction that C* = Ry_1. Hence we have 19x-1 € C*,
thus C contains a word [*; 0 | lox—1] 4 [Iok—1 | Oge—1] = [#; 1 | lgs—1], which
has weight at least 25~1 + 1, hence equals 1. #

(6.5) Remark. The Reed-Muller codes R are Hadamard codes, being de-
fined by Hadamard matrices of Sylvester type, see Exercise (24.18), and
thus have a particularly fast decoding algorithm (outperforming the general one
for higher order Reed-Muller codes, which are discussed below). Together with

their large relative minimum distance §(Ry) := % = 2;;1 = 3 this out-
weighs their small information rate p(Ry) = dlmg?ikmk) = k;zl, making them

suitable for very noisy channels.



II HAMMING 39

For example, the [32,6,16]-code R5 was used in the ‘Mariner’ expeditions to
planet Mars [1969-1976]: The 6 information symbols are used to encode picture
data based on dots on a grey-scale with 26 = 64 steps, where R5 has a small

information rate of p(Rs) = 55 ~ 0.2, but is able to correct [1&-1] =7 errors.

(6.6) Higher order Reed-Muller codes. Reed-Muller codes are merely the
first ones in the series of binary higher order Reed-Muller codes [1954],
which in turn belong to the class of geometric codes, being based on finite
geometries, having a rich algebraic structure, and having a fast decoding algo-
rithm, being called multistep majority decoding. Moreover, higher order
Reed-Muller codes have been generalized to codes over arbitrary finite fields.

Proposition. Let C’ be an [n, k', d']-code, and let C” be an [n,k”,d"]-code,
both over the field F, with g elements. Then their Plotkin sum

C:=CwxC"={v|v+uw eF5vel ,wel'} <F"

is a [2n, k' + k”, min{2d’, d"}]-code.

Proof. The F-linear map C' & C" — C: [v,w] — [v | v + w] being injective,
we get dimp, (C) = k' + k”. We turn to the minimum distance d = d(C):

If both ¢’ and C” are trivial then C is trivial as well, and we have min{co, 00} =
0o = d; if C’ is non-trivial and C” is trivial, then we have C = {[v | v] € F2";v €
C'} and min{2d’,00} = 2d’ = d; if C’ is trivial and C” is non-trivial, then we
have C = {[0 | w] € F2";w € C"} and min{oco,d"} = d" = d.

Thus let both ¢’ and C” be non-trivial, and let 0 # u := [v | v+ w] € C, where
velC andw € C”. fw = 0 then wt(u) = 2-wt(v) > 2d’, and equality is attained
for v # 0 of minimum weight; if v = 0 then wt(u) = wt(w) > d”, and equality
is attained for w # 0 of minimum weight. Hence letting both v # 0 and w # 0,
then using wt(v) > |supp(v) N supp(w)| we get wt(u) = wt(v) + wt(v + w) >
wt(v) + (wt(v) + wt(w) — 2 - [supp(v) Nsupp(w)|) > wt(w) > d". i

We are now prepared to present a straightforward construction of the (binary)
Reed-Muller code Rg) < F%k of order r € Ny, for k € Ny such that k > 7:

For k € Ny let R}go) = {0gt, 1o} < F2" be the repetition [2¥,1,2%]-code, and
let R;k) := FZ" be the [2¥,2*, 1]-code; in particular we have R(()O) = F,, while
7'\’,50) = {02, 15} < F% and Rgl) = F2. Then, recursing over k > 2, and recalling
that R,(co) and R,(Ck) are already defined, for r € {1,...,k — 1} let

RECT) — R](:_)l [>< R](::ll) < ngfl @ ng—l ~ ng

Then R,(:) is a [28, 327 (%), 25 "]-code:

%
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We have dimg,(R\”) = 1 = (*) and dimg,(R() = 28 = % (¥). For

k>2andre{l,....k—1} we get dimg,(R(") = S0, FH s, (Y =
L+ 5 () + (7)) = 14+ X205 (4) = i (§),

We have d(R,&O)) = 2% and d(R,ik)) =1 Fork>2andr e {1,....k—1} we
get d(RY”) = min{2- d(R",),d(Ry" ")} = min{2. 2671, 2k—r} = 2k ¢

The Reed-Muller codes considered in (6.4) are indeed linearly equivalent to

the first order Reed-Muller codes: We have ’Rgl) = F% = R4, and Rg) is a
[2F k + 1,2 1-code, thus is linearly equivalent to Ry, for k > 2.

(6.7) Boolean functions. We present an alternative construction of higher
order Reed-Muller codes. To do so, we need some preparations first:

A function p: F§ — Fy is called a Boolean function in k¥ € Ny variables.
Identifying [z1,...,7%] € F5 with the integer Zle z; - 27t e {0,...,2F — 1},
where we silently lift the elements of Fy to Zo C 7Z, and ordering the elements of
F% accordingly, p can be identified with an element of F%k by listing its values.
Identifying the values 0 and 1 with the Boolean values ‘false’ and ‘true’, respec-
tively, the Boolean operations ‘exor’, ‘and’; ‘or’ and ‘not’ can be translated into
the operations p + ¢, pq, p + q + pq and 14x + p, respectively, where p,q € F%k
and products are taken pointwise.

For i € {1,...,k} let p;: F5 — Fy be the projection onto the i-th component,
thus we have p; = [0,1,...,0,1] € F%k, p2 =10,0,1,1,...,0,0,1,1] € F%k, and
so forth, up to pr = [0,...,0,1,...,1] € F%k For T C {1,...,k} let pr :=
[Liczpi € ]F%k, where py := 1ok, and |Z| € {0, ..., k} is called the degree of pz.
Since the function pz: F5 — Fy only depends on |Z| variables, for Z # {1,...,k}
the vector pr € ]F%k has even weight, while p;y  xy =1[0,...,0,1] € IE"%Ic

Then, using the disjunctive normal form of Boolean logic, any Boolean function
can be written as } 7y azpz, where az € Fa. Since there are 22" — |FZ"|

such sums, we deduce that these are pairwise distinct, thus {pr € F%k;I C
{1,...,k}} is an Fo-basis of the space of Boolean functions in k variables.

Example. For example, for k = 3 let p := [0,0,0,1,1,0,0,0] € F§, having
value 1 at positions {3,4} C {0,..., 7}, which hence corresponds to the Boolean
function assuming the value true if and only if the variables assume the values
[true, true, false] or [false, false, true].

This translates into p = pipa(1 + p3) + (1 4+ p1)(1 4+ p2)p3 = P12y + 12,3} +
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P3 + Pi1,3) +P2,3) T P{1,2,3) = P3 + P12y +P{1,3} T Py2,3)- Indeed, we have

b3 = [0,0,0,0,1,1,1,1],
P2 = 10,0,1,1,0,0,1,1],
P1 = 10,1,0,1,0,1,0,1],
P2y = pipz = [0,0,0,1,0,0,0,1],
Py = pps = 1[0,0,0,0,0,1,0,1],
P{2,3y = DP2P3 = [07 0,0,0,0,0,1, 1]

Thus we gEt p3 +p{1,2} +p{1,3} +p{2,3} = [07 0707 ]-7 17 Oa 070] =D-

(6.8) Higher order Reed-Muller codes again. Now let r € {0,...,k}, and
let f,ir) = (pr € F%k; IZ| < ryp, < F%k be the linear code spanned by the
Boolean functions in k variables of degree at most r. In particular, we have
dimp, (]-',ir)) =>" (]:), but we have no clue about its minimum distance.

Proposition. We have ]-",gr) = Rg), the (binary) Reed-Muller code of order r.

Proof. We have ]-',EO) = (lgx)p, = 'R,(CO), and dimg, (]:kr)) = Zf:o (k) = 2

implies that ]-",gk) =F2 = R,(f). Now we proceed by induction on k € N:

For k > 2 and r € {1,...,k — 1}, any p € f,gT) can be written as p =
Zzg{1,..,,k},|z\§r azpr = Zkez arpz + Pk - Zkel azpr\{k}- The first summand
> ker azpz can be identified with v € Rff_)l < F%k_l, which embeds into F%k
as [f} | v]. In the second summand, ), _;azpz\(x} can be identified with

w € R,(Cr__ll) <FZ"" 5o that pg - w embeds into F2" as [0ge—1 | w].

Thus we conclude that indeed f,ir) = R,(Ql X R,(::ll) = ’R,(CT). #

Accordingly, the (binary) punctured Reed-Muller code (Rg))' of order

r € Ny, for £ € N such that £ > r, is given by puncturing ]-",ET) in the first
component, that is the component associated with the point 05 € F5.

Moreover, this allows us to read off further properties of Rl(:) = F IET):

i) By construction we have (1ox ), = Rg)) < R,(cl) < - < Rl(ﬂkfl) < R,(ck) = ]F%k,
for k € Ngy. In particular we observe that 1, € R,(:), for k>r>0.

ii) For k > 1, since R,(ckfl) has an Fy-basis consisting of even-weight vectors, and

Ef:_ol () = 2* —1, it follows that R,(Ckfl) is the even-weight [2%, 2F — 1, 2]-code.

?

iii) We consider the associated dual codes, noting that (R{*)+ = (F2")+ = {0}:

Proposition. For & > r > 0 we have (R,(:))l = R,ikir*l).
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Proof. Let p € R( ") and q € R(k r=1), Then, since p? = p; for i € {1,...,k},
we conclude that pg € IF% has degree at most r + (k —r — 1) = k — 1, thus
pq € R,(fk_l). Since the latter is the even-weight code, we infer (p, q) = wt(pq) =
0 € F2. This shows that ’R(k_r_l) < (R(T))J‘

Since dime, () + dimp, (R{ ™) = 37 (5) + 205 () = i () +
Efioril (k:]iz) =i 0( ) + Ez r+1 <k> = f:o (l:)
conclude that R(k T = (R(T)) i

= 2F = dimp, (F%k) we

In particular, for & > 1, from (73,(!{:71))L

even-weight code R (k= 1) = ((1gr)p,) "

= R,(CO) = (1% )w, we indeed recover the

For k > 2, from (’R,(Ck_m)L = R,(Cl), which is linearly equivalent to Ry, we infer
that Rék_Q) is linearly equivalent to (Ry)* = 7, the extended Hamming code.

IIT MACWILLIAMS

7 Bounds for codes

(7.1) Theorem: Plotkin bound [1960]. Let C be a non-trivial (n, m, d)-code
over an alphabet X such that ¢ := |X|. Then we have m - (d —n -+ 1) <d.

If equality holds then d(v,w) = d, for v # w € C, that is C is equidistant.

Proof. We compute two estimates of A := Z[U’w]ecz),v;éw d(v,w) € N. Firstly,
since d(v,w) > d, for v # w € C, we get A > m(m — 1)d.

Secondly, letting X = {z1,...,24}, let m;; € Ny be the number of occurrences
of the symbol z;, for i € {1,...,q}, in position j € {1,...,n} of the various
words in C. Hence we have Z _, Mi; = m, and the Cauchy Schwarz inequality,
applied to the tuples m; := [m;;]; € R? and 1, € RY, yields

m? = (Zmz—j)z = (1g-my)? < (1 - 1) (my -my) = ¢- > m,
i=1 =1

thus Y7, m ;> ™ Now, there are m;; words in C having entry z; at position
j, and m — m,J words having a different entry there. This accounts for all
contributions to A, hence we get

A=Y gy m—my) SO SN ED DB BT
j=114=1 j=1 i=1 j=1

Thus we get m(m — 1)d < A < nm? - £, entailing (m — 1)d < nm - <%, In
particular, equality implies A = m(m — 1)d, thus C is equidistant. 1
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Note that if % < 2= then the above inequality is fulfilled for all m € N, hence
giving no obstruction at all in this case.

(7.2) Theorem: Griesmer bound [1960]. a) Given an [n, k, d]-code over F,,

such that k > 2, then there is an [n — d, k — 1, d*]-code such that d* > [g].
b) Any non-trivial [n, k, d]-code over F, fulfills Zf:_ol (4] <n.

q°

Proof. a) We use the Helgert-Stinaff construction [1973]: Let G € FF*"
be a generator matrix of C. Up to linear equivalence we may assume that

| 1a | Op_g

where G** € Fékil)Xd and G* € ngil)x(n*d); note that the Singleton bound
yvields d —1 <n—k <n—2, that is d < n. We show that the residual code
C* generated by the rows of G* is an [n — d, k — 1, d*]-code such that d* > [g]:

i) We first show that rkp, (G*) = k — 1, so that G* is a generator matrix of C*:

Assume to the contrary that rkp, (G*) < k — 2, then there is w € ]F;l such that
up to row operations may assume that

G | 67 = { w | Op—g } EF((Ik—l)xn_

* *

fw=x-15€ IFZ, for some x € ]Fg, then we have rkp, (G) < k, a contradiction.
Otherwise, we have 0 # [w —x - 14 | 0,_4] € C such that wt(w —z - 14) < d, for
some x € F,, a contradiction as well. i

ii) We show that the minimum weight of C* is bounded below by f%]:

Let 0 # v € C*, and let [w | v] € C for some w € F?. Then for some x € F, there
are at least [g] entries of w equal to z, hence wt(w —z - 14) < d — (g] Since
0# [w—xz-14 | v] € C has weight at least d, we conclude that wt(v) > [g]. i

b) This follows by induction on k, the case k = 1 being trivial: For k > 2 we
have n —d > YF 72 V;—:], thus we get

k—2 [%] d k—2 d 7k—1 d
"Zd+i20[qi1—[;01*;[@1*;[;1- f

The Griesmer bound for linear codes improves the (non-linear) Plotkin bound:
The former entails n > d - Zi:ol % == = ‘1;%117 or equivalently d(¢F — 1) <

qki—l
ng*=1(q — 1), that is ¢*(d — n - q%ql) < d, which is the Plotkin bound. 1
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Proposition. If C is an MDS code such that k& > 2, then we have d < ¢; saying
that the minimum distance of MDS codes is severely restricted.

Proof. Assume to the contrary that d > ¢, then we have n > Zf;ol [qi] >
d+2+2§:_211 =d+k=(n—-k+1)+k=n+1, a contradiction. 1

(7.3) Theorem: Gilbert bound [1952]. a) Let X be an alphabet such that
q := |X|, and let n,m,d € N. (Recall that we neither assume that ¢ is a prime
power, nor that m is a g-power, but we may assume that 0 € X.)

If m-|Bg—1(0,)] < ¢", then there is an (n,m,d’)-code over X such that d’ > d.

b) Let n,k,d € N. If ¢* - |B4_1(0,)| < ¢"*1, then there is an [n, k, d']-code over
F, such that d’ > d.

Proof. a) We construct a suitable code successively, starting from a singleton
set C C X'™; recall that in this case C has infinite minimum distance.

As long as |C| < m we have |C|-|Bg—1(0,)| < ¢" = [X™"|, hence |J,cc Ba-1(v) C
X" is a proper subset. Thus there is w € X™ having distance at least d from
any element of C. Hence, since d(C) > d, this also holds for C U {w}.

b) Since |B,(0,)| = ¢", the assumption implies that d < n. We proceed by
induction on k: If k£ = 1 then the repetition [n, 1, n]-code is as desired. Hence
we may assume that k > 2.

There is an [n,k —1,d’]-code C < F? such that d’ > d. Since ¢" '+ |Bq_1(0,)| <
q" entails that |J,cc Ba—1(v) C Fy is a proper subset, there is w € F}; having
distance at least d from any element of C. In particular, we have wt(w) > d,
and aw € Fy has the same distance properties from C, for a € F. Thus we have
C N (w)r, = {0}, hence for C* := C 4 (w)r, < F} we have dimg, (C*) = k.

We get d(aw + v, bw +v') = d((a — b)w,v' —v) > d, for a,b € F, and v,v' € C
such that a # b or v # v', showing that d(C") > d. i

(7.4) Theorem: Gilbert-Varshamov bound [1952, 1957]. Let n,k,d € N
such that n > 2 and d > 2. If ¢* - |B4_2(0,_1)| < ¢", then there is an [n, k,d']-
code over Fy such that d’ > d.

Proof. The assumption implies that & < n, and moreover, since we have
1Br—k(0n-1)| > |Bn_k(0n_x)| = ¢" %, it implies that d — 1 < n — k. (Thus the
Singleton bound is fulfilled.) We construct an F,-generating set B,, C Fg_k,
such that any (d — 1)-subset thereof is Fy-linearly independent; then (B,)" €

F" ¥ %™ is the check matrix of a code as desired:

To do so, we proceed successively to find subsets B,,_ € Bp_p4+1 C--- C B; C
.-+ C B, of cardinality |B;| = j, such that any (d—1)-subset of B; is Fy-linearly
independent. To start with, let B,,_; C Fg*k be an Fy-basis.
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For j € {n — k,...,n — 1}, the number of vectors in Fg_k being an F,-linear
combination of at most d — 2 elements of B; is at most Zf;oz (Z) (g—1) <
Zf:_g (";1) - (g —1)" < ¢"~*. Hence there is w € F7~* such that any (d — 1)-

subset of Bji1 := B; U {w} is F,-linearly independent. i

The (linear) Gilbert-Varshamov bound improves the linear Gilbert bound:

Given the inequality Zztol (T;) (g—1)* < g **+1 the latter ensures the existence
of an [n, k, d’]-code such that d’ > d, while the former even ensures the existence
of an [n+ 1, k,d"]-code C such that d” > d+ 1. This indeed is an improvement,
since d”’ > d+1 > 2 implies that the punctured code C* < IFZ; has F,-dimension
k and fulfills d(C*) > d" — 1 > d. 1

(7.5) Optimal codes. Let F, be the field with ¢ elements, being kept fixed.
For n,d € N such that d < n let

K,(n,d) := max{k € N; there is an [n, k, d’'|-Code over F; such that d’ > d}.

Note that the existence of the repetition [n, 1, n]-code entails that K,(n,d) €
{1,...,n} is well-defined. Moreover, we have K,(n,d+1) < K,(n,d). Ford=1
the [n,n, 1]-code Fy shows that K,(n, 1) = n; and for d = n the Singleton bound
implies k < 1, showing that K,(n,n) = 1.

We have K,(n,d) = max{k € N;there is an [n, k, d]-Code over F,}:

Let C be an [n, k, d+1]-code, where we may assume that there is [z1,...,z,] € C
such that x, # 0 and having minimal weight d + 1 > 2. Then the punctured

code C* < Fg’l is an [n — 1, k, d]-code. Hence adding a zero component we get
the [n, k,d]-code {[z1,...,2n-1,0] € Fy;[z1,..., 20 1] €C*} < Ty, i

Upper bounds on k > 1 for an [n, k, d]-code over F, to possibly exist, thus upper
bounds on Kg4(n,d), are as follows (where (i)—(iii) hold for non-linear codes):
i) Singleton bound k <n —d+1,
d—1
ii) Hamming bound ¢* - ZZL:?J (M) (g—
)

Lower bounds on k > 0 for an [n, k, d']-code over F, to exist, where d’ > d, thus
lower bounds on K,(n,d), are as follows (where (v) holds for non-linear codes):
v) Gilbert bound ¢* - Zf;ol (M- (g—1)"<q",

vi) linear Gilbert bound ¢* - 307 (%) - (¢ — 1)* < ¢"*,

vii) Gilbert-Varshamov bound ¢" - Zf;oz ("N (@-1)' < g™

2

A non-trivial code C < Fy such that dimp, (C) = Ky(n,d(C)) is called optimal.
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Thus any linear code fulfilling one of the upper bounds mentioned is optimal,;
for example MDS codes and perfect codes are so, but for these classes of codes
the minimum distance is severely restricted.

Actually, in general K (n,d) is not at all known precisely. Improving the known
lower and upper bounds, aiming at determining K, (n, d) affirmatively, and find-
ing, and possibly classifying, optimal codes continue to be major problems of
combinatorial coding theory.

(7.6) Example: Binary codes of length 13 and minimum distance 5.
Let ¢ := 2, let n := 13, and let d := 5. Then we get the following necessary
conditions for the existence of an [n, k, d]-code:

i) The Singleton bound yields ¥ <13 —-5+1=09.
iv) The Griesmer bound yields S>¥ ' [5] = 54342+ (k—3) < 13, thus k < 6.

i=0 127
iii) Since 5 — 13- % < 0 the Plotkin bound does not yield immediately.

But by the lower bounds given below we may assume that k > 4, so that we may
first extend a [13, k, 5]-code to a [14, k, 6]-code, and then shorten it three times
to obtain a [11,k — 3, 6]-code (possibly by additionally puncturing and adding
zero components). Now the Plotkin bound yields 2" (6 —11- 1) = 2F=1 <6,
thus k& < 6 again.

ii) The Hamming bound yields 2’“2?:0 (13) =2k.92 < 213 = 8192, thus k < 6.

But now assume that there is a [13,6, 5]-code. Then the Helgert-Stinaff con-
struction yields a residual [8,5,d']-code, where d’ > [2] = 3. Hence there is
a [8,5, 3]-code (possibly by puncturing and adding zero components). Now the
Hamming bound yields 2° - ZLO (8) = 2°-9 = 288 < 2% = 256, a contradiction.

Thus we have k < 5, yielding the upper bound K5(13,5) < 5. Conversely, we
get the following sufficient conditions for the existence of an [n, k, d]-code:

v) The Gilbert bound reads 2*-377_, (%) = 2.1093 < 2'3, hence K»(13,5) > 2.
vi) The linear Gilbert bound reads 2¢-1093 < 24 = 16384, hence K,(13,5) > 3.

vii) The Gilbert-Varshamov bound reads 2" - Z?:o ('?) = 2k 299 < 2%, hence
we get the lower bound K»(13,5) > 4.

In conclusion we have 4 < K3(13,5) < 5. We show that K3(13,5) =5 indeed:

In view of the Helgert-Stinaff construction, we consider the extended Hamming
[8,4,4]-code H3 < TF§, see (6.2), having generator and check matrices as follows:

. .11 11 o111 1
~ 1101 1. ~ 11 11
Gso=11 1 11 | Hs= g 1.1 .

111111 1]1 T 1 1 1 1 1 1 1
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Now let C < F1? be the code generated by

—_ .
—_ = .

111

1 .
1 c Fox13
S 5 7,
1
1 1

— =

11 1 11

the lower right hand corner consisting of the matrix G5. We show that d(C) = 5:

Let 0 £ v =[v | v"] € C, where v' € F} and v € F5. If v/ = 0, then we have
v" = 1g, hence wt(v) = 8. If v/ = 0, then we have v/ = 15, hence wt(v) = 5. If
both v' # 0 and v # 0, then we have wt(v) = wt(v') + wt(v”) > 14+4=5. 4§

We note that there is a (unique optimal non-linear binary) (13, 25, 5)-code, which
via shortening is related to the (optimal non-linear) Nadler (12,2°,5)-code.

8 Asymptotic bounds

(8.1) Asymptotic bounds. We consider the question how good codes might
be asymptotically for n > 0. Since the error correction capabilities of a non-
trivial [n,k,d]-code C < Fy, which are governed by its minimum distance d,
should grow proportionally with respect to its length n, we let §(C) := % <1
be the relative minimum distance of C; recall that p(C) = % < 1 is the

information rate of C.

For 0 < § <1 we let 14(6) := limsup,,_, . 1 - K4(n, [6n]), that is

kiq(6) = limsup (max {E € R; there is an [n, k, d]-code such that d >4}).

n—00 n n
Since we may assume that d = [dn], this amounts to saying that 0 < k,(d) < 1is
largest such that there is a sequence of codes of strictly increasing length whose
relative minimum distance approaches ¢ from above, and whose information
rate tends towards rq(6).

Hence k4(9) is decreasing, where for 6 = 0 from Ky(n,1) = n we get £4(0) = 1,
while for § = 1 from K (n,n) = 1 we get k4(1) = 0. Actually, x4(d) is continuous
[MANIN, 1981]. Again, the bounds (i)—(iv) above provide upper bounds for
kq(6), while (v)—(vii) give lower bounds for k,(d), but in general k,(d) is not
known. We proceed to derive the associated asymptotic bounds explicitly; they
are depicted for ¢ = 2 in Table 5.

(8.2) Linear bounds. Let C < F be a non-trivial [n, k, d]-code, let 0 < < 1.

Theorem: Asymptotic Singleton bound. We have £,(6) < 1 — 4.
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Proof. The Singleton bound says that p(C) =

<14
Thus from 6(C) > & we get p(C) < 1+ = — 4, hence &
Next, we consider the Plotkin bound, yielding the asymptotic result to fol-
low, which actually supersedes the asymptotic Singleton bound. The Griesmer
bound, although for specific cases often being better than the Plotkin bound,
yields the same asymptotic bound; indeed, asymptotically there is no loss in
applying the estimate used to show in the first place that the Griesmer bound
implies the Plotkin bound.

Theorem: Asymptotic Plotkin bound. We have k,4(d) = 0 for ; <§<1,
and rg(6) <1— L5 - g for 0 <6 < L.

Proof. We may assume that ¢ ¢ {0, £ } recall that £4(9) is decreasing.

i) Let first % < § < 6(C). The Plotkin bound ¢* - (d — n - ) < d yields

k.(d _ g=1 d ko _06€)  _ =l 1 g=1l _ 1
q - (5 7 ) < &, thus ¢ Sé(c)i%l—l—i— 7 6(C)7QT,171+ P

Hence k is bounded above, implying p(C) = £ — 0, for n — oo, thus 4(6) = 0.

ii) Let now 0 < § < 0(C) < %, and we may assume that d > 2. Letting

= Lq(d DJ we get 1 <n/ < q(d 1) < (d U < n. Shortening n — n’ times,
we get an [n/, k', d']-code, where k’ Z k—(n—n') and d’ > d. Hence there also
is an [n/, K/, d]—code (possibly by puncturing and adding zero components).

We have d—n/- q;1 :d = ! Lq(d UJ >d—1= 1.26=1) — 1 Hence the Plotkin

q—1
bound yields qk << < d. Thus we have gk < q* q” n < dq™~ n , hence

.<1 1
E<n-—n —|—logq(d), thus p(C) = £ <1 - % +1 -log,(d). Now we have

d—1
7 fim = lim 6(C) = L-&;

q—1n—sc0 n q—ln—)oo q—1

o .1 q(d-1)
lim — = lim —-
n—oo M n—oo N q— 1

| =

recall that we may assume that §(C) — ¢. Since % . Iqu(d) — 0 anyway, for
n — 0o, we infer that k4(J) <1 — % .5, 4

(8.3) Bounds based on sphere packing. In order to proceed, we need a few
preparations: Let ¢ € N such that ¢ > 2, and for 0 < o < %1 <1let

Hy(a) :=alog,(¢ — 1) — alog,(a) — (1 — a)log, (1 — a);
since lim,_,o+ Hq(a) = 0 we extend H,(«) continuously by letting H,(0) := 0.

Up to a constant, H,(p) is the average conditional information content of a
symmetric channel over an alphabet of cardinality ¢ with error probability 0 <
p< %; see (3.3). For this reason Hy is also called the ¢g-ary entropy function.
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Lemma. Let 0 < § < q%ql, and let [dy,ds,...] € Ny be a sequence such that,

writing d = d,,, we have % — 6, for n — oo. Then, we have

d

% -log, (1Ba(0,)]) = % -log, (Z (?) (q—=1)") = Hy(8), for n— oc.
i=0

Proof. Let 0<i<j<m- q%l. Then we have (7) - (¢ —1)" < (?) (g —1):

The assertion is equivalent to HZ:H—I e = % ((Z:Zg,' < (g—1)’7% The terms

ﬁ are increasing with s increasing, hence the left hand side is bounded above
by (n_&_j)j_i. Now from j < n - q%ql we get j+j(g—1) =jg<n(g—1) <

(n+1)(g — 1), implying j < (n+ 1 —j)(g — 1), thus ;7= < ¢ —1 indeed. {

— %

This yields () - (¢ =1 < X0 () - (¢= 1" < G+1) - (5) - (a = 1), for
ji<n-: %1. In particular, this applies to j := d for n > 0.

suffices to show that L, := & - log, ((1}) - (¢ = 1)*) = Hy(6), for n — oo:

Since * -log,(d+1) < % -log,(n- % +1) < 2 -log,(n+1) = 0, for n.>> 0, it

nl-e”

Stirling’s formula lim,, o e = 1 implies that n! = (2)"-2mn - (1+€,),
for some sequence ¢, — 0, for n — co. Thus we get, again for some €, — 0,

log,(n!) = (n + %) log,(n) — nlog,(e) + 1ogq(\/ﬂ) + €n.

Thus using (?) = #’_1), we obtain logq((?)) = (n+3) logq(ﬂ)—(j‘F%) log, (j)—
(n—j+ %) log,(n —j) — 1ogq(\/ﬂ) + €. This entails

Lu = (14 ) Togy(n) = (& 4 ) logy(d) — (%4 + ) -log, (n — )
+ % -log, (¢ —1) - 1 -log, (V2m) + €n.

Sincedﬁrr%§n,forn>>0,weget

v —d
nn )

L, = log,(n)— 4 log,(n-2)—1=4.]og (n-
+ % : lqu(q - 1) +én
= —2.log () - (1—£)-log,(1—4)+ 2 -log, (g — 1) + €.

Since % — ¢, for n — oo, this finally yields
Ly, — dlog,(q — 1) — élog,(6) — (1 — &) log, (1 — ) = Hy(9). i
We are now prepared to proceed to further asymptotic bounds:

Theorem: Asymptotic Hamming bound. For 0 < § < 1 we have the upper
bound k,4(6) < 1 — Hy(3).
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Proof. We may assume that 0 < 6 < 1. Since for a > 0 we have 2-[§] < [a]+1,
we may weaken the condition d > [dn] by assuming that d > 2 - (% -n] — 1.

The Hamming bound ¢* - [B|a=1(0n)] < " yields k < n—log, (B a1 (0,)]) <
n—logq(|8[g_nkl(0n)|). Thus, given a non-trivial [n, k, d]-code C < Fy, we infer
that p(C) = £ <1-1 -logq(\B[%,n]_l(On)\). Hence, since 2 - ([$-n] — 1) —

fcilx< %,forn%oo, we get rq(0) < 1— Hy(3). i

Finally, we provide an asymptotic lower bound, which is based on the Gilbert-
Varshamov bound. The weaker estimates given by the Gilbert and linear Gilbert
bounds yield the same asymptotic bound; indeed, the estimates used in the proof
given below show that essentially the Gilbert bound is used.

Theorem: Asymptotic Gilbert-Varshamov bound. For 0 < § < q;—l we
have the lower bound k4(8) > 1 — Hy(6).

Proof. We may assume that 0 < § < % and that d := [dn] > 2. Let k € N

be maximal such that |B4_2(0,_1)| < ¢"%, then by the Gilbert-Varshamov
bound there exists a non-trivial [n, k,d]-code C < Fy. By maximality we have

LRI m, thus k + 1 > n —log,(|B4—2(0,-1)|), entailing
k+1 1 1 1 n—1 1
- o> 4111 o (0p1)]) > _21 ).
p@ =" > L1 g, (Ba 2001 2 "~ o, (1Ba(00))
Sinced — §, for n — oo, we get rq(8) > 1 — Hy(d). i

(8.4) Remark. a) We mention a few further, better asymptotic bounds:

The asymptotic Elias-Bassalygo bound [1967], being based on an improve-
ment of the strategy used to prove the Plotkin bound, says that we have

— —1 _ —
ﬁq(é)gl—Hq(q 1_\/q _(q 1—5))7 for 0<6<u.

q q q g

For ¢ = 2 we get k2(0) < 1— Ha(3(1—+/1—26)). This improves the Hamming
and Plotkin bounds, and was the best asymptotic upper bound at that time.

For ¢ = 2 (and 0.15 ~ Jg < ¢) the latter is superseded by the asymptotic
MCcEliece-Rodemich-Rumsey-Welch bound [1977], based on the linear
programming bound [Delsarte, 1973], saying that we have

kq(d) < HQ(% —6(1—=9)), for 0<6<

and being the best asymptotic upper bound known.

b

N

b) A similar approach works for non-linear codes: Let X be an alphabet such
that ¢ := |X|. For n,d € N such that d < n let

M (n,d) := max{m € N; there is an (n,m,d’)-Code over X such that d' > d},
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Table 5: Asymptotic bounds for ¢ = 2.

1.00 -

Gilbert
Singleton
Plotkin
Hamming
Elias
0.75 | McEliece

0.50

0.25 -

0.00
L L L L L L
0.0 0.1 0.2 0.3 0.4 0.5

and for 0 < 6 <1 let p(8) := limsup,,_, ., = - log,(M(n, [6n])), that is

1(8) = lim sup ( max {@

d
€ R; there is (n, m, d)-code such that — > 5})
n— oo n
Since the Singleton, Hamming, Plotkin and Gilbert bounds are all non-linear
bounds, the asymptotic bounds given above also hold for non-linear codes. Sim-
ilarly, the Elias-Bassalygo and McEliece-Rodemich-Rumsey-Welch bounds hold
for non-linear codes.

(8.5) Asymptotically good codes. Surprisingly, it turns out to be extremely
difficult to provide explicit sequences of codes reaching the asymptotic Gilbert-
Varshamov bound, let alone improving it this way. Even the following much
weaker notion is challenging:

A sequence [Cy,Ca,...| of codes over Fy of length n;, such that n; — oo for
i — 00, is called (asymptotically) good, if both limsup,_, ., p(C;) > 0 and
limsup;_,,, 6(C;) > 0; otherwise the sequence is called (asymptotically) bad.

In the latter case, the sequence does not provide any further insights at all into
the values of k4. Actually, the optimal codes at hand are asymptotically bad:

Example. If C fulfills the Singleton bound, that is C is an MDS [n, k, d]-code
over Iy, then we have d < ¢, implying 6(C) = % — O0and p(C) = % = 1+%—% —
1, for n — oco. Thus we recover k4(0) = 1.
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Example. If C fulfills the Hamming bound, that is C is perfect, then we have
(only) two infinite series of codes:

i) Firstly, C < F¥ is the binary repetition [n, 1, n]-code, where n is odd. Then we
have §(C) = 2 =1, and p(C) = L — 0, for n — oo. Thus we recover x,4(1) > 0.

ii) Secondly, we have the Hamming [n,n — k, 3]-code Hy, for k > 2, where
n = qthll. Then for k — oo we have §(H;) = 2 — 0 and p(Hi) = £ =
1— k(g—i)

— 1. Thus we recover kq(0) = 1.

. _ kE_1
Example. The simplex [n, k, ¢*~]-code Sy, for k > 2, where n := qu, fulfills
k—1

the Plotkin and Griesmer bounds. Then for & — oo we have §(S;) = 4— =

k—1
"~ (¢—1) k _ k(q=1) g=1
-1 n = g — 0. Thus we recover kg 7 ) > 0.

— % and p(Sy) =

Remark. We discuss a few classes of codes with respect to their asymptotic
behavior (which mostly we are not able to prove here unfortunately):

i) It is known that BCH codes are asymptotically bad. It still is an open
problem whether or not cyclic codes are asymptotically good. But self-dual
codes over any field, as well as doubly-even self-dual binary codes, are
asymptotically good and reach the asymptotic Gilbert-Varshamov bound.

Actually, the proofs showing the above results on self-dual codes are non-
constructive, as well as the ones for Goppa codes mentioned in the sequel.
Although it was long considered doubtful to possibly construct a good infi-
nite sequence of codes explicitly, such a construction was given by JUSTESEN
[1972]; but Justesen codes (which we are not able to treat here) do not reach
the asymptotic Gilbert-Varshamov bound.

ii) More substantially, it is shown in (17.5) below that Goppa codes [1970]
are asymptotically good and reach the asymptotic Gilbert-Varshamov bound.

The asymptotic Gilbert-Varshamov bound was long considered to be the best
possible asymptotic lower bound. But using geometric Goppa codes [1981],
and applying deep methods from the theory of modular curves (which we are
not at all able to explain here), TSFASMAN—VLADUT—ZINK [1982] provided a
sequence of codes over F,2, where p > 7, which exceeds the asymptotic Gilbert-
Varshamov bound; these are still the asymptotically best codes known.

9 Weight enumerators

(9.1) Weight enumerators. Let C C F} be a code. For i € Ny let A; =
A;(C) = |{v € C;wt(v) = i}| € No; hence Ag < 1, and A; = 0 for i €
{1,...,wt(C)—1}, and Ayycy) > 1,and A; =0fori > n+1,and 3" ( A; = [C|.
The sequence [Ag, ..., A,] is called the weight distribution of C.
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Let {X,Y} be indeterminates. The (homogeneous) generating function

Ag = AX'Yy"h =) xwillyn—i) ¢ C[X, Y]
1=0 veC

is called the (Hamming) weight enumerator of C. Hence A¢ is homogeneous
of total degree n and has non-negative integers as its coefficients. Note that

Ac(—X,-Y) = zn: A(=X) (=) = (=1)"- zn: A XY= (=) Ac.

By dehomogenizing, that is specializing X — X and Y — 1, we obtain the
(ordinary) generating function

n
Ao(X,1) =) AX' =) X" e C[X].
=0 veC
Example. i) For the trivial code C := {0,,} < F} we get Ac =Y.
For its dual C+ = FI we get Acx =37 (1) (g—1)' XY™™ = (Y +(¢—1)X)".
ii) For the binary repetition code C := {0,,1,} < F} we get Ac = Y™ + X".
For the binary even-weight code C+ = (F2)' < F% we get

L

J n n
_ n 2i n—2i_1_ N\ yriyn—i 1 Vi (T yiyn—i
Acs = (21_))( ynE = o Z(Z)XY +3 > (1) <i>XY 7

=0 =0 =0

w3

thus Aer =2 (Y - X)"+ (Y +X)") =3 Ac(Y — X, Y + X).

(9-2) Theorem: MacWilliams [1963]. Let C < Fy be a linear code such

that k := dimg, (C) € Np, and let C+ < F? be its dual. Then for the associated
weight enumerators we have

" Acl(X,Y) = Ac(Y = X,Y + (¢ — 1)X) € C[X,Y].

In particular, if C is self-dual, then we have, recalling that n = 2k,
Y-X Y4+ (¢g—-1X
Va Vi

Proof. i) Let x: F, — C* be an (additive) character of F,, that is a group
homomorphism from the additive group IF;r to the multiplicative group C*.

Ac(X,Y) = Ac( ) € CIX,Y].

There always is the trivial character F, — C*: a — 1; but since Fj = (Z)f
as additive groups, where p = char(F,) and ¢ = p/, there always is a non-trivial
character F, — () < C*, where (, € C* is a primitive p-th root of unity.



IIT MACWILLIAMS 54

Let V' be a C-vector space, and let w: Fjy — V' be any map. Then the map
F(w): Fy = V:ive Z x({v, w)) - w(w)
weky

is called the Hadamard transform of w. We show that for any non-trivial
character x of Fy we have

ZFX(w)(v) =4~ Z w(w) eV :

vec welt
The left hand side equals
2vee Ex(@)0) = Xee Zwery x(v;0)) - w(w)
= Xueer (Epee X(v,w)) - w(w)
Swernes (Soee X((0.0))) - w(w).
Since x((v,w)) = x(0) = 1 € C*, for w € C*, the first summand becomes

4"+ wecr w(w), which coincides with the right hand side of the above equation.
Hence we have to show that the second summand vanishes:

We may assume that C # {0}, or equivalently C+ # Fy. Then, given w € FZ\CJ‘,
the map C — Fg: v — (v,w) is Fg-linear and non-zero, hence is surjective.

k
Thus for a € Fy we have {v € C; (v,w) = a}| = L- = ¢"~!. Hence the second
summand above becomes

S O xwaw) ww) =g (Y x@) (Y ww).

weFr\ct wveC a€ly weFp\C+

_l_

Hence it suffices to show that >,z x(a) =0¢€ C:
Since x is non-trivial, there is b € I, such that x(b) # 1. Then we have
X0)- > x(a) =Y xla+b)=>_ x(a),
€k, a€F, acF,
implying (x(b) — 1)) - X2 ,er, X(a) =0, thus 37 cp x(a) = 0. 4
ii) Let C[X,Y7],, be the C-vector space of polynomials of total degree n, includ-

ing the zero polynomial, let w: Fy — C[X,Y],: v — X W)y n—wt(v) “and let
0: Fy — {0,1} C Ny be defined by 6(0) =0, and 6(a) =1 for a # 0.

Thus, for any character x, the Hadamard transform Fy(w): Fy — C[X,Y],, is

given as follows, where v = [z1,...,z,] € F}:
F(@)®) = Sem x({v,w)) - Xri@yn—wi)

- Z[yla-u,yn]eF" XX i) - X2 0(y) y 2oin, (1-6(ys))
----- ern (T X(@iys) - X0y 1-000)
[T (Caer, X(az) XO@y1-0(@),
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If z; = 0, or x is trivial, then x(ax;) = x(0) = 1 € C* shows that the associated
factor equals
D Xyt =y 4 (g - DX,

a€l,

If x; # 0 and x is non-trivial, then using Zaqu x(a) = 0 € C again, the
associated factor becomes

Zaelb‘q X(axi)Xé(a)Yl_é(a) Y+ (Zaeﬂ?g X(ami)) - X
= Y+ (ZaeF; x(a)) - X
= Y—x(0)-X
= Y-X.

Thus F (w)(v) = (Y — X))V + (¢ — 1) X)" V") whenever x is non-trivial.

(For the trivial character 1 we get Fy(w)(v) = (Y + (¢ — 1)X)™, independently
of v € Fy, which is not too interesting.) i

iii) In conclusion, by i) and ii), for any non-trivial character x we get
qk A (X,Y) = qk : ZweCL X wilw)ynmwi(w)
= qk ) Zwe(}i— w(w)
= 2ee x(@)(v)
= YoV = X)OUY + (g — X))
= Ac(Y - X, Y+ (¢g—1)X). i

Example: Simplex and Hamming codes. i) For & > 2, the simplex code

k
_ —1
k=1_code, where n := qq_l . Hence we have

S < Fy is an equidistant [n, k, g

k_ _ k—1_
As, =Y 4+ (¢F — )X 'Y o T e ClX,Y].

Thus for the Hamming code Hy = S,ﬁ < ]Fg we get

1
A’Hk(X,Y) = q7 ~A5k(Y7X,Y+ (Q* 1)X) S C[X,Y}

ii) We restrict ourselves to the binary case ¢ = 2. Then we have n = 2% — 1,
hence As, =Y" + nX%HY%, which yields
1 n n—1

Apy, = g (VA X) HnY = X)) (Y + X)),

Dehomogenizing, that is specializing X +— X and Y +— 1, yields

A (X,1) = (14 X)" 401 - X) " (14 X)"T) € CIX]

n -+
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In particular, we get Az, (X, 1) =1 ((1+X)*+3(1-X)*(1+ X)) =1+ X3,
showing again that 5 is the binary repetition code, and

A, (X, 1) = — (I+X)P+71 - X)*' 1+ X)) =1+ 7X°* +7X* + X"

1
4
iii) Thus for the self-dual extended Hamming [8,4, 4]-code Hy = (’;Q;;)L by
construction we get Ay (X,1) = 14 14X* + X®, which by homogenizing yields

3

Ag, = Y8 +14X4Y* + X8, Now the MacWilliams identity indeed becomes

A

(Ha)* ( 72
L (Y + X)P 4 14(Y — X)HY + X) + (Y — X))

= & (X D)XV 414 (D (-1)XZy )
(X2 (5) + 14 (1) () x2ys-%)

= Y84+ 14Y4Xx* 4+ X8

= Ag..

10 Self-dual codes

(10.1) Polynomial algebras. To proceed we need help from the theory of
polynomial invariants of finite groups. We collect the necessary facts, where we
have to emphasize that we are working over a field of characteristic 0:

For n € N let R := C[X] be the polynomial C-algebra in the indeterminates
X :={Xy,...,X,}. Then R = @ -, Ra is an Ny-graded algebra with respect
to the total degree, where Ry is the C-vector space of homogeneous polynomials
of degree d, including the zero polynomial.

We shall need a criterion to decide whether a set {f1,...,f,} € R is alge-
braically independent; note that R has Krull dimension dim(R) = n, so that
any algebraically independent subset of R has cardinality at most n:

The associated Jacobian matrix is defined as

J(fl, .. ,fn) = Jx(fl,. . ,fn) = [6‘XJ (fz)]” c Ran’

and det(J(f1,..., fn)) € R is called the associated Jacobian determinant.

Proposition: Jacobian criterion. The set {fi,..., fn} C R is algebraically
independent if and only if we have det(J(f1,..., fn)) # 0. i

(10.2) Invariant algebras. For n € N let R := C[X], where still X :=

{X1,...,X,}, and let G := GL,,(C). Then, letting G act trivially on Ry = C,

by the universal property of polynomial rings, the natural C-linear action of G
Y property ol poly g

(from the right) on R; = @, (X;)c extends uniquely to an action of G on R

by graded C-algebra automorphisms.
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Given a finite subgroup G < G, let
RY :=Fixp(G)={f€R;f-g=f for ge G} CR.

Then, since G acts by graded algebra automorphisms, we conclude that R® =
D0 RdG C R is a graded C-subalgebra, being called the invariant algebra
with respect to G. Moreover, R“ is a finitely generated C-algebra again, and
R® C R is a finite ring extension, so that dim(RY) = dim(R) = n. Hence the
question arises whether R® might be a polynomial C-algebra again, in this case
necessarily in n indeterminates. This is answered as follows:

(10.3) Pseudo-reflection groups. For n € N let R := C[X], where still
X :={X1,...,X,}, and let G < GL,(C) be a finite subgroup.

An element s € G, hence having finite order, is called a pseudo-reflection, if
its fixed point space fulfills dim¢ (Fix(s)) =n—1. A pseudo-reflection such that
s? = 1is called a reflection. Let S(G) C G be the set of its pseudo-reflections.

Theorem: Shephard—Todd [1954], Chevalley [1955], Serre [1967]. Let
G < G be finite. Then the invariant algebra R is a polynomial algebra if and
only if G is a pseudo-reflection group, that is G = (S(G)). i

If G is a pseudo-reflection group, let R® = C[fi,..., fn], where {f1,..., fa}
are (algebraically independent) homogeneous basic invariants, and let d; :=
deg(f;) € N be the associated (fundamental) degrees, for i € {1,...,n}; note
that we may indeed assume to have homogeneous generators.

Proposition. a) The degrees [d1,...,d,] are uniquely defined up to order,
independently of the particular choice of basic invariants. Moreover, we have

[[d=1G and > (d—1)=S(G)
i=1 i=1

RC are algebraically independent and homogeneous such
G

= |G|, then {g1,...,9,} are a set of basic invariants. 1

that [Ti, deg(g;) = |
(10.4) Weakly self-dual codes. Let C < Fy be a linear code. We collect a
few immediate properties related to weak self-duality over Fo and F3. To this
end, C is called r-divisible, for some r > 2, if | wt(v), for all v € C.

Proposition. a) Let ¢ = 2 and C < Ct. Then C is 2-divisible; that is C = C’

—_

is an even-weight code. Moreover, we have 1,, € C*; that is Ct = (C1).

b) Let still ¢ = 2. Then C is 4-divisible if and only if we have C < C* and C has
a 4-divisible Fa-basis; in this case C is called doubly-even.

c) Let ¢ =3 and C < C*. Then C is 3-divisible.
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Proof. For v = [z1,...,3,] € C < Ct we have 0 = (v,v) = > ', 27 = wt(v) €

2=
F,, both for ¢ = 2 and ¢ = 3. This proves ¢) and the first assertion in a).

Let now ¢ = 2. Since any v € C < C* has even weight, we have (v,1,) =
wt(v) = 0 € Fq, so that 1,, € Ct. This proves the second assertion in a). We
now proceed to prove b):

Assume first that C < C* has a 4-divisible Fy-basis. Then for v, w € C, letting
S := supp(v) and T := supp(w), we get 0 = (v,w) = |S NT| € Fq, saying
that |S N T| is even. Moreover, we have |supp(v +w)| = |[(S\ T) U (T'\ S)| =
S|+ |T|—2-]SNTJ, thus v + w is 4-divisible if both v and w are so.

Assume finally that C is 4-divisible. Then for v,w € C, letting again S :=
supp(v) and T := supp(w), we have 2 - |[SNT| = |S| + |T| — |supp(v + w)|, so
that |S N T is even. This implies (v,w) =|SNT| =0 € Fs. i

(10.5) The Gleason-Pierce group. Let C = C+ < [y be a self-dual code.
Hence we have k := dimp, (C) = 5, so that n = 2k is even. Moreover, let
Ac € C[X,Y],, be its weight enumerator.

Then by self-duality the MacWilliams identity A¢c = Ac( Y\;aX , %) holds;
since n is even, we have A¢ = A¢(—X, —Y); and if C is r-divisible then we have
Ac = Ac(G-X,Y), where ¢, € C is a primitive r-th root of unity.

In other words, letting 'y, := (—Es, R,S) = (R,£5) < G := GL3(C), where

1 1 -1 1 Tyr
R := diag[¢,,1] € G and S := Vi lg—1 1 € G, then A¢c € C[X,Y],"".

Theorem: Gleason—Pierce [1967]. If C = C* is r-divisible for some r > 2,
then T, is finite, or we have Ac = (Y2 + (¢ — 1)X?)%.

Proof. We consider the projective line P1(C) = C:=CU {o0}, that is the
Riemann sphere; writing [z: y] € P*(C) in homogeneous coordinates, for x,y €

C such that [z,y] # [0, 0], the identification with Cis given by [z: y] — 2z := %

d

G; this action factors through G := PGLy(C) = G/(C* - E3), and identifying
with C yields the (fractional) linear transformation A: z aztc. More-
over, G acts sharply 3-transitively on P1(C); in particular, only the identity
element of G fixes any triple of pairwise distinct points.

We consider the finite set () # Z C P!(C) of zeroes of Ac =Y , A, X'Y" " €
C[X,Y]*", which by I, -invariance is 'y ,-stable. If |Z] > 3, the finite non-
empty set of 3-subsets of Z is I'; ,-stable as well, by sharp 3-transitivity implying
that Iy, is finite. Hence we may assume that |Z] = 2.

Then G acts on PY(C) by A: [z: y] — [(az +cy): (bx + dy)], for A = {Z b} €
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From Ac(0,1) = Ag = 1 we infer that [0: 1] ¢ Z. Letting [ € {1,...,n} be
maximal such that A4; # 0, we have A¢c = YL (Y2\_ A, X?V!~%), entailing
that there is [1: 0] # 2z € Z. Then we get |z - (R)| = |{¢'z € C;i € Z,.}| =7, so
that from |Z| = 2 we infer that » =2 and [1: 0] € Z.

Thus we have | = n, and for [1: 0] # [z: 1] € Z we have [x: 1]-(R) = {[£z: 1]} =
Z. Hence, since Ay = 1, we get Ac = (Y2 — 5X?)%. From ¢% = Y[ jA; =
Ac(1,1) = (1— %)% weget 1 — 5 = q(i%, for some i € Zz. Since Az is a
non-negative integer, this entails i = 0 and Ac = (Y2 + (¢ — 1)X?)3. i

We first consider the exceptional case A¢ = (Y2 + (¢ — 1)X2)2: Then Ac
is invariant even under I';,, not just I'y1. Moreover, since A;(C) = 0 and

A(C) =5 - ( —1) we have C = (Cy)®%, where Cy := ([1 z])p,, for some = € F

such that 22 = —1; the latter exists if and only if 4 { ¢ + 1.

(10.6) The Gleason-Pierce group, continued. Keeping the notation of
(10.5), we are left with the case of 'y, being finite. We proceed to show when
this happens; this essentially is a number theoretic property:

Recall that Z[(,] is the ring of integers in the algebraic number field Q(¢,),
which has degree [Q((): Q] = ¢(r), where in turn ¢ denotes Euler’s totient
function, and let N = Ng(¢,)/0: Q(¢-) = Q be the associated norm map.

Lemma. i) If r > 2 is not a prime power, then 1 — ¢, € Z[¢,] is a unit.
ii) If r = p/, for some prime p and f > 1, then N(1 —¢,) = p.

Proof. i) Let ®, € Z[T] be the r-th cyclotomic polynomial. Then we obtain
N(1—=¢) = ®,.(1) € Z. Now we have )/—) T% = == 1145 s, so that
1145 ®s(1) = 7. In particular, we have I !, ®,i(1) = p/. Taking the prime
power parts of r into account, this yields |®,(1)| = 1 if r is not a prime power.

ii) If 7 = p/ then ®,(T) = ®,(T7), where ®,(T) = S-P_) T%, thus &, (1) = p. #

Theorem: Gleason—Pierce [1967]. The group I'y, is finite if and only if
r=1ori)¢g=2,r=2il) ¢g=2,r=4;iii) ¢=3,r=3;iv) ¢=4,r =2.

Proof. For the cases mentioned, I'; ; = (£S5) is finitely generated and abelian,
hence is finite; for the cases i)—iv) finiteness is checked explicitly using GAP.
Hence we may assume that r > 2, and that I'; .. is finite.

We have RS = ﬁ . [q(_r ) 1(7"} € I'; -, which has characteristic polynomial

Xrs = T?% + % -T — ¢ € C[T]. Since RS has finite order, its eigenvalues are

1-¢,
Va

roots of unity. Thus is an algebraic integer, hence q | (1 — ()2 € Z[(]-
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Thus we conclude that 1 — ¢, € Z[(,] is not a unit, so that » = pf is a prime
power, for some f > 1. Moreover, from ¢¥(") = N(q) | N(1 —¢,.)? = p?, where
o(r) = p/~1(p — 1), we conclude that we have the following four cases:

If o(r) =1, then p =2 and f = 1, thus r = 2; moreover, we have ¢ = p = 2 or
q=p?=4.If p(r) = 2, then ¢ = p; hence ¢ = p =2 and f = 2, thus r = 4; or
g=p=3and f=1, thus r = 3. f

(10.7) Weight enumerators of self-dual codes. We are now prepared to
present the main result on weight enumerators of self-dual codes. This is gov-
erned by the group I'y , associated with the various types of codes:

The first case below refers to codes without divisibility condition; this also
covers the exceptional codes in (10.5), which are 2-divisible, but I'y 2 is infinite
for ¢ ¢ {2,4}. The other cases below, named ‘Type I-IV’, refer to codes with
divisibility condition, which correspond to the groups i)-iv) above.

Anyway: Since (£5)? = Fy, we infer that +5 are reflections; and R is a pseudo-
reflection, for » > 2. Thus I'y, is a pseudo-reflection group. Hence, if Iy,
is finite, then C[X,Y]Vsr is a (bivariate) polynomial C-algebra, and for the
associated degrees we have (T —dq)(T —ds) = T? — (|S(Ty.r)| +2) - T+ |Tyr| €
C[T], so that the degrees can be determined from |T'y | and |S(Ty.)|-

Theorem: Gleason [1970]. For the weight enumerator A¢c € C[X,Y] of a
self-dual code C = C*+ < F we have:

a) The weight enumerator A¢ is a polynomial in
f=Y*+(¢g—1)X? and g:=X(Y -X).

Recall that f = Ac,, where Cy := ([1, z])r,, for some z € F; such that 22 =—1;
the latter exists if and only if 4 { ¢+ 1. But f+ (¢ —1)g=Y? + (¢ — 1) XY is
not the weight enumerator of a self-dual code.

b) ‘Type I'. If ¢ = 2, then A¢ is a polynomial in
=Y+ X? and g:=X?*Y3Y? - X?)%

Note that f = Ac,, where Cy := ([1,1])r, is the repetition code of length 2, and
fH=4g =Y 4+ UXY* + X% = Ay , where Hj is the extended Hamming code.
c) ‘Type IT’. If ¢ = 2 and C is doubly-even, then A¢ is a polynomial in

F=Y 44X Y 4+ X and g:= X'YVHY?* - XYL
Note that f = A,}_AL37 where 73 is the extended Hamming code, and f3 — 42g =
Ag,,, where Goy = Gog is the extended binary Golay code, see (16.1).

d) ‘Type III'. If ¢ = 3, then A¢ is a polynomial in

F=YY?4+8X?% and g:=X*(Y? - X33



IIT MACWILLIAMS 61

Note that f = Ay,, where Hy = (Ha)* = Sy is the Hamming code, coinciding
with the simplex code, and f? — 24g = Ag,,, where G12 = Gy; is the extended
ternary Golay code, see (16.2).

e) ‘Type IV’. If ¢ = 4 and C is even, then A¢ is a polynomial in
f:=Y?4+3X? and g:=X*(YV?-X?)2%

Note that f = Ag¢,, where Cy := ([1, 1])r, is the repetition code of length 2. But
f2 =99 = Y6 4+ 45X4Y? + 18X°6 is not the weight enumerator of a self-dual
quaternary code.

Proof. We again use GAP to obtain the group structures used in the sequel.
In all cases, to show that {f, g} is algebraically independent we verify that
det(J(f,g)) # 0 using GAP.

Moreover, since I'y . has an invariant hermitian scalar product, for any pseudo-
reflection @ € Iy, its eigenspace with respect to the exceptional eigenvalue is
perpendicular to its reflection hyperplane. Hence I'y, acts transitively on the
set of exceptional eigenspaces of the I, .-conjugates of Q.

a) The group I'y 1 = (£5) = V} is a real reflection group. We have |T'y 1| = 4
and |S(Ty1)| = [{£S}] = 2, implying that dy = dp = 2.

We have the orbits X -(S) = {X, ﬁ(Y—X)} and Y-(S) = {Y, %(Y—i—(q—l)X)}.
Hence the products g := X(Y —X) and h :=Y (Y +(¢—1)X) are Iy ;-invariant,
andsois f:=h—(¢g—1)g=Y%+ (¢ —1)X2.

b) The group I's » = (S, R) = Ds; is a real reflection group. We have |I's o| = 16
and |S(T'z2)| = 8, implying that d; = 2 and dz = 8.

Let F:=Y? + X? and G := X?Y?(Y? — X?)? be the chosen basic invariants
for the subgroup I's 5 < T's 4. Then we have F* — 4G = Y8 + 14X4Y* + X5,
Letting f := Y2 + X2, then f is both I'y j-invariant and R-invariant.

The conjugacy class of the reflection R has 4 elements. Their eigenvectors with

respect to the eigenvalue —1 are given as {[1, 0], [1, 1], [-1, 1], [0, 1]}, up to scalar
multiples. Since Cr, ,(R) = (£R) =V}, we get

[1,0] - T = {£[1,0], \%[ﬂ, 1], £(0,1]}.

Identifying C? with C[X,Y];, we get the orbit product g := X2Y?(Y? — X?)2,
up to a scalar multiple, which is I'; o-invariant.

c) The group I'y 4 = (R, S) = 2.(4 X S4) is a genuinely complex reflection group.
We have [T'2 4| = 192 and |S(I'2 4)| = 30, implying that d; = 8 and dy = 24.

Let F:=Y? + X? and G := X?Y?(Y? — X?)? be the chosen basic invariants
for the subgroup I's o < T's 4. Then we have F* — 4G = Y® + 14X4Y* + X8,
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Letting f := Y8+ 14X%Y* + X8, then f is both I's s-invariant and R-invariant.

The conjugacy class of the pseudo-reflection R has 6 elements. Their eigenvec-
tors with respect to the eigenvalue {4 are given as {[1,0], [1, 1], [£(4, 1], [0, 1]},
up to scalar multiples. Identifying C? with C[X,Y];, we get the product

g =XV [V -¢x) =Xy [y* - X",
1€7Z4

Then we have (¢')? = (Y2 + X?)2- X2Y?(Y? — X?)? = F2G, showing that (g')?
is g g-invariant. Then g := (¢')* = X1V*4(Y* — X*)? is R-invariant as well,
thus is I'y 4-invariant.

d) The group I's 3 = (R, S) = 2.(2x Ay) is a genuinely complex reflection group.
We have |T's 3| = 48 and |S(I's 3)| = 14, implying that dq = 4 and dy = 12.

Let F:=Y?2+2X? and G := X(Y — X) be the chosen basic invariants for the
subgroup I's; < I's 3. Then we have F' + 2G = V(Y + 2X) and F — 2G =
Y2 -2XY +4X? aswellas F+G=Y?+ XY + X2,

To find I's 3-invariants of degree 4, by R-invariance we let f := Y (Y?+(aX)3) =
Y(Y 4+ aX)(Y? — aXY + (aX)?), for some a € C. Thus for a = 2 we have
f=(F+2G)(F-2G) = F? —4G? = Y (Y3 + 8X?), which hence is I's ;-
invariant as well, thus is I's 3-invariant.

To find I's 3-invariants of degree 12 we observe that the conjugacy class of the
pseudo-reflection R has 4 elements. Their eigenvectors with respect to the
eigenvalue (3 are given as {[1,0],[~1,1],[-E(3),1],[-E(3)%,1]}, up to scalar
multiples. Identifying C? with C[X,Y];, we get the product

g =X-J[(V=¢x)=X¥° - X% =X(¥Y - X)(Y>+ XY + X?).
1€EZ3

Hence we have ¢ = G(F + G), showing that ¢’ is I's j-invariant. Then g :=
(¢')? = X3(Y3 — X?)3 is R-invariant as well, thus is I's 3-invariant.

e) The group I'y 2 = (R, S) = D15 is areal reflection group. We have |T'y 5| = 12
and |S(Ty,2)| = 6, implying that d; = 2 and dy = 6.

Letting f := Y2 + 3X?, then f is both I'y ;-invariant and R-invariant.

The conjugacy class of the reflection R has 3 elements. Their eigenvectors with
respect to the eigenvalue —1 are given as {[1, 0], [1, 1], [—1, 1]}, up to scalar mul-
tiples. Since Cr,,(R) = (£R) = Vj, we get [1,0] - Ty 2 = {%£[1,0], %[il,iu}.
Identifying C? with C[X,Y];, we get the orbit product g := X?(Y? — X?)2, up

to a scalar multiple, which is I'4 p-invariant. i

(10.8) Extremal codes. The following applies to all the above types of self-
dual codes, but here we restrict ourselves to Type I and Type II:

a) We consider self-dual binary codes C = C+ < F}. We have n = 2k, for some
k € N. Letting Z := X?, and specializing Y + 1, we let f :=1+ Z € C[Z] and
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g:=Z(1 - 2)? € C[Z]; thus Ac(VZ,1) € (fF~% g7 € C[Z];5 € {0,...,N})c,
where N := |2] = |¥]| € N,.

Let vz denote the valuation of C[Z] at the place z = 0. Since vz(f) = 0 and
f(0) =1, and vz(g) = 1 and (¢/Z)(0) = 1, there are unique ay, . ..,an € Z such
that b= %+ 3 a; f*~%gl € C[Z] fulfills vz(h — 1) > N + 1. Rewriting in
terms of X, we get d :=vx(h—1) > 2 (|%] +1).

Thus d., is the maximum minimum distance a self-dual binary code C of length
n possibly has. If C achieves this bound then C is called extremal; note that
an extremal self-dual binary code might actually be doubly-even. By the above,
the weight distribution of an extremal code of length n is uniquely determined;
thus, although two such codes are not necessarily linearly equivalent, they are
formally equivalent, that is they have the same weight distribution.

Actually, MALLOWS—SLOANE [1973] have shown that d’, = 2- (%] + 1) holds.
Moreover, MALLOWS—SLOANE, PLESS—SLOANE [1973, 1975] have shown that
extremal self-dual binary codes exist if and only if n € {2,4,6,8,12,14,22,24}.

b) We consider doubly-even self-dual binary codes C = C* < F§. We have
n = 81, for some | € N. Letting Z := X*, and specializing Y — 1, we let
fi=1414Z+ 7% € C[Z] and g := Z(1 — 2)* € C[Z]; thus Ac(V/Z,1) €
(fi=3g7 € C[Z);5 €{0,...,N})c, where N := [ 2] = [£] € No.

Since vz(f) =0and f(0) = 1, and vz(g) = 1 and (¢/Z)(0) = 1, there are unique
ai,...,an € Z such that h := f! + Z;VZI ajfl=3gi € C[Z] fulfills vz(h — 1) >
N + 1. Rewriting in terms of X, we get dif :=vx(h—1) >4 (25| +1).

Thus dZ! is the maximum minimum distance a doubly-even self-dual binary
code C of length n possibly has. Again, if C achieves this bound then C is called
extremal, and the weight distribution of such a code is uniquely determined.
Again, MALLOWS—SLOANE [1973] have shown that d.f =4 - (| 2%] + 1) holds.

Extremal doubly-even self-dual binary codes exist for finitely many n only:
Actually, MALLOWS—ODLYZKO—SLOANE [1975] have shown that the weight
enumerator of a putative extremal code has coefficient Agr 4 <0forn>0. A
direct computation shows that this first happens for [ = 462, that is n = 3696,
for which we get d}/ = 620 and Agrr ~ 9.6 -10'%®, while Agrr g ~ —1.2-10'%9.
By ZHANG [1999] this happens for all | > 462 such that 3 | 1, that is n > 3696
such that 24 | n; and it happens for all [ > 492, that is n > 3936.

On the other hand, extremal doubly-even self-dual binary codes seem to be very
rare and are only known for the cases I € {1,...,8} U {10,11,13,17}; the first
gaps being n = 72 and n = 96 (which both are divisible by 24). It still is an
open question for which n extremal doubly-even self-dual binary codes exist.




IV BCH 64

IV BCH

11 Cyclic codes

(11.1) Cyclic codes. Let C < Ty be a linear code of length n € N over F,. If
for all [co,...,cn_1] € C we have [c,_1,¢0,...,cn_2] € C as well, that is if the
permutation matrix Py, .,y € Autr, (C), then C is called cyclic.

Example: Repetition codes. The repetition code C := {[c,...,c] € Fy;c €
F,} and the associated dual code, the parity check code Ct := {[co,...,cn_1] €
Fy; Z?;Ol ¢; = 0}, are cyclic; note that in both cases the full symmetric group S,
is a subgroup of Autp, (C). A generator matrix of C is given as G :=[1,...,1] €

Fy, and a generator matrix of C*, that is a check matrix of C, is given as

H:=|: D | e Rl
1 -1

Example: Hamming code. The binary Hamming code H = H3 < F}, whose
elements are explicitly given in (5.3), is not cyclic, but applying the permutation
matrix Pg 4y(5,7,6) € Isom, (IFy) yields the linearly equivalent code C < FI, whose
elements are given by the rows of the following matrices, which hence is cyclic:

. 111 . 1.
It .1 . . . 111 1
11 .1 . 1. 111
11 .1 1 .11 1 .

I R | 1. 111
1. . 11 . I R A |
A I 11 . .1 .1

T U B 1T 1 11 1 11|

Moreover, a generator matrix G € F3*7 and a check matrix H € F3*7 of C are

1
G =

T .1 . . .
1 1 .1

1 . 1 .
11 .1 . and H:=|. 1
1 1 . 1

— =
— = =
—_ .

(11.2) Univariate polynomial rings. Let F,[X] be the polynomial ring over
F, in the indeterminate X. Recall that F,[X] is an Euclidean ring with respect
to polynomial division, hence in particular is a principal ideal domain.
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For n € N let (X" —1) = (X" — 1) - F,[X] < F,[X] be the principal ideal
generated by X — 1, and let ~: F,[X] — F,[X] := F,[X]/(X™ — 1) be the
natural epimorphism of F,-algebras.

Then polynomial division yields F,[X] = F [X] ® (X™ — 1) as F,-vector
spaces, where Fy[X]<,, = @1y Fo[X]i = @), (X")r,. Hence Fy[X]<, is a
set of representatives of F,[X], and ~: Fy[X]<, — F,[X] is an F4-isomorphism.

Let ¢: Fp — Fo[X]<n: [cos.-oscna1] = Zi:_ol ¢; X%, that is we consider the
words in Fy as coefficients of polynomials in F, [X]<n, and let ¢ := "o ): Fy —
F,[X]: [cos---sCno1] — Z?:_ol ¢; X ; thus both ¢ and ¥ are F4-isomorphisms.
Multiplication by X acts on F,[X] as follows: Given v := [co, ooy Cno1] € Fy, we
have P(v) - X = (30, e X ) X =" eXitl=c,_ X —|—2:llcz X =
P(w) € F [X], where w := [cp_1,C05---,Cn_2] € [Fy. Thus the action of
Pa

,,,,, ny € Isom,, (Fy) on Fy is transported to multlphcatlon with X on F,[X].

(11.3) Cyclic codes as ideals. Let C < F{ be a linear code. Then C can
be identified via ¢ with the F,-subspace ¥(C) < Fy[X]<,, and via ¢ with the
F-subspace 1(C) < F4[X]. Moreover, C is cyclic if and only if ¢(C) < Fy[X]
is invariant under multiplication with X, or equivalently under multiplication

with Fy[X], that is ¢(C) < F,[X] is an ideal.

In this case, the preimage ¥(C) + (X" — 1) C F,[X] of ¥(C) C F,[X] with
respect to ~ is an ideal of Fy[X]. Since Fy[X] is a principal ideal domain, there
is a generator polynomial g € F,[X], unique up to scalar multiples, such that
(g) = ¥(C) + (X™ — 1) <F,[X], in particular implying (g) = ¥(C). Moreover,
from (X" —1) C (g) <F,[X] we infer that g | X™ — 1; see Table 6.

Conversely, any g € F,[X] such that g | X™ — 1 yields an ideal (X™ — 1) C
(g) < F,[X], hence via ¢ we get an ideal (g) < F,[X], which in turn can be

identified with a cyclic code. Thus we conclude that the cyclic codes C < Fy
are in bijective correspondence with the monic divisors g of X™ —1 € F [X].

If C < Ty is cyclic with generator polynomial g € Fy[X], then for v € F}' we
have v € C if and only if g | ¥(v) € F4[X]. Moreover, if C is non-trivial then we
have g € ¥(C) < Fy[X]<n, thus g is given as gcd(¢(C)), or likewise as a non-zero
polynomial of smallest degree in ¥(C).

If C" < Fy is cyclic with generator polynomial g € F,[X], then we have C' <C
if and only if g | ¢'; in particular C +C’' € Fj and C N C’ € F; have generator
polynomial ged(g, ¢') € Fy[X] and lem(g, ¢') € Fy[X], respectively.

Example. i) For g =1 € F[X] we get (1) = F,[X], thus the associated code
is C =F". For h = X" — 1 € Fg[X] we get (X" —1) = {0} <F,[X], thus the
associated code is the trivial code C*+ = {0} < F2.
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Table 6: Cyclic codes.

Fy[X] — F,[X]

{0} ——{0}

ii) The repetition code C := ([1,...,1])r, < IF” corresponds to (g) = (g)r, <
F,[X], where g := ([1,...,1]) = 31, ' X = ’1 € F,[X] is the associated
monic generator polynomlal

Let C+ = {[co, ..., Cn1] € F; ZZ o ¢i = 0} be the parity check code: For f :=
Sl eXieR [ ]wehauvez_0 ¢; = 0 if and only if f(1) = 0, that is X —1 |
f. Hence C* corresponds to (h) < F,[X], where h := 9([~1,1,0,...,0]) =
X —1 € F,[X] is the associated monic generator polynomial.

(11.4) Theorem. Let C < F7 be a cyclic code with generator polynomial g =
SF L giX' € F[X] of degree k = deg(g) € {0,...,n}. Let h = 31" h; X €
F,[X] such that X™ — 1 = gh € F,[X]; hence we have deg(h) =n — k.

a) Then we have dimyp, (C) =n — k, and a generator matrix of C is given as

g0 91 ... 9k .
go --- Gk-1 Gk

go .-+ 9k-1 Yk
b) The dual code C+ < [y is cyclic, generated by the reversed polynomial

n—k
h* = X9EW (X =Y by X € Fy[X;
=0
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hence h is called a check polynomial of C. Thus a generator matrix of C*,
that is a check matrix of C, is given as

hoek Pn-g—1 ... ho .
hnek ... b1 ho
H:=| : | e FE

hpn_t ... h1 hg

Note that, by reversing the order of the columns, the cyclic codes generated by
h and h* are linearly equivalent.

Proof. a) For any v € C we have 9(v) = gf € F,[X] for some f € F,[X].

Let f = gh+r € F,[X], where ¢, r € F,[X] such that » = 0 or deg(r) < deg(h) =
n — k. Then we have ¢ (v) — gf = ¥(v) — g(gh+71) =P(v) —gr — (X" —1)g €
(X™ —1) <F,[X], which implies ¢(v) = gr € F,[X].

Thus since dimp, (C) = dimg, ((g)) = dimg, (F,[X]) — dimg, (F,[X]/(g)) =n —k
we conclude that {g,7X,... ,gynikil} C (g) = ¥(C) 9F,[X] is an F,-basis,

which consists of the image under ¢ of the rows of G.

b) Note that, since evaluation of polynomials into any commutative F,-algebra
is an algebra homomorphism, and taking polynomial degrees is a homomorphism
from the multiplicative monoid F,[X]\{0} to N{, we conclude that * is a monoid
endomorphism of F,[X]\ {0}, that is we have a*b* = (ab)*, for 0 # a,b € F,[X].

Now, from gh = X™ — 1 we conclude that hg # 0, hence we have deg(h*) =
deg(h) = n — k, and from ¢g*h* = (gh)* = (X" —1)* = —(X" — 1) € F,[X] we
infer that h* | X" —1 € F,[X].

Hence H is a generator matrix of a cyclic code with generator polynomial h*,
having dimension rkg, (H) = k = dimg, (C*). Thus it suffices to show that the
rows of H are orthogonal to the rows of G:

For i € {1,...,n — k} the i-th row of G is v; :=[0,...,0,90,...,9%,0,...,0] €
[y, where go is the i-th entry, and for j € {1,...,k} the j-th row if H is
wj :=[0,...,0,hn_k,...,ho,0,...,0] € Fy, where h,,_j is the j-th entry.

Thus letting g; ;=0 for [ > k and [l < 0, and h; :=0 for I >n —k and [ < 0, we
have (v,»,wj) = Z?:l Ji—ihn—g+j—1 € Fy.

Since l—i <0andn—i>k,and (n—k+j)—1>n—kand (n—k+5)—n <0,
the latter sum equals the coefficient of X(=#+1)=% in gh = X" — 1 € F,[X].
Since 1 <n—k+j—1i<n-—1, from that we conclude (v;, w;) = 0. i

Example: Hamming code. The non-zero elements of the Hamming code
H < FI, up to the linear equivalence applied in (11.1), consist of 17 and the
cyclic shifts of [1,1,0,1,0,0,0] and [1,0,1,1,1,0,0].



IV BCH 68

Hence 1([1,1,0,1,0,0,0]) = X3 + X + 1 € F5[X] is the non-zero polynomial
of smallest degree in ¢)(H). Thus H corresponds to ¥(H) = (g) < F2[X] with
generator polynomial g := X3 4+ X + 1 € Fy[X]; note that indeed we have
XT+1=(X+DX*+X+1)(X3+ X2 +1) € Fo[X].

We have the check polynomial h := % = (X+1D)(X34+X%2+1)= X+ X2+
X +1 € F3[X], hence H* has generator polynomial h* := (X +1)(X?+ X +1) =
X%+ X% + X2+ 1 € Fo[X]. The generator and check matrices of H given in
(11.1) reflect these facts; see also (12.5).

From h* = g- (X 4+ 1) € Fo[X], and X + 1 being a generator polynomial of the
even-weight code C' < F2, we conclude that Ht = HNC = {[co,...,cn1] €
H; Z?:_Ol c; = 0}; note that we recover the fact that H* is weakly self-dual.

(11.5) Cyclic redundancy check (CRC) codes [Peterson, 1961]. a) Let
C <y be a cyclic code with generator polynomial g = Zf:o gi Xt € Fy[X] of
degree deg(g) = k and associated generator matrix G € F((Z"_k)xn.

Since gi # 0 the matrix G can be transformed by Gaussian row elimination

to [A | En_i] € FS7HX" for some A € FY* ™% this does not affect the
cyclicity of C. Using this generator matrix, a word v = [ag, ..., ap—k—1] € IF;‘*’c
is encoded into w = [by, ..., br—1; a0, -, @n-k—1] € F.

We have to find [bg,...,bk—1] € IFZ: We have 1(w) = ¥([bo, ..., bx_1]) + X* -
Y(v) € Fy[X]. Polynomial division yields X* - (v) = qg + r, for some q,r €
F,[X] such that r = 0 or deg(r) < deg(g) = k. Since w € C we have g | Y(w) =
qg9 + r + ¥([bo, . ..,bk_1]), entailing r + ([bg,...,bx—1]) = 0. This says that
Y([bo, .. .,bx_1]) is the remainder of the shifted polynomial —X¥* - (v) upon
polynomial division by g.

b) Error detection, which is the typical application, runs as follows:

Given w € Fy, we have w € Cifand only if g | ¢(w) € Fy[X]. Again polynomial
division yields ¥ (w) = gqg +, for some ¢, € F,[X] such that » = 0 or deg(r) <
deg(g) = k. Hence we have w € C if and only if » = 0, and in this case
w=[bg,...,bg—1;bk,...,bp—1] € C is just decoded to [b,...,b,—_1] € ]FZ”“.

We discuss a few types of errors:

i) A burst error of length I € {0,...,n} is an error vector v = [co,...,Cn-1] €
[y such that ¢; # 0 only if i € {j,...,j+1—-1} C Z,, for some j € Z,,. Then
C detects all burst errors of length [ < k; if k > 1 all single errors are detected:

We may assume that v = [0,...,0,¢o,...,¢-1,0,...,0] € [y, where cq is the
j-th entry, for j € {1,...,n}, then ¥(u) = X771 - ¢([co,...,c-1]) € F [X],

hence from ged(g, X) = 1 and deg(g) = k we infer g 1 ¥ (u), thus u & C. i

ii) Since the parity check code is cyclic with generator polynomial X — 1, we
conclude that C = C' < Fy, the latter denoting the expurgated code, that is C
is contained in the parity check code, if and only if X —1 | g € F,[X].
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For ¢ = 2, if C is even-weight, then it detects all errors u € F} of odd weight:
We have 9(u)(1) = wt(u) Z 0 (mod 2), hence X + 1 1 ¥(u), thus g 1 ¥(u).

iii) Letting ¢ = 2, for a double error occurring in positions i < j € {1,...,n}, we
have the error vector u = e; + e; € F%, hence ¢(u) = X"~ 1(X77" 4+ 1) € Fo[X].
Thus, since ged(g, X) =1 and 1 < j —i <n — 1, all double errors are detected
if and only if g t+ X™ 4+ 1, for m € {1,...,n — 1}. In other words, this holds
if and only if ¢ has an n-primitive divisor, that is an irreducible polynomial
f eFy[X] such that f | X™ —1,but f { X" —1forme{l,...,n—1}.

(11.6) Example: Universal Serial Bus (USB) [>1996]. Actually, CRC
codes over Fy are used throughout information technology. In particular, poly-
nomial division over 5 is extremely fast, on a machine level just consisting of
bit shifts and exor commands. A prominent example is the Universal Serial
Bus (USB) data transmission standard:

i) The ‘CRC-5-USB’ polynomial f := X° + X2 + 1 € Fy[X] is used to add 5
check bits to ‘token’ packets consisting of 11 information bits, making up a code
of length 16; thus storing a word needs 2 Bytes.

The polynomial f € Fy[X] is irreducible, hence splits in Fsq, and thus divides
X3l +1 € Fy[X]. Since 31 is a prime, it follows that f is 31-primitive, entailing
that we cannot do shorter than letting n = 31. Thus the code actually used
is a 15-fold shortened cyclic code with generator polynomial f; note that the
encoding and decoding algorithms are not affected by shortening.

ii) Similarly, for ‘data’ packets, having length 1023 Bytes, the ‘CRC-16-USB’
polynomial g := X6 + X154 X2 4+ 1 = (X 4+ 1)(X1 + X + 1) € Fo[X] is used
to add 2 check Bytes to packets consisting of 1021 information Bytes.

Since X + 1 | g, the associated cyclic code is an even weight code.

The polynomial ¢’ := X' + X + 1 € Fo[X] is the lexicographically small-
est irreducible polynomial of degree 15, hence splits in Fs15, and thus divides
X32767 4 1 € Fyo[X]. Actually, ¢’ is 32767-primitive, where 2% — 1 = 32767 =
7-31- 151, entailing that we cannot do shorter than letting n = 32767. Thus
the code of length 8184 = 8- 1023 actually used is a 24583-fold shortened cyclic
even-weight code with generator polynomial g.

(11.7) Example: The RWTH-ID [Bunsen, J.M., 2007]. Identity man-
agement is a task which all large organizations dealing with many customers
are faced with. The aim is to associate an identity number with any customer,
in order to uniquely identify them. It should have the following properties: The
set of available numbers should be large enough; the number should not convey
any further information about the customer in question; the number should be
easy to remember to human beings; and it should be possible to detect simple
transmission errors.

To create identity numbers, an alphabet X consisting of 32 alpha-numerical
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symbols, decimal digits and capital Latin letters, is used; in order to avoid
mixing up symbols, the letters I, J, 0 and V, resembling 1, 0 and U, respectively,
are not allowed. Thus using 5 information symbols, we obtain a set of |X|> =
325 = 33554432 ~ 3-107 words over X, to which we add a single check symbol,
yielding identity numbers being words of length 6. To ease remembering identity
numbers, these are written as two words of length three each, connected by a
hyphen, for example SL8-BRX.

By source coding, X is encoded into the elements of F as given in Table 7.
Thus we get a linear binary code D < F3° of length 6 - 5 = 30 and dimension
dimp, (D) = 5-5 = 25. To ease practical implementation, and to achieve the
desired error detection properties, namely to be able to detect single errors and
adjacent transposition errors, we aim at choosing D related to a cyclic code.

To this end, we look for a suitable cyclic code C < FJ of length n > 30 and
dimension dimg, (C) = n—5, then D < F3° such that dimp, (D) = 25 is obtained
by (n — 30)-fold shortening; recall that the encoding and decoding algorithms
are not affected by shortening. Thus we look for a suitable generator polynomial
g € F2[X] of degree k := deg(g) = 5, dividing the polynomial X" + 1 € Fy[X].
We consider the relevant error types:

A single error yields a burst error of length 5, hence any such error is detected by
any cyclic code with the above parameters. Moreover, an adjacent transposition
error yields an error vector v = [0,...,0;¢o,...,C4;¢C0,...,¢4;0,...,0] € Fy,
where [cg, . ..,cs] € F3. Hence we have 9(u) = X7(X® + 1) - ¥([co,...,ca]) €
F3[X], where the leftmost ¢o is the j-th entry, for j € {0,...,n — 1}. Hence
all adjacent transposition errors are detected if and only if g 1 (u) for all
error vectors u as above. Noting that we have the factorization X° + 1 =
(X +1)(X*+ X3+ X? + X +1) € Fo[X], we conclude that the latter property
holds if and only if ged(g, X5 + 1) = 1.

Since ged(g, X) = 1 = ged(g, X + 1) we conclude that g cannot possibly have a
linear factor, thus either g is the product of two irreducible polynomials of degree
2 and 3, respectively, or g is irreducible of degree 5. Now X2 + X + 1 € F5[X]
is the unique irreducible polynomial of degree 2, and X3 + X + 1 € F[X] and
X3 + X2 +1 € Fo[X] are those of degree 3, hence leading to the candidate
polynomials (X2 + X +1)(X3+ X +1) = X5+ X*+1and (X2 + X +1)(X3 +
X2 +1) = X°+ X + 1, which both split in Fys = Fgq.

As further candidates there are the six irreducible polynomials of degree 5, which
split in Fys = F33. Indeed, for n := 31 = 2° — 1 we find that
X341l = (X+1)-(XP+X24+1)- (X5 +X341)
(XX X2 X4+ (X XA X2 X +1)
(XX X3 X +1) - (XP+ X+ X2+ X2 4+ 1) € FoX].

Thus either of the irreducible polynomials of degree 5 is a suitable generator
polynomial; since 31 is a prime, all of them are 31-primitive.
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Table 7: The alphabet of the RWTH-ID.

0 | 00000 8 | 01000 G | 10000 R | 11000
1] 00001 9 | 01001 H | 10001 S | 11001
2 | 00010 A | 01010 K | 10010 T | 11010
3| 00011 B | 01011 L | 10011 U | 11011
4 | 00100 c | 01100 M | 10100 W | 11100
5 | 00101 D | 01101 N | 10101 X | 11101
6 | 00110 E | 01110 P | 10110 Y | 11110
7 | 00111 F | 01111 Q| 10111 Z | 11111

For the RWTH-ID the ‘CRC-5-USB’ polynomial g := X° + X2 + 1 € Fo[X] has
been chosen; let C < F3! be the associated cyclic code and D := C° < F3P.

For example, for the word L8BRX, from Table 7 we get

h = (1+ X3+ X%
+ X5 - (X)
+ X (X + X3+ XY
+ XY . (1+X)
+ X% (1+ X+ X2+ XY,

Polynomial division of X° - h by ¢ yields the remainder 1 + X + X* € Fo[X],
which belongs to the symbol S, saying that SL8-BRX is a valid identity number.

12 BCH codes

(12.1) Roots of unity. a) Let F, be the field with g elements, let F, C F be a
(fixed) algebraic closure, and let n € N such that ged(g, n) = 1. We consider the
polynomial X" —1 € F,[X]. Sincen # 0 € F, we have ged(9x (X"—1),X"—1) =
ged(nX"~ 1 X" —1) =1 € F,[X], implying that X™ — 1 € F,[X] is square-free,
that is a product of pairwise non-associate irreducible polynomials.

Thus X" — 1 splits into pairwise distinct linear factors over F. Thus letting
Vo i= V(X" —1) C F be the associated set of zeroes, we have |[V,| = n
and X" —1=[[.c), (X = () € F[X]. Since whenever (,(’ € V,, we also have
¢7I¢' € V,, we conclude that V, is a finite subgroup of F , hence by Artin’s
Theorem is cyclic. Thus there is a primitive n-th root of unity (, € V,,
that is an element of multiplicative order n, so that V,, = (¢,).

Hence we have a group isomorphism Z, — V,:i +— (&, the left hand side
written additively. Moreover, ¢! € F* has order min{j € N;¢¥ =1 € Fk} =
min{j € N;n | ij} = m; in particular ¢! € V, is a primitive n-th root of
unity if and only if ¢ € Z7,.
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b) Let F, C F,(¢,) =: F C F be the field generated by (,. Then F is finite
and Galois over F,, being the splitting field of X™ — 1. Thus I" := Autg, (F) has

order [I'| = [F: Fy], hence F = F iry CF.

We have I' = (p;), where ¢;: F — F:a — a? is the associated Frobenius
automorphism, having order |¢,| = min{i € N; ¢} = idr} = min{i € N; (e =
(o} = min{i € N;¢' =1 € Z,} = |q|z:, the order of ¢ € Z;,. Identifying V,
with Z,,, the group I' = (@q) acts by ¢4 Zy, — Zy: i — iq.

The monic divisors g | X™ — 1 € F[X] are described by their sets of zeroes
V(g) € Vn, as g = [leep)(X — () € F[X]. Since Fixp(I') = Fy, we have
g € F,[X] if and only if V(g) is a union of Frobenius orbits. Thus the monic
irreducible divisors of X™ — 1 € F,[X], being called cyclotomic polynomials
over Fy, are given as p; == [[;c, p (X — () € Fo[X], for i € Z,.

The polynomial y; € F,[X] is the minimum polynomial of ¢!, € F over F,, hence
we have [F,(¢): F,| = deg(p;) = |} -T'| | |T'| = [F: F,]. Thus we have equality
deg(u;) = || if and only if F(¢?) = F. In particular this holds whenever ¢’ is
a primitive n-th root of unity, that is ¢ € Z7; note that I' does not necessarily

act transitively on the set of primitive n-th roots of unity.

Example. For ¢ := 2 and n := 7 we find that 2 € Z3 has order 3, thus
Fy(¢7) = Fs and @2 € Autp,(Fs) has order 3. The Frobenius orbits, next to
{0}, are O’ := {1,2,4} and O” := {3,5,6}.

This yields X7+ 1 = (X + 1) - [Lico (X + &) - [Licon (X + ) = popaps =
(X +1)- (X3 + X +1)(X3+ X2+ 1) € Fs[X], where po, i1, 3 € F2[X] are
irreducible. Note that we do not specify which of the factors p; and us has the
chosen primitive 7-th root of unity (7 as a zero.

(12.2) Zeroes of cyclic codes. a) Let C < [y, where ged(g,n) = 1, be a cyclic
code with monic generator polynomial g € F,[X] of degree k € {0,...,n}. Let
V(C) :=V(g9) €V, CFy(¢n) =: F be the set of zeroes of C.

Hence V(C) is Frobenius stable. Moreover, any subset V C V,, whose smallest
Frobenius stable superset equals V(C), that is we have V(C) =V - T, is called a
defining set of C; in particular, V(C) is the unique maximal defining set of C.

For v € F}l we have v € C if and only if g | 9 (v) € F,[X]. Since g € F[X] is
square-free, this is equivalent to V(C) C V(¢ (v)) C V,, where V(1(v)) is the
set of zeroes of 1(v) being contained in V,, = {¢};i € Z%}; note that V(¢(v))
is Frobenius stable, and that ¢ (v) might have further zeroes or non-linear ir-
reducible divisors. By taking Frobenius orbits, this in turn is equivalent to
V CV(1(v)), for any defining set V of C. Thus we have C = {v € Fy'; 9 (v)(V) =
{0}}, in other words

n—1

C ={[co,---,Cn-1] EFZ;ZciCi =0eFfor ¢ € V}.
i=0
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Moreover, we recover V(C) = (,cc V(¢ (v)).

b) We determine V(C*) C V,: Letting h € F,[X] be the check polynomial
associated with g, we have h = []ccy, \ye)(X — ¢) € F[X], thus we get h* =

Heev,\wiey (X =" =Tleev,\vie) ¢ (X = ¢~1) € F[X], hence
V() =V(r*) =V, \V(C)~.
(12.3) Theorem. a) Let C < [, where ged(q,n) = 1, be a cyclic code with

set of zeroes V(C) = {¢2,..., (%} C V,, for k € {0,...,n}. Then a check
matrix of C ®@p, F < F", where F := Fy((,), is given as [DELSARTE, 1975]

Lo @mo g
e LG e g

H(V(C)) = [¢¥ ™V ];; = ) : e Fhxn,
i Cak C2.ak L. ’gn_.l)ak

b) Let V C V(C) be a defining set, and let H(V) be the submatrix of H(V(C))
consisting of the rows corresponding to V. Then we have C = ker(H (V)")NF};
in particular, H(V(C)) is a generalized check matrix of C, in the sense of (5.4).

Proof. To abbreviate, we write H := H(V(C)). The submatrix of H consisting
of its first k columns is a Vandermonde matrix associated with V(C), hence is
invertible. Thus we have rkp(H) = k, hence dimg(ker(H*)) = n — k.

Thus we infer dimg, (ker(H") NF}') < n — k. Hence, since dimg, (C) = n — k, to
show a) and the statement in b) concerning H, it suffices to show C C ker(H™):

Let g = Zf:o 9iX" == [leeve)(X — ¢) € F[X] be the monic generator poly-
nomial of C. For the i-th row v; = [0,...,0,90,...,9%,0,...,0] € Iy of the
associated generator matrix of C, where i € {1,...,n — k}, and the j-th row
wj € F™ of H, where j € {1,...,k}, we get

k k
(i, wy) =Y g1 = ¢ N g (¢t = ¢ g(¢) =0 € F.
1=0 =0

Finally, to conclude it remains to consider the submatrix H(V): For any row
w € F" of H(V) there is a row u € F" of H such that w = u?', for some i > 0,
where the Frobenius automorphism is applied component-wise. For v € Fy we
have v? = v, hence from (v,w) = (v,u?’) = (7, ud) = (v,w)? € F we infer
that v € ker(H') if and only if v € ker(H (V)™). i

(12.4) Theorem. Let C < Fy, where ged(g,n) = 1, be a cyclic code such that

V(C) contains a consecutive set {¢¢, ¢t .. .,CZH&*z)b}, where a € Z,, and
b e Z, for some § € {1,...,n+ 1}. Then C has minimum distance d(C) > .
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Proof. For 6 = 1 the consecutive set is empty, and d(C) > 1 anyway; and for
C = {0} we have d(C) = co. Hence we may assume that § > 2 and C # {0}.

Since b € Z: we conclude that ¢ € V), is a primitive n-th root of unity as
well. Letting ¢ := ab~! € Z,, we observe that {Cﬁ,(ﬁ*b,...,ﬁﬂé#)b} =
bye (¢byett .., (¢)et972}. Hence we may assume that b= 1.
n n n

We consider the submatrix H((2,...,(2072) € FO-DX" of H where F :=

SN

F,((n), and show that any (6—1)-subset of its columns is F-linearly independent:
Picking columns {j1,...,756-1} C {1,...,n} yields the square matrix

CT(lefl)a . T(Lja—l—l)a
C(jlfl)(aJrl) <(j5,1—1)(a+1)
Al S € F-Dx(6-1),

CT(le—l)ia+5—2) o CT(ng,l—l.)(a+5—2)
Hence we have

1 . 1

j1—1 Js—1—1
E[: Cn Cn ~diag[cﬁbjl_l)a7-~-,C7(lj671_1)a]7
CHNE-D) s -1E-2)

where the left hand factor is a Vandermonde matrix associated with the pairwise
distinct roots of unity {¢Z1=1,...,¢2*~* "'}, thus is invertible. 1

(12.5) Example: Hamming codes. We show that, generically, Hamming
codes are linearly equivalent to cyclic codes:

Let F, be the field with ¢ elements, let k& > 2 such that ged(k,¢ — 1) =1, and

g"—1.
q—17

Let C < Iy be the cyclic code with defining set {(,}, that is V(C) = (,-T' C Vy,
thus having g = p11 € F,[X] as a generator polynomial. Then C is an [n,n—k, 3]-
code, thus is linearly equivalent to the Hamming code Hy < Fy:

We have n—dimg, (C) = deg(g) = |V(C)| = |G, -T'| = |I'| = |g|z; . Hence we have
to show that |g|z: = k: We have n | q* — 1, implying that |q k; moreover,

zy,
we have n = Zi:ol ¢ > ¢" !, thus we have n { ¢ — 1, forl € {1,...,k —1}.

let n :=

note that ged(¢g,n) = 1, and the condition on k holds for ¢ = 2.

Finally, we show that C has minimum distance d(C) = 3: Since any [n,n —k, 3]-
code is perfect, that is fulfills the Hamming bound, we have d(C) < 3. Moreover,
V(C) contains the consecutive set {(,, (%} of length § —1 = 2 and step size ¢—1.
Now n = Zi:ol ¢" =k (mod (¢ — 1)) implies ged(n,q — 1) = ged(k,q — 1) =1,
hence we have ¢ — 1 € Z7. This entails d(C) > § = 3. il
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Example. The condition ged(k,q — 1) = 1 cannot not be dispensed of, as the

following example shows: Let ¢ := 3 and k := 2; hence we have n = q::ll =4.

i) Let C be the cyclic code with defining set V = {(4}; then we have V(C) =
{£{4} C Fy. The only (generalized) check condition is given by [1, {4, —1, —{4] €
Fg, entailing C = ([1,0,1,0],[0,1,0,1])r,, which is a [4, 2, 2]-code.

ii) Let H2 be the associated ternary Hamming [4, 2, 3]-code. Assume that Hs is
cyclic, then we have |V(Hs)| = 2. Since X*—1 = (X —1)(X+1)(X?+1) € F3[X],
we have V(Hsz) = {£(4} or V(Hs) = {£1}. In the first case we have already
seen that this defines a [4, 2, 2]-code; in the second case we get the check matrix

1 1 1

H(ﬂ):[l -1 1

11] € F2x4
thus C = ([1,0,—1,0],[0,1,0,—1])F,, again a [4, 2, 2]-code; a contradiction.  f

(12.6) BCH-Codes [Bose—Ray-Chaudhuri, 1960; Hocquenghem, 1959].
a) A cyclic code C <y, where ged(g,n) = 1, having a (genuinely) consecutive
defining set {¢%,...,¢%*t972} C V, of length 6 — 1, where a € Z, and § €
{1,...,n+ 1}, is called a BCH code of designed distance §. Hence for the
minimum distance of C we have the BCH bound d(C) > §.

In particular, for 6 = 1 we get V(C) = ), thus C = F}; and for 6 = n + 1
we get V(C) =V, thus C = {0}. But in general C might be a BCH code with
respect to consecutive sets of varying lengths, or varying step sizes amounting to
changing the chosen primitive n-th root of unity; the largest designed distance

thus occurring is called the Bose distance.

If n = ¢/Tl — 1, that is the multiplicative group Fo(n)* = IE‘;F, is generated by
the primitive element (, = (,iri_y, then C is called primitive.

If @ = 1, that is the consecutive set considered is {(n,...,(37 '}, then C is
called a narrow sense BCH code. In particular, for 6 = n we get V(C) =
{Cny oo, (7 =V \ {1} = V(%), thus C is the repetition code.

b) We consider the minimum distance of BCH codes: In general, it might
be strictly larger than the Bose distance; for example, the binary Golay code
Gog < IF%S is a narrow sense BCH code having Bose distance 5 and minimum
distance 7, see (16.1). But at least we have the following:

Theorem: Peterson [1967]. A narrow sense BCH code C < [ of designed
distance 0 | n has minimum distance d(C) = 4.

Proof. By the BCH bound we have to show that d(C) < §. To this end,
let n = I6, where [ € N. Then we have X" — 1 = (X! —1)- Z?:_OlX” €
F,[X]. Since ¢ # 1 € Fy(¢n), for all i € {1,...,6 — 1}, we conclude that
{Gor o, N V(XT = 1) = 0. Thus we have {Cp,...,¢571} C V(X0 Xih).
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This implies that V(C) = UJ_; (¢1 - T) € V(X0—5 X*) = V(1(v)), where v :=
Ef;& eq =[1,0,...,0; ...5 1,0,...,0] € Fy; hence v € C having weight J. i

Example. We consider narrow sense primitive binary BCH codes, where for
k€ {2,3,4} and n = 2¥ — 1 we have the following:

We have X3 +1 = po-pu1 = (X +1)(X2+ X +1) € F3[X], where the Frobenius
orbits are given as Zz = {0} U {1,2}, and X" +1 = po - p1puz = (X +1) -
(X3 + X 4+ 1)(X3 + X? + 1) € Fo[X], where the Frobenius orbits are given as
Zp = {0} U{1,2,4} U {3,5,6}; see (12.1).

Moreover, we have X' 4+ 1 = g - us - tt3 - 1 7, where the Frobenius orbits are
given as Z15 = {0} U {1,2,4,8} U {3,6,9,12} U {5,10} U {7,11,13, 14}, and

wo = X +1;
ns = Iliegs,0(X — {s) = [Tic12p(X = ) =X+ X +1;
3 = Hi€{3,6,9,12} (X - qs) = Hi€{1,2,3,4} (X - Cé)
= (X*+ X3+ X2+ X +1);
H1 = H16{1,2,4,8}(X —(ls),
M7 = Hie{7,11,13,14}(X - Cfs) = Hie{1,2,4,s}(X - C1_5i)’
ppr = (X* 4+ X+ D)X+ X3 41).

The associated narrow sense primitive binary BCH codes C are given in Table 8,
where we indicate the Bose distance ¢, the generator polynomial g € Fo[X], the
union O of Frobenius orbits associated with V(C), the dimension dimg,(C) =
n — deg(g) = n — |O], and the actual minimum distance d.

In all cases given, except the trivial codes, we observe that 6 = d: The case § = 1
is trivial anyway; for [k,0] € {[2,3],[3,7],[4,3],[4, 5], [4,15]} this follows from
Peterson’s Theorem; for [k,d] € {[3,3],[4,7]} this follows from (13.6) below;
alternatively, for § = 3 the code in question, being defined by {(,}, is linearly
equivalent to a Hamming code, having minimum distance d = 3; see (12.5).

(12.7) Reed-Solomon codes [1954]. a) We consider primitive BCH codes
for n := ¢ —1: In this case, we have F; = ((,—1), hence [F,((;-1): Fy] = 1, thus
[ is trivial, and X971 -1 = Hg;g(X — (1) € Fy[X]. A primitive BCH code

C< Fg_l is called a Reed-Solomon code.

Thus V(C) coincides with the defining consecutive set V := {(7_;,. .. ,(:gff_Q} =
g__ll Ay, - - ,Cg:ll} C Iy, where a € Z;—1 and § € {1,..., ¢} is the designed

distance of C. Hence we have k := dimp, (C) = (¢ —1) - (6 —1) = ¢ — 6.

If £ > 1, that is 6 < ¢, then from the Singleton and BCH bounds we get

0—1=(¢q—-1)—k>d—-12>6—-1, where d := d(C) is the minimum distance

of C, showing that d = ¢, implying that C is an MDS [¢ — 1, ¢ — §, d]-code.
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Table 8: Narrow sense primitive binary BCH codes.

5] g Olam]a] L9l O|dim| d]
T T 7 5T 1 1 1 0 711
3 w | {1,2,4) | 4| 3
3 m [ {12} 1| 3
4 [ o ZS 01| oo 7 H1p3 {1336} 1 7
8 | pap3pio L 0] o0
K3 7 O @i 7]
1 1 0| 15| 1
3 [ {1,2,4,8} | 11| 3
5 [ i3 (1,2,3,4,6,8,9,12} | 7| 5
7 s | {1,2,3,4,5,6,8,9,10,12} | 5| 7
15 L1 3 s 7 {1,...,14} 1115
16 | pap3fis oz o Zas 0| oo

b) We describe a fast encoding procedure for C, which already indicates the
connection to the viewpoint of algebraic geometry:

We first observe that C* is a Reed-Solomon code again, inasmuch
V=V =F\V! = (¢ eFsid{-a,...,—a—5+2}}
= {¢{ eFsie{l—a,....q—6—a}}.
Hence the (conventional) check matrix H(V1) = [C(Z @)1 ] P € Féqié)x(q*l)
of C+ < Fg_l is a generator matrix of C:

1 1 1 - 1
1 ¢ 2, ¢a? )
2(g—2
H(Vl) — |1 Cgfl 371 Cq_ql dlag([g(l a)(j— 1)] ).
1 Cq 5 1 <§£q1—5—1) C(fi—12)(q—5—1)
Thus for v := [ag, ..., aq-5-1] € Fg_5 the associated codeword w1, ..., we—1] =

w:=v-H(V*) € FI~! is given as follows: For j € {1,...,q— 1} we get

qg—o—1 q—06—1

g o—
= > al@m)T Y = Y alGI) T = (X )G,

i=0 i=0
saying that w is obtained by evaluating X9~ (v) € F,[X] at all places of F}.
Thus running through all polynomials in F,[X]<,_s we get

¢ = {9 o) ()] € F Lo e B0 < FOL
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(12.8) Remark: Shortening MDS codes. In order to prepare the applica-
tion below, we observe the following:

Let n € N be arbitrary, and let C < Fy be an MDS [n, k, d]-code such that
k > 2; that is we have d — 1 = n— k. Then for the shortened [n — 1, k°, d°]-code
C° < IFZ_l we have kK — 1 < k° < k and d < d°. The Singleton bound for C°
yieldsd—1<d°—-1<(n—1)—k°<(n—1)— (k—1) =n— k. Thus we have
equality throughout, implying k° = k — 1 and d° = d, so that C° is an MDS
[n— 1,k — 1,d]-code as well. i

Now, starting with a Reed-Solomon [¢ — 1, ¢ — ¢, d]-code, successive shortening
yields an MDS [¢ — 1 —4,q — § — i, d]-code, for i € {0,...,q — 9 — 1}.

For example, for ¢ := 2% = 256, hence n = ¢ — 1 = 255, and designed distance
d = 5, starting with the narrow sense Reed-Solomon [255,251, 5]-code, thus
having defining set {Cas5, - - ., (355}, we get the 2-error correcting [32, 28, 5]- and
[28, 24, 5]-codes over Fa56 being used in the following application:

(12.9) Example: The Audio Compact Disc [1982]. The Red Book
Standard, called DIN EN 60908, for the compact disc digital audio (CD-
DA) system has been developed by the companies ‘Sony’ and ‘Philips’.

The amplitude of the analog audio data is sampled at a frequency of 44.1 kHz.
By the Nyquist-Shannon Theorem frequencies up to half of the sampling
frequency can be encoded and decoded, thus here up to ~ 22 kHz. To prevent
producing moire artifacts, the analog signal has to run through a low pass
(anti-aliasing) filter before digitalization.

The analog signal is encoded using 16-bit pulse code modulation (PCM).
Hence using 2% = 256 symbols instead of only the symbols 0 and 1, that is Bytes
instead of bits, a stereo audio signal sample needs 4 Byte. Thus digitalization
produces 4:44100 B¥'¢ = 176400 2X*¢ = 1411200 . Given the running time of
74min, this yields a total of 74 - 60 - 176400 Byte = 783216000 Byte ~ 783 MB.

Now 6 samples form a word of 24 Byte = 192 bit, being called a frame. These
are encoded using a cross-interleaved Reed-Solomon code (CIRC), which
essentially works as follows: First, using an outer [28,24,5]-code Ca, which
is shortened from the narrow sense Reed-Solomon [255, 251, 5]-code over Fasg,
words of length 24 are encoded into words of length 28. Then an interleaver
with offset four is applied: Codewords [z;1,...,Ziy] € [y, for i € Z, are written
diagonally into a matrix and are read out column-wise, as the following scheme
with offset one shows:

Til  Ti41,1
e Ti2 Tit1,2
Lin xiJrl,n

Next, an inner [32, 28, 5]-code C1, again shortened from the narrow sense Reed-
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Solomon [255, 251, 5]-code over Fas6, encodes words of length 28 into words of
length 32. Finally, a further Byte is added containing subchannel informa-
tion, yielding words of total length 33.

The idea of this encoding scheme is as follows: The code C; has minimum
distance 5, hence is 2-error correcting, where single C1 errors are corrected,
while words with two errors (typically) are marked as erasures. The resulting
words of length 28 are de-interleaved, leading to a distribution of erasures, called
C2 errors. The code C; has minimum distance 5 as well, thus is able to correct
four erased positions in any word. Hence, given ¢ € N consecutive erasures,
that is columns of the above scheme, due to offset four any diagonally written
word is affected in at most [§] known positions. Thus burst errors, which for
example result from surface scratches, with a loss of up to 16 words can be
corrected this way. Still remaining CU errors are treated by interpolation,
and finally oversampling is applied against aliasing.

The data is stored as a spiral track of pits moulded into a polycarbonate layer.
The pits are 100nm deep, 500nm wide, and at least 850nm long; the regions
between pits are called lands. The data is read by a 780nm solid state laser,
where a pit-land or a land-pit change is read as a 1, and 0 otherwise.

This technique requires that between two read 1’s there must be at least two
and at most ten read 0’s. This is achieved by eight-to-fourteen modulation
(EFM), where each Byte, that is each 8-bit word, is replaced by a 14-bit word,
using table lookup. Then a suitable 3-bit merging word is added between two
14-bit words. Finally, a 3 Byte synchronization word is added, together with
another 3-bit merging word. The synchronization word does not occur elsewhere
in the bit stream, hence can be used to detect the beginning of a frame.

Hence a frame consists of (33 - (14 + 3) + (24 + 3)) bit = 588 bit, which

amounts to an information rate of % = }1—3 ~ 0.33, hence a bit rate of % :

1411200 2t = 4321800 Bt = 540225 22, and a total of 74 60 - 540225 Byte =
2398599000 Byte ~ 2.4 GB. Moreover, a burst error of 16 words of length
32 Byte is contained in 16 - 588 bit = 9408 bit, since a bit needs some 300nm of

track length, this amounts to some 9408 - 300nm = 2822400nm ~ 2.8mm.

13 Minimum distance of BCH codes

We have already remarked that the BCH bound for the minimum distance of a
BCH code is not necessarily sharp. In view of this, we proceed into two opposite
directions: Firstly, we improve on the idea behind the BCH bound in order to
obtain better bounds. Secondly, in the narrow sense primitive case, we provide
sufficient criteria ensuring that the BCH bound is actually sharp.

(13.1) Van-Lint—Wilson bound [1986]. We need a definition first: Letting
A = [aijli; € F*™ and B = [bjli; € Fo*™, where n € N and 7,5 € N, let
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Ax B = [aijbyjli—1)stirj; € Fp®*", where i € {1,...,7} and i' € {1,...,s}.
Note that A * B in general does not have full rank, even if A and B have.

Theorem. Let v € C := ker((A* B)") <y, and let Ay € IE"ZXU‘ and By €

szljl be the submatrices of A and B, respectively, consisting of the columns
in J :=supp(v) C {1,...,n}. Then we have

tke, (A7) + ks, (By) < || = wt(v).

Proof. Let v = [z1,...,2,], where we may assume that 7 = {1,...,n}, that is
xj #0,for j € {1,...,n}. Letting B" := B-diag[x1, ..., x,] = [birjz;liry € F3*™,
we have rkg, (B) = rky, (B’) € Ng. The condition

v - (A * B)tr = [Z aijbi’jxj](i—l)s-&-i’ =0¢€ Fzs

j=1

can be rewritten as A- B =0 ¢ [F;®. Thus the row space of A is orthogonal
to the row space of B’, hence we have rkp, (A) <n —rky, (B') =n —rky, (B). §

Corollary. If for all § £ Z C {1,...,n} such that |Z| < d — 1, for some d € N,
we have rkg, (Az) + rkg, (Bz) > |Z], then C has minimum distance at least d.

(13.2) Theorem: Roos bound [1983]. Forn € Nlet V' C V,, C F,((,) =: F,
where ged(g,n) = 1, be a consecutive set of length 6—1, where § € {2,...,n+1}.
Moreover, let §§ # V" C V,, be any subset such that there is a consecutive subset
of V,, containing V" and having length [V"| 4 —2. Then the cyclic code C < Fy
associated with V := V' - V" C V), has minimum distance at least 6 — 1 + [V"|.

Note that we recover the BCH bound from V" = {1}.

Proof. Since the matrices H(V')xH (V") € FIV'I'IV'IX% and H(V) € FIV*" have
the same set of rows, we have C = ker(H (V)") NF} = ker((H(V') * H(V"))") N
. We apply the van-Lint—Wilson bound:

For @ # 7 C {1,...,n}, by the BCH bound we have rkp(H(V')z) = |Z|, for
|Z| < 6 — 1. Since we always have rkp(H(V")z) > 1, we get tkg(H(V')z) +
tkp(H(V")z) > |Z|, for |Z| <& —1.

This settles the case |V”| = 1. Hence let now [V"| > 2 and |Z| > §:

Let V" C W C V, be a consecutive set. Again, by the BCH bound we get
rkp(H(W)z) = |Z|, for |Z| < |W)|. Since deleting the rows of H(W) correspond-
ing to W\ V" yields H(V"), we infer tkp(H(V")z) > |Z| — W] + |V"|.

Since rkp(H(V')z) > § — 1 for |Z| > 6, for 6 < |Z| < W] we get
I"k]F(H(VI)I) + I‘kF(H(VN)I) Z 6—1 + |I| - |W| + |VN|.

The right hand side exceeds |Z| if and only if [W| < [V 4§ — 2, in which case
d(C) > |Z| + 1. The assertion follows from choosing |Z| = |W| = [V"| + 4§ — 2. 4
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Corollary: [Hartmann—Tzeng, 1972]. Let V' C V), be a consecutive set of
length 6 — 1, where § € {2,...,n+ 1}, and let @ # V" C V,, be a generalized
consecutive set of step size in Z¥ such that [V”| 4+ — 2 < n. Then the cyclic
code associated with V := 1V’ - V" has minimum distance at least § — 1 + |V”|.

Proof. The set V" can be extended to a consecutive set with the same step
size and having length [V”| 4+ § — 2. Recall that the rank estimates for Delsarte
matrices also hold for generalized consecutive sets. i

(13.3) Example. Let ¢ := 2 and n := 35. Then 2 € Z}; has order 12, and the
Frobenius orbits are given as

{0} U {5,10,20} U {15,25,30} U {7,14, 21,28}
U {1,2,4,8,9,11,16,18,22,23, 29, 32}
U {3,6,12,13,17,19, 24, 26, 27, 31, 33, 34}.

Let C < F3° be the cyclic code associated with g := 1 s € Fo[X]. Hence V(C)
is given by {1,2,4,5,7,8,9,10,11, 14, 16, 18, 20, 21, 22, 23, 28, 29, 32} C Zs5, thus
for the minimum distance of C the BCH bound yields d(C) > 6.

But C is also associated with O := {7,8,9,10,11} U {20,21,22,23}, which
letting O’ := {7,8,9,10} and O” := {0, 1,13} can be written as O = O’ + 0" C
Zss. In order to apply the Roos bound with § = 5, entailing d(C) > §—14|0"| =
7, we have to embed O” in a consecutive set of length |O0”| + ¢ — 2 = 6:

Since 3 € Z%; we conclude that (35 € Va5 is a primitive 35-th root of unity as
well; recall that the rank estimates of check matrices associated with consecutive
sets do not depend on a particular choice of a primitive root of unity. Thus we
indeed get 3- 0" ={0,3,4} C {0,...,5} C Zss. 1

To show conversely that d(C) < 7, we let explicitly

T = )(124»)(114»)(104}){8<+>)(54»)(44»)(34»)(24»17
pz o= X2+ X0 L X9 X8 XT X4+ X2+ X+ 1,
/L5 = X3+X+1,

ps = X3+X*41

pwr = X'+ X34+ X2+ X +1.

Then it turns out that
g=ppspr | fi=XB X0 L XM 4 XM 4 XT 4 X 41 € Fy[X],

that is f(¢45) =0, for i € {1,5,7}. Hence C has an element of weight 7. i
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(13.4) Example. Let ¢ :=2 and n := 127 = 27 — 1. Then 2 € Z},, has order
7, and the Frobenius orbits are given as

{0} U{1,2,4,8,16,32,64} U {3,6,12,24,48,65,96}
U {5, 10,20, 33,40,66,80} U {7,14, 28, 56,67,97, 112}
U {9,17,18,34,36,68,72} U {11, 22, 44,49, 69, 88,98}
U {13,26,35,52,70,81,104} U {15,30,60,71,99,113,120}
U {19,25,38,50,73,76,100} U {21,37,41,42, 74,82, 84}
U {23,46,57,75,92,101, 114} U {27,51, 54, 77,89, 102, 108}
U {29,39,58,78,83,105,116} U {31,62,79,103, 115,121, 124}
U {43,45,53,85,86,90,106} U {47,61,87,94,107, 117, 122}
U {55,59,91,93,109,110,118} U {63,95, 111,119,123, 125,126}

Let C+ < 127 be the narrow sense primitive BCH code with designed distance
11. Hence Ct is associated both with {1,3,5,7,9} C {1,...,10}, thus V(C*)
has cardinality 35 and is given by

O+ :={ 1,2,3,4,5,6,7,8,9,10,12,14, 16,17, 18,20, 24, 28, 32,
33,34, 36,40, 48,56, 64, 65,66, 67, 68, 72,80,96,97, 112 } C Zy27.

Let C := (C*)* < Fi?7. Hence V(C) is given by O := Zja7 \ (—O%), that is

O={ 0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14;
16,17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29;
32,33, 34, 35,36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46;
48,49, 50,51, 52, 53,54; 56,57,58; 64,65, 66,67, 68, 69, 70;
72,73,74,75,76,77,78; 80,81, 82,83, 84, 85, 86; 88,89, 90;
92; 96,97,98; 100,101,102; 104,105,106; 108; 112; 114; 116 }.

Thus C has minimal defining set Q := {0,1,3,5,7,9,11, 13,19, 21, 23,27, 29, 43},
where V(C) has cardinality 92. This implies O+ C O, thus C < C* is weakly
self-dual. We proceed to determine the minimum distance d of C, where the
BCH bound yields d > 16:

i) We first show that C is 4-divisible:

We consider the localization Fo[X*1] := Fy[X]x C Fa(X). Let —: Fo[X*1] —
Fo[X] := Fo[X] /(X127 — 1) = Dicz,,, F2[X]/(X — (iy,) be the extension of the
natural epimorphism, and using the Chinese Remainder Theorem.

Now, from O+ C O we get O U (=0) = O U (Z127.\ O1) = Z197, thus for any
i € Z1a7 we have g((}47)9(C1a7) = 0, entailing that g(X)g(X—1) =0 € Fo[X].
Let v = [ag,...,a126] € C, let J := supp(v) C Zya7, let s := | TJ|, and let f :=
P(v) = 3120 a; X' € Fo[X]. Then we have f(X~1) = Y120 a;X 7 € Fy[X+1],

. B AW Ty —k
From g | f € Fo[X] we infer that f(X)f(X~1) = 11<2:GO<ZJ'GZIQ7 apt5a;) X =
0e ]FQ[X] Thus for £ € Zyo7 wWe have ZjEZ127 Q4505 = 0 eFs.
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Thus |{[i,j] € J?i=j+ k}|is even. For k = 0 this says that s is even. Since
for k # 0 we have —k # k € Zia7, we get 4 | [{[i,j] € T?%i € {j + k}}|, thus
4| {li,jl € T%i#j} = s* —s = s(s — 1), implying that 4 | s.

Alternatively, we may proceed as follows: Since C is weakly self-dual, it suffices
to show 4-divisibility for an Fa-basis of C. In turn, C being cyclic, it suffices to
ensure this for the codeword associated with the generator polynomial g. The
latter is given explicitly below, yielding a codeword of weight 48.

ii) We apply the Roos bound with § = 15:
Letting O" := {0, ...,13} and O” := {0, 1,16, 32, 33}, we get

O +0"={0,...,14} U{16,...,29} U {32,...,46} C O,

hence C is associated with O’ +O". Since 8 € Z3,,, we conclude that ({; € V127
is a primitive 127-th root of unity as well. Thus from 8- 0" ={0,1,2,8,10}
{0,...,17} C Zjo7, where 18 = |O”| + § — 2, the Roos bound yields d
60— 14 |0"| =19. Hence we get d > 20.

iii) We apply the van-Lint—-Wilson bound: Let F := Fo((,) = Fios.

Let P’ := {16,...,29} U {32,...,44} C O and P” := {0,—16,—15}. Then we
get P+ P" ={0,...,14} U {16,...,29} U {32,...,44} CO' + O"” C O, hence
C is associated with P’ + P”.

We consider the check matrix H(P') € F37*27. Since the sets {16,...,29}
and {16,...,44} are consecutive of length 14 and 29, respectively, for ) # Z C
{1,...,127} we get tkp(H(P’)z) > |Z| for |Z| < 14, and rkp(H(P')z) > 14 for
|Z| = 15, and rkg(H(P")z) > |Z| — 2 for 16 < |Z] < 29.

-
>

We consider the check matrix H(P”) € F2*'?": From 8 - P” = {-1,0,7} C
{-1,...,7}, we get rkp(H(P")z) > |Z| for |Z| < 2, and rkp(H(P")z) > 2 f
3< III s 7, and rkp(H(P")z) > |Z| — 6 for 8 < |Z| < 9, and rkg(H(P")z) =

for |Z| > 10; note that [{—1,...,7}\ {-1,0,7}| = 6.

Thus we have rkp(H(P')z) + tkp(H(P")z) > |Z| whenever |Z| < 29, thus the
van-Lint—Wilson bound yields d > 30. Hence we get d > 32.

iv) Finally, to show conversely that d < 32, we choose y; := X"+ X+1 € Fo[X],
and thus fix all the polynomials u; € Fo[X] for ¢ € Z127. Then the generator
polynomial g := [[;co pi € F2[X] of C turns out to be

g = X4 X4 X804 X864 X8 4 x84 x84 X804
X77—|—X76+X74+X73—|—X71 +X67+X65+X62+
X004 X084 X0 4 X3 4 X2 4 X0l 4 X4 4 X484
X47—|—X46+X45—|—X43—|—X39+X38—|—X36+X35+
X34 X2 4 X2 4 X2 4 X2 4 X194 X8 4 X T
X604 XU 4+ X104 X6+ X4+ X3+ X +1.
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Moreover, it turns out that g | f € Fo[X], where
f = X99 +X98+X97+X96+X94+X87+X83+X79+
X778 +X75 —|—X72 +X69 —|—X62 +X61 +X59 +X57—|-
X504 X544 XL 4 X494 X8 4 X5 4 X424 X284
X204 X+ X2 4 X4 X+ X104 X2 41,
that is f((iy;) =0, for i € Q. Hence C has an element of weight 32. i

Now we turn to criteria ensuring that the BCH bound is actually sharp. To this
end, we need an auxiliary construction:

(13.5) Newton identities. Let X' := {X3,..., X,,} be indeterminates, where
m € N. For k € {0,...,m} let e, € Fy[X] be the associated elementary
symmetric polynomial of degree k, and for k € N let py, 1 := Y v Xk e
F,[X] be the associated power sum polynomial of degree k.

Letting

h = ﬁ<1 - XiX) = i<—1>jem,jxj € F[X][X] C Fy((X, X)),

i=1 =0

we have dxh = Z;nzl(fl)jjem,ijfl, and the product rule yields

Oxh = - Z;nzl (Xj ’ Hie{l,...,m}\{j}(l - XiX))
m X
= —h-Y <=
= —h- Z;n:1 (Zkzo Xf+1Xk)

—h- Zkzo pm,k+1Xk7

implying
Z(—l)i_liem,iXi_l - (Z(_l)jem,ij) . (mekX’“‘l) € F [X][X].
i=1 §=0 E>1

Thus we get the following Newton identities, for i € N:

S (=1 e im P,y = iem, forie{1,... m},
S (=1 Yepi—jpm,; =0, fori>m+1.

Jj=i—m

(13.6) Theorem. Let n := ¢° — 1, for some s € N, and C < F} be a narrow
sense primitive BCH code of designed distance § = ¢'—1, for some ¢t € {1,...,s}.
Then C has minimum distance d.
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Proof. We show that C contains an element of weight §:

i) We have F := F,(¢,) = Fy=, hence the Frobenius orbit {(,,¢Z,..., 'y C

V. Thus the elements {(,, (4, .. .,Cﬁ;fl} are pairwise distinct, implying the
invertibility of the Vandermonde matrix

Cn oo t—1
‘ ca (t=1)q
A= [Cf(ljil)ql_l]ij = ’ﬂ S Fix?
1 th_l CT(Lt_l)qFl

Hence the system of linear equations
[Xo,.., Xema] - A= —[1,¢0 ..., 4]

has a unique solution [ag, ...,a;_1] € F'. Let

t—1

t i
f=X"+> a; X7 €F[X]

i=0
be the associated g-linearized polynomial of degree ¢; note that we have
flax+y) =af(x)+ f(y) €F, for z,y € F and a € F,.
By construction we have (¢7)4" —&—Zf;é a;(¢1)7 =0, for j € {0,...,t—1}, hence
V= {1,(n,...,¢ 71} consists of zeroes of f.
Moreover, ¥V C F is F,-linearly independent: Let [b,...,b—1] € Fg such that
S Zobi¢h =0 € F, then we get 37— b;(¢2)7 =0, for i € {0,..., ¢t — 1}, that
is A-[by,...,by_1]" =0 € F>*! implying that [bg,...,b;_1] = 0.
Letting V := (V)p, <, we have |[V| = ¢, and f being F,-linear implies that V'
consists of zeroes of f, implying that f splits over F as f = [[ .\, (X —c¢) € F.
ii) Let m := ¢*. Then we get

m

t—1
f = th + Zainl = H(X - C) = Z(_l)mijem,m—j(v)Xj € ]F[X}
i=0 ceV §=0

Thus we have e, ;(V) # 0 possibly only for i = q' — ¢/, where j € {0,...,t},
hence iey, (V) =0 for i € {0,...,m — 2}. From the Newton identities we by
induction on i € N get

Z ci:ZCi:pm)i(V):o, fori e {1,...,m—2}.

ceV\{0} ceV

We have F* = ((,). Hence let v = [zg,...,7,-1] € {0,1}" C F such that
VA\{0} ={¢} € F;i € Zp,x; = 1}. Then we have wt(v) = |[V|-1=m—1=,
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and for j € {1,...,6 — 1} we get

v )= Y = Y d=o

1€Ln,x;=1 ceV\{0}

Since C is associated with {C,,...,¢2~'} C V, this implies v € C. i

Corollary. Let C < Fy be a narrow sense primitive BCH code of designed
distance § € {1,...,n}. Then C has minimum distance at most ¢d — 1.

Proof. Let n = ¢° — 1, and let t € {1,...,s} such that ¢~! < 6 < ¢' — 1.

Since C is associated with {C,,...,¢37!}, it contains the code associated with
{Cny- -, Cgt_z}. Since the latter has minimum distance ¢ — 1, the minimum
distance of C is bounded above by ¢ — 1 =¢q-¢""! —1< ¢ — 1. i

(13.7) Remark. Finally, we just mention the following theorem (whose proof
requires tools we do not have at our disposal here):

Theorem. Let C be a non-trivial narrow sense primitive binary BCH code.
Then the minimum distance of C is odd. #

V GoLAy

14 Quadratic residue codes

(14.1) Quadratic residues. We collect a few number theoretic facts.

a) Let p be an odd prime. Then by Artin’s Theorem Zy, is a cyclic group of
even order p — 1. Hence the set of squares Q, := {i? € Zyii € Ly} < Zy is the
unique subgroup of Z; of index 2, and consists of the elements of Z; of order
dividing % Let N, := Zy, \ @, be the set of non-squares in Zy; hence we

have |Qp| = [Nj| = qu.
For i € Z; let the Legendre symbol be defined as (5) = 1ifi € Q,, and
(;7) = —1if i € N,. Hence for i,j € Z3 we have (%) = (i) (%), thus

(5) : Zy, — {*1} is a group homomorphism with kernel Q,. Moreover, we

extend (5> to Z \ Z, via the natural epimorphism Z — Z,,.

Lemma. (_71) = (—1)1%1, that is (_?1) =1ifand only if p=1 (mod 4).
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Proof. From X? —1 = (X — 1)(X +1) € Z,[X] we infer that —1 € Z7 is the
unique primitive second root of unity. Hence —1 € Zy is a square if and only if

Z, has an element of order 4, which by Artin’s Theorem is equivalent to p = 1
p—1

(mod 4), the latter in turn being equivalent to (—1)"z = 1. 1

b) Now let ¢ # p be a prime. Then, by Dirichlet’s Theorem on primes in an
arithmetic progression, given p there are infinitely many ¢ such that (%) =1.

The following shows that given ¢ there are infinitely many p such that <%> =1
Theorem: Quadratic Reciprocity Law [GAUSs, 1796].
2
i) We have (%) = (-1)"3 *, that is (%) = 1if and only if p = +£1 (mod 8).
(p=1)(g—1)

ii) Let ¢ be odd. Then we have (%) (%) = (=1)7 1 ; that is we have

(%) = (%), except both p,g = —1 (mod 4). i

c) Let vy == icz- (1%) () € Fy(¢p) =: F be the p-th Gaussian sum.

Lemma. i) We have 'yz = (%) -p € Fg; in particular we have v, # 0.
if) If () = 1, then we have 5, € F,.

Proof. i) We have
2 i =3\ jiej (1 i\ e
- ()GE)e-G)Z6)e
i,JELY p p p i,5EL p

Since multiplication with j € Z; induces a bijection on Z, we get

-1 ij> Y -1 i

2 _ (4 A IR O O A _
i-(5) Z(5)¢-5) Z.6)

p i,J€EL p p 4,J€L p

Using ZiGZ; (é) =0 we get 7, = (_?1) ) Ziez; ( (%) : Zjezp(czi)_l)j)'
From X? — 1= (X —1)- 3070 X € Fy[X] we get 3, (¢ =0, for i € Zj,

¢l=17,

P

Hence in the above outer sum only the case ¢ = 1 remains, yielding 'yg = (%) -p.

ii) Recalling that Autr, (F) = (¢,), we show that { = v, € F: We have 7 =
N N ,

Ziez; (i) Gl = Ziez; (%) (p; note that for ¢ = 2 we have (;%) =1¢€Tl,.

o (8- () st~ T ()6 - T (i

Note that in the latter case it depends on the chosen minimum polynomial
p1 € Fy[X] of ¢, which square root of (‘71) -p € Fy equals v, € F,,.
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(14.2) Quadratic residue codes. a) Let p be an odd prime, let ¢ # p be a

prime such that (%) =1, and let F := Fy({p). Since (%) = (%) for all i € Z,
we conclude that both {¢} € F;i € Qp,} and {¢} € F;i € N,} are Frobenius
stable. Hence letting pp :=J[;co (X — ¢;) € F[X] and 7, := [Tien, (X = s

F[X], we infer that both p, and 7, have coefficients in F,. Thus we get

i xr-1 = i
Ppllp = H(X_Cp):7X,1 :ZX e F,[X].
iEZ; =0

This gives rise to the quadratic residue (QR) codes QF < F? and NP < F?,
being the cyclic codes having generator polynomial p, and 7,, respectively.

Hence we have dimg, (QF) = dimg, (N?) =p — pT_l = L“Q‘l_

Let (QP)" < F? and (NP)" < F2 be the associated expurgated codes, that is
having generator polynomials (X — 1) - p, and (X — 1) - i, respectively; recall
that for v = [ag,...,ap-1] € F? the condition Zf;ol a; = 0 € F, is equivalent to
Y()(1) = (Zf:_ol a; X% (1) = 0, that is X — 1 | ¥(v) € F;[X]. Hence we have
dims, ((Q°)') = dimg, (N?)) = p — 25+ = 252,

b) For C? € {QF, NP}, the associated extended quadratic residue code is

p—1

~ €

C? :={lag,...,ap-1,000] € ]Fg“; [ag,...,ap—1] € CP, a0, = % . Zai},
1=0

for e € {£1}; note that the choices yield linearly equivalent codes.

The reason for twisting the original definition of an extended code will become
clear in (14.4) below. In particular, in the binary case ¢ = 2 and in the ternary
case ¢ = 3 there is € € {£1} such that the check condition becomes as +
Zf;ol a; = 0, so that in both cases we recover the conventional extended code.

(14.3) Example. For g := 2 and p := 7 we find that 2 € Z% has order 3 = %,
thus Fo(¢7) = Fg and @5 € Auty, (Fg) has order 3. We conclude that 2 € Qr,
that is (2) = 1. Hence the Frobenius orbits are V; = {1} U {¢};i € Q7} U

{Csi € N7}, where Q7 := {1,2,4} and N7 := {3,5,6}.

Thus we have X7 +1 = (X +1)-[T;c 0, (X +7) [Tien (X +67) = poprps € Fs[X].
Actually, we have X7+1 = (X +1)-g'g" € Fo[X], where ¢’ := X3+ X+1 € F5[X]
and ¢” := X3+ X2+1 € F5[X], hence the latter are both irreducible; see (12.1).

*

Let C < F} be the cyclic code generated by ¢'; since (¢')* = g¢” the code
generated by ¢” is linearly equivalent to C. Hence the even-weight subcode
C' < C has generator polynomial (X +1)-¢' = X* + X3+ X2 + 1. Moreover, C
has check polynomial b := (X +1)-¢g” = X*+ X2+ X +1, thus C* has generator
polynomial h* = (X +1)* - (¢")* = (X + 1) - ¢’, showing that C+ =’ < C.

Choosing a primitive 7-th root of unity {7 € F§ having minimum polynomial ¢,
we conclude that C is a QR code of type Q; the code generated by ¢” then is
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the associated QR code of type N. Moreover, extending yields C < FF§, where
by (14.4) below we get (C)* = C, that is C is self-dual.

The code C has defining set {(7}, so that by (12.5) taking ¢ := 2 and k := 3
there, we conclude that C is linearly equivalent to the Hamming [7, 4, 3]-code
Hs. Thus C’ is linearly equivalent to the even-weight Hamming [7, 3, 4]-code H5,
and C is linearly equivalent to the self-dual extended Hamming [8, 4, 4]-code 7/-23.

(14.4) Theorem. Let p be an odd prime, and ¢ # p a prime such that (%) =1.
a) If p = —1 (mod 4), then we have (QP)L = (QPY, and (QP)* = QP with
either choice of e. R R

b) If p = 1 (mod 4), then we have (QP)t = (NP), and (QP)+ = AP with
opposite choices of e.

Proof. i) We first consider (QP): We have (%) = (’71 %), for i € Z,.

Moreover, we have p5 = Hiegp (X — C;;)* = Hiegp(_C;)(X =, ") € Fo(Gp)[X]-

Hence, if p = —1 (mod 4), then (_71) = — (%) implies J[,co (X — ) =
HieNp (X —¢}) = mp, thus pf ~ n, € Fy[X]. Since QP has generator polynomial
pp, it follows that (QP)+ has generator polynomial (X — 1)* y ~ (X = 1) py,
so that (QP)*+ = (Qr)".

Ifp=1 (mod 4), then (_?’) = (%) implies HiEQP(X—Cp_i) =[Lico, (X—-¢) =
pp, thus py ~ p, and hence 1y ~ n,. It follow that (QP)+ has generator
polynomial (X —1)* - % ~ (X — 1) - 1, so that (QP)*~ = (NP’

~ p=1
ii) We now consider (C?)L, where C? € {QP,NP}: Let G' € F,2 " be a

generator matrix of (CP)'. For 1, € F? we have ¢(1,) = SPXE = ppp,
thus 1, € CP. But since X — 1 { 9(1,) we have 1, ¢ (C?)’. We recover C? by

4 pt1
augmenting (C?)’, thus G := [ ? } € IF;2 P is a generator matrix of CP.

P
For [ag,...,ap_1] € (C?)' we have S-'_) a; = 0, hence [ag,...,a,_1,0] € CP,
and for 1, € CP we get v := [1,...,1,ey,] € CP. Hence we have the following

generator matrix of CP:

)

G"| 0%, c o <+
q .
Iy | e

1p=—1 (mod 4), then (7, (@) = {0} and (v,) = p+2 = (1+(=) )-p =
0. Hence OF < (@D)J-7 thus dimmq(@p) = % = diqu((@p)J—) entails equality.
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If p=1 (mod 4), then still (QF, (N?)") = {0}, but now we get

<[1,..‘,1,6’}/p],[1,...,1,—6’Yp]>:p—’}/f): (1— (?)).p—OEFq.

Hence we have OP < (./\A/' P)L with opposite choices of €, thus dimg, (@p ) = p—;l =
dimg, (V7)) entails equality. i

(14.5) Theorem. Let p be an odd prime, and ¢ # p a prime such that (%) =1.

a) Then QP and NP are linearly equivalent, so are (QF)" and (N?)’, and so are
OP and NP with either choice of e.

b) For v € QP \ (QP)" and d := wt(v) we have the square root bound d? > p.

Moreover, if p = —1 (mod 4) then we have d?> — d + 1 > p, and if additionally
q = 2 then we have d =3 (mod 4). (Note that in the latter case we necessarily
have p = —1 (mod 8).)

Proof. a) Let j € NV,. Then from (%) = (é) (%) = — (%), for i € Zy, we
conclude that 7: Z,, — Z,: i — ij interchanges Q, and N, keeping 0 fixed. We
consider the linear isometry given by letting m permute the components of F?:
For v := [ag,...,ap-1] € Fh we get v™ = [a;z—1;1 € Z,] € F, that is (v™) =

Ziezp iz X' = Ziezp ;X' = Ziezp ;X" € Fq[X] = Fq[X]/<Xp —1).
Since evaluation at a p-th root of unity factors through F,[X], for k£ € Z,
we get w(v“)(Cf.f) = Ziezp az‘C};jk = Ziezp ai(q:j)i = 7/’(7))@5]) € Fy(¢p), thus
¢k e V(¢ (v™)) if and only if 57 € V(¢ (v)), hence v € QF if and only if v™ € NP,
Finally, since the linear equivalence between QP and N7 is induced by a permu-
tation of components, it induces a linear equivalence between (QP) and (NP)’

and a linear equivalence between 0P and NP.

b) We have p, | ¢(v) € Fy[X], but (X —1) t ¢(v). Recalling ¥(v™)(¢)) =
P(v)(Ck), for k € Zy, we get 1, | ¢(v™), but (X — 1)  ¢(v™). Hence we have
S0 X' = ppnp | (0)e(07), but XP — 1= (X 1) pynp { $(0)(v7).

Let w € FY be the vector associated with 1 (v)i(v™) € Fy[X]. Then we have
w # 0, and since Y7~ X generates the repetition code in F? we conclude that
w = [a,...,a] for some 0 # a € Fy, hence wt(w) = p.

Now for ¥ (v)1(v™) we get d? products of non-zero coefficients of 1(v) and ¥ (v™),
respectively. Hence 1(v)y(v™) has at most d? non-zero coefficients, thus d? > p.

Ifp=—1 (mod 4), that is (%) = —1, then we may take j = —1, thus7: Z, —

Zy: i — —i. Then d of the above products belong to the constant coefficient of
¥ (v)(v™), hence the latter has at most d?> — d + 1 non-zero coefficients.
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Finally, if additionally ¢ = 2 then d is odd. Hence d — 1 of the products
belonging to the constant, that is 0-th, coefficient cancel. Moreover, if two
products belonging to the i-th coefficient of 1 (v)y(v™) cancel, for i € Zy, then
there are two products belonging to the (—i)-th coefficient canceling as well.
Hence cancellation for these coefficients occurs in quadruples. Thus we get
d*>—d+1=p= -1 (mod 4), hence d(d — 1) = 2 (mod 4), which implies d = 3
(mod 4). i

For the next result we already need the Gleason-Prange Theorem (15.3) to be
proven below, which in particular says that the linear automorphism group of
an extended QR code induces a transitive group of component permutations.

Corollary. We have d((QF)") = d(QP) + 1; in particular, the assertions of the
square root bound hold for d(Q?). Moreover, we have d(QF) = d(QP) + 1.

Proof. Let v = [ag, ..., ap—1] € (QP) such that wt(v) = d((QP)"). Then we
have v := [ag,...,ap-1,0] € @Iﬂ hence by (15.3) there is w = [bg,...,bp_1] €
Qr \ (9QP) such that @ := [by,...,bp—1,b0] € OF, where wt(@) = wt(?) and
boo # 0. Since wt(w) = wt(w) — 1 = wt(0) — 1 = wt(v) — 1 = d((QP)") — 1 we
conclude that d(QF) < d((QP)')—1<p—1.

Conversely, let v = [ag, ..., ap—1] € QP such that wt(v) = d(QP) < p—1, and let
D= [ag,...,ap 1,000 € OP. Again by (15.3) there is w = [by, ..., b, 1] € (QP)’
such that @ := [by,...,bp—1,0] € 0P, where wt(?) = wt(@). Since wt(w) =
wt(w) = wt(0) < wt(v) +1 = d(QP)+ 1 we conclude that d((QP)") < d(QP) + 1.
The second assertion follows from recalling that for v = [ao,...,ap—1] € QF and
[ag, ..., Gp—1, 0] € OP we have ao, = 0 if and only if v € (QP)'. i

15 Automorphisms of quadratic residue codes

(15.1) Automorphisms of codes. a) We need an additional general piece of
notation: Given a linear code C < Fy, let A(C) := Autp,(C) < Isom,(F,) =
(7)™ x Sy, be its linear automorphism group. Then let

P(C) = A(C)/(A(C) N (Fg)") = (A(C) - (Fg)™)/(F)™ < Tsomy, (Fy)/(Fg)" = S
be the group of component permutations induced by A(C), and let ~: A(C) —

P(C) be the natural epimorphism.

By linearity we always have F; - £, < A(C) N (IF;)", for the trivial code we have
A({0}) N (F;)™ = (Fy)", and for ¢ = 2 we have A(C)N (F3)" = {1} anyway. The
question arises how A(C) N (F;)™ < A(C) looks like in general.

b) More can be said if C < Fy is a non-trivial cyclic code such that ged(g,n) = 1:
(The argument to follow was indicated to me by my student C. KircH [2022].)
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Let g = Zf:o X" € F,[X] be a generator polynomial of C, having degree
k € {0,...,n — 1}, and let supp(g) := supp(¥»"'(g9)) € Z, be the support
of g; note that 0 € supp(g). Moreover, let (supp(g)) = VZ, < Z,, where
7 = ged(supp(g) U {n}) € Z,, greatest common divisors being taken in Z.

Let D := diaglag, ..., an—1] € A(C) N (F;)". Then, conjugating with the per-
mutation (0,...,n —1) € A(C), we have diagla;i1,...,an—_1,a0,...,a;] € A(C),
for i € Z,,. Now let i,i" € Z, such that i — i’ € supp(g) C Z,. In order to
show that a; = a;/, by cyclicity we may assume that i’ = 0, hence i € supp(g).
Transporting the action of D to Fy[X]<,, we have g- D = ZI;:O a;g: X' € Y(C),
that is g | ¢ - D, entailing g - D ~ g € F,[X], implying that ag = a;. Thus the
diagonal entries of D are constant along the cosets of vZ,, in Z,.

Conversely, let D := diag[ag, ..., an—1] € (F;)" have diagonal entries constant
along the cosets of YZ,, in Z,. We consider the F,-basis {X7g € F[X]<p;]j €
{0,...,n—k—1}} C4(C). Then (X?g)-D € (C), that is g | (X7g)-D. Since
XJ7| (X9g)- D we infer that (X7g) - D ~ X7g € F,[X], entailing D € A(C).
Hence in conclusion we have A(C) N (F;)" = (F(’;)[Z": VZnl 2 (C,_1)7; in partic-
ular, we have A(C) N (F;)" =Fy - £, if and only if v = 1. i

(15.2) Automorphisms of quadratic residue codes. a) Let p be an odd
prime, and let g # p be a prime such that (%) =1.

Since the cyclic QR codes QP < F? and (Qr) < 2 have prime length p and

non-constant generator polynomials of degree pz;l and 221 respectively, in both

cases we have v = 1, entailing A(QP) N (F})? = A((QP)") N (F;)? =TF; - E,.
For the extended QR code or < IE"{I’+1 we get: If D := diaglag,...,ap—1,000] €
A(OP) N (F;)P*!, then since (QP)* = QP we have diag[aq, . . L ap—1] € A(QP),
thus the latter is a scalar matrix, which by the extension condition implies that
D is a scalar matrix as well; in other words we have A(QP)N(F;)P™! =F;-Epy1.
b) We show that any linear automorphism « € A(QP) < Isom,(F,) extends
to a linear automorphism & € A(QP) < Isompt1(Fy); in other words we have
A(QP) = Stab 45, (([0p | 1])r,) and P(QP) = Stabp g,,(00):

Let first p = —1 (mod 4). Then (QP)* = (QP)’, so that a restricts to a linear
automorphism of (QP)". Moreover, we have QF = (QF)" @ (1,)r,, thus a(1,) =
a-1, +w for some a € F; and w € (QP)".

We have O = {[v | 0] € Fotliv e (QP)} @ ([1, | eyp))r,. Hence letting
@ € Isomy, 1 (Fy) be the monomial map given as a([v | ) := [a(v) | ac] € F#H!
for v € F? and ¢ € Fy, we have a([v | 0]) = [a(v) | 0] € QP for v € (QP), and
a([lp | en)) =lally) [ aep]=a-[1p | en] +[w | 0] € Q7. Thus @ € A(QF)
is a linear automorphism extending «.

Let now p =1 (mod 4). Then (QP)+ = (N?)’, so that « yields a linear automor-
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phism of (N?)’. Moreover, we have NP = (N?)' @ (1,)p,, thus a(1,) = a-1,+w
for some a € F} and w € (N?)'.

We have N7 = {[v | 0] € Fotliv e (NP)} & ([lp | —€v])E,, where we use the
opposite choice of € € {il} Hence letting & € Isomyi1(F,) be the monomial
map given as a([v | ¢]) := [a(v) | ac] € F#*! for v € F? and ¢ € Fy, we
have a([v | 0]) = [a(v) | 0] € N? for v € (NP), and a([1, | —ey,)) =
[a(1,) | —aev,) =a-[1, | —eyp] + [w | 0] € NP. Thus @ € A(N?) is a lincar
automorphism extending «, which hence yields an a linear automorphism of

or = (NP)L. ¢

(15.3) The Gleason-Prange Theorem. Let p be an odd prime and ¢ # p
be a prime such that (%) =1

Lemma. a) The map o: Fot! — FPH1: [ag,. .., ap_1,a00] = [bo, ..., Dp—1, boo]
given by b; := (";1) a_;—1, fori € Zy, and by := —e (%) G0 and by, 1= —eay,

induces a linear automorphism of @p , that is we have o € A(@p)
b) We have ¢ € SL,1(F,) such that 0% = (_71) ~idgp+r, where tr(o) = 0 if

p=—1 (mod 4), and tr(c) = 2 (%) if p=1 (mod 4); in the latter case (4 € ),
denotes a primitive 4-th root of unity.

Proof. a) For v := [ag,...,ap_1, Gc] We write w := o(v) = [by,...,bp—1, bso].
Let a; := Ziezp a;G,’, for j € Zy, be the discrete Fourier transform of v,

leaving out a.; using Zkezp C]’j = 0, for i € Z, we get the inverse transform

S a6 = 3 (a3 ) = pa

JEL, kEZy JEL,

— & _ €0
Now v € OP is equivalent to a; = 0, for j € Q,, and ao, = =2 ZlEZ ==,
Since o is a monomial Fy-linear map, we have o € IsompH(IFq). Hence we have

to show that if v € @” then w € @’ as well:

i) We show that 3

icz, - boo: Using 'yf) = <_—1> p, the right hand side

equals % “boo = —Yp ( ) ag. We turn to the left hand side, letting
AN
= Tn=Y ()= (5= T T (5) 6
i€Z;, i€Z;, i€z p JELy i€Zy, p

For j = 0 we get ZzGZ* (%) = 0 in the inner sum, hence

=G SR G)e
b i — ) .
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Since a; = 0 for all j € Q, we get

36 Ze g

JEL; €L

= 5) B

JEL,
Since Zjezp aj = pag and ey,00 = Pa We obtain
—, (-1 -1
f=—= <) pap — ap) = < “(—=Ypao + € ).
>\ ( ) ) (= )
From this we finally get

-1 -1
> bi=bo+p= (p) (—€aos — Ypo + €aoc) = —p (p) ao.

€L,

ii) We show that the discrete Fourier transform of w fulfills §; = 0 for j € Q,:
For i € Z, the inverse transform yields

. € .
pa; = oo + Z OékC;m = ﬁ'am+ Z Oékaﬂk.
kezZs TP kezZs
This yields

1

ij -1 —1 ij Y
B; =bo + Z bi¢) = —e (p) (oo + Z ( > a_i-1() = €xac + .

€L €L p

L —i! ki~ 4ij L —1 1 —i )\ ~ij
where y := Zi,keZ; (T G, andz = —( +~Tp'ziel;‘, : K

Since j € @, we obtain

-1 1 A 1 i\ i ~
()= S ()@=t E ()@= 2

i€Zy P ez Tp

We turn to showing y = 0: We have

-(5) 2

k:EZ; iEZ;

) C;;rurij) <];> a,

where ay, = 0 for k € Q,. We show that the inner sum vanishes for k € Np:

To this end, let m: Zy — Zy: i+ % Hence we have 72 = idZ;. Assume that
7 has a fixed point, i say, then we have i = % € Zy,, thus jk = i € Q,, a
contradiction. Hence the permutation 7 consists of 2-cycles only, where

(5)-(5)-06) -6 -GG --G)
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From this, running through the various cycles of 7w, we obtain

Z (kZl) Cki*1+ij _ Z (T((Z])) Cij+ﬂ(ij) =0.
p ) '

€L 1EZY p

b) Recall that —i~' =i € Z7 if and only if i € {+(4} C Z7.

If p=—1 (mod 4), that is (_71) = —1, then det(o) = det(+£ {_01 (1)])1);1 =1,

where tr(c) = 0 and 0% = —idgp+1.

2 -1
Ifp=1 (mod 4), that is (%) =1, then det(o) = (%) -det (£ [(1) (ﬂ Y =1,

where tr(o) = 2 (%) and o2 = idgp 1. i

Theorem: Gleason—Prange [1964]. The group P(QF) < Sp+1 contains a
subgroup isomorphic to PSLy(F,), with respect to its natural action on P(F,,).

Proof. i) We first exhibit a certain subgroup of Sp41:

Let S := SLy(F,) be the special linear group of degree 2 over F,. We have
S = (s,t,r) (as will be shown below), where s := {_01 (1)} and t := [(1) ﬂ,
and r := diag[c, ¢ '], where F} = (c); hence (¢?) = Q,,.

We have Z(S) = {£F»}, giving rise to the natural epimorphism —: S —
S/Z(S) = S := PSLy(F,), the latter being the associated projective special
linear group, having order %p(p —1)(p+1). Moreover, S acts naturally on the
projective line PY(F,) = {zo,...,Zp—1, 20 }, where x; := ([1,i])r,, for i € Z,,
and zo := ([0, 1])r,. This induces an embedding of S into S,4+1. More precisely:

We have z;t = ([1,4])r, - t = ([1,4] - t)r, = ([1,7 + 1])r, = @i41, for i € Z,, and
Toot = ([0,1])p, - t = ([0,1] - t)r, = ([0,1])r, = Zoo; in other words ¢ € S induces
the p-cycle (0,...,p —1) € Spt1.

We have z;r = ([1,i])p, - v = ([1,i] - r)w, = ([c,ic™D)r, = ([1,ic™?])r, = @2,

for i € Zy, and 2o = ([0,1])p, -r = ([0,1]-7)r, = ([0, ¢ ), = ([0,1])F, = Zoo;

in other words 7 € S induces the permutation (1,¢72,...,¢?)(c71,¢73,...,¢) €
p—1

Sp+1 of order £5=, permuting the squares and non-squares in 7, respectively.

We have z;s = ([1,4])r, - s = ([1,4] - s)r, = ([—i,1])r, = (1, =i )5, = -1,
for i € Zy, while zos = ([1,0])r, - s = ([1,0] - s)r, = ([0,1])r,) = 2 and
Toos = ([0,1])r, - s = ([0,1] - s)r, = ([-1,0])r, = ([1,0])r, = z0; in other words
5 € S induces the involution (0,00)(1,—1)(2, 5t) -+ € Sp41. Note that z; is a
fixed point of 5 if and only if i> = —1 € Z,, thus there are fixed points if and
only if p =1 (mod 4), in which case the fixed points are x; for i € {+(4}.
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Hence S acts transitively on P!(F,), where Stabg (2 ) consists of the matrices
having [0,1] € F2 as an eigenvector, thus Stabg(zo) = B := (t) x (r) < S, the
subgroup of upper triangular matrices. Since ¢ € B we conclude that B acts
transitively on {zo,...,2,_1}, saying that S acts 2-fold transitively on P! (F,).
In particular, S acts primitively, so that B < S is maximal subgroup, implying
that S = (B, s) = (s,t,7).

ii) We consider the Fy-linear map 7: F&*! — FP*! induced by the permutation
(0,...,p—1) € Sp41. Since for [ag, . .., ap—1] € QP we have [ap_1,a0,...,ap—2] €
QP as well, and the extension condition is trivially fulfilled, we conclude that
T € A(QP), inducing 7 = (0,...,p— 1) € P(QP) < Sp41, fixing oo.

Next, we consider the F,-linear map p: F#*! — F2+! induced by the permuta-
tion (1,¢72,...,¢%) (¢!, ¢73,...,¢) € Spy1. For [ag, ..., ap_1] € F? we have
. -2
b(p(ao, .- ap-1])) = a0+ Y ae—2X'=ao+ Y _ a; X" € Fy[X].

€L i€

Thus for [ag,...,a,-1] € QP and k € Q,, noting kc? € Q,, we get

Y(p(lao, - apa)))(G) = a0 + Y ai( ) =0,

thus p([ag, ..., ap—1]) € Qp. Since the extension condition is trivially fulfilled,
we conclude that p € A(QP), inducing p = (1,¢72,...,¢?)(c7 L, e™3,...,¢) €
P(QP) < 8,41, fixing both {0, co}.

Finally, we have o € A(@p), inducing the permutation in & € P(@p) < Spi1
given by i — —i~1, for i € Zy,, interchanging {0, 00}

Thus identifying the points of P'(F,) with the standard Fg-basis of F#*!, and
comparing with the natural action of S = (s,¢,7) on P!(F,), we conclude that
we get an isomorphism S = (7,7,p) < P(QP), mapping 5+ o, t — 7, T — p. f

Remark. Actually, it turns out that, up to three exceptions, we have P(@p ) =
S, in which case we have P(QF) = Stabg(cc) = B of order ip(p —1). The
exceptions are as follows [KNAPP—SCHMID, 1980]:

i) [¢,p] = [2,7], in which case we have QP =~ 7{3 and QP ‘Hs, where we get
A(QP) =2 P(QF) = AGL3(F3) & C3 x SL3(Fa) 2 C3 x PSLy(F-),

hence A(QP) = P(QP) =2 C3 x (C7 x C3), see (14.3);

ii) [¢,p] = [2,23], in which case we have QP = Goy and QP = Gag, see (16.1);

iii) [¢,p] = [3,11], in which case we have OP 2 Gyy and QP = Gi1, see (16.2).
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(15.4) Remark. We keep the notation of (15.3). Having dealt with the group
A of component permutations induced by A, we now consider the group A :=
(o,7,p) < A(QP) N SL,11(F,) itself. For ¢ = 2 we have A = A = S anyway, so
that we may assume that ¢ # 2.

By the matrices given we conclude that A is a subgroup of the group {£1}?*! x
Sp+1 of signed permutations. In particular, the representation of A considered
lifts to a representation A: A — SL,41(Z), we have A = A(A) independently
of ¢, and we have AN (F;)Pt! < {£1}P*!. Since A(QP) N (F;)Pt =TFs - Epya,
we conclude that AN (IE‘*)p‘|r1 <{tE 1} =:Z=C(Ch.

Since A/(AN(F;)Pt!) = A =S we conclude that either A = S, or A is a central

extension of shape A = Z.S. In the latter case, since the Schur multiplier of S
is cyclic of order 2, we either have a split or a non-split extension.

We show that indeed A 22 Z.S, where to decide whether the extension is split or
non-split, we have to distinguish the cases p = £1 (mod 4), and to determine
the character x of A, using the ordinary character table of S:

i) If p =1 (mod 4), then o € A has order 2. Since S does not possess non-
central involutions, this entails A =2 S or A =2 Z x S, where S = [4, 4], and
Z = Z(A) in the latter case. To decide this we determine the character x:

If Z < A, then we have x|z = 1,, the non-trivial character of Z, so that in
this case we have x = 1, ® x|g. We proceed to determine x|g: The group
S has the following irreducible characters, subscripts denoting degrees: The
trivial character X1, the Stelnberg character Xp» two (algebraically conJugate)
characters Xp =y as well as p— characters x;,_; for certain i € Z,1, and b=

characters xp 41 for certain j € Z,_1.

We show that yx; is not a constituent of x|g: Since 7 has odd order p, we have
7 € S, and Fixge+1(7) = {[a,...,a,0] € Q°T';a,b € Q}. Moreover, one of the
elements {£o} of order 2 belongs to S. Now [a,...,a,b] = [a,...,a,b] - (£0) =
+[—eb,..., (é) a,...,—eal, where i € Zj = Q, U A, implies a = b = 0. Thus
we have Fixge+1(S) < Fixge+1 ({0, 7)) = {0}.

We show that x|g is reducible: Assume that x|g = Xz;+1’ for some j € Z,_1. One
of the elements {+p} of order 2= —L belongs to the conjugacy class of S containing

7, where r = diag[c,c7!] € S has order p — 1. We have x +1( r) = Cp_l + Cp_jl,

Where (p—1 € C is a primitive (p — 1)-st root of unity. Now x(p) = 2 entails

J
p—1

Thus, taking character degrees into account, and recalling that x is rational,

Cp 1 € {£1}, implying 2~ L | 4, an invalid parameter, a contradiction.

we conclude that x|g = X%,# + X;Til' Since (%) = —1 we have Xp+1( )= -1,
hence x(p) = 2 says that —p € S, thus 4 = Z x §S. We note that one of the
elements {£+o} of order 2 belongs to the conjugacy class of S containing s, where
s € S has order 4, so that Xp+1( ) = (%), hence x(o) =2 (%) entails o € S.



V GOLAY 98

ii) If p = —1 (mod 4), then o € A has order 4, while @ € A has order 2. This
entails A = Z.5. For p # 3, since in this case S is perfect, so that S is the
unique Schur representation group of S, we conclude that A = S. For p = 3, an
explicit check shows that A = S as well. For completeness we determine x:

Since Z acts as —Fp41, we only consider the faithful irreducible characters of S,
which are as follows, subscripts denoting degrees: Two (algebraically conjugate)

characters X&, as well as % characters X;—1 for certain ¢ € Zp41, and %3
.2
characters Xi, 11 for certain j € Z,_1. We show that x is reducible:
p—1

Assume that y = Xf)ﬂ, for some j € Z,_1. The element p of order *==

belongs to the conjugacy class of S of r? = diag[c?, ¢c?]. We have X;H(TQ) =

2-1 + (71, where (-1 € C is a primitive p—;l—th root of unity. Now x(p) = 2
= s 2

entails C{,_l = 1, implying % | j, an invalid parameter, a contradiction.
==

Thus, taking character degrees into account, and recalling that y is rational, we
conclude that x = xb., + X1 . We note that the element o of order 4 belongs
2 2

to the conjugacy class of S containing s, where indeed Xi (s) =x(o)=0. 4
2

16 Golay codes

(16.1) Binary Golay codes [1949]. a) Let ¢ := 2 and p := 23. We find that
2 € Z3g has order 11 = 2221 thus Fo((23) = Foun and ¢y € T := Autr, (F2((23))
has order 11. We conclude that 2 € Q3, that is (%) = 1. Hence the I'-orbits

on Va3 are Vo3 = {1} U {{43;1 € Qa3} U {(is;i € Nas}, where

Q53 ={1,2,3,4,6,8,9,12,13,16, 18}.

Thus we have X**+1 = (X +1)-[[;cq,, (X +C5) Tlienn, (X +Cs) = popaps €
Fo((23)[X]. Actually we have X23 +1 = (X + 1) - ¢'g” € F3[X], where ¢’ :=
XU X4 X"+ X4 X5+ X+1and g” = XM+ X104 X064 X541 X4+ X241,
hence the latter are both irreducible.

Let the binary Golay code Go3 < F33 be the cyclic code generated by ¢’; the
associated generator matrix in F32*?3 is given in Table 9. Since (¢')* = ¢ the
code generated by ¢” is linearly equivalent to Gas.

Hence the even-weight subcode G443 < Ga3 has generator polynomial (X +1)-¢' =
X124 x4 X104 X914 X84 X54 X241, Moreover, Go3 has check polynomial
hi=(X+1)-¢"=X24+ X104 X7+ X*+ X3+ X2+ X +1, thus G35 has
generator polynomial h* = (X +1)*-(¢")* = (X +1)-¢’, showing that Ga3 = Gbs;
the associated check matrix in F3'*?? is also given in Table 9.

Choosing a primitive 23-rd root of unity over Fy having minimum polynomial ¢’,

we conclude that Goz is a QR code of type Q; the code generated by g’ then is the
associated QR code of type N. Hence we again conclude that Gy3 = Gbs < Gag.
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Extending yields the extended binary Golay code Go4 := ,C'723 < F3*. Punc-
turing yields G3, = (G23)® = Ga3, and we have G5y = Gy, that is Gy is self-dual.

b) We determine minimum distances:

The code Go3 can be considered as a narrow sense BCH code with irreducible
generator polynomial pu; = ¢’ and associated Frobenius orbit Qs3, hence has
Bose distance § = 5, so that the BCH bound yields d(Gs3) > 5, thus d(Gay4) > 6.

Moreover, the generator matrix of Gas consists of rows of weight 7, hence the
extended code Goys = Goz an Fo-basis consisting of vectors of weight 8. Thus
Gay, being self-dual, is doubly-even, implying d(Ga4) > 8 and d(Ga3) > 7. Note
that, alternatively, the square root bound yields d(Ga3) > [v/23] = 5 as well,
where additionally we have d(G23) =3 (mod 4), hence d(Ga3) > 7.

Thus we have d(Ga3) = 7, and d(Ga4) = d(Gh3) = 8, so that Gas is a [23,12,7]-
code, Goy is a [24, 12, 8]-code, and G, is a [23,11, 8]-code. Finally, the Hamming
bound 223-11. 577 (%) = 212 (1423 + 253+ 1771) = 2!2.2'! = 223 s fulfilled
fore:=3= %; hence Go3 is perfect, and Ga4 is quasi-perfect. i
This allows us to determine the weight distribution of Go4: The latter is a
doubly-even self-dual binary code, that is of Type II. Hence, by Gleason’s The-
orem, see (10.7), its weight enumerator belongs to (f?,g)c € C[X,Y], where
f=Y8 4+ 14X4Y* + X% and g := X*V*4(Y* — X*). Since d(Ga4) = 8 we infer
that Ag,, = f3 — 42g, so that Go4 is an extremal code of Type II, where

Ag,,(X,1) =1+ 759X8 + 2576 X2 4+ 759X 16 + X' € C[X].

c) It can be shown that Go4 is the unique binary [24, 12, 8]-code, up to linear

equivalence. Its linear automorphism group A(Gas) = P(Ga4) < Isomoy(Fg)
8oy is the sporadic simple Mathieu group Mo, of order 244823040 ~ 2.4-108.

Moreover, it can be shown that Gs3 is the unique binary [23,12,7]-code, up
to linear equivalence. Its linear automorphism group A(Gasz) = P(Ga3) <
Isomy3(F2) = Saps, coinciding with Stabp(g,,)(c0) < P(Gas) of index 24, is
the sporadic simple Mathieu group M, of order 10200960 ~ 1.0 - 107.

Finally, we mention that the binary Golay codes are intimately related to
Steiner systems, in particular the Witt systems, occurring in algebraic com-
binatorics; see Exercises (27.5) and (27.6), where we give a brief indication.

(16.2) Ternary Golay codes [1949]. a) Let ¢ := 3 and p := 11. We find that
3 € Z3, has order 5 = 112—*1, thus F5(¢11) = F3s and 3 € T := Autp, (F3((11))
has order 5. We conclude that 3 € Q1, that is (13—1) = 1. Hence the I'-orbits on

Vi1 are Vi1 = {1} U {¢¢,;i € Q11} U {Ciy;4 € Nq1}, where

Q11 ={1,3,4,5,9}.

Thus we have X' —1 = (X — 1)'Hieg/n(X_Cfl)'HieNll(X—Ch) = poMapz €
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Table 9: Generator and check matrices for Gas.

r: » . . . 1 1 1 . 1 . 1 . . . . . . . . . . .
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
L 1 1 1 1 1 1 1 |
r: . 1 . . 1 . . 1 1 1 1 1 . T
1 1 1 11 1 1 1 .
1 1 . 1 11 1 1 1 .
1 1 . 1 .1 1.1 1 1 .
1 1 . 1 11 1 1 1 .
1 1 . 1 11 1 1 1 .
1 1 . 1 11 1 1 1 .
1 1 . 1 1 1 1 1 1
1 1 . 1 1 1 1 1 1
1 1 . 1 1 1 1 1 1

L 1 .1 1 1 1 1 1 1|

F3(¢11)[X]. We have X1t —1 = (X —1)-¢'¢"” € F3[X], where ¢’ := X° — X3 +
X?2-X —1andg” := X5+ X*— X34+ X? —1, hence the latter are irreducible.

Let the ternary Golay code Gi; < Fi! be the cyclic code generated by ¢’ €
F3[X]; the associated generator matrix G € ngn is given in Table 10. Since
(¢')* = —g” the code generated by ¢ is linearly equivalent to Gy;.

Hence G1; < Gi1 has generator polynomial (X —1)-¢' = X% — X% — X% - X3
X?2+4+1. Moreover, Gy1 has check polynomial h := (X —1)-¢" = X°+ X% - X3~
X?2— X +1, thus Gij has generator polynomial h* = (X —1)*-(¢")* = (X —1)-¢,
showing Gi; = Gj,; the associated check matrix H € F5*!! is given in Table 10.
Choosing a primitive 11-th root of unity over F3 having minimum polynomial ¢’,

we conclude that G1; is a QR code of type Q; the code generated by g” then is the
associated QR code of type N. Hence we again conclude that Gi5 = G}, < Gi;.

Extending yields the extended ternary Golay code Gy := Gi1 < Fi2. Punc-
turing yields G35 = (G11)® = G111, and we have Gi5 = G2, that is Gy5 is self-dual.
b) We determine minimum distances:

The code Gy can be considered as a (wide sense) BCH code with irreducible

generator polynomial pu; = ¢’ and associated Frobenius orbit Q;, hence has
Bose distance § = 4, so that the BCH bound yields d(G11) > 4, thus d(Gi12) > 4.
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Table 10: Generator and check matrices for Gy1.

(2 2 1 2 . 1 . |
2 21 2 . 1 .
. 2 21 2 . 1 . 6x11
= 2 2 1 2 .1 < Fs
2 21 2 . 1
I 2 2 1 2 1]
[ 1 12221 . 1
1 12221 . . .
H:= 1. 12221 . . |ert
1 .12 2 21
I 1 122 2 1|

Moreover, Gy is self-dual, hence is 3—divisible. Thus we have d(Gi2) > 6, hence
d(G11) > 5. Note that the square root bound only yields d(G11) > [V11] = 4.

Since the generator matrix of Gy1 consists of rows of weight 5, we conclude that
d(G11) = 5. Similarly, since Gy has a generator matrix consisting of rows of
weight 6, we get d(G11) = 6. Hence Gy is a [11, 6, 5]-code, G5 is a [12, 6, 6]-code,
and G, is an [11, 5, 6]-code, Finally, the Hamming bound 315327 (1) .2 =
35 (1411-2+55-4) = 30-3% =3 is fulfilled for e := 2 = 351; hence Gy, is
perfect, and G5 is quasi-perfect. i

This allows us to determine the weight distribution of Gyo: The latter is a
self-dual ternary code, that is of Type III. Hence, by Gleason’s Theorem, see
(10.7), its homogeneous weight enumerator belongs to (f3, g)c € C[X, Y], where
f=Y(Y?+8X?) and g := X3(Y3 — X3)3. Since d(G12) = 6 we infer that
Ag,, = f3 — 24g, so that G5 is an extremal code of Type III, where

Ag,,(X,1) = 24X +440X° + 264 X° + 1.

¢) It can be shown that Gi5 is the unique ternary [12,6, 6]-code, up to linear
equivalence. Its linear automorphism group A(Gi2) < Isomia(F3) = {£1}12 x
S1o is the non-split two-fold central extension 2.M7o of the sporadic simple
Mathieu group Mz of order 95040; hence P(G11) & Mis.

Moreover, it can be shown that Gy is the unique ternary [11,6,5]-code, up
to linear equivalence. Its linear automorphism group A(Gi;) < Isomp;(F3) 2
{£1}" % 811, coinciding with Staba(g,,)({[0,...,0,%1]}) < A(G12) of index 12,
is the direct product 2 x Mj;, where My, is the sporadic simple Mathieu
group of order 7920; hence P(G11) & Mi;.

(16.3) Example: Football pool ‘13er-Wette’. To describe the outcome of
a soccer match, we identify ‘home team wins’ with 1, ‘guest team wins’ with
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2, and ‘draw’ with 0. Hence the outcome of n € N matches can be considered
as an element of Fy. Now the task is to bet on the outcome of these matches,
and the more guesses are correct the higher the reward is. The football pool
currently in use in Germany is based on n = 13; in the years 1969-2004 it was
based on n = 11, and in Austria n = 12 is used.

According to the German ‘Lotto’ company, it is realistic to assume that 10°
gamblers participate. Betting on a certain outcome actually costs 0.50€ , hence
there are 500 000€ at stake. From this 60% are handed back to the winners,
who have at least 10 correct guesses, according to the schedule below. Assuming
independent and uniformly distributed guesses we get the following winning
probabilities and quotas, where the latter are obtained from the total rewards
by dividing through the associated expected number of winners; these figures
indeed fit nicely to the officially published quotas:

’ hits \ % \ reward /€ | probability - 313 \ winners \ quota/€ ‘

13 | 21| 105000 1 0.63 | 167403.91
12 | 12 60000 | 2-(%) = 26| 16.31| 3679.21
11 |12 60000 [ 22- () = 312| 195.69 306.60
10 | 15 75000 | 23 (V) = 2288 | 1435.09 52.26

i) To facilitate analysis, we assume that a single bet on a certain outcome costs
1€ . This yields the following figures, with reward rates p;, probabilities u; and
quotas q; := ﬁ—l, entailing an expected reward rate of Z?:o Wi = Z?:o pi = %:

li] pila-375] i - 313 \
0 12710 12010 (103) = 1
1 23? % 2 (113) = 26
2| 5 oo | 20 (5) = 312
3] & o 122 (Y) = 2288

ii) To launch a systematic attack, we look for codes having not too many ele-
ments and small covering radius. Thus the best candidates are perfect e-error
correcting codes of length n, for some e € Ny. In this case, the Hamming bound
implies that |Be(0,)] = Y7 |Bi(0,) \ Bi—1(0,)] = >i_ (}) - 2% is a 3-power.
For n = 13 we get the following cardinalities:

e 0o 1 2 3 4 5 6 7
[B.(015)] [ 1 27 339 2627 14067 55251 165075 384723

e 8 9 10 11 12 13
|Be(013)] || 714195 1080275 1373139 1532883 1586131 1594323

Hence, not surprisingly, next to the trivial code and all of F33, we find the case
e = 1, into which the 1-error correcting perfect ternary Hamming [13, 10, 3]-code
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H3 fits; note that indeed the projective plane P2(FF3) has 3;%11 = 13 elements.
Thus with 30 = 59049 bets, out of 3!3 = 1594323, it is possible to guess at least
13—1 = 12 of the outcomes correctly. Assuming that outcomes are independent

and uniformly distributed, we get the following winning probabilities:

Given an outcome v € F33, we have to count the codewords w € Hs such that
d(v,w) = wt(v —w) = 4, for i € {0,...,3}, which amounts to counting the
elements of the coset v + Hs € Fi3/H; having weight i. Averaging over the

313710 = 33 cosets, and placing 3! bets, we get an expected reward rate
3 )
3 )
= 3% 27:0q1 (ZveFés/’Hg I{w €U+H3;Wt(w) :7’}‘)
= g Tigti - [{w € F¥%wi(w) =i}
3
= 3% im0 @i (i 31%)

3
= Zi:() Di,s

which is precisely as good as random guessing. Note that this is independent of
the choice of the reward rates p;, and that we have not used that Hjs is perfect.

iii) Another strategy, using expert knowledge, is as follows: If the outcome of
a single match is for sure, then we may puncture with respect to this compo-
nent, and end up in Fi2. Assuming that the unsure outcomes are independent
and uniformly distributed, and assuming independent and uniformly distributed
guesses we get the following winning probabilities p:

[i] pila-375] py - 372 ‘
0 % 12010 (102) = 1
1| 5 ao || 2°(0) =
2| 2 |2 () = 2w
sl 3| w2 () = o

We get an expected reward rate of

3 3
Dimo Hitli = Zi:O%' i

3 112
= 3-(po+15-p1+13-p2+13-ps)

2097
1300°

—

Hence providing an expected reward rate of ~ 1.61 this is a sensible winning
strategy, only depending on expert knowledge, but not on using any code.

iv) If even the outcome of two matches is for sure, then we similarly end up in
Fil. Looking for perfect codes we get the following cardinalities:

e 0o 1 2 3 4 5 6
[B.(01)] |1 23 243 1563 6843 21627 51195
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e 7 8 9 10 11
[B.(011)] || 93435 135675 163835 175099 177147

Hence, next to the trivial code and all of Fi!, we find the case e = 2, into
which the 2-error correcting perfect ternary Golay [11, 6, 5]-code Gy fits. Thus
with 3% = 729 bets, out of a total of 311 = 177147, next to the above expert
knowledge, it is possible to guess at least 13 — 2 = 11 of the outcomes correctly.

Assuming that the unsure outcomes are independent and uniformly distributed,
and assuming independent and uniformly distributed guesses we get the follow-
ing winning probabilities

(i pia-377] py -3 ‘
0 % % (101) = 1
1 2% Ggo 2 (111> = 22
2| 2] e |2() = 2
3] 2 s 122 () = 1320

We get an expected reward rate of

3 3 Y
Do MG = Do I:Ti 2
11
= 32' §:i=0 %gg *Pi
= 32'(1)0—%%'1)1-1-%'?24-%'1?3)

2259
520 *

Hence providing an expected reward rate of ~ 4.34 this is an even better winning
strategy, only depending on expert knowledge, but not on using any code.

Similar to the attack above, now using the code Gy, averaging over the 31176 =

3% cosets, and placing 35 bets, we get an expected reward rate
3% : 3% : Zvemél/gu (Z?:o Hw € v+ Gi1; wt(w) = i} ‘Qz‘)
= g Siga - {w € FE wi(w) = i}
= Yot (-3
= Z?:o 17 i
which is precisely as good as random guessing the unknown outcomes. Note
that this again is independent of the p;, and of any properties of the code used.

VI Gorpra

17 Goppa codes

(17.1) Generalized Reed-Solomon codes. a) Let n € N be arbitrary, and
let & € {0,...,n}. We choose pairwise distinct places o := [a1,...,a,] of



VI Gorpra 105

Fy, and a vector v := [v1,...,v,] € (F;)". Then the associated generalized
Reed-Solomon code is given as, essentially by evaluating polynomials,

G = GRSg(a,v) :={[v1 f(a1),...,vnf(an)] € Fy; f € Fo[X] <k} < Fy.

Example: Reed-Solomon codes. Let n := ¢ —1 and k := ¢ — 6, where
de{l,...,q}. Moreover, let a = [Cé:ll]j eFi~! and v := [Cél:la)(ﬁl)]j e FIt,
for some a € Zy—;. Then indeed the associated generalized Reed-Solomon code

{6579 (o)) € FTN f € FolX)q—s) < T3
coincides with the Reed-Solomon code of designed distance § and parameter a.

b) Hence G is generated by the rows of the alternant matrix with respect to
the places v and the functions F, — Fg: 2 — o' 'z, that is G = Gi(a,v) ==
=t 1,5 - diaglv;]; € FEX", or more explicitly

[vjai )i = o]

V1 (%) e Un 1 1 . 1
V1001 Vo9 e Un Oy (651 (6%) . Oy,
G=1 . : S Rl I : .| -diagfv;];-
k—1 k—1 k—1 k—1 k—1 k—1
V10 Un Oy e UpQg oy (675 N

In particular, we have v € GRSy («, v) whenever k > 1. Moreover, we observe
that any k-subset of columns of the left hand factor forms a Vandermonde
matrix. In particular, we conclude that G has full F-rank, so that dimg, (G) = k,
implying that G is a generator matrix of G indeed. Since Gi(«, v) is a submatrix
of Giy1(a,v), for k <n — 1, we conclude that

{0} = GRSp(a, v) < GRSy(a,v) < -+ < GRS, —1(a,v) < GRS, (a,v) = Fy.

For k > 1, since any 0 # f € F,[X]< has at most k — 1 zeroes in F,, we
infer that d(G) > n — k 4+ 1. Thus the Singleton bound yields n — k > n —
dimp, (G) > d(G) — 1 > n — k, implying equality throughout, so that G is an
MDS [n,k,n — k + 1]-code. (This also follows from the observation that all
k-subsets of columns of G form an invertible matrix, see Exercise (24.10).)

Theorem. We have GRSy (o, v)™ = GRS, (o, w) < FJ, for some w € F,

where w can be chosen simultaneously for all k£ € {0,...,n}.

Proof. We may assume that k € {1,...,n—1}.

i) We first consider the case k = n— 1, where GRS,,_1 (v, v)* = (w)p,, for some
0#w:=[wy,...,wy] € Fy. Then we have

w - Gn_l(a,v)“ = [wivi]i . [Ozg_l]ij = On—l-
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Assume that w; = 0, for some i € {1,...,n}. Then leaving out the i-th row of
the right hand matrix yields a Vandermonde ((n — 1) x (n — 1))-matrix, giving
rise to a full rank set of linear equations for the remaining entries w;v;. This
entails w;v; = 0, and thus w; = 0, for j # i. Thus w = 0, a contradiction.

Hence w; # 0, for all i € {1,...,n}, showing GRS,,_1(a,v)* = GRS;(a, w).

ii) Let now k € {1,...,n — 1} be arbitrary. We show that GRSy (a,v)t =
GRS, _i (v, w), by showing that G,,_j(a, w) - Gp(a, v) = 0 € Fy" >k,

We determine the entry in row ¢ and column j of the latter matrix, where
i€{l,...,n—k}and j € {1,...,k}: The latter equals > _, wpai * -vkafﬁ_l =
Sor_, wpvgal? 72, which coincides with the entry of w-G,_1(a, v)* in position

i+j—1€{l,...,n— 1}, and hence by i) equals zero. 1

Corollary. For k € {1,...,n — 1} we have GRS («,v) = GRS («,v’), where
v,v" € ()", if and only if (v)r, = (V')F, -

Proof. We only have to show necessity, for which we prove that (v)g, is uniquely
defined by G := GRSy (a,v): Let G+ = GRS,,_x(, w) be the associated dual
code. Then we have v - G,,_1(a,w)" = 0,,_1, that is [v;w;]; € ker([af_l]ij),
where [a] '] € ng("_l) has Fg-rank n — 1. Hence ([vyw;];)r, is uniquely
defined by G, since w € (F;)" this also holds for (v)r, . i

(17.2) Alternant codes [HELGERT, 1974]. Generalized Reed-Solomon codes
give rise to a large class of codes as follows: Let IF; C IF be a finite field extension
of degree f:=[F: Fy] € N let n € N, let k € {0,...,n}, let a := [a1,...,ap]
be pairwise distinct places of F, and let v := [vy,...,v,] € (F*)™.

Then the associated alternant code over I, is defined as the subfield subcode
of GRSy (a,v)t < Fn, that is A := Ag(a,v) := GRSy (o, v)1 N Fy <TF7.

Hence G := Gj(a,v) € F¥*" is a generalized check matrix of A, in the sense of
(5.4). Since any k-subset of columns of G is F-linearly independent, we get the
Helgert bound d(A) > k + 1. Moreover, we have n — fk < dimg_(A) <n—k.

Example. We consider the field extension Fy C Fg = ({), where ¢ = ({7 has
minimum polynomial y¢ := X3+ X 4+ 1 € Fo[X]. Let n:= 7 and k := 2, where
a:= [¢*71];, and let v := 17 and v’ := a. Then we have

[ S S R | 1}andG,_{1 ¢ ¢ ¢3¢t ¢ ¢

1 ¢ ¢ ¢ ¢t ¢t ¢ ¢t ¢ ¢ ¢ P
Hence the associated alternant codes have minimum distance > 3, are non-
trivial, and have F-dimension < 5. More precisely:

G
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i) In the second case, we observe that the second row of G’ is the Frobenius
image of the first row, hence is redundant. Thus blowing up « yields

1001011
H:=10 1011 1 0| eF>*,
0010111

the associated code being linearly equivalent to the Hamming [7, 4, 3]-code H3.

1
ii) In the first case, blowing up G, and ignoring two zero rows, yields [ I; } €

F3*7, now giving rise to the even-weight Hamming [7,3, 4]-code Hj.

Example: BCH codes. Let C < Fy, where ged(g,n) = 1, be a BCH code
of designed distance § € {1,...,n + 1}, and consecutive defining set V :=
{¢e,...,¢at%2} C Fy(¢n) =: F of length § — 1, where a € Z,. Then C has

generalized check matrix
H(V) = [¢(fT D005 = [¢f V0D, - diag[¢rt Y]y e FO-Dxm,

Thus C coincides with the alternant code As_1(,v), where o = [¢77!]; and
v = [(%J*l)]j. Note that from d(As_1(a,v)) > § we recover the BCH bound.

(17.3) Goppa codes [1970]. Generally speaking, alternant codes allow for
kind of too much flexibility, inasmuch their parameters, the places a and the
vector v, can be chosen independently. We consider an important subset of
alternant codes, which arise from specifying relations between « and the vector
v. To do so, we need some preparation first:

a) Let F be a field, let & := F[X], and let % := Q(&) = F(X) be the field of
rational functions in the indeterminate X; recall that & is Euclidean, hence in
particular is a principal ideal domain, and thus is a unique factorization domain.

Let 0 £ g = Zf:o ¢: X" € O, having degree k := deg(g) € Ny. Then let
Oy = 1% € H;ged(ag,b) = 1} € be the localization of & with respect
to the multiplicatively closed set {b € &'\ {0};gcd(b, g) = 1} C &, having the
ideal “

90t = {3 € Ogyiged(a,b) =1,g | a} A0y C X .

Note that we do neither assume g to be non-constant nor to be irreducible. We
have g0,y = O, if and only if g is constant. If g is irreducible, then 0, is a
discrete valuation ring in %", thus is a local ring whose maximal ideal is g&'y.

b) Now let F, C F be a finite field extension, and let o := [a1, ..., ] be pair-
wise distinct places of F, where n € N, such that g(a;) # 0, for ¢ € {1,...,n}.

Hence we have ged(g, X — ;) = 1, so that X% € Oy Let

23
n

wa:F”—>@g>:c:[cl,...,cn]HZ
i=1

C;
X—Oéi'
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Thus v, is F-linear, its image consists of rational functions having poles of order
< 1 in the places « only, and v, specifies the associated residues.

Then the (classical) Goppa code associated with the places « is defined as
Gla,g) =19, (90)) NFy = {c€Frig | Yalc) € Oy} <FP;

it is called separable if the Goppa polynomial g does not have multiple
zeroes (in a splitting field); it is called irreducible if g € & is irreducible. In
particular, if g is constant, that is k = 0, then G(a,g) = Fy. (Note that the
roles of 1, and g are reminiscent of the roles played by the map ¢ and the
generator polynomial for cyclic codes.)

(17.4) Theorem. We keep the notation of (17.3).

i) For k > n we have ¢ (904) = {0}, and hence G(a, g) = {0}.

ii) Let v := [v1,...,v,], where v; := ﬁ € F*. Then for £ < n we have
V' (90y)) = GRSk (a,v)* < F", and hence G(a, g) = Ag(,v) < FJ.

In particular have the Goppa bound d(G(«,g)) > k + 1.

Proof. We may assume that g is non-constant, that is k¥ > 1. Then we have
g—g(a;) = (X — ;) f; € O, where f; € 0 is given as

k k—1 r

T e DA =D DU M S L

r=1

which can be rewritten as fl = Zkfl(zl; ;gﬂ_la ) X*® € 0. Moreover, we

0
have deg(f;) =k — 1, and i —vifi € O1)/90 )

Let ¢ = [c1,...,cn] € F™. Then wa(c) € g0y ifand only if Y°1" | cjv; fi € g0y
Since f; € 0 and g0, N €O = g0, this holds if and only if Y- | civif; € g0,
which since deg(f;) = k — 1 < k = deg(g) is equivalent to Y i, c;v;f; =0 € 0.

In turn, considering homogeneous components, the latter holds if and only if
Dy Zi;; gry10; “vic; =0, for s € {0,...,k — 1}, or equivalently

n k—s—1 n
Z Z Jsrtp10ivic; = Z (gk,sﬂ . Zafvici) =0, for s €{0,...,k—1}.
=1 t=0

t=0 =1

Running through increasing values of s, and recalling that g, # 0, shows that
this amounts to a uni-triangular system of equations for the entities Z L atvic,
for t € {0,...,k —1}. Thus we infer that the above is equivalent to having
Dy aﬁvici = 0, fort € {0,...,k—1}, or equivalently [a!™'];;-diag[v;];-c™ = OFF.

Since Gy, (e, v) € GL,,(F), for k > n we get ¢ = 0; for k < n we get the conditions
¢ Gr(a,v)'™ = 0y, for the generalized Reed-Solomon code GRSy (v, v)t. i
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Example: Narrow sense BCH codes. Let C < Fy, where ged(g,n) =1, be a
narrow sense BCH code of designed distance § € {1,...,n+1}, and consecutive
defining set V := {(p,...,¢37'} C Fu(¢,) =: F of length (5 — 1. Reversing the

order of V, we get the generalized check matrix H = [C((S D= 1)] € FO-1xn,
Now, letting « := [¢}77]; € F", and choosing the Goppa polynomial g := X°~!,
we get v = [g(¢h7) 7] = 7(;571)(]71)]3‘ € F™, and hence indeed

Gs_1(o,v) = [Cr(f_1)(1_‘j)+(6_1)(j_1)}ij - [Cr(f_i)(j_l)]ij - H.

Note that BCH codes are not always Goppa codes, see Exercise (28.5).

(17.5) Goppa codes are good. We proceed to show that the class of irre-
ducible Goppa codes over [, reaches the asymptotic Gilbert-Varshamov bound.
We need a little preparation first:

For k € Nlet I,(k) C F,[X] be the set of monic irreducible polynomials over F,
of degree k, and let Lq(k;) :=|I; (k)| € No. Then for j € N we have

¢ =deg(X" —X) =" Y deg(f)=> k-14(k)
k17 FEI,(h) Kl

Thus M6bius inversion with respect to divisibility, using the number theo-
retic Mébius function p: N — {0, £1}, yields ¢4(k) = 1 - Zjlk,u(?) -¢/. In
particular, using p(1) = 1, for k > 2 we get

1 2 1 e N
k) 2 5 @ =2 ) = (=) > el ma T 20

Theorem. Let 0 < § < %. Then there is a sequence of irreducible Goppa

codes G, over F, of length n = ¢", for r € N, such that limsup,_, . §(G,) >
and limsup,_, ., p(Gr) > 1 — Hy(6).

Proof. i) Let d = d, := [nd] € N, that is d is minimal such that ¢ > §. Hence
from nd < d <nd+1 we get lim, % = 4.

Moreover, let k = k. € N be minimal such that

b=b,:=d-|Bs_1(0 dZ()ql )i < nk—

hence we have k£ > 3. We may assume that n and in consequence d are large
enough such that 3¢ () > n?, so that we have k > 4; in particular n > 3.
1_

k—

Then we have n*=2 < n "> < b < nP. Taking logarithms yields

k=) _ logq<b> _log, () og,(Bas(0)) _ vk
n n n n n
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From lim,— s logg(d) _ limTHoo(log;(d) . %) =0, and lim, 00 & = limpo0 qu =
0, by (8.3) we get
k log,,(|Bq—1(0y,
lim ™_ lim —gq(| a-1(0n)]) =H,(0) <1
r—oo N 00 n

Hence for r > 0 we have 4 < k <n=4q".

ii) We show that there is an irreducible Goppa [n, k,, d,]-code G, over F,, such
that k. > n—rk and d,, > d. Then we have limsup,._, .o p(G,) > lim,_, ”_n”“ =
1 — Hy(6) and limsup, _, . 6(G,) > lim, ;o 4 =4, as desired.

To this end, let F := Fyr = {aq,...,an}, and let @ = [oq,. .., a,]. Hence we
have to show that there is g € I,,(k) such that d(G(«a, g)) > d:

Let h € I,(k) such that there is 0 # ¢ = [c1,...,¢n] € G(a, h), where J :=
supp(c) such that j := |J| < d. Then we have ¢o(c) = >, x%%5 = ¢ €
A, where a,b € F[X] such that ged(a,b) = 1 and h | a. Since we have
Ya(c) - HlEJ(X a;) € F[X], we conclude that deg(a) < j — 1. Thus there are

at most |

1| such polynomials h such that ¢ € G(a, h).

Hence, running through all possible choices of ¢, we have to exclude at most

d—1 d—1
-1 n d b 1 kt2
>l ()q‘l kZ()q—l SpSpten)

j=1 j=1
polynomials h as above from I, (k). Since we have v, (k) > %(nk - n¥), we
conclude that there is a polynomial g € I,,(k) as desired. i

18 Background: Varieties

(18.1) Affine and projective varieties. a) Let F be an algebraically closed
field. For n € Ny let A" = A™(F) := F" be the n-dimensional affine space
over F, its elements x = [x1,...,2,] € A" are called points; in particular, A!
is called the affine line, and AZ? is called the affine plane.

Let X := {Xj,...,X,} be indeterminates over F, let & := F[X], and let .# =

Oroy = Q(0) = F(X). Letting p < & be a prime ideal, the set of zeroes
V=V(@p)={zecA" f(x)=0for fep} CA"

is called an (irreducible) affine variety, and Zv := &'/p is called the associ-
ated (affine) coordinate ring.

Then 0, = {f € X9 ¢ p}is alocal ring having maximal ideal p&, = {f

Hi9€Ep, f€ p} < Oy, and the residue field J&y == 0, /p0, is called the ﬁeld
of rational functions on V. Moreover, we have an embedding Zv C v,
such that (%V){O} = Q(%V) = .
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b) Let P* = P"(F) be the n-dimensional projective space over F, whose
points are given as equivalence classes z = [vg: z1: ... : z,] € (A"T1\{0})/~,
where ~ is given by letting « ~ y if y = ax for some a € F*; in particular, P!
is called the projective line, and P2 is called the projective plane.

Let X := {Xo,X1,...,X,} be indeterminates over F, let & := ﬁ[zﬂ, and let
po := (Xo,X1,...,Xpn) < O Dbe the irrelevant ideal, which is maximal and
homogeneous with respect to the natural grading. Letting py # p < & be a
homogeneous prime ideal, the set of zeroes

V =V(p):={z P f(x) =0 for f € p homogeneous} C P"

is called an (irreducible) projective variety, and %y := O/p is called the
associated (homogeneous) coordinate ring.

Let Q'(0) C Q(O) be the localization of Q(&) with respect to the multiplicative
set consisting of the non-zero homogeneous polynomials. Then Q'(&) has a
grading given by deg(g) := deg(f) — deg(g), where f,g € & are homogeneous.
Let X = O(0y) € Q'(0) be the homogeneous field of fractions of &, thus

— X1 Xn

A = {g eQ(O0); f,g homogeneous,deg(g) =0} =F(5-

XO".'770)'

Then O, := {5 € X ;g € p}is alocal ring having maximal ideal

pﬁpmﬁ(p):{ge%;g@,fep}<ﬁ(p>v

and Hv = O(,)/(pOp N O(y)) is called the field of rational functions on V.
We still have (%v)(03) = #v, but we do not have a map from Zy to Hv.

Example. i) The full affine space A™ is an affine variety, having regular func-
tions Oan = € and function field #a» = Q(0) = £, hence dim(A™) = n.

Any singleton set {x} C A™ is an affine variety, having regular functions &y, =
O/p, = F, where p, = (X1 —21,...,X, — x,) < 0 is maximal, and function
field ;3 = Q(F) = F, hence dim({x}) = 0.

ii) The full projective space P" is an projective variety, having function field
Hpn = K, the graded field of fractions, hence we have dim(P™) = n.

Any singleton set {x} C P™ is a projective variety, with associated maximal
ideal p; = (v0 X1 — 21 X0, ..., 20Xn — 7, X0) < O, having function field 7, =
Opy/ (9205, N Oy.)) = O/py = F, hence we have dim({z}) = 0.

(18.2) Regular functions. Let V be a variety. Then, since F is algebraically
closed, the field 5y, of rational functions on V is separably generated, that
is it contains a finitely generated rational function field K such that K C J#y,
is a finite separable extension.
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The transcendence degree of J#y is called the (Krull) dimension dim(V) :=
trdeg(#v) € Ny of V; if dim(V) =1 then V is called a curve.

Given x € V, and ¢ := 5 € Jy such that g(x) # 0, then ¢ is called regular at
the point . The set €, C J#y of all regular functions at x is called the local
ring at z, having maximal ideal m,, := {¢ € O,; ¢p(z) = 0} < 0,; hence we have
the residue field F, := &, /m, = F. Moreover, we have i) 0, = (Zv),, in the
affine case, and ii) 0, = (%v)(p,) in the projective case.

If U C V is an open subset (with respect to the Zariski topology) such that ¢ is
regular in all points of U, then ¢ is called a regular function on U; recall that
U is dense whenever U # (. Let 0y C 2y be the ring of all regular functions
on U; in particular, we have 0y = Jy. To describe the regular functions Oy
on all of V| we have to distinguish the affine and projective cases:

i) Let V be affine. Since & induces polynomial functions on V, we have &'/p C
Oy, hence it follows from Hilbert’s Nullstellensatz that Oy = 0 /p = Zv .

ii) Let V be projective. Then any morphism from V to any (quasi-projective)
variety is closed. (This is reminiscent of the topological notion of compaciness.)
In particular, any regular function V. — A! is constant, entailing 5, = F.

(18.3) Affine open subsets. We discuss the relation between affine and pro-
jective varieties: Let V.= V(p) C A" be an affine variety.

For 0 # f € 0 := F|X] let ji;: Xg#WD p(F Xy e 0= F[;E] be its
homogenization; then deg(f) = deg(f), and for completeness we let 0 := 0.

Let Dx, :=P"™ \ V(Xj), which is open, hence is dense in P", and let
wo: A" = Dx,: [21,.. . &)= 1oz oo @y
Then ¢( is a homeomorphism with inverse

0ot Dxy — A™: [zo: xy: ot an] = [, 20

Let p:= (f € 0; f € p) < O, which is a prime ideal, and let V := V(p) C P".
Then we get ¢o(V) = V N Dx,, which is open, hence is dense in V; thus
©o(V) =V. The set VN V(Xy) =V \ po(V) are called points at infinity.

For any U C 'V open the associated comorphism

QDSI ﬁV,U — ﬁV,U: f —

is a ring isomorphism, with inverse

. @ deg g—deg(f) | f(X)
Tvut gy Ko G(X)’
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Thus ¢p is an open immersion, so that V can be identified with the affine
open subset ¢o(V) C V. In particular, we have A™ = ¢o(A™) C P"; for
n =1 we may write P! = A! U {00}, where the latter point is [0: 1] € P*.

(18.4) Regular points. a) Let V be a variety, and let z € V be a point. Then
the cotangent space T} = Ty, , = m,/m2 of V at z is a finitely generated
vector space over F, = 0,/m, = F, such that dimg(T;) > dim(V). The
(Zariski) tangent space is defined as T}, = Ty, := Homg(m, /m2,F).

If dimp(T}}) = dim(V) holds, that is €, is a regular local ring, then z is
called a regular point of V, otherwise x is called singular.

The set of regular points is a non-empty open, hence is a dense subset of V.
The variety V is called smooth or non-singular if all its points are regular.
For example, the affine space A™ and the projective space P™ are smooth.

b) The intrinsic property of regularity can be checked as follows, as soon as an
explicit embedding into some affine or projective space is given:

Let V = V(p) be a variety, and let p = (Fy,...,Fy) < O, for some k € N,
where in the projective case the F; are homogeneous. Abbreviating 0; := Ox;
for j € {0,...,n}, the associated Jacobian matrix is i) in the affine case

J=J(Fy,...,F) = Jx(F1, ..., Fy) = [0;Fi)i; € 0"*™,

and similarly ii) in the projective case J := Jz(Fy, ..., Fy) € %>+,

Proposition: Zariski [1947]. We have dimz(T}) + rkg(J(x)) = n. i

Thus rkg(J(z)) < n—dim(V), and 2 € V is regular if and only if equality holds.
c) If V. .C A" is affine, this can be geometrically interpreted as follows: Let
x=|x1,...,2,] € V,and for f € 0, let

n

D:cf = Z(a]f)(xh .. 71771,) ' (Xj - xj) cmy ﬁr

j=1
Then the geometric tangent space of V. C A™ at x is the affine subspace defined

by (Dy(F1), ..., Dy(Fg)) < O, thus we have Tycan . = = + ker(J" (z)) € A",
indeed being an affine space of F-dimension n — rk(J(z)).

Now these locally defined spaces are ‘bundled’ globally as follows:

(18.5) Differential forms. a) Let V be an affine variety, and let pv: Oy @f
Ov — Ov: f ®g+— fg, which is an Oy-module homomorphism. Then Qy =
Qg = ker(uy)/ ker(uv)? is called the Oy-module of Kihler differentials.

The F-linear total differential d: Oy — Qv : f = f®1—1®f is a derivation,
that is fulfills the product rule d(fg) = df - g+ dg- f; thus the elements of Qv
are also called regular differential forms.
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For the full affine space A™ it turns out that Qa~» = Qg is the free &-module
generated by {dX1,...,dX,}, and we get df = >°7_, 9;f - dX.

In general, if V.= V(p), where p = (F1,..., F) < O, for some k € N, then Qv
can be described as follows: Note that Qg Qe Ov = @?:1 Oy - dX,, is the free
Oy-module generated by {dXy,...,dX,}. Then we have

v = (D Oy - dX,) /{dF; F € p)oy, = (D Ov - dX,) /(dFy, ..., dF) oy,
j=1

j=1

The derivation d extends to &y = Q(Ov), yielding the J&y-module Q 4, =
Qv ®e,, Hv; the elements of Q x, are called rational differential forms.
Then we have dim 4, (Q.4,) = d := dim(V).

If z € V is regular, then there is an affine open neighborhood U C V such
that Qp is a free Oy-module of rank d; hence 2y is said to be locally free.
Moreover, if V is smooth, then Qv is a (globally) free &y-module of rank d.

b) We consider the local behavior at a regular point = [zy,...,7,] € V: In
this case O, is a regular local ring, where m, = P.0; < Oy and F,, := O, /my,
such that T := m,/m?2 is an F-vector space of dimension d.

It turns out that €, := (Qv)p, = Qv ®e O is a free O -module of rank d, and
thus QR = Q,®g, F, is an F-vector space of dimension d. Let d,: 0, — Q, and

dg, O, — F, — Qf be the associated derivations. Using the F-isomorphism
Qf = T, ds (X;) — X; — x;, we may identify dg_f with D, f, for f € O,.

c) Let V be a projective variety, and let U C 'V be open. We aim at defining
differential forms on U by a process called gluing; to this end recall that the
affine open subsets are a basis of the Zariski topology:

Note first, that if W C V C V are affine open subsets, then by restriction of
functions we get a restriction map Qy — Qu: w — w|w. Now let {U;}iez
be an affine open covering of U, for some (finite) index set Z, and let w; € Qy,
be compatible in the sense that, for 7,5 € Z and any affine open subset V' C
U; N Uj, we have w;|y = wj|y. Then the set {w;}iez defines a unique regular
differential form on U. Let Qy be the Oy-module of all forms obtained by
this process, together with a derivation dy: Oy — Q. #

Similarly, a rational differential form on V is obtained by gluing regular
differential forms on open (affine) subsets of V (not necessarily covering V).
This yields the J3,-module € x4, , together with the derivation dv : S — Q-
The elements of the image dv () C Q. are called exact differential forms.

Finally, for a regular point 2 € U we get the 0,-module Qy, = Qy,,, where
V C U CV is an affine open neighborhood of .
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19 Background: Curves

(19.1) Curves. a) Let V be a smooth projective curve. Then any z € V is
regular, that is dimp(7);) = 1. Hence 0, C J# is a discrete valuation ring,
and any element of m, \ m2 is called a local (uniformising) coordinate.

Let v, : 5 — Z be the associated (discrete) valuation, also called a place
of J#s, which for 0 # f € 0, is given by v, (f) := k > 0 if f € m¥\ mk*t! and
for f € v\ O, is given by v, (f) := —ym(%) < 0.

If 0 # f € S such that v, (f) > 0, then f is said to have a zero of order
ve(f) at x; if v, (f) < 0, then f is said to have a pole of order —v,(f) at x.

Since the set of points at which f is regular and f(z) # 0 is non-empty and
open, hence is dense in V, and thus has a finite complement in V| we infer that
v (f) = 0 for almost all points of V.

b) We now bring morphisms into play: Let W be any curve (not necessarily
projective nor smooth), and let ¢: V.— W be a non-constant morphism.

Theorem. Then i) W is projective, ii) ¢ is finite, thus is surjective with finite
fibers, and iii) ¢* induces a finite field extension Jw = o*(Hw) C Ay . 1

The degree of ¢ is defined as deg(y) := [ : HFw] € N.

(19.2) Divisors. a) Let V be a smooth projective curve. The free abelian
group Divy := @,y Z- (x) is called the group of (Weil) divisors of V. The
divisor (z), where x € V, is called a prime divisor.

Let D =3} oy My (z) € Divy. The finite set supp(D) := {z € V;m, # 0} C
V is called the support of D. Moreover, D is called effective, if m, > 0 for
all z € V. This yields a partial order, by letting D > D’ if D — D’ is effective.

We have the degree homomorphism deg: Divy — Z of abelian groups, given
by deg(D) := > oy Mz - [Fs: F]. Recalling that, since F is algebraically closed,

we have [F,: F] = 1, we just get deg(D) = ) .y M. In particular, for prime
divisors we get deg((z)) = [F,: F] = 1, so that the degree map is surjective.

Let DiVQ/ < Divy be the kernel of the degree homomorphism, the subgroup of
divisors of degree 0, and let the Néron-Severi group be Divy/ DiVQ, =7

b) Let ¢: V — W be a non-constant morphism, where W is a smooth projective
curve. Then for 2 € W let t, € 0, be a local coordinate, and let ¢~!(z) =
{y1,...,y-} €V, for some r € N; then we have ¢*(t,) € my, < 0),.

The number ey, (@) := vy, (¢*(t.)) € N is called the ramification index of ¢
at the point y;. If e, (¢) > 2, then y; € V is called a ramification point, and

z = p(y;) € W is called a branch point; in this case, if char(F) { ey, (¢) then
the ramification is called tame, otherwise it is called wild.
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For the prime divisor (z) € Divw we get the effective divisor
T
z)) = Zeyi (¢) - ( Z vy, (¢ - (yi) € Divy.
i=1

Theorem: Degree formula. Recalling deg((z)) = 1 and [F,: F] = 1, we get
deg(e Z ey, (@) = deg(p). i

By Z-linearity this gives rise to a group homomorphism ¢*: Divyw — Divy,
mapping effective divisors to effective divisors, where by the degree formula we
have deg(¢*(D)) = deg(yp) - deg(D), for D € Divw.

(19.3) Picard groups. a) Let V be a smooth projective curve. For f € J&;
let the principal divisor be defined as follows; note that (f) € Divy indeed:

(f) =Y valf) - (x) € Divw.

zeEV

Moreover, (f)o := X cv(s) Va(f) - () € Divy and (f)e := (§)o € Divy are
called the zero and pole divisor of f, respectively, so that (f) = (f)o — (f)oo-
For example, if a € F is constant, then (a) = 0 € Divy, thus deg((a)) = 0.

k|

In order to state the following theorem, note that any element of %y \ F can
be considered as a non-constant morphism V — P!, and as such has a degree.

Theorem. Let ¢ = % € v \ F, where f,g € %y are homogeneous. Then we
have deg(¢) = deg(f) = deg(g) and deg((¢)) = 0.

Proof. We consider the morphism ¢: V. — P! = A U {co}: 2+ [g(z): f(x)].
We have tg = t[1. o) = X and to, = t[. 1) = Y, where ¢*(to) = ¢*(X) = f and
©*(too) = p*(Y) = g. Hence we get

deg(p™((0))) =deg (Y wlf)-(@) = Y walf)=deg(f),

z€p=1(0) z€V, f(x)=0

and similarly

deg(p*((00)) =deg( Y wlg)- (@)= > valg) = deg(g).

zEP~1(c0) z€V,g(x)=0

Thus the degree formula yields deg(yp) = deg(f) = deg(g). Moreover, since
() = ¢"((0)) — ¢*((00)) € Divy, this implies deg((¢)) = 0. i
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This yields an injective group homomorphism J&; — Div% < Divy, whose
image (J4y) := {(f) € Divy; f € J£;} is the subgroup of principal divisors.

b) The quotient group Picy := Divy /(J4)) is called the divisor class group
or Picard group of V; its elements are written as [D]. Divisors D, D’ € Divy
are called (linearly) equivalent if [D] = [D'] € Picy; we also write D ~ D'.

Since (J4F) < DivY,, the Picard group inherits the (surjective) degree homomor-
phism, and we let Picg, = Div%/(%v*) be its kernel, also called the pure Pi-
card group. Hence the Néron-Severi group is Picy /Picy 2 Divy /Divy = Z.

It turns out that PicY, carries the structure of an abelian variety, that is
a projective variety carrying the structure of a (necessarily abelian) algebraic
group, being called the Picard variety or Jacobian variety of V.

c) If p: V — W is a non-constant morphism of degree d := deg(¢) € Ny,
where W is a smooth projective curve, then we have ¢*: (J45) — (Jy) and
p*: Div%v — Div%, yielding group homomorphisms ¢*: Picw — Picy and
p*: PicOW — Pic%7 by the degree formula entailing the group homomorphism

©*: Z = Picw /Picty — Picy/Pic}, 2 Z: 1+ d.

(19.4) Theorem: Interpolation. Let V be a smooth projective curve, let
{z1,...,2,} C V be pairwise distinct, where n € N, and D € Divy. Then
there is D’ € Divy such that D’ ~ D and supp(D') N {z1,...,2,} = 0.

Proof. We may assume that D is prime, and by induction we may assume that
supp(D) N {z1,...,Zn_1} = 0, thus D = (z,,). Moreover, by choosing an affine
open subset containing {z1,...,z,}, we may assume that V is affine.

Since V is affine, we may choose a local coordinate t € Oy C 0, at z,. By
Hilbert’s Nullstellensatz, for j € {1,...,n—1} let g; € Oy such that g;(z;) = 1,
and g;(z;) =0 for j #ie {1,...,n}.
Let f :=1¢+ Z;:ll ajgjz € Oy, where a; € F. Then for i € {1,...,n — 1} we
get f(z;) = t(x;) + Z;le ajgi(x;)* = t(z;) + a;. Thus choosing a; # —t(x;) we
have f(x:) # 0, thus # & supp((f)).

Moreover, we have g;(z,) = 0, hence %(E;;f a;jg7) > 2, showing that
Vg, (f) = vs, (t) = 1. Thus in conclusion we get supp((f)—(z,))N{z1,..., 2.} =
(. Hence the divisor D' := D — (f) € Divy is as desired. i

(19.5) The Riemann-Roch problem. Let V be a smooth projective curve,
and let D € Divy. Then, looking for rational functions which are ‘at least as
regular’ as prescribed by the ‘wish-list’ or ‘bookkeeping device’ (—D), that is
whose orders of zeroes are bounded below and whose orders of poles are bounded
above by (—D), we let

ZL(D) = L, (D) :={f € 45:(f)+ D = 0} U {0}.
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By the triangle inequality this an F-vector space, called the (Riemann-Roch)
(-Z-)space of functions over D. For example, if D = 0, then any element of
Z(0) is regular on V, hence is constant, so that .£(0) = F.

The Riemann-Roch problem is to determine dimg(-Z(D)). This actually
only depends on the divisor class [D] € Picy: If D ~ D', that is D — D' = (g)
for some g € 5y, then £ (D) — Z(D'): f — fg is an F-isomorphism.

Proposition. i) If deg(D) < 0, then .Z(D) = {0}.
ii) If deg(D) > 0, then dimz(Z(D)) < 1 4 deg(D).

Proof. We may assume that there is 0 # f € Z(D). Then .Z((f) + D) =
Z (D) # {0}, where (f) + D > 0 and deg((f) + D) = deg(D).

i) We have (f) + D > 0 and deg((f) + D) < 0, a contradiction.
ii) We may assume that D = >""_, m; - (x;) is effective.

We need some preparation first: For z € V, let @C be the m,-adic completion
of 0,. Then 0, is a graded F,-algebra, such that there is a natural embedding
Oy — O, of F,-algebras, and by Cohen’s Structure Theorem we have 0, =
F.[[t.]], the ring of formal power series in the indeterminate ¢,. (In a certain

~

sense O, can be seen as the ‘very local ring’ of V at z.)

Moreover, for m € Z the m,-adic completion of t]' 0, is

o, = [[ ¢o.)/ o) =[] s, =00,

jzm j>m

1%

£ [[t))

being a graded ﬁAI-module, consisting of formal Laurent series.
Now we get an F-linear map

T

a: Z(D) — @(t;mi é@/ﬁlz) = @ Gé@;jﬁmi.

i=1 i=1 j=1

Let f € ker(«); then f is regular at the points x;, and since f is regular at all
points in V \ {z1,...,z,} anyway, we conclude that f is regular on V, thus is
constant. Hence we have dimg(ker(a)) = 1.

This yields dimz(.Z(D)) — 1 < >0 m; dimg(F,,) = i, m; = deg(D). t

(19.6) Canonical divisors. a) Let V be a smooth projective curve, and let
0 # w € Q4,. Then for any z € V and any affine open neighborhood U C 'V of
x, we have w|y € Q. Now 4, is a Jy-vector space of dimension 1, being
generated by dys(t,), where t, € m, \ m2 C &, is a local coordinate.

Hence we have dy(w) = dy(w|y) = fue - do(ts), for some f, , € JF; then f, »

is called the derivative of w with respect to t,; we also write f,, , = %
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Letting v, (w) := v4(fu,») € Z be the valuation of w at the point z, using the

formal Laurent series expansion f, , = Y. (foz)itd €t (w)ﬁA’m, we get

]zVI(w)

Q@)= Y (fuu)ith duo(ts) € U = Qy @0, O,

JZ’/T(W)

Now the residue of w at the point x is defined as res, (w) := (fy..)-1 € F, 2T.
(It can be shown that this is independent of the choice of ¢,.)

Theorem: Residue Theorem. We have (note that the following sum is finite)

Z res; (w) = Z res; (w) = 0. i

z€V €V, v, (w)<0

b) The divisor of w is defined as follows; note that (w) € Divy indeed:

(w) = Z Vm(fw,a:) : (x) = Z Vz(OJ) . (l‘) € Divvy.

zeV zeV

Since any non-empty open subset is dense in V, we conclude that any rational
differential form on V is uniquely determined by considering any open neigh-
borhood of some arbitrarily chosen point, and that the quotient of two non-zero
rational differential forms is given by a rational function in JZ;.

Hence (w) € Divy defines a unique divisor class [(w)] € Picy, being called the
canonical divisor class. Any divisor on V being equivalent to (w) € Divy is
called a canonical divisor (the terminology going back to MUMFORD). Then
the (geometric) genus of V is defined as

9= gv = dimg(-Z((w))) = 0.

(19.7) Special divisors. Let V be a smooth projective curve, and let D €
Divy. Then the F-vector space

QD) = Qs (D) = {w € L, \ {0}; (w) — D = 0} U{0}

is called the space of differential forms over D. Moreover, D is called
special if (D) # {0}, and dimz(2(D)) € No is called the index of specialty
of D. Indeed, (D) is finitely generated as F-vector space:

Given a fixed 0 # w € Qu,, for f € 4 we have fw € Q(D), if and only if
(fw) = (f) + (w) = D > 0 € Divy, which holds if and only if f € Z((w) — D);
thus we have an F-isomorphism Z((w) — D) — Q(D): f — fw. i

Example. i) For D = 0 we get the module of regular differential forms Qv =
(0), so that .Z((w)) = Qv as F-vector spaces, thus gy = dimg(Qv).

ii) For D = (w), from .£(0) = F we get Q((w)) = (w)g, thus dimz(Q((w))) = 1.

iii) If deg(D) > deg((w)), then .Z((w) — D) = {0} implies that D is non-special.
(By ii) this bound on deg(D) is best possible.)
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(19.8) Theorem: Riemann—Roch [~1850, for complex curves].

Let V be a smooth projective curve having canonical divisor (w) € Divy, where
0 # w € Dy, and genus g = gy = dimp(Z((w))) = dimp(Qyv) > 0. Then for
any divisor D € Divy we have

dimg(.Z (D)) = 1+ deg(D) — dimz(Qy) + dimz(Q(D)). 4

We are not at all able to prove this ‘bread-and-butter theorem’ here, but in
order to underline its importance we rush to present various applications:

Corollary. We have deg((w)) = 2g — 2.

Proof. We apply the theorem to the (special) divisor D = (w): We get g =
dimg(Z((w))) =1 + deg((w)) — g + dimg(2((w))) = deg((w)) +2 —g. i

(19.9) Plane curves. Let V C P2 be a smooth plane projective curve.

Then, by Krull’s principal ideal theorem, we have V = V(F), where F €

Hp2 =2 F[ Xy, X1, Xs] is irreducible and homogeneous, such that
[(Ox, F) (w0, w1, 22)]s # [0,0,0],

for [xg: w1: 23] € P? such that F(xg,x1,72) = 0. Conversely, any such polyno-
mial F' defines a smooth projective curve, and given V(F’) then F' is unique up
to scalar multiples. Then d := deg(F') € N is called the degree of V, where V
is called a conic, cubic, quartic, quintic, for d = 2, 3,4, 5, respectively.

Theorem. Then (d — 3) - (Xy) € Divy is a canonical divisor of V.

Proof. i) We consider the open affine covering of V given by U := VN Dy,
and V:=VNDx, and W :=VNDx,. Hence U can be identified with V(G),
where Al = i((; and G(Al,AQ) = F(17A1,A2) = % . F(Xo,Xl,XQ).

0

Similarly, V' can be identified with V(H), where B; := §i and H(By, B2) =

F(By,1,Bs3) = % - F(Xo, X1, X5); and W can be identified with V(I), where
Ci = ))g; and I(Co,cl) = F(CO701, 1) = % . F(Xo,Xl,XQ).
2

ii) We first consider U, where we may assume that U # (): Let 9;G := 9a,G,
and let Dy := Dg,¢ N Dy, C U; then by smoothness we have U = Dy, U
Dy, ;. Moreover, {d(A1),d(A2)} generates Qi as an Zy-module, subject to the
relation (01G)d(A1) + (02G)d(A2) =0 € Qp.

Hence on Dy we have glzd(A1) = — 55 d(As) € Qp,. Thus letting

1 1
wh = —al—Gd(Ag) €Qp, , and wj:= az—Gd(Al) €Wy
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defines a regular differential form wy € Q, vanishing nowhere on U. Hence we
have Qu = wop - Zu, being a free Zy-module (of rank 1). Let w € Q 4, be the
extension of wy to V; hence we have supp((w)) NU = 0.

Similarly, whenever V' # () we have Qy = wy - Zv, where w; restricts to w{ =

ﬁd(Bo) € Qp,,; and whenever W # 0 we have Quw = ws - Zw, where wo
. e 1

restricts to wy = 57d(Co) € Qp,,, -

iii) If V # 0, then on UNV we have A) = $& = 4-and Ay = 2 = £2-38 = £2.
Thus we get

Xg

H(By, By) = =% - G(A1, Ay) = B - G(—-,

entailing that 9,H = By~* - (82G)(Bio, %) = B! . 9,G. Moreover, we have

d(Ay) = d(B%)) = —B%z)d(Bo) Hence on Dy, NU C Dy, we have

1 B§3
wlunDoyn = 827Gd(141) = T d(Bo).

Similarly, if W # (b, then on U N'W we have A; = % = % . % = g—é and
Ay = X2 = =. Thus we get

xd c, 1

A A) = 0. (2L —
(CO)C].) Xd G( 1, 2) CO G(C()’C()

),

entailing that 0,1 = CZ™1 - (9, G)(CO, Co) Cd' . 9,G. Moreover, we have
d(Ag) = d(c%]) = —%d(CO). Hence on Dg, 1 NU C Dy, ¢ we have
0

1 of
b = g = D d(C).

In conclusion we have the canonical divisor (w) = (d — 3) - (Xp) € Divy. i

Corollary: Pliicker formula [1834]. We have gy = 1(d —1)(d — 2).

Proof. Let 0 # ¢ = g € v, where f,g € F[Xo, X1, Xo] are coprime and
homogeneous such that & := deg(f) = deg(g) > 0. Then we have pw € Qv,
that is (gw) = (¢)+(w) > 0, if and only if p € £ ((w)) = L ((d—3)-(Xy)). The
latter is equivalent to | being regular, and v, (p) > —(d—3) for z € VNV (Xp).

The first condition is equivalent to (1, A1, Ag) = % € J#y being a poly-
nomial, that is g = XO up to associates, or equivalently ¢ = %f(Xo, X1, Xo).
0

In this case, by coprimeness we get v, () = —k, for z € VN V(Xy). Hence we
have ¢ = ka(XQ,Xl,Xg) € Z((w)) if and only if kK < d — 3.
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Thus Qv = {0} if d < 2; hence we may assume that d > 3. Then we may
write ¢ = ﬁﬂ where f € F[Xg, X1, Xa]q—3. Then F[Xy, X1, Xo]a—3 —

Z(w): f— d —J+— f is injective, thus is an F-isomorphism:

If f,f € F[Xo, X1, X2]q_3 such that X‘i’3 /= Wf € s, then restricting
0

to U implies (f — f/)(1, A1, A3) = 0 € By, that is G(A;, ) = F(1, Ay, Ay) |
(f — ") € F[Ay, Ay)]; since U # () we have deg(G) = d, implying f = f'.

This yields (note that this also holds true for d < 2)

v = dimg(£dy) = ding( () = dims(FXo. X1, Xala-o) = (V5 1)

In view of Bézout’s Theorem, we observe the following special case: We have
(d—3) - deg((Xp)) = deg(w) = 2gv — 2 = d(d — 3), thus deg((Xp)) = d.

(19.10) The projective line. a) We consider the projective line P! = Al U
{oo} = F U {oo}, where oo := [0: 1] € P!, and A! C P! is an affine open
subset, with respect to the embedding A! — P1: 2 + [1: 2]. Then we have
e 2= F[Xo, X1](0y) = F[X|0p = F(X), via $2 = X.

Then P! can be identified with the plane curve V := V(X5) = {[zo: 71: 0] €
P2 [x9: 71] € P} C P2. Since V is defined by the polynomial F = X, of
degree 1, by Pliicker’s formula we conclude that P! has genus g = 0.

Alternatively, to find the genus of P!, we may more directly argue as follows:

We have (X) = (0) — (00) € Divpi. For k € Ny we have {1,X,..., X*} C
ZL(k - (00)), thus dimg(Z(k - (00)) > k 4 1. Since the divisor k - (c0) is non-
special for k > 2g — 1, we get k + 1 < dimg(Z(k - (00)) = 1 + k — g, implying
g =0. (Hence we have dimgz(Z (k- (00)) =k + 1 for all k € Ny.) i

b) Using the notation of (19.9), there is w € 4, given piecewise as follows: On

U= Dx, =Al, from G = F(l,ﬁ;,%):%—flzwegetwo:d(Xl)GQU

Similarly, on V = Dx,, from H = F())g‘l),l,)}%) = %‘ = By we get wy :=

—(%)Qd(%’) € Qy . This yields the canonical divisor (w) = —2+(c0) € Divps;

thus res,(w) = 0 for z € PL.

Moreover, for o € Al the function X aXO € Jp: has the only pole [1: o] and
the only zero co = [0: 1], both of order 1; hence (Xli(g(XO cw) = —([1: o)) =
(00) € Divp:. On U we have d(%) = d(Xl}i‘;‘Xo), thus resa(xli(igzxo cw) =

resa (% fgxo -d( Xl;{?x" )) = 1; we get (as predicted by the Residue Theorem)

Xo X1 X1 . Xo
0 ) = res (o 2L (20 -y,
S s 36 S A RS oL
Identifying #p1 = F(X), we get wy = d(X) and w; = —X? - d(5), where

resoo (¢ - w) = —1 and res, (52— - w) = 1, while res, (5 - w) = 0 elsewise.
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c) Actually, there are not too many smooth projective curves of genus 0:
Theorem. Let V be a smooth projective curve of genus 0. Then V = P!,

Proof. Let D € Divy have degree 1. Since deg(D) > 2g—1, it follows that D is
non-special, thus dimg(.Z (D)) = 14 deg(D) — g = 2. Then, since £ (D) # {0},
there is an effective divisor D’ ~ D.

We have deg(D’) = 1, so that D’ = (z), for some = € V. Since dimg(Z(D")) =
2, there is a non-constant rational function f € £(D’). Thus (f) > —D' =
—(z), hence the pole divisor of f equals (f)so = ().

Considering f as a morphism f: V — Pl we have f*((c0)) = (f)s, hence
by the degree formula we get deg(f) = deg(f*((c0))) = deg((f)oo) = 1. We
conclude that the associated field extension f*(#p1) C J#y has degree 1, that
is Sy = f*(Jp1), which implies that f is an isomorphism. i

20 Geometric Goppa codes

(20.1) Rationality. a) Let F be a perfect field, and let F C F be an algebraic
closure of F. (Later on we will let F :=F,.)

Then an affine or projective variety V over F is said to be defined over F, if
its defining prime ideal in F[X] is generated by polynomials in F[X]. Hence we
may replace all the algebraic constructions made earlier over F by similar ones
over F, where the old ones are recovered by scalar extension from F to F. In
particular, there is a separably generated field extension F C 5/ r, such that
v = Ay p @r F is obtained by extending the field of constants.

The Galois group I' := Autr(F) acts naturally on V. The fixed points with
respect to this action, that is the points [z1,...,2,] € A™ in the affine case,
and [zo: 21: ...: x,] € P™ in the projective case, having coordinates z; € T,
are called F-rational. Let V(F) C V be the set of F-rational points of V; if
F =T, is a finite field, we also write V(q) := V(F,), which is a finite set.

In particular, for € V(F) we have F, := 0, p/myp = F; thus the F-rational
points are also called the points of degree [F,: F] = 1 of V(F).

b) Let V be smooth projective curve defined over F. Then the I-action on
V induces an action on Divy, whose fixed points are called F-rational; in
particular, any divisor supported on V(F) only is F-rational.

For any F-rational divisor D € Divy, the F-vector space .Z (D) < . is I'-
stable, thus carries an F-rational structure, so that there is an F-vector space
Z%(D) < Sy r such that Z (D) = % (D) @r F; see Exercise (24.11).

Since for all F-rational affine open subsets U C V, for their Kahler differ-
entials we have Q. ®r F = Q. , we conclude that there is an F-rational
differential form wr # 0 on V; we let Qg . = v - wr C Q. Since T
maps local coordinates to local coordinates, we conclude that (wg) € Divy is
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F-rational. Moreover, letting Qr(D) = Qs (D) := QD) N Qxs, -, We get an
F-isomorphism % ((wg) — D) = Qp(D): f — fwy.

(20.2) Geometric Goppa codes [1981]. a) Let V be a smooth projective
curve of genus g = gy > 0 defined over Fy, let {p1,...,p,} C V(F,) be pairwise
distinct F -rational points, for some n € N, playing the role of places, and let
P:=3"" (p:) € Divy be the associated (F,-rational) divisor.

Let G € Divy be an F,-rational divisor such that supp(G) N{p1,...,pn} = 0.
Then the associated geometric Goppa code is defined as

Gr(G) :={lf(p1), ... f(pn)] € Fg; f € L5, (G)} < Fy,

where because of disjointness we have vp, (f) > 0, so that f is regular p;, and
by F,-rationality we have f(p;) € (F,)p, = F,. Thus we have

Gr(G) :==Gp(G) @, F={[f(p1),.... flpa)] €F s f € Z(G)} <TF",

hence dimg, (Gp(G)) = dim=(Gp(G)) and d(Gp(G)) > dGp(G)).

Theorem. Let k := dimz(Gp(G)) € Ng and d := d(Gp(G)) € NU {oo}.

a) Then we have k = dimg(.Z(G)) — dimp(Z (G — P)) and d > n — deg(G).
Then 0 :=n — deg(G) € Z is called the designed distance of Gp(G).

b) If deg(G) < n — 1, then we have k = dimz(Z(G)) > 1 + deg(G) — g.
Moreover, if 2g — 1 < deg(G) < n — 1, then we have k = 1 4 deg(G) — g.

c) Let deg(G) < n—1and k > 1. Then we have d = § if and only if there is
P’ € Divy such that 0 < P’ < P, where deg(G—P’) = 0 and £ (G- P’) # {0}.

Proof. a) We consider the surjective F-linear evaluation map
vp: Z(G) = Gp(G): [ [f(pi)]i

Then we have f € ker(¢p) if and only if v,,(f) > 0, for ¢ € {1,...,n}, which
holds if and only if f € Z(G — P); hence k = dimg(Z(G)) — dimg(Z (G — P)).
In order to estimate d, we may assume that & > 1. Then let f € Z(G)
such that ¢¥p(f) # 0, and let Z := {1,...,n} \ supp(¢p(f)); then we have
wt(¢¥p(f)) =n —|Z|. We have 0 # f € Z(G — >, .7(pi)), entailing that 0 <
deg(G—=2 iz (pi) = deg(G)—n+wt(¢p(f)), thus wt(yp(f)) > n—deg(G) = 4.
b) Let deg(G) < n — 1. Then from deg(G — P) < 0 we get £ (G — P) = {0},
so that k = dimg(.Z(G)), thus by the Riemann-Roch Theorem we get k =
14 deg(G) — g + dimp(Z((w) — G)) > 1 + deg(G) — g.

Let 2g—1 < deg(G) < n—1. Then deg((w) —G) < 0 implies Z((w)—G) = {0},
that is G is non-special. Thus we get k = 1 4 deg(G) — g.
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c) i) Let d = ¢. Then there is 0 # f € Z(G) such that wt(¢¥p(f)) =5 =n —
deg(G) > 0. Let Z := {1,...,n}\supp(¢p(f)), and let 0 < P":= >, ,(pi) < P;
hence deg(P’) = |Z| = deg(G). Then we have f € £ (G — P’) # {0}.

ii) Let P' = >, _7(pi) € Divy be as asserted, for some Z C {1,...,n} such
that |Z| = deg(G), and let 0 # f € Z(G — P’). Then we have supp(¢p(f)) C
{1,...,n}\Z, entailing 0 < wt(¢pp(f)) < n—deg(G) = §. Thus we have d < §,
while we have d > § anyway. 1

Corollary. Let deg(G) <n—1, let k > 1 (for example, whenever deg(G) > g),
and let d := d(Gp(D)) (contrary to the notation used above).

a) If {f1,..., fe} C L, (G) is an Fy-basis, then [f;(p;)];; € FE*" is a generator
matrix of Gp(G).

b) We have d — 1 <n —k < d— 1+ g; thus Gp(G) is an MDS code for g = 0.

Proof. b) We have d > n — deg(G). Hence we have n — k < d+deg(G) — (1 +
deg(G) —g) =d — 1+ g, while d — 1 < n — k is the Singleton bound. i

(20.3) Remark: Generalized geometric Goppa codes. We can actually
discard the disjointness property of G € Divy: By (19.4) there is t € Ky,
such that supp(G — (t)) N {p1,...,pn} = 0, and thus we may let

Gp(G = (1) :=A{[f(p1), -, f(pn)] € Fg; f € 25, (G — (1)} < F.
Then Gp(G — (t)) depends on the choice of ¢ (which is far from being unique),
but the equivalence class of codes thus obtained does not:
Let s € Ky, such that supp(G — (s)) N {p1,...,pn} = 0, then
s
L5, (G (1) = L (G=(s): for o f

is an Fy-isomorphism. Since v, (s) = v}, (), we conclude that $ is regular at p;
such that ()(p:) # 0, for i € {1,...,n}. This entails

Gr(G — () = Gr(G — (1)) - diagl () (v ,i

(20.4) Dual geometric Goppa codes. a) Let V be a smooth projective
curve of genus g = gy > 0 defined over F,, let {p1,...,pn} C V(F,) be pairwise
distinct, where n € N, and let P :=>""" | (p;) € Divy be the associated divisor.

Let G € Divy be an F-rational divisor such that supp(G) N{p1,...,pn} = 0.
Then the associated dual geometric Goppa code is defined as

Gp(G) = {[resp, (w), ..., resp, (w)] € Fsw € Qp (G — P)} <Fy,
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where by F,-rationality we indeed have res,, (w) € (F,),, = F,. Likewise, using
the IFy-isomorphism %% ((wr,) + P — G) — Qr, (G — P): f — fuwr, we get

Gp(G) :={[resy, (fwr,), .., resy, (fwr,)] € Fy; f € L, ((wr,) + P —G)} <TFy.

Again, for Gp(G) := G5(G) ®r, F we similarly get
Gp(G) = {[resy, (w),...,res,, (W) €eFw e QG- P)}y <F",

thus we have dimr (G5 (G)) = dimgz(Gp(G)) and d(G5(G)) > d(Gp(Q)).

Theorem. Let k* := dim=(G »(G)) and d* := d(Gp(Q)).

a) Then we have k* = dimg(Q(G—P))—dimg(Q(G)) and d* > deg(G)—(29—2).
Then ¢* := deg(G) — (29 — 2) € Z is called the designed distance of G;(G).
b) If deg(G) > 2g—1, then we have k* = dimg(Q(G—P)) > n—(1+deg(G) —g).
Moreover, if 2g — 1 < deg(G) < n — 1, then we have k* =1 4 deg(G) — g.

c) Let deg(G) > 2g — 1 and k* > 1. Then d* = §* if and only if there is P’ €
Divy such that 0 < P/ < P, where deg(G — P’) = 29 — 2 and Q(G — P’) # {0}.

Proof. a) We consider the surjective F-linear evaluation map
Uh: QG — P) = Gp(GQ): w i [resy, (w)];.

We show that ker(¢}) = Q(G), thus k* = dimgz(Q(G — P)) — dimg(Q(G)):

Since w € Q(G — P) has a pole of order at most 1 at p;, we have res,, (w) = 0 if
and only if w is regular at p;, that is v, (w) > 0. Thus we have w € ker(¢}) if
and only if v,, (w) > 0, for ¢ € {1,...,n}, which holds if and only if w € Q(G).

In order to estimate d*, we may assume that k* > 1. Then let w € Q(G — P)
such that % (w) # 0, and let Z := supp(¢p(w)); then wt(¢p(w)) = |Z]. We
have 0 # w € QG — Y, .7(pi)), entailing that deg(G — ", 7(pi)) = deg(G) —
wt(¢¥p(w)) < 2¢g — 2, thus we have wt(h(w)) > deg(G) — (29 — 2) = §*.

b) Let deg(G) > 2g — 1. Then from deg((w) — G) = (29 — 2) — deg(G) < 0 we
get .Z((w) — G) = {0}, thus Q(G) = {0}, so that

k* = dimg(Q(G — P)) = dimz(ZL((w) + P — G)).
Using deg((w)) = 2¢g — 2, the Riemann-Roch Theorem yields

E*=1—-g+deg((w)+ P —G) + dimz(Z(G — P)) > g — 1+ n — deg(G).

Finally, if additionally deg(G) < n—1, then deg(G— P) < 0 implies Z(G—P) =
{0}, entailing equality k* =n+ g — 1 — deg(G).
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c¢) i) Let d* = 6*. Then there is 0 # w € Q(G — P) such that wt(¢p(w)) = 6* =
deg(G) — (29 —2) > 0. Let Z := supp(vp(w)), and let 0 < P":= >, ,(pi) < P;
hence deg(P’) = |Z| = deg(G) — (29 — 2). Then we have w € Q(G — P’) # {0}.
ii) Let P" = )7, _7(pi) € Divy be as asserted, for some Z C {1,...,n} such
that |Z| = deg(G) — (29 — 2), and let 0 # w € Q(G — P’). Then we have
supp(¢p(w)) C Z, entailing 0 < wt(¢p(w)) < deg(G) — (29 — 2) = §*. Thus we
have d* < §*, while we have d* > §* anyway. #

Corollary. Let deg(G) > 2g — 1, let k* > 1, and let d* := d(G5(D)).
a) If {f1,..., fu} € L, ((wr,) + P — G) is an F,-basis, then [resy, (fjwr,)]j: €
Fk*" is a generator matrix of Gp(G).

b) We have d* —1 < n—k* < d* —1+g; thus G5(G) is an MDS code for g = 0.

Proof. b) We have d* > deg(G) — (29 — 2), that is 1 +deg(G) —g < d* —1+g,
and n — k* < 1+ deg(G) — g. Hence by the Singleton bound we get d* — 1 <
n—k*<1l+deg(G)—g<d*—1+g. i

(20.5) Duality of geometric Goppa codes. a) Let V be a smooth projective
curve of genus g = gv > 0 defined over Fy, let {p1,...,p,} € V(Fy) be pairwise
distinct, where n € N, let P := "  (p;) € Divy, and let G € Divy be an F,-
rational divisor such that supp(G) N {p1,...,pn} = 0. We show that geometric
Goppa codes and dual geometric Goppa codes are indeed duals to each other:

Theorem. We have G5(G) = Gp(G)*.

Proof. i) We show that dimz(Gp(G)) + dimﬁ(g}g(G)) =n

We have k = dimg(Gp(G)) = dimz(Z(G)) — dimg(Z(G — P)) and k* :=
dimz(Gp(G)) = dimz(Q(G — P)) — dimg(Q(G)). Moreover, by the Riemann-
Roch Theorem we have dimp(.Z(G)) — dimp(2(G)) = 1 + deg(G) — g, and
similarly dimz(.Z(G — P)) — dimz(Q(G — P)) = 1 + (deg(G) — n) — g. This
yields k + k* = (1 + deg(G) — g) — (1 + deg(G) — g — n) = n. t

ii) Thus it suffices to show that Gp(G) < Gp(G)*:

Let f € Z(G) and w € Q(G — P). Then we have to compute

n

= (Wp(f), 05 W) = {[f )]s, [resy, (@)]i) = D f(pi) - resy, (w).

i=1

Since f is regular at p;, we have d‘” Etf ; f(ps) - d (t ), from which we infer

resy, (fw) = f(pi) - resp, (w). Thus we get Sy, = Z:;l resy, (fw).

From (f) > —G and (w) > G — P we get (fw) > —P. Hence fw € Q, is
regular on V \ {p1,...,pn}. Hence by the Residue Theorem we get Sy, = 0.
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b) We show that dual geometric Goppa codes are geometric Goppa codes:

Theorem. i) There is wp € x4, ., such that v, (wp) = —1 and res, (wp) = 1.
ii) Then we have G5(G) = Gp((wp) + P — G).

Proof. i) Let 0 # w € Qu4,, . Then by (19.4) (and its proof) there is f €
I p, such that vy, (f) = —vp, (w)—1, fori € {1,...,n}, entailing v, (fw) = —1.
Let a; := res,, (fw) € F;. Then there is g € J#y 5, such that v,,(g) = 0 and

glpi)) =+ € Fy, for i € {1,...,n}; recall that there is an affine open subset of
V containing {p1,...,pn}, so that we may find g using Hilbert’s Nullstellensatz.

Hence we may let wp := gfw € Q;gvjq.

ii) We have supp((wp) + P) N {p1,...,pn} = 0 = supp(G) N {p1,...,pn}, and
(wp) + P — G is Fy-rational, so that Gp((wp) + P — G) is well-defined.

There is an Fg-isomorphism 7: % ((wp) + P — G) = Qp (G — P): f — fwp.
Then for f € %, ((wp) + P —G), we have v, (f) > 0, that is f is regular at p;,
hence we get res,, (fwp) = f(p;) - resy, (wp) = f(pi), for i € {1,...,n}.

Thus, for the evaluation maps ¢p: ZF ((wp) + P — G) = Gp((wp) + P — G)
and ¥p: Qp, (G — P) = Gp(G) we get ¢p = ¢} o m, showing the assertion.

Corollary. Let wp € Q4 such that (wp) = 2G — P and res,, (wp) = 1, for
i €{l,...,n}. Then Gp(G) is self-dual.

Proof. We observe that v, (wp) = v, (2G — P) = —1, for i € {1,...,n}, hence
we have Gp(G)* = G5(G) = Gp((wp) + P — G) = Gp(G). i

21 Rational geometric Goppa codes

(21.1) Rational geometric Goppa codes. Let V := P!, which has genus 0,
and is defined over any finite field F, C F; then we have Jp1 p, = F, (X).

Let {p1,...,pn} C PY(F,) = F, U {oc} be pairwise distinct, where n € N;
hence we have n < ¢+1. Let P:= )"  (p;) € Divp1, and let G € Divp: be an
[F,-rational divisor such that supp(G)N{p1,...,pn} = 0. (Note that if n = ¢+1,
then G is supported on non-rational points of P! only.) Then Gp(G) < Fy is
called a rational geometric Goppa code.

Corollary. i) Let k := dimg,(Gp(G)). Then we have k = 0, if deg(G) < 0; and
k =1+ deg(Q), if deg(GQ) € {0,...,n —1}; and k = n, if deg(G) > n.

ii) If deg(G) € {0,...,n — 1}, then we have d(Gp(G)) = n — deg(G), that is
Gp(G) is an MDS code.

iii) The dual code Gp(G)* is a rational geometric Goppa code as well.
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Proof. This mostly follows from (20.2) and (20.5); except that for deg(G) < 0
we have Z(G) = {0} and thus Gp(G)) = {0}; while for deg(G) > n, since
any divisor of degree > 2g — 1 = —1 is non-special, we get k = dimz(Z(G)) —

dimg(Z(G — P)) = (1 + deg(G)) — (1 + deg(G) — n) = n. :
(21.2) Theorem: Rational geometric Goppa codes are GRS codes. We
keep the notation of (21.1). Then there are pairwise distinct « := [aq, ..., ap] C
Fg, and a vector v := [vy,...,v,] € (F})", such that we have; see (17.1):

a) If n < ¢, then Gp(G) = GRSk (e, v) (thus having generator matrix Gy (o, v)).
b) If n = ¢+ 1, then Gp(G) has generator matrix

0

Grlayv) | 1 | ¢ F’;X(qﬂ).
0
1

Proof. We may assume that & = dimz(Gp(G)) € {0,n}. Thus we have
deg(G) = k — 1 > 0, and, recalling that any divisor of degree > —1 is non-
special, we have dimg(Z(G)) = 1 + deg(G) = k.

a) Let n < g, let po € PY(F,) \ {p1,...,pn}, and let D := (po) — (p1) € Divpr.
Thus D is Fy-rational and deg(D) = 0, hence we get dimg(.Z (D)) = 1.

Let 0 # z € Z, (D). Then we have (2) +D > 0 and deg((z) + D) = 0, implying
(2) + D = 0. Thus we have (p1) — (po) = —D = (2), hence (z)o = (p1) and
(2)oo = (po). We conclude that deg(z) = deg((z)o) = deg((2)e) = 1, that is
F,(2) = Fy(X), or equivalently z: P! — P! is an isomorphism; in particular
{27 € F,(X);j € No} is Fy-linearly independent.

Now we consider C' := G — (k — 1) - (pg) € Divp:. Hence C is Fy-rational
and deg(C) = 0, thus dimg(Z(C)) = 1. Let 0 # g € L, (C). We get (g27) =
(9)+7(2) =2 =G+(k=1=j):(po)+J:(p1) 2 =G € Divps, for j € {0,..., k—1}.
Hence we have {gz7 € Ay ;j € {0,....k —1}} C L (G), being Fy-linearly
independent, and thus being an F,-basis. This shows that

Z5,(G) ={g- f(2) € Hvp,; [ € Fo[X]<r}
Applying the evaluation map ¢ p yields
Gr(G) =A{lg(pi) - f(z(p:))]i € Fy; f € Fy[X] <}

Since z is regular at p;, we may let o := [2(p;)]; € Fy;, where since z is bijective
the z(p;) € F, are pairwise distinct. Moreover, since supp(G)N{p1,...,pn} =0,
we infer that g is regular at p;, so that we may let v := [g(p;)]; € F}.

Assume that g(p;) = 0, for some i € {1,...,n}; then we have g € Z(C — (p;)),
but since deg(C' — (p;)) = —1 we have Z(C — (p;)) = {0}, a contradiction.
Hence g(p;) # 0, for i € {1,...,n}, so that Gp(G) = GRS(a, v).
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b) Let n = ¢+1, and let D := (pg+1)—(p1) € Divp:. (Now py11 plays the role of
po above, but otherwise we proceed similarly.) Hence we have dimg(Z (D)) = 1.
Letting 0 # z € %, (D), we get (2)o = (p1) and (2)oc = (Pg+1), so that z: P1 —
P! is an isomorphism, and {z7 € F,(X);j € No} is F,-linearly independent.

Now we consider C':= G — (k — 1) - (pg4+1) € Divp:. We get dimgz(Z(C)) = 1.
Letting 0 # g € %, (C), we have (g27) > —G+(k—1—j)-(pg41)+Jj-(p1) = —G €
Divpi, for j € {0,...,k — 1}, thus {g27 € Hv ;7 €40,..,k =1} € %, (G)
is an Fy-basis. Applying the evaluation map ¢ p yields (slightly differently)

Gr(G) ={l(g- f(2))(pi)li € Fg; [ € Fo[X]<r}-

Since supp(G) N {p1,...,pn} = 0, the rational function g - f(z) is regular at
p;. For i € {1,...,q}, both z and g are regular at p;, thus we may let o :=
[2(p1), .-+, 2(pg)] € FE and v := [g(p1),--.,9(py)] € Fl, where the z(p;) are
pairwise distinct, and g(p;) # 0. For i = ¢+ 1 we get v, ., (927) =k —1—j,
implying (g27)(pg+1) = 0, for j € {0,...,k — 2}, while v := (g2*"1)(pg41) # 0.
Replacing g by % - g, thus replacing v by % - v, yields the claimed matrix. #

Corollary: GRS codes are rational geometric Goppa codes. Any gener-
alized Reed-Solomon code can be realized as a rational geometric Goppa code.

Proof. Let G = GRSy (a,v) < IFZ, for some n < ¢, where we may assume that
k := dimg,(G) & {0,n}, and where o = [y, ..., ] C Fy are pairwise distinct,
and v = [v1,...,v,] € (Fy)™

Then let P := " (a;) € Divp:r. Letting z := X € Fy[X], thus (z) = (0) —
(c0) € Divpr, we get a = [z(y)];. Moreover, let g € Fg(X) such that g is
regular at «; and g(a;) = v;, for i € {1,...,n}, thus we have v = [g(;)];.
(Note that by Lagrange interpolation we may even choose g € F,[X].) Letting
G:=(k—1)-(0) — (g9) € Divp1, the above proof shows that G = Gp(G). i

(21.3) Rational dual geometric Goppa codes. Let {p1,...,p,} C Fy C
P!(F,) be pairwise distinct, where n € N, let P := """ (p;) € Divp1, let G €
Divp: be Fy-rational such that supp(G) N {p1,...,pn} = 0, and let G5(G) < Fy

be the associated rational dual geometric Goppa code.
We write G5(G) as a rational geometric Goppa code:

Let w € Q. F, such that (w) = —2 - (00) € Divp: and reso (% - w) = —1; see
(19.10). Moreover, let h := ] 1(X pl) € F,[X]; then for the logarithmic

derivative of h we have 8’,§h =3 —, € Fy(X). Finally, let

8Xh -
wpi=— w=(

wEQXth.

We show that wp fulfills the assertions in (20.5):
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i) We have l/pi(X%pi) = —1, and upi(x%pj) = 0 for j # i. Thus by the strong

triangle inequality we get vy, (2X) = —1, implying v, (wp) = —1.

ii) We have v, (32,4 ﬁ) > 0, hence we get res,, (wp) = respi(a)}ih cw) =
J
respi(X%p -w). Since {p;, 00} are the only poles of Xip, -w, by the Residue

Theorem (or by direct calculation as in (19.10)) we get respi(X%pi cw)=1. f
Thus we have G5(G) = Gp((wp) + P — G); note that

(UJP) + P = (8xh)+ (TL—Q) . (OO) = (axh)o—‘r- (n—2—deg(8xh)) . (OO) € Divp:.

(21.4) Subfield subcodes of rational geometric Goppa codes. We show
that any alternant code over F, can be obtained as a subfield subcode of a
rational geometric Goppa code defined over a finite extension field of F,:

Let F, C IF be a finite field extension of degree f € N, let n € N, let £ €
{1,...,n— 1}, let a := [av1, ..., ] be pairwise distinct places of F, let v :=
[v1,...,05] € (F*)", and let Ay (v, v) := GRSy (o, v)* NF) < F7 be the associ-
ated alternant code. (We may safely leave out the cases k € {0,n}).

Then by (21.1) we have GRSk(a,v) = Gp(G) < F™, where P := > (a;) €
Divp:, and G := (k — 1) - (c0) — (g) € Divp1, where g € F(X) such that g is
regular at o; and g(a;) = vy, for i € {1,...,n}. Hence we have

GRSk(0,0)* = Gr(G)* = Gp(G) = Gp((wp) + P — (k— 1) - (00) + (g)) < F".
In particular, from d(G5(G)) =n —deg((wp) + P —(k—1)-(c0) +(9)) =k+1
we recover the Helgert bound d(Ag(c,v)) > k + 1. i

i) In particular, let C < Fy, where ged(q,n) = 1, be a BCH code of designed
distance § € {2,...,n} (where we again leave out the cases 6 € {1,n+1}), and
consecutive defining set V := {¢%,...,(¢"°"2} C F,(¢,) =: F of length § — 1,

ron
where a € Z,. Then, letting o := [¢!7!]; and v := [CZ(FU]Z», we have

C = As_1(a,v) = GRSs_1(v,v) " NFy = Gp(G*) NF,

where P := """ (¢47!) € Divpr and G* := (wp)+P—(6—2)-(c0)+(g) € Divps,
where in turn g € F(X) such that g(¢i7!) = CaO= for i e {1,...,n}.

Hence we may choose g := X* € F[X], so that (¢9) = a-(0) —a - (c0) € Divp:.
Moreover, we have h := [[I_ (X — ¢i7!) = X" — 1 € F[X], so that Oxh =
nX"~1 #£ 0, entailing (wp) + P = (n — 1) - (0) — (00) € Divp:. This yields

G'=(n+a—1)-(0)—(+a—1)-(c0) € Divp:.
From d(Gp(G*)) = n — deg(G*) = § we recover the BCH bound d(C) > 4. i

ii) Likewise, let 0 # g € F,[X] having degree k := deg(g) € N, let F, C F be a
finite field extension, let @ := [ayq, ..., ay] be pairwise distinct places of F, where
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n > k, such that g(a;) # 0, for i € {1,...,n}, and let v := [g(li)]i e (F*)™.
Then the associated (classical) Goppa code is given as G(a,g) = Ag(a,v) =
GRSk (a,v) NFy. (We again leave out the cases k = 0 and k > n.)

We have GRSk(a,v)t = Gp(G*) < F", where P := >_"" (a;) € Divp: and
G* = (wp)+P— (k—l)-(oo)—k(%) € Divp:. Letting h := []\, (X — ;) € F[X]
we have (wp) + P = (Oxh) + (n — 2) - (c0), thus we get

G*=(0xh)+(n—k—1)-(c0) = (g).
We recover the Goppa bound d(G(a, g)) > d(Gp(G*)) =n—deg(G*) =k+1. {

e

22 Non-rational geometric Goppa codes

(22.1) Example: The cubic Fermat curve. a) We consider the plane
projective curve V. = V(F) of degree 3 defined over any field F such that
char(IF) # 3 by the irreducible polynomial

F:=X3+Y3+ 73 cF[X,Y, Z].

(Over Fy = F,2, where r + 1 = 3, this is the smallest case of a Hermitian
curve.) Note that, since F' is a symmetric polynomial, V has Sz as a group of
automorphisms acting by coordinate permutations.

We determine the singular points of V: We have Jx vy z(F) = [3X?2,3Y2,32?).
Thus for [z: y: z] € P? we have (Jx,y.z(F))(z,y,2) # 0. Hence V is smooth.

Let ¢ = (3 € F be a primitive 3-rd root of unity. By Pliicker’s formula V has
genus gy = 1; hence is an elliptic curve. Thus we have dimz(2y) = 1, and
an element 0 # w € Qv is given as follows; see (19.9):

On Dz we have G(A1, Ag) := A3+ A3+ 1, where A; := % and Ay := %, leading
to the following forms on Dyzx, and by symmetry on Dxy and on Dy z:

wxy = (§)7-d(%) € Uy
Wyz = (%)2 ’ d(%) € QDYZ’
wzx = (%)2 d(%) €Qp,x;

these forms coincide on Dxyz, and Dxz U Dxy U Dyz = V.

Hence we have (w) = 0 € Divy, but w is not the differential of a regular (hence
constant) function. Moreover, we observe that the set of canonical divisors
coincides with the set of principal divisors, by 5 — Qs @ f — fw.

b) i) For later use, we determine certain principal divisors: Note first that, since
the canonical divisor (X) € Divy has degree d = 3, for all linear homogeneous
f € v we have deg((f)) = deg((f)o) = 3. Now, for r,s,t € Z let

Xryszt

(Y + Z)rtstt € Av.

frst =
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The zeroes of Y +Z are given by y = —z, implying z = 0; hence (Y+2) = 3-(pg),
where pg :=[0: 1: —1]. Moreover, the zeroes of X are given by x = 0, implying
y3 # —23, that is y = —('z, for i € {0,...,2}; thus (X) = (po) + (p1) + (p2),
where pz = [O 1: — (Y. By symmetry, we get (Y) = (pf,) + (p}) + (ph), where
pi = [1:0: = ('], and (2) = (pf) + (pY) + (%), where p :=[1: — ¢z 0].
Thus we have (f100) = (p1)+(p2)—2:(po), while (fo10) = (pg)+(p1)+(Ps)—3:(po)
and (foo1) = (py) + (P1) + (p5) — 3 - (po); note that (frst) = (flooSd10/001) =
7+ (fi00) + 5 (foi0) +t - (foo1) € Divy.

ii) Next, again for later use, we determine the associated residues:

We have
Yr+s+2 Zt72 X’I" X

vz v A

hence res,, (frst - w) # 0 if and only if 7 = —1, where res,, (f_1,s.-w) = ¢*+21).

resp, (frst - w) = resy, (

Similarly, we have

Xr72zs+t+2 Ys Y

sy Urer @) = xesn (5 s 7o Az))

hence resy (frst - w) # 0 if only if s = —1, where res, (fr 1+ - w) = ¢He=m),

Finally, we have

Xr+t+2ysf2 Zt 7

respy (rse+0) = vesyy (5 gy 5o (%),

hence resp;/(fr’s,,yw) # 0if and only if t = —1, where resp;/(fr,57,1 ‘w) = ¢i2=n),

¢) We determine the F-rational points of V for |F| € {2,4}; by symmetry, it
suffices to consider points [z: y: 1] € V, for which F(x,y,1) =23+ 3>+ 1 =0.
i) Over Fy we get  +y = 1, so that V(2) = {po, p}, pj }

ii) Over Fy = FQ(C), since Fo is the set of cubes in Fy, we get V(4) \ V(2) =
{p1, p2, P}, Ph, P}, D4 }; the latter consisting of three {pq)-orbits of length 2.

It can shown that |V(2")] = 2" + 1 = |[P!(2")] if r is odd, while we have
[V (22%)] — (225 + 1) = (—=2)**! if r = 25 is even; comparing with the Hasse-
Weil bound, saying that ||V (q)| — [P'(q)|| < 2gv - /g for any finite field F,
shows that in the latter cases this bound is actually reached. Here are a few
specific cardinalities (which have been computed straightforwardly using GAP):

r 1 2[3 4[5 6] 7 8] 9 10] 11 12
2+1 |3 5|9 17|33 65| 129 257|513 1025 | 2049 4097
V(2 9 9 81 225 1089 3969

We proceed to construct some (dual) geometric Goppa codes over Fy: To do
50, let P := Y cv(a)\ (po1(P) € Divy; hence n := deg(P) = [V(4)| -1 = 8.
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Table 11: Goppa codes from the cubic Fermat curve.

ENf ve(f) [ pr p2 po Py Py pg Pi p5 || d
1| fooo off1 1 1 1 1 1 1 118
2| fio0 2. . 1 ¢ ¢ 1 ¢ ¢|6
3 || fowo =31 ¢ ¢ . . .1 1 115
4| f200 -4l . . 1 ¢ ¢ 1 ¢ ¢4
5 fi1o -5 . . . . . 1 ¢ ¢|3
6 | for1 -6/1 1 . . . . . .12
7\ f210 -7 . . . . .1 ¢ (%2

We enumerate the points of V(4) as [po; p1, D2, Db, D1, P, Py, 01, P4 Let Gy :=
k- (po) € Divy, where k € {1,...,7} = {2gv — 1,...,n — 1}; recall that pg
is Fo-rational. (Geometric and dual geometric Goppa codes associated with a
divisor being a multiple of a prime divisor are called one-point codes.)

d) Let first Gy := Gp(Gg) < Fi Then we have dimg, (Gx) = dimg, (%, (Gy)) =
1+ k — gv = k. We determine the space of functions Z(Gy) C Jy:

We have f,.q € Z(Gy) if and only if r,;s,t > 0 and 2r + 3s + 3t < k. Since
for any k € {0,2,...,7} there are (not necessarily unique) r, s,t € Ny such that
2r 4+ 3s + 3t = k, we get

f(Gk) = <f7~5t S fv;T,S,t € Np,2r+3s+ 3t < k>F

Our choice of functions is given in Table 11, where evaluation at the various
points yields the rows depicted, so that the first £ rows constitute a generating
matrix of Gi. In particular, G; is the repetition code, G, is the two-fold repetition
of a [4,2,3]-code, and G7 = (1s)f,.-

The designed distance of Gy, equals § = n — deg(Gj) = 8 — k, where for the true
minimum distance d = d(Gx) we have d > §. By inspection we get equality,
except for k € {1,7}; note that 1g € G+, so that d(G;) > 1. In particular, Gy is
not an MDS code, except for k € {1, 7}.

e) Let now G} := G5(Gy) < F§. We have dimp, (G;) = dimg, (Qr, (G, — P)) =
dim]p4 (Diﬂ]h((w) +P— Gk)) = dimM(ZM (P*Gk)) = deg(Pka) =8—k=k",
where we have the Fy-isomorphism %, (P — Gi) — Qp, (G, — P): f— fw.
We determine the space of functions £ (P — Gj): We have f. € Z(P — Gg)
if and only if r,s,¢ > —1 and 2r + 3s + 3t < —k. For any [ € {1,...,6,8} there
are (not necessarily unique) r, s,¢ > —1 such that 2r + 3s + 3t = —I, hence

L(P—Gg) = (frst € Hvir,s,t > —1,2r + 35+ 3t < k).

Our choice of functions is given in Table 12, where taking residues of the asso-
ciated differential forms at the various points yields the rows depicted, so that
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Table 12: Dual Goppa codes from the cubic Fermat curve.

k1 f Upo (f) |[P1 P2 Py PY Py po PV Py || d”
T f-1,-1,-1 81 11 1 1 1 1 11 8
6 || fo,—1,-1 6 1 ¢ ¢ 1 ¢ ¢ 6
510 fo110 50¢2 ¢ 11 1 . . .5
4| froi 1 1 ¢ ¢ 1 ¢ ¢4
31 fo,—1,0 3 o1 ¢ .. 3
2 f-1,00 2101 1 . . . 2
L) fi—10 1 1 ¢ ¢ 2

the first 8 — k rows constitute a generating matrix of G;. In particular, G7 is the
repetition code, G is the two-fold repetition of a [4,2, 3]-code, and Gf = (1s), .
The designed distance of G equals 6* = deg(Gy) = k, where for the true
minimum distance d* = d(G;) we have d* > §*. By inspection we get equality,
except for k € {1,7}; note that 1g € (G%)*, so that d(G%) > 1. In particular,
Gy is not an MDS code, except for k € {1,7}.

Actually, the similarities between the codes G; and the codes G turn out to
be not surprising, as soon as we discuss aspects of duality; see (20.5) (and in
particular the proof of part b)):

i) Firstly, let G € F7*® and H € F7*® be the matrices depicted in Table 11 and
Table 12, respectively. Then we get

G-H"=|. . . . 1 . .|eFx".

1

This shows that indeed g,ﬂ- =G; < F§, for k € {1,...,7}.

ii) Secondly, we may rewrite the dual geometric Goppa code G; = G5(Gy) as a
geometric Goppa code Gp(-) with respect to a suitable divisor:

To this end, let fp :== f_1_1,-1 = (3;{-;22)3 € . Then we have (fp - w)
(fp) = —P + 8- (po) € Divy, and we have already seen that res,(fp - w) =
for p € V(4) \ {po}. Thus we conclude that Gi = Gp((fp) + P — Gi)

Gr((8—k)-(po)) = Gpr(Gs—x) = Gs—&-

Hence in combination we actually get Gi- = G = Gs_. In particular, G, is a
self-dual [8, 4, 4]-code over Fy.

=1l
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(22.2) Example: The Klein quartic. a) We consider the plane projective
curve V of degree d = 4 defined over any field F by the irreducible polynomial

F:=X3Y +Y3Z + 73X € F[X,Y, Z).

Since F(Y,Z,X) = F(X,Y, Z), we conclude that V has an automorphism of or-
der 3 given by cyclic coordinate permutation «: [z: y: z] — [y: z: x]. Moreover,
letting p = (7 € F be a primitive 7-th root of unity, chosen to have minimum
polynomial 7% + T + 1 € Fy[T], we observe that 3: [x: y: z] — [z: py: p~22]
defines an automorphism of V of order 7: Indeed, we have F(X,pY,p~2Z) =
X3(pY) + (oY) (02 2) + (p722)°X = p- F(X,Y, Z).

Note that o € PSL3(Fs) and B € PGL3(Fg). We have [z: y: 2] - a7 !Ba =
[#: p73y: p~t2] = [x: y: 2] - 73, saying that o normalizes (3), entailing that
(o, BY < PGL3(Fg) has order 21. It can be shown that the automorphism group
of V is isomorphic to PGL3(F3), which is a simple group of order 168.

We determine the a-fixed points: If [z: y: 2] = [y: z: 2] € P2, then we have
zyz # 0, and letting v := % =4==2c F entails ¢ = vy = v?2 = y3x. Hence,
if char(IF) = 3 then [1: 1: 1] € V is the only a-fixed point; while if char(FF) # 3
then letting ¢ = (3 € F be a primitive 3-rd root of unity, we conclude that the
a-fixed points are given as [¢?*: ¢*: 1] € V, for i € {0,...,2}.

We determine the j-fixed points: If [x: y: 2] = [z: py: p~22] € P2, then as-
suming zy # 0 or zz # 0 or yz # 0 yields a contradiction, so that we have
[x: y: 2] € {po,p1,p2}, where pg :=[0: 0: 1], p; := [1: 0: 0], po :=[0: 1: O].

b) We determine the singular points of V: We have

J:=Jxvz(F)=[Z>+3X?Y,X3+3Y?Z,Y?® + 37%X].

By applying « it suffices to consider p := [z,y,1] € VN A2 From F(p) =
2y +1y2 +x=0weget x =y =0or zy #0. If p is a singular point, we have
J(p) = [1 + 32%y, 23 + 3y2,y> + 3x] = 0, contradicting the first case, thus we
have zy # 0, and moreover we infer that char(F) # 3.

This entails y* = —3z and 2%y = —%, hence 0 = 2y +y* + 2 = —fo -3z +z =
— I, thus char(F) = 7. This shows that V is smooth whenever char(F) # 7; in
this case, by Pliicker’s formula, V has genus gy = 3.

2
26

If char(F) = 7, then we have z = 2y® and y = 3, entailing z = 2- (3)? =
that is 7 = 2, or equivalently = 2, and thus y = 2% = % = 4. Indeed, for
p = [2,4,1] we have F(p) = 0 and J(p) = 0, so that V is not smooth, where

[1:2: 4] =[2:4: 1] = [4: 1: 2] € V is the only singular point.

c) For later use, we determine certain principal divisors: Note first that, since
the divisor (X) € Divy has degree d = 4, for all linear homogeneous f € %y
we have deg((f)) = deg((f)o) = 4. Now, for r,s € Z let

B XT‘YS

frs == Zrts € Jv.
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In order to find (fs) € Divy, we only have to consider the points {pg, p1, p2}:
We have J(0,0,1) = [1,0,0], implying that the tangent space at py € VN A? is
given as the line Dy )(F(X,Y,1)) = X = 0. Thus Y can be chosen as a local
coordinate; see Zariski’s Proposition in (18.4). This yields v, (Y) = 1, and from
Y3 = —X(X?Y + 1) we infer v,,(X) = 3, while v,,(Z) = 0 anyway.

By applying a we get v,,(X) = 1, v,,(Z) = 3 and v,,(Y) = 0, as well as
vp (Z) =1, vp, (Y) = 3 and v, (X) = 0. Thus we get (fi10) =3 (po) — (p1) —
2 (p2) € Divy and (fo1) = (po) +2- (p1) — 3 (p2) € Divy.

d) From now on we assume that char(F) = 2. We determine the F-rational
points of V for [F| € {2,4,8}:

i) We first consider Fy = F5(¢): By applying « it suffices to consider p :=
[,y,1] € V N A2, for which we have 2%y + y> + 2 = 0, and thus * = y = 0
or wy # 0; moreover, in the second case we get [z,y] = [¢?,¢?]. Thus we infer
that V(2) = {po, p1,p2} and V(4)\ V(2) = {[¢: ¢?: 1],[¢?: ¢: 1]}; note that the
former consists of the §-fixed points in V, and the latter of the a-fixed points.

ii) We now consider Fg = Fy(p): For p := [z: y: 2] € V(8)\ V(2) we have
xyz # 0, hence we may assume that x = 1, and by applying S we may assume
that y = 1 as well. Then we have F(p) = 1+ 2z + 2% = 0, thus z € {p, p?, p*},
being the (p2)-orbit of p. Letting p := [1: 1: p], we have p- *a? = [1: 1: p?]
and p- B°a = [1: 1: p?], so that V(8)\ V(2) = p- («, 8). Since neither a, being
of order 3, nor S, being of order 7, has fixed points in V(8)\ V(2), we conclude
that the latter is a regular («, 3)-orbit, thus we have |V (8) \ V(2)| = 21.

It can shown that |V (27)] = 2"+1 = |[P1(27)] if 3 { r, while |[V(23%)|—(23*+1) =
as if r = 3s, where ag = —6 and a; = 15, and recursively 8as+5as4+1+as42 = 0;
note that the Hasse-Weil-Serre bound (improving the Hasse-Weil bound)
yields |[[V(27)] — \P1(2T)|‘ < 3.|2-v2"] < 6-+/2". Here are a few specific
cardinalities (which have been computed using GAP); in particular, the Hasse-
Weil-Serre bound is reached for r = 3:

r 12 3[4 5 6] 7 8 9] 10 11 12
2" +1 3 5 9|17 33 65129 257 513[1025 2049 4097
3-12-v27] 15 48 135 384
V(2] 3 5 2417 33 383|129 257 5281025 2049 4238

e) We proceed to construct some geometric Goppa codes over Fg: To do so, let
P =3 v\ (po} (P) € Divy; hence n := deg(P) = [V(8)| — 1 = 23; note that
|V (8)] is close to the maximum allowed by the Hasse-Weil bound. Enumerating
lexicographically, we get V(8) = [po; p1,p2, [1: 1: p], ..., [1: p°: p°]].

Let Gy := k-(po) € Divy, where k € {5,...,22} = {2gv—1,...,n—1}; hence Gy,
is Fp-rational. Finally, let Gy := Gp(G}); hence dimp, (Gi) = dimp(ZL(Gr)) =
k+1—gyv = k— 2, and G has designed distance § = n — k = 23 — k. We
determine the space of functions .Z(Gy) C v

In view of (frs) = (3r + ) - (po) + (=7 + 2s) - (p1) + (=2r — 3s) - (p2) € Divy
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Table 13: Goppa codes from the Klein curve.

k|f V(&) \ {po}

foo [t1 1711 1111111111 11111111

foi0 (|00 p p* p* 1 7 p% 1 p* 0% p* 0P 0> 1 p P p P P P Pt
5[f-21 00 p p*p* p p® 1 p* p® 1 0> p° p pt p° 1 p° p* pt p? p* PP
6|f20 |[00p° p" p 1 p" p> 1 p p*p* p® p° 1 p* p® p?* p* p° p° p p°
71 f2,-1{|1 0 p> p° p° p® p° p° p° p° p° p* p° p° p° p° p° p° p* P° P p° p°
8| f=s1 (|00 p* p* p p p>p°p* P> p° 1 p* % pt % > 1 p PP 1 pt
9 fs0 |[00p° p° p° 1 p®p" 1 p° p p%p° p 1 p*p?p® p p*p* p° p*
10|f-3,-1/[00 p* p p* p® 1 p* p> 1 p* p°> p* p* p> 1 p p® p p° p° p° p!
1 foan [[000° 0% p° p 1 0% p* 1 p* p? p° p* p* 1 0% p p° p* p p* p?
12[f-a0 (000" p p* 1 p p° 1 p> p° p p° p° 1 p* p° p* p® p* p° p* p°
13 fa1][00p° p° p° % p* p p° p* P> L p°> p p® pp* 1 p°ptp* L)
14|f-a,-2([1 0 p® p° p* p° p° p° p* p° p° p° p° p* p° p° p* p* p° P° p° p° P’
15|f-s0 |00 p° p® p° 1 p® p* 1 p° p* p> p p* 1 p° p p° p* p* p p°p°
16|f-5,-1/0 0 p° p° p* p® p* 1 p> p 1 p* p p% p* p> 1 p p* p* p° p* p°
17|f-5,-2/00 1 1 1 p° p° p° p> p° p* p p p p° p® p° p* p* p* p* p* p°
18|f-60 |00 p° p> 1 p° p 1 p°p* p°> p" p* 1 p® p* p° p* p p* p* p
19|f-6,-1/00 1 1 1 p% p® p% p° p° p° p* p* p* p* p* p° 0* P> p* p p »p
20| f-6,2(|0 0 p p* p* p° 1 p* p® 1 p p® p* p® p° 1 p* p° p* P p° P p
21| f-e,-a||1 0 p* p* p p* p p p P> p" 0* 0" p Pt p oo PPt Pt p
22 f-7,-1]|0 0 p p* p* p° p p° p° p* p° p° 1 p? PP ot P PP 1 p pt P01

we have (f,s) € Z(Gy) if and only if 3r + s > —k and 2s > r and 2r + 3s < 0,
which is equivalent to f%r > s > max{g, —3r—k}. Thus we have 0 > r > f%k,
leaving finitely many cases which can be checked explicitly (using GAP).

It turns out that the 20 functions given in Table 13 belong to %, (G22) and
have pole order i at pg, where i € [0,3,5,6,...,22]. Hence these functions are
F-linearly independent, and the first k¥ — 2 of them are an F-basis of .Z(Gy).

Evaluating at the points of V(8)\ {po} yields the explicit vectors given in Table
13 (which is not too enlightening): Evaluating at the points of V(8) \ V(2) is
straightforward (using GAP), while at the points {p1,p2} both numerator and
denominator of f.s, viewed as a rational function in Fo(X,Y, Z), vanish. But
using the divisor of f,s, and noting that by Fao-rationality we have f,.s(p;) € Fa
anyway, we may read off the latter values directly. (Using the fact that Fo =
{0,1} is a really dirty trick.)

We determine the minimum distance d = d(Gy), where the designed distance
and the Singleton bound yield 6 =23 —k <d <23 —(k—2)+1=26—k: By
inspection (using GAP, looking for codewords of small weight for k& < 17, and
taking check matrices into account for k > 17), we find that d = § = 23 — k for
ke{5,...,19,21}, while d = § + 1 = 24 — k for k € {20,22}. In particular, G
is not an MDS code.
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f) Geometric Goppa codes (defined over curves with small genus and ‘many’
points compared to the Hasse-Weil-Serre bound) have a tendency to provide
fairly good codes over prime fields, by using concatenation, see Exercise (24.12):

Let D be the even-weight [4,3,2]-code over Fo. Then the concatenation Gy, of
G, and D is a binary code of length 23 - 4 = 92 and dimension k := 3 - (k — 2).

Moreover, §k has minimum distance 32 2-(23—k+¢), wheree = 1 if k €
{20,22}, and € = 0 otherwise. By inspection (using GAP, again looking for
codewords of small weight, and taking check matrices into account), we get
equality throughout.

For comparison we also give the maximum minimum distance d of the binary
codes with given length and dimension currently known (which does not at all
mean that the latter are optimal). As it turns out, for quite a few values of k
the code Gy, is not too far apart from the best codes known, and for £ = 11 it is
even amongst them.

|

k \ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
k| 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
d|36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 8 4 4
d|42 40 36 32 30 28 24 24 22 20 20 18 18 14 14 12 12 10

(22.3) Geometric Goppa codes are good. We have already seen that (clas-
sical) Goppa codes are good, in the sense that they reach the asymptotic Gilbert-
Varshamov bound, see (17.5). It turns out that geometric Goppa codes are even
better. In order to give an indication why, we need some preparation:

a) For a fixed prime power ¢, and g > 0 let
Ny(g) := max{|V(¢)| € No; V smooth projective curve over F, of genus g};

thus for g = 0 we have N,(g) = ¢ + 1. By the Hasse-Weil-Serre bound we have
V(@)= (¢ +1)| <g-[2-/q], so that Ny(g) € Ny is well-defined. We let

N,
7(g) := limsup Nalg) .
g—o0 9

Again by the Hasse-Weil-Serre bound we have 0 < 7(q) < [2,/q].

Actually, it is known that 7(¢) > 0, and the Drinfeld-Vladut bound says
that 7(¢) < /g — 1. In general, the value of 7(¢) remains obscure, but if ¢ is a
square we have the following result (needing the theory of modular curves):

Theorem: Tsfasman—Vladut—Zink [1982]. We have 7(¢?) = ¢ — 1. i

Corollary. Let 0 <6 <1 — ﬁ. Then we have r,2(6) +6 > 1 — ﬁ.
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Proof. Let [V, Vy,.. ] be aseries of smooth projective curves over F 2, having
genus g; and n; := [V;(¢?)| — 1 rational points, such that lim; ,,, n; = oo and
lim; o0 5—1 = 7(22) = qil. Moreover, let 7; < n;—1 such that lim;_, ;—L =1-6.

Now let p; € Vi(¢?), let P; := 2 opevi(@\{p:} (P) € Divy,, let Gi == ;- (p;) €
Divy,, and let G; := Gp,(G;) < IFZ; be the associated geometric Goppa code.
Then we have k; := dimlpq2 (Gi) > 1+7r; —g; and d; :=d(G;) > n; — ;.

This entails p; := p(V;) = % > “TH — 2 and §; == 0(V;) = % >1— 7 We

may assume that both p := lim; ., p; and 5= lim;_, o d; exist. Then we have
p>(1—-90)— q%l and ¢ > 4§, entailing kg2 (8) > kg2(0) > p>1—-6 — ﬁ. i

b) We compare the Tsfasman-Vladut-Zink bound k,2(6) > 1 — qfll — 6, for
0<6<1- ﬁ, with the Gilbert-Varshamov bound kg2 (8) > 1 — H2(0), where

Hg2(8) = 6log,z(¢* — 1) — 8log,2(6) — (1 — 6)log,2(1 — 6)

is the g-ary entropy function. We aim at finding the even powers g of a prime
such that 1 — -1y — & > 1 — H,2(9), that is § + L7 < Hy2(9), for some é:
Since H,(0) is strictly concave, we first determine the argument dy such that
H 2 (6) has a tangent of slope 1, that is (%qu)(ég) = 1: From

0 5 1-0
%H(ﬁ (5) = long (q — ].) + loqu(T)
we get long(qf—il) = loqu(lgj”), that is quil = 150‘50, which is equivalent to
0 = 2‘1:2__11. Now we get 1 — dg = #2_1, and thus
2
q
Hg2(80) =log,2(2¢° — 1) — 52 1 log,2(2¢° — 1) + (6o — 1).

Hence the condition for some § as desired to exist becomes
1
50 + qj S Hq2 (60) = long (2(]2 — 1) —+ (50 — 1)7

that is q%l < log,2(2¢® — 1), or equivalently q_% <log,2(2 — q%)

Since (deriving with respect to ¢ shows that) the difference of the right and left
hand sides is strictly increasing, and for g := /43 we have oy <logga(2— %),
we conclude that for all admissible ¢ > 49 there is some (even a certain open
interval of) ¢ such that 1 — ﬁ — & >1—Hgp(6), that is the Tsfasman-Vladut-
Zink bound strictly exceeds the Gilbert-Varshamov bound, see Table 14.
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Table 14: Asymptotic bounds for ¢ = 49.

1.00

——— Gilbert-Varshamov
Tsfasman-Vladut-Zink

0.75

0.50

0.25 -

0.00 1 1 1 1
0.0 0.2 0.4 0.6 0.8

VII

23 Exercises to Part 1

(23.1) Exercise: Arithmetic parity check codes.
Let C := {[z1,...,x10] € 2193002 iz, = 0 € Zy1} < Z19 be the code used for
the ISBN-10. Does C detect twin errors and jump twin errors?

(23.2) Exercise: Geometric parity check codes.
For a € Zq; let Cy == {[x1,...,210] € Z3Y; 2321 alr; =0 € Zy1} <719, When
does C, detect single errors, transposition errors, twin errors, jump twin errors?

(23.3) Exercise: Bank account codes.

a) For z € Ny let Q(z) € Ny be the cross sum of = with respect to its decimal
representation. Considering Zig as a subset of Ny, show that Zig — Z1g: © —
Q(2x) is a bijection.

b) A typical parity check code used for bank account numbers is

n

C:= {[1‘1, .. .,l‘gn] S Z%S;Z(Q(Ql‘gi,l) + x2i) =0¢€ ZIO} - Z%g

i=1

for n € N. Does C detect single errors and transposition errors?

(23.4) Exercise: International Bank Account Number.
Assume that in the valid IBAN ‘DE68 3905 0000 0123 4567 89’ the leading digit
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‘0’ of the bank account number is replaced by ‘9’, yielding the BBAN
‘39050000 9123 4567 89'.

Which further single errors are there such that the resulting BBAN carrying
two errors cannot be detected by the parity check symbols ‘DE68’?

(23.5) Exercise: Parity check codes over groups.
We consider a parity check code over a finite group G with respect to bijections
m: G — G, fori € {1,...,n} and n € N. Formulate conditions on the ; such
that twin errors and jump twin errors may be detected.

(23.6) Exercise: Parity check codes over dihedral groups.

For n > 2 let Do, := {a,b;a™ = 1,b* = 1,b~tab = a!) be the dihedral groups
of order 2n, and let 7: Dg,, — D2, be given by a* — a~*~! and a’b — a’b, for
i € {0,...,n—1}. Show that the map 7 is well-defined and bijective, and if n
is odd then we have gh” # hg", for g # h € Da,,.

(23.7) Exercise: Almost complete maps.
Let G = Z,,, where n := 2% for some a € N, and let o: G — G be given by

c:0—m—l—-m+1l—---—>m—-1—=2m—1—0,

where m := 5. (Thus o is bijective.) Show that the map 7:= o +idg: G — G
fulfills 7(G) =G\ {m —1}and 7 '({n—1}) = {n—1,n— 1 — [4]}.

(23.8) Exercise: Source encoding.
Alice is able to send four messages, which are encoded into two bits as follows:

00: ‘Stock prices are stable.’ 11: “Shall we sell?’
01: “Stock prices are falling.’ 10: ‘Shall we buy?’

Bob receives the stream ...001100110011 ... What does Alice want to tell him?

(23.9) Exercise: Huffman encoding.
The following algorithm can be used for optimal binary source encoding;:

Let X = {z1,...,24} be an alphabet with probability distribution p, and let
pr = p(xg) for k € {1,...,q}. Let first j # ¢ € {1,...,¢} such that p; =
min{py,...,pq} and p; = min({p1,...,pqe} \ {pi}), and encode z; and z; into 0
and 1, respectively. Now consider the modified alphabet X’ := ({z1,...,24} \
{x;,2;}) U {x;;}, with probability distribution p/, where u'(zy) := py, for k €
{1,...,q¢}\ {4,7}, and p;; = p'(x;;) := p; + p;, and recurse to find prefixes to
the codewords already found.

a) Show that this yields a prefix-free injective encoding v: X — (Z2)* \ {e},
being called the Huffman encoding of X with respect to u.
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Show that the Huffman encoding is optimal. (Hence we have H(y) < H(X)+1.)
Do we necessarily have I(y(z;)) < 1 — log,(p;) whenever p; > 07
b) Now let i1 be the uniform distribution, and let k := [log,(¢) | € N. Show that

Y(X) C (Z2)* U (Zg)F*1, and that v(X) has average word length k + 2 — 2
How does this compare to H(X)? What happens for ¢ = 2¥?

c) Counsider the alphabet Z4 with the following probability distribution:

Li] pi ]l (Zo)]
01040
1]03 |11
2102 101
310.1 | 100

Show that the associated Huffman encoding ~ is as given above, and determine
the average word length of v(Z,4) and the average information content H(Z).

Moreover, consider the alphabet Z4 x Z,4, with independent entries, and deter-
mine its average information content, the associated Huffman encoding, and its
average word length. What do you observe?

(23.10) Exercise: Huffman encoding.

a) Write GAP programs computing Huffman encoding and decoding of the Latin
alphabet X := {a,...,z} U {_} including a blank symbol, with respect to the
following relative frequency of letters in English texts:

g
.

_10.186 i | 0.057 r | 0.048
a | 0.064 j | 0.001 s | 0.051
b | 0.013 k | 0.005 t | 0.080
c | 0.022 1] 0.032 u | 0.023
d | 0.032 m | 0.028 v | 0.008
e | 0.103 n | 0.057 w | 0.018
f|0.021 o | 0.063 x | 0.001
g | 0.015 p | 0.015 y | 0.016
h | 0.047 q | 0.001 z | 0.001

Determine the average information content of X', and the average word length
of the associated Huffman encoding.

b) Apply this to the following text consisting of 377 letters, where commas may
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be ignored. How many bits does its Huffman encoding need?

the almond tree was in a tentative blossom, the days were
longer, often ending with magnificent evenings of corrugated
pink skies, the hunting season was over, with hounds and guns
put away for six months, the vineyards were busy again,

as the well organized farmers treated their vines,

and the more lackadaisical neighbors hurried to

do the pruning they should have done in november

c) Alternatively, apply adaptive Huffman encoding by using the relative fre-
quency of letters in the above text as underlying probability distribution. How
does this change the average information content of X', the average word length
of the Huffman encoding, and the bit length of the encoded text?

(23.11) Exercise: Huffman and Shannon-Fano encoding.

Determine the average information content, the Huffman encoding and the
Shannon-Fano encoding, and their respective average word lengths, for the fol-
lowing probability distributions:

1
— . [20,18,10,10,10,6,6,4,4,4, 4,3, 1]

100
1
535 [2:3.5.7.11,13,17,19,23, 29,31, 37,41]
1
— . [1,4,9,16,25, 36,49, 64,81, 100
385 [ b ) b b b ) ) ) ) ]

(23.12) Exercise: Symmetric binary channel.
Determine the maximal capacity of the symmetric binary channel having error
probability % <p<l.

(23.13) Exercise: Maximum likelihood decoding.

We consider the symmetric binary channel having error probability 0 < p < %;
typically we let p = 107¢ for e € {1,2,3}. Applying ML decoding, the channel is
used to transmit words in F3, which is assumed to carry the uniform distribution.

a) Determine the error probability ¢(F3), if the words are sent without redun-
dancy, that is with information rate p(F3) = 1.

b) Now we use the code Cy < F$§ given by the generator matrix
I |

Go:=1|. 1 . . 1 .|eFxs,
1 . .1

hence we have p(Cp) = % Determine the error probability €(Cp).
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c) Finally, we similarly use the code C < F§ given by the generator matrix

] B |
G:=|. 1 . 1 . 1| eFx
1 1 1 .

hence we have p(C) = 1 again. Determine the error probability €(C).

Hint. Consider the spheres B,.(c) C F$, for ¢ € C and r € {0,1, 2}.

(23.14) Exercise: Maximum likelihood decoding.

We consider the symmetric binary channel having error probability 0 < p < %
Applying ML decoding, the channel is used to transmit words in a (7,24, 3)-
Code C, which is assumed to carry the uniform distribution. Determine the
error probability €(C).

24 Exercises to Part 11

(24.1) Exercise: Hamming distance.
a) Let n € N, let v, w € F} such that d := d(v,w) € Ny, for r, s € Ny let

A= {ueF;d(v,u) =r, d(w,u) = s},
and let t := “2=5_ Show that A= () if t ¢ Z, and |A| = (f) : (’;:f) ifteZ.
b) Let n € N, and let v,w,x,y € F} having mutual distance d € N. Show
that d is even, and that there is a unique u € F} such that d(v,u) = d(w,u) =
d(z,u) = 4. Does d(y,u) = £ hold as well?
(24.2) Exercise: Semi-linear isometries.
Let F, be the finite field with ¢ elements, let o € Aut(F,) be a field automor-
phism, and let n € N. An additive map o: Fy — Fy such that (va)? = v% - a®,
for v € Fy and a € Fy, is called an a-semi-linear map. (Hence the F -linear
maps are precisely the idr -semi-linear ones.)

a) Show that the set of all a-semi-linear isometries of F with respect to the
Hamming metric is given as the set of pairs Isom,(Fy) = (F;)" x Sy, where
7 € S, acts by permuting the components of v = [z1,...,2,] € Fy, and ¢ :=
[a1,...,an] € (F;)" acts component-wise, that is v¥ := [2{ a1, ..., 2} -a,] € Fy.
Show that Isom, (F7) fixes 0, € Fy, that is Isom, (Fy) C Isomg(Fy). When
does Isom, (IF}) carry a group structure? What happens if ¢ is a prime?

b) Let Isom™ (') be the group of all isometries of I} with respect to the Ham-
ming metric, which map Fg-subspaces to Fg-subspaces. Show that Isom” (FZ)
preserves minimum distance and minimum weight of Fy-subspaces of Fy.
Show that for n > 3 as sets we have Isom™(Fy) = []
you describe the group structure of Isom™(Fy)?

acAut(Fy,) Isom, (Fy). Can
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Show that for n = 0 we have Isom*(F,) = Isomg(F,), while for n = 1 we
get Isom™ (F2) = [oeauts) Isome (F2), where Aut(F}) is the group of group

automorphisms of Iy, and Isom, (-) is defined analogous to the semi-linear case.

(24.3) Exercise: Linear and non-linear isometries.
Let Fy = {0, 1,w,w+1} be the field with 4 elements, where w is a primitve root.
For ¢ € {w,w?} we consider the code C; < F§ given by the generator matrix

1. . 111 1

L 1 . . . 1 1 w A% 8

Ge = 1.1 .1 o S
111 . ¢

a) Show that C, and C,2 are isometric, hence have the same minimum distance.
b) Show that C, and C,2 are not linearly isometric.

Hint for a). Show that C, and C,2 are a-semi-linearly isometric, where « is
the Frobenius automorphism of Fy.

(24.4) Exercise: Erasures.

Let C be a non-trivial block code. An entry of a code word being lost on trans-
mition is called an erasure, amounting to an error with known position. For
e,g € Ny show that it is possible to correct e errors and g erasures simultane-
ously if and only if 2e + g < d(C) — 1.

(24.5) Example: Hamming bound.

Show that the parameters ¢ = 2 and n = 90 and m = 27® and d = 5 fulfill the
Hamming bound, but there is no binary (n,m,d) code. (Actually, this is the
only such example for ¢ < 100 and n < 1000 and e < 1000.)

Hint. Let C C F} be such a code. Consider the sets A := {v = [z1,...,2,] €
Flizp = 29 = L,wt(v) = 3} and B := {w = [y1,...,yn] € Ciy1 = y2 =
1, wt(w) = 5}, and determine |{[v, w] € A x B;vw" = 1}| by double counting.

(24.6) Exercise: Perfect codes.

a) Show that any perfect code C; C Fy having minimal distance 3 has the same
parameters as a suitable Hamming code.

b) Let C2 C F% be a perfect code having minimal distance 5. Show that we
have n = 5, and determine C.

c¢) Let C3 C Fy be a perfect code having minimal distance 7. Show that we have
n € {7,23}. Determine C for the case n = 7.

(24.7) Exercise: Vasiliev codes.
We modify the Hamming code H < FZ as follows: Let f: F7 — Fy be given by
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f(07) :=0, and f(x):= 1, for 07 # = = [z1,...,27] € F5. Then let

7
C:={[x; z+ v; (le) + f(v)] €F; 2 € Fh, v € H} CFLP.

i=1

Determine the parameters of C, and show that it is a perfect code, which is not
equivalent to a linear code.

(24.8) Exercise: Check matrices.
Let C < F§ be given by the following check matrix:

111 ..
H:=1|1 .1 . 1 .|cFX*S
11 . . .1
Compute a generator matrix of C, and determine its minimum distance and its
covering radius. Is C a self-dual code?

(24.9) Exercise: Self-dual codes.

Let C < TF} be a linear code having standard check matrix H = [A | E, ] €
F" %" where k = dimp, (C) and A € F" %k Show that C is self-dual if
and only if 2k = n and AAY = —E, _.

(24.10) Exercise: MDS codes.

Let C < Fy be a non-trivial code. Show that the following are equivalent:

i) C is an MDS code.  ii) C* is an MDS code.

iii) C is systematic on all k-subsets of components.

iv) For any generator matrix, all k-subsets of columns are linearly independent.
v) For any check matrix, all (n—k)-subsets of columns are linearly independent.

(24.11) Exercise: Subfield subcodes.

Let F, € F be a finite field extension, let I' := Autp, (F) = (gp,), and let
Tr: F' — Fgra = 3 cpa” be the Fy-linear (surjective) trace map. Then
by component-wise application we get an F-linear automorphism ¢4: F" —
F": v v? and an Fy-linear (surjective) map Tr: F" — Fy.

a) Given a code C < F", show that dimg, (CNFy) < dimp(C) < dimg, (Tr(C)).

b) Show Stichtenoth’s Theorem saying that the following are equivalent:
i) ¢ =9, ii) dimp, (CNFy) = dimp(C), iii) dimp(C) = dimg, (Tr(C)).

c) Show Delsarte’s Theorem saying that (C NF;')* = Tr(Ct) < Fy.
d) Conclude that if C = C%, then C*+ = (C*+)? and (CNF})*t =CH NFy.
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(24.12) Exercise: Concatenation of codes.
Let F; C IF be a finite field extension of degree m = [F: F,] := dimg, (IF), let C
be an [n, k, d]-code over F, and let D be an [I,m, d]-code over F,.

Then C and F" can be considered as [Fg-vector spaces, and specifying an IF,-basis
of F yields an encoding of F into ]Ff]. Show that this gives rise to an F,-linear
code Do(C < IE";” of F4-dimension km, called the concatenation of C and D.

Show that D o C has minimum distance bounded below by dd. Given generator
matrices of C and D, how can a generator matrix of D o C be found?

(24.13) Exercise: Syndrome decoding.
a) Let H < F7 be the Hamming code, having the following generator matrix:

1. .11
. 1 . . 1 . 4x7
G = .11 | SR
1111

Determine syndromes and coset leaders, and decode the following words:
i) [1,1,0,0,1,1,0], ii)[1,1,1,0,1,1,0], iii)[1,1,1,1,1,1,0].
b) Let C < F} be given by following generator matrix:
1 . . 1

G := € F%”.

—
—_
— e e

Determine syndromes and coset leaders, and decode the following words:

i) [1,1,0,1,0,1,1], ii)[0,1,1,0,1,1,1], iii) [0,1,1,1,0,0,0].

(24.14) Exercise: Unique decodability.
Let C < F1° be given by the following generator matrix:

r . . . . . . .11
r . . . .11 . .
G = 1 1.1 . .| eFyxo,
.11
1111

Show that all words in Fi% are uniquely decodable. Determine the minimum
distance and the covering radius of C.

(24.15) Exercise: Modifying codes.

Apply the constructions of puncturing, extending, expurgation, augmentation,
shortening and lengthening to the binary parity check and repetition codes, and
determine the parameters of the resulting codes.
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(24.16) Exercise: Extended codes.
Let the ternary codes C; and Cs be given by the following generator matrices:

e T R K T R .

Determine the minimum distance of C; and Co, and of their extensions.

(24.17) Exercise: Extended Hamming codes.
Let k > 2, and let C be a binary [2¥,2F — k — 1, 4]-code. Show that C is linearly
equivalent to the extended Hamming code Hy.

(24.18) Exercise: Hadamard codes.

a) A matrix H € R"*", for n € N, having entries +1 and fulfilling H H" = nF,,
is called a Hadamard matrix; if additionally all the entries in the first row
and column are positive, then H is called normalised.

Let H € R™" und H' € R"*"" be Hadamard matrices. Show that if n > 3
then 4 | n, and that H @ H' € R(")*(") i5 3 Hadamard matrix again.

b) Replacing the entries 1 and —1 of a Hadamard matrix H by 0 € Fy and
1 € 9, respectively, yields the associated binary Hadamard matrix. The
rows of the binary matrices associated with a normalised Hadamard matrix H
and with —H form the associaterd binary Hadamard code A. Shortening A
with respect to the first component yields the shortened Hadamard code A°.

Show that A is an (n,2n, §)-code, and that A° is an (n — 1,7, §)-code. Deter-
mine their covering radius. Do they fulfill the Plotkin bound?

1 1
1 -1
for k € N. Show that HS* is a normalised Hadamard matrix, also being called

Sylvester matrix. Moreover, show that the associated binary codes Ay, and Aj
are linear, so that Ay, is a 2, k+1,2%1]-code and A is a [2F — 1, k, 2¥~1]-code.

For k > 2 conclude that Aj linearly equivalent to the Reed-Muller code Ry,
and that A}, is linearly equivalent to the simplex code Sj.

c) Let Hy = HY' = { } € R2*2 and HS" Y .= HEF @ H, € R2*2",
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d) Show that the following matrix is a (normalised) Hadamard matrix:

1 1 1 1 1 1 1 1 1 1
-1 -1 1 -1 -1 -1 1 1 1 -1
1 -1 -1 1 -1 -1 -1 1 1 1 -

-1 1 -1 -1 1 -1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 -1 -1 1
1 1 -1 1 -1 -1 1 -1 -1 -1 1
1 1 1 -1 1 -1 -1 1 -1 -1 -1

-1 1 1 1 -1 1 -1 -1 1 -1 -1

-1 -1 1 1 1 -1 1 -1 -1 1 -1

-1 -1 -1 1 1 1 -1 1 -1 -1 1
1 -1 -1 -1 1 1 1 -1 1 -1 -1

-1 1 -1 -1 -1 1 1 1 -1 1 -1

—_ = = = =

c R12X12

e T e T T S e S e e e e g

Are the associated binary Hadamard and shortened Hadamard codes linear?

(24.19) Exercise: Sums and products of codes.

Let C be a non-trivial [n, k, d]-code, and let C’ be a non-trivial [0, k¥, d']-code,
both over [, having generator matrices G € IF’;X” and G’ € IF’;/X"/, respectively.
Show the following assertions, and find out what happens if different generator
matrices are chosen:

a) If k = k', then therows of [G | G'] € IFI,;XUH"/) generate an [n+n’, k, d"]-code
such that d’ > d + d’, being called the glue of C and C’.

c FékJrk') x (n+n’)

b) The rows of the matrix generate an [n+n', k+

el
k', min{d, d’'}]-code, being called the direct sum of C and C’.

c) The set of matrices in IFZ;X”/, whose columns and rows are elements of C* and
C’, respectively, forms an [nn/, k&', dd']-code, being called the direct product
of C and C'. Upon identifying Fy*™ = Fy™ | the direct product of C and C’ has
generator matrix G ® G’ € F((Ikkl)x(""/).

(24.20) Exercise: Product codes.

Let C < ngw be the direct product of the extended binary Hamming codes Hs

und 7?[4; hence C is a [128, 44, 16]-code, and thus is 7-error correcting. Actually,
C is much better than that:

Assume that a received word contains precisey 14 errors, in the (randomly
chosen, but unknown) positions [2,7,19,24, 27,32, 45,51,53, 76, 82, 86,96, 121],
where the rows of the matrices are enumerated row-wise. Show that the received
word is uniquely decodable.
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25 Exercises to Part II1

(25.1) Exercise: Bounding the code length.
Consider an (n,¢"~3,3)-code over an alphabet with ¢ elements, where n € N.
Show that n < ¢? + ¢ + 1.

(25.2) Exercise: Bounding the code order.
Let C be a binary code of length n € N, having minimum distance d > 3. Show

that |C| < nz—ﬂ, and if n is even then |C| < n2—+2 What happens for n odd?

Hint. Apply double counting to {[v,w] € C x F§;d(v,w) = 2}.

(25.3) Exercise: Bounding the minimum distance.

a) Use the Singleton, Hamming and Plotkin bounds to show that for any binary
(6,9, d)-code we have d < 3.

b) Show that there is a binary (6, 9, 2)-code, but there is no binary (6,9, 3)-code.

(25.4) Exercise: Weight sum.
Let C < F be a code such that k := dimg, (C) > 1, having a generator matrix
which does not contain a zero column. Show that >, . wt(v) = n(q — 1)¢" '

(25.5) Exercise: Equidistant codes.
Let C C F1% be a binary code such that wt(v) = 6 and d(v,w) = 8, for v # w € C.
Show that |C| < 16. Is there such a code fulfilling |C| = 167

(25.6) Exercise: Griesmer bound.

a) Show that the parameters ¢ := 3, n := 14, k := 4 and d := 9 fulfill the
Griesmer bound, but there is no ternary [14,4, 9].code.

b) Show that the parameters ¢ := 2, n := 15, k := 8 and d := 5 fulfill the
Griesmer bound, but there is no binary [15, 8, 5]-code.

(25.7) Exercise: Optimal binary codes.
For n,d € N let Kz(n,d) := max{k € N; there is a binary [n, k, d]-code}. Show
that Ko(n,2d — 1) = Ka(n+1,2d) and Ko(n+ 1,d) < Ks(n,d) + 1.

(25.8) Exercise: Punctured simplex code.
Beginning with the binary simplex [31,5, 16]-code, use iterated puncturing to
construct a [21,5, 10]-code. Does the latter fulfill the Griesmer bound?

(25.9) Exercise: Shortened Hamming codes.
Let k > 2. Show that the shortened binary Hamming code (Hy)° is optimal.

(25.10) Exercise: Optimal codes.
a) Determine K»(10,5).
b) Determine bounds for K5(17,8).
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(25.11) Exercise: Best code [1978].
We provide an example showing that non-linear codes might outperform optimal
linnear codes, but that it might be difficult to find them:

a) Show first that K5(10,4) = 5.
b) Now let Cy < F1° be given by the generator matrix [G | G] € F3*'° where

I |
G:=|. 1 . 1 1| eF3*.
11

Letting v := [1,0,0,0,0; 0,0,1,0,0] € Fi° and 7 := (1,2, 3,4,5)(6,7,8,9,10) €
Si0, let C:= (v + C){™ C F1°, that is the (r)-orbit of the coset v + Coy C F3,
be the (non-linear) Best code.

Show that C is a (10,40, 4)-code. (It can be shown that C is optimal.)

(25.12) Exercise: Even weight.
Assume there is a binary (n,m,d)-code such that d € N is even. Show that
there is a binary (n, m,d)-code such that all its words have even weight.

(25.13) Exercise: Non-linear codes.
a) Use suitable bounds to show that any binary (6,9, d)-code fulfills d < 3.
b) Provide a binary (6,9, 2)-code, but show that there is no binary (6,9, 3)-code.

(25.14) Exercise: Weight distributions.

Let C < F% having weight enumerator Ac € C[X,Y].

a) Determine the weight enumerator of the extended code CA, the expurgated
code C’ and the augmented code C.

b) For a polynomial 0 # f € C[X] let f* := X4/} . f(X~1) € C[X] be the
reversed polynomial. Give a necessary and sufficient condition for A¢(X,1) €
C[X] being self-reversed.

(25.15) Exercise: MacWilliams identities.

Let C < IFy be a code such that k := dimg, (C), let [Ao, ..., A,] be the weight
distrubution of C, and let [Ag, ..., A;t] be the weight distrubution of C*+ < F7.
For r € {0,...,n} show that

G T L It

i=0 j=0

(25.16) Exercise: Weight distribution of MDS codes.
Let C < F} be an MDS code such that k := dimg,(C) > 1; hence d := d(C) =
n — k + 1. Moreover, let [Ao,..., A,] be the weight distrubution of C.
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a) Show that A; =0 fori € {1,...,n — k}, and that for i € {1,...,k} we have

An_m( _@) i (”‘k“><q”1>;

Jj=

this says that the weight distrubution of C is determined by n and k.
b) Conclude (again) that £k <1 or d < g, and that d <2 or k < g — 1.

Hint for a). Let Cz := {[z1,...,2,] € C;z; =0forie I}, forZ C {1,...,n}.
For j € {0,...,k — 1} apply double counting to {[Z,v];|Z| = j,v € Cz \ {0}}.

(25.17) Exercise: Weight distribution of Hamming codes.

a) For k > 2 and n := 2* — 1 let H;, be the associated binary Hamming code,
having weight distribution [Ag, ..., A,]. Show that for ¢ > 2 the latter fulfills
the recursion i4; + A;—1 + (n — i+ 2)A;—2 = (ifl), where Ag =1 und A; = 0.

b) Determine the weight distribution of Hy and H..
c) Determine the weight distribution of the Reed-Muller codes Ry and Rj,.

(25.18) Exercise: Weight distribution of extended codes.
Let C < F% be a binary code having weight distribution [Ag,..., A], let C <
be the associated extended code having weight distribution [Ay, ..., Ant1],

Fn+1
2
and assume that Autg, (C) acts transitively on the components.
Show Prange’s Theorem, saying that for ¢ € {1,..., "T'H} we have
2 2 ~
Agi g = ——— Ay = - Ao
2¢—1 n+1-—2i 21 n+1 21

Conclude that C has odd minimum distance.

(25.19) Exercise: Divisible codes.
Let C <y be a code such that k := dimp, (C) € N, having no zero component.

a) Show that Y .. wt(v) = ng"~*(¢ —1). How is this statement related to the
MacWilliams identities?
b) Let now C be r-divisible, for some r > 2, and let s := W. Show

Ward’s Theorem, saying that C is an s-fold repeated code, that is of shape
C=A{[v,...,v] € F;v € Co}, for some code Cy < (Fy)*.

(25.20) Exercise: Divisible self-dual codes

Let C <y be an r-divisible self-dual [n, 5, §]-code, for 7 > 2 and n > 4 even.
a) Showthatq-?andn—S org=3andn=12,or ¢g=4 and n = 8.

b) Show that C is linearly equivalent to 7—73, or Gyg, Or 7—73 ®r, F4, respectively.
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(25.21) Exercise: Self-dual codes.
Let p be a prime. Provide self-dual F-linear codes of length n € {2,4,6,8}.

Hint. Distinguish the cases p =2 and p = +1 (mod 4).

(25.22) Exercise: Weakly self-dual binary codes.

Let C<Ct < F5 be a weakly self-dual code, and let n be odd.
a) Show that C is 4-divisible.

b) Assume that dimg,(C) = “;%. Show that C*+ = C.

(25.23) Exercise: Self-dual binary codes.

a) Show that a self-dual binary code of length 10 has minimum distance at
most 4, and determine the possible weight enumerators. Show that there is no
self-dual binary [10, 5, 4]-code, but provide a self-dual binary [10, 5, 2]-code. Is
the latter extremal?

b) Show that a self-dual binary code of length 16 has minimum distance at most
6, and determine the possible weight enumerators. Provide self-dual binary
[16,8,2]- and [16, 8, 4]-codes. Is there a self-dual binary [16, 8, 6]-code? Would
the latter be extremal?

c) Show that a self-dual binary code of length 32 has minimum distance at
most 10. Show that there is no self-dual binary [32,16, 10]-code. Determine
the weight enumerator of a putative self-dual binary [32, 16, 8]-code. Would the
latter be extremal?

d) Show that a self-dual binary code of length 48 has minimum distance at
most 14. Show that there is no self-dual binary [48, 24, 14]-code. Determine the
weight enumerator of a putative doubly-even self-dual binary [48,24, 12]-code.
In which sense would the latter be extremal?

Hint. Use suitable bounds.

(25.24) Exercise: Quaternary codes.

In general, a code C C Fy is called formally self-dual if Ac = Ac.. Now let
C <} be a 2-divisible quaternary code of even length, such that dimg, (C) = 5.
a) Show that C is formally self-dual. Moreover, if C is self-dual, then there is a
subfield subcode Cy < F§ such that C = Cy ®r, Fa.

b) Provide a formally self-dual 2-divisible quaternary [6, 3, 4]-code, and deter-
mine its weight enumerator. But show that there is no extremal 2-divisible
self-dual quaternary code of length 6.

(25.25) Exercise: Extremal binary codes.

For n € N let C < F} be a (putative) extremal (even-weight or doubly-even)
self-dual binary code. How do its parameters compare to the asymptotic Gilbert-
Varshamov, Hamming, Elias and McEliece bounds, for n > 0?7
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(25.26) Exercise: Counting self-dual binary codes.
a) Let C < F% be a weakly self-dual binary code of dimension k£ > 1. Show that

the number of self-dual binary codes containing C equals i%:_lk(Qi +1).

b) Conclude that the number of self-dual binary codes equals ?:_11(? +1).

c) Let v € F} have even weight, where v ¢ {0,,,1,,}. Show that the number of
self-dual binary codes containing v equals ?:EQ(T +1).

26 Exercises to Part IV

(26.1) Exercise: Modifying cyclic codes.

Let C < Fy be a cyclic code having generator polynomial g € F, [X]. Which of
the constructions puncturing, extension, expurgation, augmentation, shortening
and lengthening of C are cyclic again? Provide suitable generator polynomials.

(26.2) Exercise: Constructing cyclic codes.

Let C < Fy and C < IF:ILI be non-trivial cyclic codes having generator polyno-
mials g € Fy[X] and ¢’ € F,[X], respectively.

a) Let ged(n,n’) = 1. Show that the direct product of C und C’ is a cyclic code
as well. Provide a suitable generator polynomial.

b) Let ¢ := 2, let n = n/ be odd, and assume that g | ¢’. Show that the
Plotkin sum of C and C’ is linearly equivalent to a cyclic code having generator
polynomial gg’ € Fo[X].

(26.3) Exercise: Generalized cyclic codes.
Let n € Nand 0 # a € F;. A code C < Fy is called a-cyclic, if for any
[0y ..., Zn-1] € C we have [axp_1,Z0,...,Tn_2] € C as well.

Provide a bijective correspondence between the set of a-cyclic codes of length n
and the set of ideals of a suitable quotient of the polynomial ring F,[X].

Moreover, show that the set of a-cyclic codes is closed under taking sums and
intersections, and describe the associated generator polynomials.

(26.4) Exercise: CRC codes.
a) Write GAP programs for CRC encoding and decoding. Which input data is
needed? What is the output? Which consistency checks should be made?

b) Apply the programs to the CRC code H < F} having generator polynomial
X3+ X +1 € F3[X]: Compute the encoding of the following words:

i) [0,0,0,1], 1ii) [0,0,1,1], iii) [0,1,1,1], iv) [1,1,1,1];
and decide which of the following vectors belong to H:
i) [1,1,0,0,1,1,0]), ii)[0,1,0,1,1,1,0], iii) [1,0,0,0,1,0,1].
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(26.5) Exercise: RWTH-ID.

Write GAP programs to generate and verify RWTH-IDs, applying the programs
from Exercise (26.4) with respect to the generator polynomial X° + X2 +1 €
Fy[X], and using the source coding from Table 7.

(26.6) Exercise: Cyclotomic polynomials.

Let F, be the field with ¢ elements, and let n € N.

a) For m € N show that X™ — 1 divides X™ — 1 if and only if m divides n.

b) Let p := char(F,), and let F be an algebraic closure of F,. How are the
factorizations of XP" — 1 € Fy[X] and X" — 1 € F,[X] related? How are the
sets of zeroes V(XP" — 1) C F and V(X" — 1) C F related?

(26.7) Exercise: Classification of cyclic codes.

a) Determine all cyclic binary codes of length n € {1,...,32}, their sets of
zeroes, and their generator polynomials. How are these codes related with
respect to inclusion? How do these codes behave with respect to duality?

b) For n < 10 determine the minimum distance of the above codes.

(26.8) Exercise: Reversible codes.
A cyclic code C < Fy having generator polynomial g € Fy[X] is called re-
versible, if for any [zg,...,z,_1] € C we have [z,_1,...,20] € C as well.

a) Show that the following assertions are equivalent:

i) The code C is reversible.

ii) We have g* = ag € F,[X] for some a € F}.

iii) The set of zeroes V(C) = V(g) is closed under taking inverses.

b) Assume that ged(g,n) = 1, and that —1 € Z is a g-power. Show that any
cyclic code C < Fy is reversible.

(26.9) Exercise: Cyclic binary codes of even length.

For k > 3 let H; < FY the associated Hamming code, where n := 2k _ 1. Show
that the expurgated shortened code (Hj)" < F;’*l is linearly equivalent to a
cyclic [n —1,n — k — 2, 4]-code.

Hint. Use the Plotkin sum of 7—[;671 and an even-weight code.

(26.10) Exercise: Binary simplex codes.

For k > 2 let S < F be the associated simplex code, where n := 2k _ 1. Show
that Sy, is linearly equivalent to a cyclic code, determine its set of zeroes V(Sy),
and use this to recover dimg, (S;) = k und d(Sy) = 2F71.

(26.11) Exercise: BCH codes.
Let C < Fy be a BCH code defined by {¢e, ..., (292} where a € Z, and
§€{1,...,n+1}. Is the dual code C* necessarily a BCH code as well?
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(26.12) Exercise: Binary BCH codes.
a) Let C < Fy be a narrow sense BCH code having designed distance § €
{1,...,n+1}. Show that dimp,(C) > n — 2] - [Auts, (F2((,)))-

b) Now assume that C is primitive, where n := 2¥ — 1 for some k > 1, such that

18] < 251-1. Show that dimg,(C) =n — | 3] - k.

¢) Determine the dimension of the primitive narrow sense BCH codes for n = 31.

(26.13) Exercise: Ternary BCH codes.
Determine the maximum dimension of a primitive ternary BCH code of length
26 and designed distance 5.

(26.14) Exercise: Reed-Solomon codes.
a) Let C < FI~' be a Reed-Solomon code such that 1 ¢ V(C). Show that the

extended code CAS IFZ is an MDS-Code.
b) Let C < IFZ be a primitive BCH code. Show that there is a finite field F, C F
and a Reed-Solomon code D < F™ such that C =D nN IFZ.

(26.15) Exercise: Roos bound.

Let n :=2¥ — 1, where k > 3, and let C < F3 be cyclic.

a) Let {¢,, (3} C V(C). Show that C has minimum distance > 4.

b) Let {¢n, ¢, '} € V(C). Show that C has minimum distance > 5, and that the
expurgated code C’ < F% has minimum distance > 6.

(26.16) Exercise: van-Lint—Wilson bound.

a) Let n := 2% 4+ 1, wherek > 1, and let C < F} be the cyclic code associated
with {(,}. Show that C is reversible and has minimum distance > 5.

b) Let C < F3! be the cyclic code associated with {C31,¢5;, (% }. Show that C
has minimum distance > 7. Does equality hold?

27 Exercises to Part V

(27.1) Example: QR codes.
a) Determine the minimum distance of the binary QR code of length 47.
b) Determine all perfect 1-error correcting QR codes.

(27.2) Example: Extended QR codes.
Provide a self-dual binary [32, 16, 8]-code and a self-dual binary [48, 24, 12]-code.

(27.3) Exercise: Golay codes.
Determine the residual code of the extended ternary Golay code G2 and of the
extended binary Golay code Gaoy.
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(27.4) Exercise: Weight distribution of Golay codes.
Determine the weight distribution of the binary Golay codes G5 and G4, and
of the ternary Golay codes Gy and Gf;.

(27.5) Exercise: Steiner systems.

A Steiner system S(t, k,v), where ¢, k,v € N such that t < k < v, is a set P of
points of cardinality v, together with a set B of k-subsets of P, called blocks,
such that any t-subset of P is contained in precisely one block.

a) For s € {0,...,t} show that any s-subset of points is contained in precisely
As € N blocks, where A - (’f—s) _ (v—s).

t—s t—s

Conclude that there are precisely b := |B| € N blocks, where b - (l;) = (:), that
each point belongs to precisely r € N blocks, where bk = vr; and that for ¢t = 2
we have r(k— 1) =v — 1.

b) Given a Steiner system S(¢, k,v), where ¢t > 2, show that there is a Steiner
system S(t — 1,k — 1,0 —1).

Steiner systems for t = 1 or ¢t = k are not too interesting (why?), and are fairly
easy to find for ¢ = 2, which we will see soon. But it is hard to find any for
t > 3, where conjecturally there are none for k > ¢t > 6; we will see below that
there are sporadic ones for t =4 und ¢t = 5.

c) Let A*(F,) := F2 be the affine plane over F;, where the subsets w+ (v)r, C
IE‘?I7 for v,w € IE% such that v # 0, are called affine lines. Show that the affine
plane, together with the affine lines, forms a Steiner system S(2,¢,¢?), and
determine the parameters g, b und 7.

d) Let P*(F,) := {(v)r, < F3;0 # v € F3} be the projective plane over F,,
where the subspaces (v, w)r, < F2 such that (v)g, # (w)r, € P*(F,), are called
projective lines. Show that the projective plane, together with the projective
lines, forms a Steiner system S(2,¢+1, ¢?>+q+1), and determine the parameters
As, b und 7. Finally, draw a picture of the Fano plane P?(F,).

(27.6) Exercise: Codes and Steiner systems.

We relate codes with Steiner systems as follows: Let C < FZ be a non-trivial
[n, k, d]-code, and for P :={1,...,n} let B := {supp(v) C P;v € C,wt(v) = d}.
a) Show that C is perfect such that d = 2e+1 if and only if B is the set of blocks
of a Steiner system S(e+ 1,2e+ 1,n). Moreover, in this case the extended code
CAyields a Steiner system S(e+2,2e+2,n+1). How are these systems related?

b) Conclude that the Hamming code Hj and the extended Hamming code ’;f[k,
for k > 2, yield Steiner systems S(2,3,2% — 1) and S(3, 4, 2%), respectively.

c¢) Similarly, the Golay code Go3 and the extended Golay code Goy yield Steiner
systems S(4,7,23) and S(5, 8, 24), respectively, also being called Witt systems.
Use this to determine the weight distribution of Gy (again).
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(27.7) Exercise: A weighing problem.

a) We have n > 3 identical coins, amongst which there is at most one fake
coin having a different weight. How many weighings using a beam balance are
needed to identify the fake coin? How many weighings are needed if their order
is fixed right from the beginning?

b) How many weighings are needed for 11 coins, amongst which there are up to
two fake coins having the same weight? How many are needed for fixed order?

Hint for a). Consider the cases n = lng_l, for k > 2.

28 Exercises to Part VI

(28.1) Exercise: Generalized Reed-Solomon codes.

a) Let GRSk(a,v) < Fy be a generalized Reed-Solomon code, and let g :=
c-a+d-1,, where c € F; and d € F. Show that GRSk (a,v) = GRSk(B,v).
b) Let GRSy (a, w) < F” also be a generalized Reed-Solomon code. When are

q
GRS (o, v) and GRSy (o, w) linearly equivalent?

(28.2) Exercise: Goppa codes.
Let G(a,g) < Fy be a Goppa code, where a = [y, ..., a,]. Show that it can
be written as subfield subcode G(a, g) = GRS, (e, [v1, ..., v,]) NFy, where

g(i)

— v  for ie{l,...,n}
[T 2:(0i — o) { s

v =

(28.3) Exercise: Goppa codes in characteristic 2.
Let G(a,g) < [y be a separable Goppa code, where ¢ is even. Show that its
minimum distance fulfills d(G(«, g)) > 2deg(g) + 1.

n

Hint. Consider the polynomial f, := [[;,_;(X — ;) and its derivative.

(28.4) Exercise: Cyclic Goppa codes.

Let G(«, g) < FY be a binary Goppa code, where o« = V,,. Assume that G(«, g)
is cyclic. Show that the Goppa polynomial can be chosen as g = X¥, for some
k € {0,...,n}. Conclude that G(«, g) is a narrow sense BCH code.

(28.5) Exercise: Goppa codes and BCH codes.
a) Let G(a, g) < F1® be the (non-separable) binary Goppa code given by a :=
Fis and g := Z2 + 1. Determine its Fao-dimension and its minimum distance.

b) Let C < F3? be the cyclic binary code having generator polynomial X2+ X +1.
Show that C is a BCH code, but is not a Goppa code.
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(28.6) Exercise: Irreducible Goppa codes.
a) Let G(a, g) < F$ be the irreducible binary Goppa code given by « := Fg and
g := X? + X + 1. Determine its Fy-dimension and its minimum distance.

b) Let G(a, g) < F32 be the irreducible binary Goppa code given by a := F3y
and g := X3 4+ X + 1. Determine its Fo-dimension and its minimum distance.

c) Let g := X2 + X + (5 € F14[X]. Show that g is irreducible.

Hence let G(a, g) < F1¢ be the associated irreducible binary Goppa code given
by a := Fy6. Determine its Fs-dimension and its minimum distance.

(28.7) Exercise: Divisors.

a) Let V be a smooth projective curve of genus g = gy > 0, let D € Divy, and
let 0 # f € Z(D). Show that f & £ (D — (z)) for almost all z € V.

b) Conclude that dimgz(Z (D — (z))) = dimp(Z (D)) — 1 for almost all z € V.

(28.8) Exercise: Effective divisors.
Let V be a smooth projective curve of genus g = gy > 0, and let D € Divy be
effective. Show that dimg(.Z (D)) = 1+ deg(D) if and only if D =0 or g = 0.

(28.9) Exercise: Divisors of degree 0.

Let V be a smooth projective curve of genus g = gy > 0, and let D € Divy.
a) Assume that deg(D) = 0 and .Z (D) # {0}. Give a description of .Z (D).
b) Let g =1 and let D be canonical. Show that D ~ 0.

(28.10) Exercise: Canonical divisors.
Let V be a smooth projective curve of genus g = gy > 0, and let K € Divy.

a) Show that K is canonical if and only if deg(K) = 2¢g—2 and dimz(Z(K)) > g.
b) Show that there is an effective canonical divisor if and only if g > 1.

c) Let k € Z, and assume that dimg(.Z (D)) = 14+deg(D)—k+dimz(Z (K - D)),
for all D € Divy. Show that k = g and that K is canonical.

(28.11) Exercise: Special divisors.

Let V be a smooth projective curve of genus g = gy > 0.

a) For D < D' € Divy show dimg(.Z(D")) —deg(D’) < dimgp(Z (D)) — deg(D).
Conclude that if D is non-special, then D’ is non-special as well.

b) Show that any D € Divy such that £ (D) # {0} and deg(D) < g is special.

c) Let {z1,...,2,} C V be pairwise distinct points, where r > g. Show that
there is a non-special effective divisor of shape D = >""_, n;-(z;) € Divy, where
n; > 0, having degree deg(D) = g.

Hint for c). Show that whenever D is effective such that dimz(.Z (D)) =1
and deg(D) < g, that there is i € {1,...,7} such that dimgz(Z (D + (z;))) = 1.
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(28.12) Exercise: Clifford’s Theorem.
Let V be a smooth projective curve of genus g = gy > 0.
a) Let D, D’ € Divy such that £ (D) # {0} # .Z(D’). Show that

b) Let D € Divy such that deg(D) € {0,...,2g — 2}. Show that
1
dimgp(Z (D)) <1+ 3 - deg(D).

(28.13) Exercise: Brill-Noether reciprocity.
Let V be a smooth projective curve of genus g = gy > 0, let D, D’ € Divy such
that D + D’ is canonical. Show that

dimg(.Z (D)) — % - deg(D) = dimz(.Z(D")) — % -deg(D).

(28.14) Exercise: (Max) Noether’s reduction theorem.
Let V be a smooth projective curve of genus g = gv > 0, let D € Divy such
that £ (D) # {0}, let (w) € Divy be canonical, and let x € V.

Show that we have dimg(.Z((w) — D — (x))) # dimz(Z((w) — D)) if and only
if dimg(Z (D + (x))) = dimp(Z(D)).

(28.15) Exercise: Bases of Riemann-Roch spaces.

Let V be a smooth projective curve, let p € V, let n € N, and let {f1,..., fx} C
Z(n-(p)), for some k € N, such that the values {v,(f1),...,v,(fr)} are pairwise
distinct, and for any f € Z(n - (p)) we have v,(f) € {vp(f1),---, Vp(fx)}

Show that {fi,..., fr} is an F-basis of .Z(n - (p)).

(28.16) Exercise: Pole divisors.

Let V be a smooth projective curve of genus g = gy > 0.

a) Let x € V. Show that for any k > 2g there is f € 7 having pole divisor
(f)oo =k - (z) € Divy.

b) Let {z1,...,2,} C V be pairwise distinct. Show that there is f € Ay \ F

T

having pole divisor of shape (f)oo = >_;_; 1i - (z;) € Divy, where n; > 0.

(28.17) Exercise: Morphisms of curves.
Let V be a smooth projective curve of genus g = gv
non-constant morphism f: V — P! of degree deg(f)

> (. Show that there is a
<g+1

(28.18) Exercise: Canonical morphisms.

Let V be a smooth projective curve of genus g = gy > 2, and let D € Divy be
canonical; then we have dimz(.Z (D)) = g.
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a) Let {f1,..., fy} € -Z(D) be an F-basis. Show that there is a morphism

©: Vo PI hines [fi(z): . fu(2).

Let {f1,...,f;} € Z(D) be an F-basis, and ¢': V. — P9~! be the associated
morphism. Show that there is an automorphism a of P9~1 such that ¢’ = ao¢.

b) Any map ¢ as above is called a canonical morphism. We distinguish the
cases whether ¢ is injective or not:

If ¢ is non-injective, show that there is a non-constant morphism V — P! of
degree 2; hence in this case V is a hyperelliptic curve.

If ¢ is injective, show that ¢ is a closed immersion, that is (V) C P97 is
closed, and ¢: V — ¢(V) is an isomorphism.

(28.19) Exercise: Pure Picard groups.
Let V be a smooth projective curve of genus g = gy > 0. Show that the pure
Picard group PicO(V) is trivial if and only if g = 0, that is V = P!,

(28.20) Exercise: Curves of genus 0.
Let V be a smooth projective curve of genus g = gv > 0.

a) If g > 1, show that for any x,y € V we have (z) ~ (y) if and only if z = y.
Does this also hold for g = 07

b) For g = 0, show that any two divisors on V of degree 1 are linearly equivalent.

c) Show that the following are equivalent: i) We have g = 0. ii) Thereis f € J5;
such that deg((f)o) = 1. iii) There is € V such that dimz(Z((z))) > 2.

(28.21) Exercise: Projective lines.
We consider the projective line Pi: Al U {0}, whose field of rational functions
Jp is naturally identified with F(X).

a) Show that there is a unique w € Q ,,, such that (w) = —2-(occ0) € Divp: and
ress (- w) = —1. Moreover, for a € F and k € Z determine reso (X —a)* - w)
and res, ((X — a)* - w). Finally, determine Q(—2 - (c0)).

b) Show that X! is not the derivative of any element of F(X); if char(F) =
p > 0 show that XP~1 is not the derivative of any element of F(X). Conclude
that there is a differential form which is not of the form df, for any f € F(X).
Moreover, for f € F[X] irreducible determine the divisors (df) and (fdX).

(28.22) Exercise: Cubic curves.
a) For A € F let Vy := V(f,) € P? be the plane projective curve given by

Hhi=Y*Z - X(X-2Z)(X -)\2) cF[X,Y, Z].

For which A € F is V), smooth? (Then, by Pliicker’s formula, V) has genus 1.)
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b) Let V) be smooth. Then in affine coordinates we have J#y = Q(&), where
o =TF[X,Y]/(Y? - X(X - 1)(X = \)).

Determine the principal divisors (X) and (Y).
c) Show that .2 := Z(k- (X)) C & and that dimgz(£) = 2k, for k € N.
d) Ler w := + - dX € Q4. Show that (w) =0 € Divy.

(28.23) Exercise: A quintic curve.
Let V = V(f) be the plane projective curve given by

f=XY+Y'Z+2'X eF[X,Y, Z].

Show that V is smooth, determine its genus, and compute the principal divisor
associated with % € .

(28.24) Exercise: Goppa codes.

Let 'V be a smooth projective curve defined over Fy, let {p1,...,p,} C V(F,)
be pairwise distinct, where n € N, and let P := )" | (p;) € Divy; note that we
do not specify the order of the places given.

a) Let G ~ G’ € Divy be F,-rational divisors whose support is disjoint to
{p1,--.,pn}. Show that Gp(G) and Gp(G’) are F,-linearly equivalent, and that
so are G5(G) and G5(G).

b) Conversely, let G be an Fg-rational divisor whose support is disjoint to
{p1,.-,pn}, and let C < Fy be Fy-linearly equivalent to Gp(G). Show that
there is an F,-rational divisor G’ whose support is disjoint to {p1,...,pn}, such
that G’ ~ G and C = Gp(G’). Show the analogous assertion for G5 (G).

(28.25) Exercise: Goppa codes from elliptic curves.
Let Fy = Fo(¢), where ( is a primitive 3-rd root of unity, and let V.= V(f) be
the plane projective curve given by

fi=X2Y + (Y22 + (PZ2%X € Fy[X,Y, Z).

a) Show that V is smooth, determine its genus, and compute V(4).

b)Letg:=[C:1: 1] eVand ¢ :=[1: (: 1] € Vand ¢’ :=[1: 1: ¢] € V. Show
that the divisor G := 2(q) + (¢’) € Divy is Fy-rational, and compute an F4-basis
of %, (G) C .

c) Let P:=3" v (1)\{q.q.¢3(P) € Divy. Show that the geometric Goppa code

Gp(G) over Fy has length 6, dimension 3, designed distance 3, but actually min-
imum distance 4. (Thus Gp(G) is an MDS code, being called the hexacode.)
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(28.26) Exercise: Goppa codes from Hermitian curves.
Let V = V() be the plane projective curve given by

fi=X 4yttt 4 29T e Fe[X,Y, Z].

a) Show that V is smooth, and that gv = 3(¢> — ¢). Moreover, show that
|[V(¢?)| = ¢® + 1. How does this compare to the Hasse-Weil bound?

b) Now let ¢ be even, let po := [0: 1: 1] € V. let P =37 -y (p2)\ (o} (P) € Divy,
and let G := m - (pg) € Divy, where m € {¢> —q¢—1,...,¢%}. Determine the
length, the dimension and the designed distance of the geometric Goppa code
G :=Gp(G) over Fp.

c) Finally, let ¢ := 4, and choose m such that G has rate p(G) = 3. Compute
a generating matrix of G and determine its minimum distance. Is G an MDS
code? Is G self-dual?

d) Suppose G is used to transit data through a symmetric binary channel with
error probability 0 < € < 1, by writing the elements of F1g as words of length 4
over [Fy. Determine the error probability of G, by treating non-uniquely decod-
able words as erasures. Compare with the error probability of a Reed-Solomon
code R over F 2 being chosen such that p(R) ~ 3.

(28.27) Exercise: Goppa codes from the Fermat curve.

Let V = V(f) be the smooth plane projective curve given by
F=X*+Y34+ 723 e Rh[X,Y, Z].

a) Show that [V(8) \ V(2)| = 6, consisting of two (p3)-orbits of length 3.

b) Let P := 3 v (p) € Divy, and let G := (q) + (¢¥2) + (¢#%) € Divy,
where ¢ € V(8) \ V(2). Show that the geometric Goppa code Gp(G) and the
dual geometric Goppa code G5 (G) over Fy are well-defined, and determine their
dimension and their designed distance.

¢) Compute Fy-bases of %, (G) and L, ((wr,) + P — G), and determine the
minimum distance of Gp(G) and G5(G). Are Gp(G) or G5(G) MDS codes?

(28.28) Exercise: Goppa codes from the Klein quartic.
Let V = V(f) be the plane projective curve given by

f=XY+Y’Z+Z°X e F,[X,Y, Z].
a) Let pp :=[0: 0: 1] € V(2), and let G := k- (pg) € Divy for k € {0,...,18}.
Compute an Fa-basis of the function space Z(Gy) C Sy .

b) Let P := 3" v (s)\(po}(P) € Divv. Compute an Fs-basis of the geometric
Goppa code Gp(Gy), and determine its designed and minimum distances.

c) Let P := 2_pev(16)\{po} (P) € Divy. Determine V(16), compute an Fyg-basis
of G5(Gy), and determine its designed and minimum distances.
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(28.29) Exercise: Goppa codes from the Klein quartic.
Let V = V() be the plane projective curve given by

[ =X3Y +Y3Z+ 73X € Fy[X,Y, Z].

a) Compute a differential form w € Qy and a canonical divisor (wr,) € Divy.

b) Let ¢; := [¢§: (2°: 1] € V(4) for i € {1,2}, where (3 € Fy is a primitive 3-rd
root of unity, let G, := k- ((q1) + (¢2)) € Divy for k € {0,...,11}, and let P :=
>_pev(s)(P) € Divy. Compute Fa-bases of Zr,(Gy) and Zr, ((wr,) + P — Gr).

c) Show that the geometric Goppa code Gp(Gy) and the dual geometric Goppa
code G5 (Gy) over Fg are well-defined, and determine their dimension and their
designed and minimum distances.
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