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1 Groups and actions

(1.1) Monoids. a) A set G together with a multiplication -: G x G —
G: [g, h] — gh fulfilling the following conditions is called a monoid:

i) There is a neutral element 1 € G such that 1-g=g=g¢-1 for all g € G,
ii) and we have associativity (fg)h = f(gh) for all f,g,h € G.

If gh = hg for all g,h € G then G is called commutative or abelian.

In particular we have G # ). The neutral element is uniquely defined: If 1’ € G
also is a neutral element then we have 1 = 1-1’ = 1’. The product g192 - - g, € G
is well-defined independently from the bracketing for all g1, ..., g9, € G, and if G
is commutative then the product g1 92 - - - g» € G is independent from the order
of its factors. For g € G let ¢° := 1, and recursively g"*! := g"g for all n € Ny.
Then we have g™g" = g™ and (¢™)" = g™ for all m,n € Ng. If g,h € G
commute, i. e. we have gh = hg, then (gh)" = g"h™ = h™g™ for all n € Ny.

A subset U C G is called a submonoid, if 1 € U and multiplication restricts
toamap -: U x U — U. Then U with the restricted multiplication again is a
monoid; e. g. {1} and G are submonoids of G.

If G and H are monoids, a map ¢: G — H is called a (monoid) homomor-
phism, if 1o =1 and (g9¢')p = gp - ¢'p for all g, ¢’ € G; hence im(p) C H is a
submonoid. If ¢ is surjective it is called an epimorphism, if ¢ is injective it is
called a monomorphism, if ¢ is bijective it is called an isomorphism; in this
case ¢~ ! is an isomorphism, we write G = H. If G = H, then ¢ is called an

endomorphism, and a bijective endomorphism is called an automorphism.

(1.2) Groups. a) Let G be a monoid. An element g € G is called right
invertible if there is a right inverse h’' € G such that gh’ = 1, it is called left
invertible if there is a left inverse h” € G such that h”g = 1.

If ¢ € G is both right and left invertible then it is called invertible or a
unit. If #’ € G is a right inverse and h” € G is a left inverse, then we have
R =n"-1=hn"(gh') = (h"g)h’ = 1-h' = h'. Thus in this case there is a unique
inverse ¢! := b/ = b’ € G such that gg~! =1 =g~ !g.

Let G* C G be the set of units. Then we have 1 € G*, where 171 = 1. For all
g,h € G* we from gh(h~'g™1') = 1 = (h=tg~1)gh conclude (gh)~! = h=1g~!
and thus gh € G*; hence G* is a submonoid of G. For g € G* we have (g71)~! =
g, thus g~! € G*, hence (G*)* = G*.

For g € G* and n € N we let g7 := (¢g1)". Then we have g™g" =
and (¢™)" = g™ for all m,n € Z. If g,h € G* commute the we have (gh)"
g"h™ = h"g™ for all n € Z.

b) A monoid G such that G = G* is called a group. If G is finite then |G| € N

is called its order, and G is called commutative or abelian if the underlying
monoid is. For any monoid G the set G* is called the group of units of G.
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A submonoid U of a group G such that for all g € U we also have g=! € U, is



called a subgroup; we write U < G. Then U with the restricted multiplication
again is a group; e. g. we have the trivial subgroup {1} < G and G < G.

If G and H are groups, a map ¢: G — H is called a (group) homomorphism,
if (g9')p = gp-g'p for all g,¢' € G. From 1o = (1-1)p = lp - 1y we get
1=1p- (1)t = 1p-1p-(1p) "1 = 1¢p, hence ¢ also is a monoid homomorphism.
For g € G we have 1 = 1p = (997" )¢ = gp - (97"), hence (97" )¢ = (99) 7",
and thus we have (¢")p = (g¢)" for all n € Z. We have im(¢) < H, and for
any U < H we have ¢~ }(U) < G.

(1.3) Example. a) Z is an abelian additive group with neutral element 0,
and a commutative multiplicative monoid with neutral element 1 and group of
units Z* = {£1}. For n € Z the set nZ < Z is an additive subgroup, and
{2" e N;n € Ng} € N C Z are multiplicative submonoids.

b) Let K be a field. Any K-vector space is an abelian additive group with
neutral element 0. The set K™*™ of (n X n)-matrices with matrix multiplication
is a monoid with neutral element E,,. Since for n > 2 we have

Lrl o) f2 ][] _fro] 11

0 1 1 1| |11 120 |11 0o 11’
the monoid K™*"™ is commutative if and only if n = 1. Its group of units is called
the general linear group GL,,(K) := (K™*")* = {A € K™*"; A invertible} =

{A € K"*";rkg(A) =n} = {A € K™*™;det(A) # 0}, which is abelian if and
only if n = 1; the latter case coincides with K* = K \ {0}.

(1.4) Symmetric groups. a) Let X # () be a set, let Maps(X, X) :=={f: X —
X}, and let -: Maps(X, X) x Maps(X, X) — Maps(X, X): [f,g] — fg be the
composition of maps, i.e. fg: X — X: x+— xfg = g(f(x)). Then Maps(X, X)
is a monoid with neutral element idx: X — X: x — x: We have f -idx =
idy - f = f for all f € Maps(X, X), and 29" = (2f9)h = ((x/)9)h = (2F)9" =
2/ for all x € X, thus (fg)h = f(gh) for all f,g,h € Maps(X, X).

f € Maps(X, X) is right invertible if and only if f is injective: Let f be right
invertible with right inverse ¢ € Maps(X, X). Then for x,y € X such that
zf =yf wehave x =x-idx =xfg=yfg=y-idx =y, hence f is injective.
Let conversely f be injective. Then we define g € Maps(X, X) by yg:=x € X
whenever y = zf € im(f), and yg := y whenever y € X \ im(f). Then we have
xfg= (zf)g=x for all x € X, hence fg = idx, thus g is a right inverse of f.

f € Maps(X, X) is left invertible if and only if f is surjective: Let f be left
invertible with left inverse g € Maps(X, X). Then for all z € X we have
x =z -idx = zgf, hence z € im(f), thus f is surjective. Let conversely f be
surjective. Then for all y € X we have f~1({y}) = {z € X;af = y} # 0.
Hence for all y € X, by the Axiom of Choice we pick an element z, € X such
that z,f = y. This defines a map g: X — X:y — x,, and for all y € X we
have ygf = (yg9)f = xyf =y, hence gf = idx, thus ¢ is a left inverse of f.



Hence f is invertible if and only if f is bijective, the inverse of f € Maps(X, X)
being the inverse map f~! € Maps(X, X). The set Sx := Maps(X, X)* =
{f: X — X; f bijective} is called the symmetric group on X; its elements
are called permutations. In particular, if X = {1,...,n} for some n € N we
write Sy, 1= Sf1,....n}; for X =0 we let Sp := {1}.

b) For n € N we have |S,| = n! := n(n —1)---1, a factorial, as is seen
by induction: For n = 1 we have §; = {id{;3}. Forn > 2 and 7 € S,
we have nm = m for some m € {1,...,n}, and hence «: {1,...,n — 1} —
{1,...,n}\ {m} is bijective as well. Since there are n possibilities to choose m,
there are n - |S,—_1| = n! possibilities for .

E. g. for n = 3 we have the following 6 permutations, where in the second row
we record the images of the elements given in the first row:

123 123 123 123 123 12
{2 3 1}’[3 2 1]’{1 3 2}’[3 1 2]’{1 2 3}’[2 1
More space saving is the cycle notation, where permutations are written as
products of disjoint cycles and 1-cycles typically are left out. Due to bijectivity
any permutation can be written uniquely this way, up to reordering the factors,
where due to disjointness the order of the factors does not matter. If the cycles

of a permutation have lengths ny > ny > --+ > n, > 0, where r € N, the
partition [nq,ng,...,n,] b n is called the associated cycle type.

E.g. wehaveS; = {()} and Sz = {(), (1,2)}, and ordering the elements as above
Ss = {(1,2,3),(1,3),(2,3),(1,3,2),(),(1,2)}. Inverses are given by reading
cycles backwardly, e. g. we have (1,2,3)~! = (1,3,2) and (1,3,2)"! = (1,2,3),
while the other elements of S3 are their own inverses. While §; and Sy are
abelian, we from (1,2,3)(1,2) = (1,3) # (2,3) = (1,2)(1, 2,3) deduce that for
n > 3 the group S, is not abelian.

(1.5) Actions. a) Let G be a group, and let X # () be a set. Then G is called
to act on the G-set X, if there is an action map X x G — X: [z,g] — xg
such that i) 1 = z, and ii) z(gh) = (xg)h for all g,h € G and = € X.

Given an action of G on X, for g € G let pg: X — X: 2z — zg. Hence
from @gp,-1 = idx = @ 104 we infer ¢, € Sx for all g € G, and since
©gpn = @gn for all g, h € G we have an action homomorphism G — Sx: g —
pg. Conversely, if p: G — Sx: g — ¢4 is a homomorphism, then X x G —
X: [z,g] — zp, defines an action of G on X: We have 1 = idx € Sx, and
©gon = pgn, implies (zg)h = x(gh) for all g,h € G and z € X.

If X and Y are G-sets, then a map a: X — Y such that (zg)a = (za)g for all
x € X and g € G is called a (G-set) homomorphism.

b) The relation O := {[z,y] € X x X;y = zg for some g € G} is an equivalence
relation on X: From z1 = z we infer that O is reflexive; from y = xg we get
yg~! = z, implying that O is symmetric; and from y = xg and z = yh we get

z = xgh, implying that O is transitive.



Given z € X, its equivalence class zG := {zg € X;g € G} again is a G-set,
called the (G-)orbit of x; its cardinality |zG| is called its length, and a subset
T C G such that T' — xG: t — «t is a bijection is called a transversal of zG
with respect to x; transversals exist by the Axiom of Choice.

Let X/G :={zG C X;x € X}. A subset S C X such that S — X/G: z — G
is a bijection is called a set of orbit representatives of X; orbit representatives
exist by the Axiom of Choice, and we have X = [[ .q2G. If X = xG for any
and thus all x € X, then X is called a transitive G-set.

For z € X let Stabg(z) := G, := {g € G;xg = 2} C G be the stabiliser of z
in G. Then Stabg(xz) < G: We have 1 € Stabg(z) # 0, and for g, h € Stabg(z)
from rg = x = zh we get xg~! = x = xgh, hence g~!, gh € Stabg(z) as well.
For g € G we have Stabg(zg) = g~ !Stabg(z)g: For h € Stabg(z) we have
(rg)g~'hg = xg, and the other inclusion follows from z = (xg)g~*.

E. g. any group G acts trivially on any set X # 0 by ¢,: X — X: 2z — z
for all g € G. The associated action homomorphism is G — Sx: g — idx, the
orbits are the singleton subsets of X, and we have Stabg(z) = G for all x € X.

The group S, for n € N, acts naturally on {1,...,n} by ¢,: {1,...,n} —
{1,...,n}: i in for all * € S,,. The associated action homomorphism is ids,,,
the action is transitive, and we have Stabgs, (n) = {r € Sy;nr =n} = S, 1.

(1.6) Dihedral groups. Let R? be the Euclidean plane equipped with the
standard scalar product, and let O3(R) := {g € R?*%; g¢'" = FE»} < GL2(R)
be the associated orthogonal group. We have Oz(R) = {g € O2(R); det(g) =
1} U {g € O2(R);det(g) = —1}, where the elements of the special orthogonal
group SO2(R) := {g € O2(R);det(g) = 1} < O2(R) are called rotations, while
those of Oz(R) \ SO2(R) are called reflections.

For n > 3 let D C R? be a regular n-gon centred at the origin, and let
G = {g € 02(R);Dg = D} < O2(R) be its group of symmetries, where
G NSO2(R) = {g € SO2(R);Dg = D} is called its group of rotations.
Hence G acts transitively on the n vertices of D, and numbering the ver-
tices counterclockwise yields an action homomorphism ¢: G — S,,. The image
Do, :=im(yp) < S, is called the associated dihedral group. Since the vertices
contain an R-basis of R2, we conclude that ¢: G — Dy, is an isomorphism.

We describe the elements of Da,,, showing that |Da,| = 2n: Since rotations in
O2(R) are determined by their rotation angle, the rotations in Dy, are those
with angle # for k € {0,...,n— 1}. Thus D,, contains precisely n rotations,
given as 7° € S, for k € {0,...,n — 1}, where 7,, := (1,2,...,n) € S,,. Since
reflections in O2(R) are determined by their reflection axis, we distinguish the
cases n odd and n even:

For n odd the axis of a reflection in Ds,, runs through one of the vertices of D and
the edge opposite. Thus in this case Do, contains precisely n reflections, one of
them being o, := (1)(2,n)(3,n—1)--- (241, 23) € S,,. For n even the axis of a



reflection in Do, either runs through a pair of opposite vertices, or runs through
a pair of opposite edges. Thus in this case D, contains precisely § + 5 =n

reflections, one of the former being oy, == (1)(242)(2,n)(3,n — 1) --- (%, 21) €

S, and one of the latter being (1,2)(3,n)(4,n — 1)--- (22, 2H) € S5 e. g

the elements of Dg = S3 and Dg are given in Table 1. In both cases we have
IStabp,,, (1)] = [{(), on}| = 2.

(1.7) Cosets. Let G be a group, and let U < G. Then U acts on G by left
multiplication \,: G — G: z—u 'z forallu € U: Wehavez\; =17 lo =2
and 2y = (uwv)te = v luTte = (zA\,)A, for all ¥ € G and u,v € U. Hence
the U-orbit of x € G is the (right) coset Uz := {ux € G;u e U} C G.

The group G acts transitively on U\G := {Uz C G;x € G} by right multipli-
cation p,: U\G — U\G: Uz — Uxg for all g € G: We have (Uz)1 = Ux and
(Ux)gh = (Uzxg)h for all g,h,z € G, and Uz = (U - 1)x. Since ug € U if and
only if g € U, for g € G, we have Stabg(U -1) = U.

A subset T C G such that T — U\G: t — Ut is a bijection is called a (right)
transversal for U in G; in particular we have G = [[, ., Ut. The cardinality

[G: U] :=|U\G| = |T| € NU {0} is called the index of U in G.

Similarly, we get left cosets and left transversals. If T C G is a right
transversal, from G = [],., Ut by inversion G — G: g g ! we get G =
[Tiert 'U, hence T~ := {t~' € G5t € T} is a left transversal. Thus [G: U] is
independent from whether right or left cosets are considered. In general, left and
right cosets do not coincide, and left transversals are not right transversals: E. g.
for U := {(),(1,2)} < G := 83 we have S3 = {(),(1,2)} U {(1,2,3),(2,3)} U
{(1,3,2),(1,3)} = {0), (1,2)} U {(1,2,3),(1,3)} U {(1,3,2),(1,3)} as right and
left cosets, respectively, hence a right transversal is {(), (1,2, 3), (1, 3) }, which is
not a left transversal.

U < @G is called normal, if gU C Ug for all g € G; we write U < G. In this
case, from Ug™' C ¢~ 'U we get gU = Ug, equivalently ¢~'Ug = U. E. g. we
have {1} <G and G < G, any subgroup of an abelian group is normal, and any
subgroup of index 2, since G = U U Ug = U U gU for any g € G\ U, is normal.

(1.8) Theorem. Let G be a group, let X be a transitive G-set, and let = € X.
Then a: Stabg(x)\G — X : Stabg(z)g — xg is a G-set isomorphism.

Proof. For g € G and u € Stabg(z) we have zug = xg, hence « is well-defined.
Since X is transitive « is surjective. For g,¢’ € G such that xzg = zg’ we
have g’g~! € Stabg(x), hence ¢’ € Stabg(r)g, thus « is injective. We have
(Stabg(z)gh)® = xgh = (zg)h = (Stabg(z)g)*h for all g, h € G. 1

(1.9) Corollary: Lagrange. Let G be a finite group.

a) Let U < G. Then we have [G: U] = %; in particular we have |U| | |G|.



b) Let X be a transitive G-set. Then we have |X| = [G: Stabg(z)]
for any x € X; in particular we have | X| | |G|.

_ ¢l
[Stabc (@]

Proof. a) Let T C G be a transversal for U in G, hence G = [[,., Ut. For the
U-orbit Ut we have Staby (t) = {u € U;u='t =t} = {1}. Hence U — {1}\U —
Ut: u+— {1}u+— u~'t is a bijection, thus |Ut| = |U| and |G| = |T| - |U]|. 1

(1.10) Corollary: Cayley. G is isomorphic to a subgroup of Sg.

Proof. Let G act regularly on G, i. e. by right multiplication, thus G = {1}\G
as G-sets, and let p: G — Sg be the associated action homomorphism. Since
gp = hp for g,h € G implies g =1-g=1-h = h, we infer that p is injective. f

(1.11) Theorem: Cauchy-Frobenius-Burnside Lemma. Let G be a finite
group, and let X be a finite G-set. Then we have | X/G| = ‘—Cl;‘ Ygeq IFixx (9)],

where Fixx (g) := {z € X;xg = z} is the set of fixed points of g € G.

Proof. Letting O := {[z,9] € X x G;zg = x} we use double counting: On
the one hand we have O] =3 o [{z € X;29 = 2} = 3 5 |[Fixx(g)]. On
the other hand we have |O| = i:meX {g € Gizg = x}| = ) ,cx [Stabg(z)].
For y € G we have |yG| = |zG|, and thus [Stabg(z)| = [Stabg(y)]. Let-
ting T C X be a set of orbit representatives, we get > . [Stabg(z)| =

Yrer 2yeac IStaba (V)| = L per [2G - [Staba (2)] = X, |G = |X/GI- |G 4

(1.12) Example. A necklace with n > 3 pearls having k € N colours is a
map n: {1,...,n} — {1,...,k}. The set {1,...,n} may be considered as the
set of vertices of a regular n-gon D, and necklaces are called equivalent if they
arise from each other by a symmetry of D.

Let Mg :={n: {1,...,n} — {1,...,k}} be the set of all necklaces, hence we
have [N, x| = k™. Then D, < S, acts on N, by n — n™ := 7 1n for all
7 € Day,. The equivalence classes of necklaces are precisely the orbits on NV, k,
hence t,; = |Nn7k/D2n| € N can be determined using Burnside’s Lemma:
For m € 8, and n € N, we have n™ = 7 if and only if it~y = in for all
i € {1,...,n}. This holds if and only if n is constant on the r € N disjoint
cycles of m, where 1-cycles count, yielding |Fixyy, , (7)] = k".

E. g. for n = 3 and n = 4 we from Table 1 get t3; = % (k3 + 3K% + 2k) =
Lh(k+1)(k+2) = (*3?) and tap = L-(K*+2k343k>+2k) = L -k(k+1) (k2 +k+2).

2 Homomorphisms and subgroups

(2.1) Kernels. Let G and H be groups, let ¢: G — H be a homomorphism,

and let ker(p) := ¢ 1({1}) = {g € G;9¢ = 1} < G be its kernel: Since for

g € G and u € ker(p) we have (g7 ug)p = 1, we infer g~ ker(p)g C ker(p).



Table 1: Dg and Dsg.

| m € Dg | type | T |

|7T€D6 |type |7°| 0 [17] 4
() [1°] |3 (1,2,3,4) | [4] 1
(1,2,3) [ 3 |1 (1,3)(2,4) |22 |2
(1,3,2) | [3] 1 (1,4,3,2) | [4] 1
(2,3) 2,1] | 2 (2,4) 2,17 | 3
(1,2) [2,1] | 2 (1,3) [2,1%] | 3
(1,3) [2,1] | 2 (1,2)(3,4) | 2% 2
(1,4)(2,3) | [2°] |2

For g € G and h := gy € im(p), we have p~1({h}) = ker(p)g € ker(¢)\G:
For k € ker(p) we have (kg)p = kp - gp = h, thus ker(¢)g C =1 ({h}), and
for ¢ € o7 1({h}) we have (¢’ )p = 1, thus ¢’ = (¢'g 1)g € ker(¢)g. In
particular, ¢ is injective if and only if ker(y) = {1}.

(2.2) Homomorphism Theorem. Let G be a group, and let N < G.

a) G/N is a group with respect to (¢N)(hN) := ghN for all g, h € G, called the
associated factor group or quotient group, and the natural map vy: G —
G/N: g — gN is an epimorphism such that ker(vy) = N.

b) Let ¢: G — H be a homomorphism such that N < ker(yp). Then the
induced map ¢V: G/N — H: gN ~ gy is a homomorphism such that
ker(pY) = ker(p)/N, yielding a factorisation ¢ = vye". In particular,
k(@) G/ ker(p) — im(¢p) is an isomorphism.

Proof. a) We only have to show that multiplication is well-defined: Let ¢’ € g N
and b’ € hN. Then we have ¢’ = gm and h’ = hn for some m,n € N, and thus
g'h' = gm-hn=gh-h~*mh-n € ghN. For g € G we have g € ker(vy) if and
only if gN = N, which holds if and only if g € N.

b) The map ¢” is well-defined: Let ¢’ € gN, then we have ¢’ = gn for some
n € N < ker(p), thus ¢'¢p = (gn)p = gp. We have (gN)‘/’N = 1 if and only if
gp =1, if and only if g € ker(ip), if and only if gN € ker(¢)/N. i

(2.3) Corollary: Isomorphism Theorems. Let G be a group, and let N<G.
a) Let U < G and M QG such that M < N. Then we have U/(UNN) 2 UN/N
and (G/M)/(N/M) = G/N.

b) The map ®: {U < G;N < U} - {V < G/N}: U — Uvy = UN/N is an
inclusion-preserving bijection with inverse ®~': V - v! (V). The maps ® and
®~! preserve normality, and if [G: N] is finite then subgroup indices as well.

Proof. a) Since NU = UN we have N JUN < G, hence im((vy)|v) = UN/N
and ker((vy)|y) = U N N <U; and we have ker(v¥ ) = N/M.



b) Since Nvy = 1 we have N < vi' (V) < G, hence ® and &' are well-
defined and inclusion-preserving. From vy'(Uvy) = vy (UN/N) = UN = U
and (vy'(V))vy =V we conclude that ® and ®~! mutually inverse.

If N < U <G, then for g € G we have (gN)~! - UN/N - gN = g~ 'UgN/N =
UN/N, hence UN/N <G/N, thus ® preserves normality. If V I G/N, then for
g € G we have (¢~ 'vy' (V)g)vn = (gN) ™' -V - gN =V, hence g~ 'vy' (V)g C

vy (V), thus vy' (V) <G, hence &1 preserves normality.

If [G: N] is finite, then [G: U] is finite as well, and letting {s1,...,8m} C U be

a transversal for N, and {¢1,...,%,} C G be a transversal for U, then {s;t; €
G;i € {l,...,m},j € {1,...,n}} is a transversal for N in G. Hence we have
mn G: G

(2.4) Example. a) For the trivial homomorphism ¢: G — H: g — 1 we have
ker(p) = G, yielding G/G = {1}. For the identity idg: G — G: g — g we have
ker(idg) = {1}, yielding G/{1} = G.

b) For n € N we have nZ = —nZ < Z, where the natural homomorphism is
given as vp: Z — Z/nZ: x — T :=x+nZ={y € Z;y = x (mod n)}. The set
Z, :={0,...,n—1} C Z is a transversal for nZ, hence Z,, becomes an abelian
group by using the bijection v,,: Z,, — Z/nZ.

c) Let K be a field. Then det: GL,,(K) — K* is surjective, letting SL,, (K) :=
ker(det) IGL,, (K) be the special linear group yields GL,,(K)/SL,(K) = K*.
d) exp: R — R* is a homomorphism from the additive group R to the multi-
plicative group R*, where im(exp) = R and ker(exp) = {0} yields R = R+.

(2.5) Lemma. Let n € N, and let 7 € S,, be a product of » € N disjoint cycles.
Ifrn=m- -7 €8,, where s € Ny and the 7; € §,, are transpositions, i. e.
2-cycles, then we have s =n —r (mod 2).

Proof. We proceed by induction on s € Ny: For s = 0 we have 7 = (), and
hence r = n. For s > 0 let 7, = (i,j) € Sp, and let 0 := 74+ 751 €
S, be a product of ' € N disjoint cycles, hence by induction we have s —
1 =n-—7" (mod?2). If 4,j occur in the same cycle of o, then 7 = o715 =
(.00 k g D) =), k), ..., 1), where possibly k =i or j =
1, hence 7 is a product of r = r’ +1 disjoint cycles. If 7, j occur in distinct cycles
of o, then we have m = o715 = (.. .)(4,.. ., k)(J,..., (@, 5) = (. ). k, j,..., 1),
where possibly k =i or j = [, hence 7 is a product of » = v’ — 1 disjoint cycles.
In both cases we have n —r = s (mod 2). 1

(2.6) Alternating groups. For a n-cycle, for n > 2, we have (a1, as,...,a;) =
(a1,a2)(a1,as)---(a1,ar) € Sp, which is a product of n — 1 transpositions.
Hence any finite permutation can be written as a product of transpositions. In
general this representation is not unique, not even the number of transpositions
is: (1,2,3) = (1,2)(1,3) = (2,3)(1,2) = (1,2)(2,3)(1, 3)(1,2) € Ss.



Thus by (2.5) we for n € N have the sign homomorphism sgn: S,, — {£1}: 7 —
(—=1)"~" = (—1)%, where 7 is a product of r € N disjoint cycles, and a product
of s € Ny transpositions.

The kernel A,, := ker(sgn) <S8, is called the associated alternating group; the
elements of A, and S,,\ A, are called even and odd permutations, respectively.
For n > 2 we from sgn((1,2)) = —1 infer that sgn is surjective, hence we have
Sn/ Ay =2 {£1}, in particular [A,| = Z; for n = 1 we have A; = S; = {1}.

(2.7) Generating sets. Let G be a group, and let {U; < G;i € Z} where
Z # () is an index set. Then ﬂiez U; < G is a subgroup, and if U; < G for all
i € Z, then (;c7 U; < G as well; in general | J;.; U; C G is not a subgroup.

Let S C G. Then (S) := [{U < G;S C U} < G is the smallest subgroup of
G containing S, being called the subgroup generated by .S, where S called a
generating set of (S), and if S is finite then (S) is called finitely generated.
Letting S—! := {g~1; g € S}, we conclude that (S) consists of all finite products
of elements of SUS~!. E. g. we have (§) = (1) = {1} and (G) = G, hence in
particular any finite group is finitely generated.

A subgroup U < @G is called cyclic, if there is g € U such that U = (g). For
g € G we have (g) = {¢¥;k € Z}, where |g| := |{g)] € N U {oco} is called the
order of g. Hence cyclic groups are abelian; e. g. we have Z = (1) = (—1) and
for n € N we have Z/nZ = (1). If G is finite, then we have |g| | |G| for all
g € G; in particular, if |G| is a prime then G is cyclic.

(2.8) Theorem: Cyclic groups. Let G = (g) be a cyclic group.

a) Then a,: Z — G: k — g¢F is an epimorphism. We have ker(a,){0} if and
only if G is infinite; in this case we have Z = G. If G is finite then we have
ker(ay) = |g|Z and thus Z/|g|Z = G = {g*;k € {0,...,|g| — 1}}; in particular
we have Euler’s Theorem ¢/¢l = gl9l = 1, and for any n € N U {oc} up to
isomorphism there is precisely one cyclic group C,, of order n.

b) Any non-trivial subgroup of G is cyclic of finite index. If G is infinite, then
for all m € N there is a unique subgroup of index m. If G is finite then there is a
subgroup of index m if and only if m | |gl; in this case it is uniquely determined.
¢) A finite group H is cyclic if and only if for any m € N there is at most one
subgroup of order m.

Proof. a) b) Let {0} # U <Q7Z, and let n € N be minimal such that n € U,
hence nZ < U. For k € U let i € Z and j € {0,...,n— 1} such that k = in+ 7,
then from j € U and the choice of n we get j = 0, hence k € nZ, thus nZ = U.
Thus any non-trivial subgroup of Z is the form nZ for some n € N.

We have Z/ker(ag) = G, hence if ker(ay) = {0} then Z = G is infinite. If
ker(ag) = nZ for some n € N, then Z/nZ = G is finite and |g| = |Z/nZ| = n,
showing a). From |Z/nZ| = n we infer that nZ is the unique subgroup of Z of
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Table 2: Subgroup lattice of S3.

<(1,2,3),(1,2)>

<()>

index n. This shows b) for G infinite, while for Z/nZ = G finite, using nZ < mZ
if and only if m | n, the assertion follows from (2.3).

c) For n € N and k € Z the coset k € Z/nZ is contained in a proper subgroup
if and only if there is 1 # m | n such that k € mZ, i. e. m | k, which holds
if and only if ged(k,n) # {£1}, see (4.5). Thus (k) = Z/nZ if and only if k €
(Z/nZ)* = {T € Z/nZ;gcd(x,n) = {£1}}, where ged(z,n) is independent of
the chosen representative z. Letting ¢(n) := |(Z/nZ)*| € N be Euler’s totient
function, the subgroup structure of Z/nZ implies . cx ,, |, £(m) = n.

Let H # {1} fulfil the assumption on subgroups. Then for m € N there is an
element of order m only if m | n := |H|, where there at most ¢(m) of them.
Thus by >, cnnzm|n ®(M) =n —@(n) > 0 there is an element of order n.  §

(2.9) Example. a) We consider the dihedral group Da,, for n > 3, see (1.6):
The subgroup of rotations T}, := {7%;k € {0,...,n—1}} = (7,) < Dy, is cyclic
of order n. Since [Da,,: T,,] = 2 we have T,, < Ds,, and from o,, & T,, we get
Dsy, = (1, 00). From o, '7,0, = (1,n,n —1,...,2) = 7,1 we conclude that
D, is not abelian. Any element 7 € Dy, = T, U 0,,T}, can be written uniquely

as m = ob ¥, where i € {0, 1} and k € {0,...,n—1}, and multiplication is given
. -/ ’ : -/ N ’
by o7k ok = ok gk K

b) We consider the symmetric group S3: We have Sz = Dg = ((1,2,3), (1, 2)).
As any non-cyclic subgroup coincides with Ss, the only non-trivial proper sub-
groups are the non-normal cyclic subgroups ((1,2)), ((1,3)) and {(2, 3)) of order
2, and the normal cyclic subgroup ((1,2,3)) = ((1,3,2)) of order 3. The lattice
of subgroups is depicted as a Hasse diagram in Table 2.

(2.10) Conjugation action. Let G be a group, and let Aut(G) be the group
of automorphisms of G, whose multiplication is given by composition of maps.

For g € G let ky: G — G: x — g~ lzg =: 29 be the associated conjugation
map. Since ' = z and 29" = h=lglzgh = (29)", for all 2,9,h € G, this
induces an action of G on Gj in particular k4 is bijective. The associated orbits
are called the conjugacy classes of elements of G; the action is transitive if
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and only if G = {1}. The stabiliser Cg(z) := Stabg(z) = {g € G;29 = 2} =
{g € G;xg = ga}, for x € G, is called the centraliser of x in G.

Since (zy)? = g~ tayg = g tag - g lyg = 29y, for all z,y,g € G, we conclude

that kg is a homomorphism, hence k: G — Aut(G): g — Ky The image
Inn(G) := im(k) < Aut(G) is called the group of inner automorphisms of
G; we have Inn(G) < Aut(G): For all #,g € G and a € Aut(G) we have zk§ =

o kga = (g7 (za ) g)a = (ga) ' z(ga) = Thga, thus £ = Kga € Aut(G).

The kernel Z(G) := ker(k) = (e Ca(z) = {g € G;29 =z forallz € G} =
{9 € G;zg = gz for all x € G} < G is called the centre of G; hence we have
G/Z(G) = Inn(G). The group G is abelian if and only if G = Z(G), which
holds if and only if Inn(G) = {1}.

Similarly, G acts on the set of its subgroups via r,: U +— g~ 1Ug =: U9, for all
U < G and g € G. The associated orbits are called the conjugacy classes of
subgroups of G; the action is transitive if and only if G = {1}. The stabiliser
Ng(U) := Stabg(U) = {g € G;U? = U} = {g € G;Ug = gU}, for U < G,
is called the normaliser of U in G. Hence U < N¢(U) < G is the largest
subgroup of G having U as a normal subgroup; in particular U < G is a fixed
point if and only if Ng(U) = G, which holds if and only if U < G.

(2.11) Definition. Let p be a prime, and let G be a finite group. If |G| = p?,
for some d € Ny, then G called a p-group; in particular {1} is a p-group.

A p-subgroup P < G such that p J [G: P] = % is called a Sylow p-subgroup

of G. Let Syl,(G) be the set of Sylow p-subgroups of G; if p / |G| then we have
SyL,(G) = {{1}}.

(2.12) Theorem. Let p be a prime, let G be a p-group, and let {1} # N <G.
Then we have Z(G) N N # {1}; in particular we have Z(G) # {1}.

Proof. The normal subgroup N is a union of conjugacy classes, hence let T' C G
be a set of representatives of these classes. Since Z(G) = {g € G;|¢%| =
1} = {9 € G;Cq(g9) = G}, we have Z(G)N N = Z(G)NT and thus |[N| =

G G
IZ(G)NN|+>gem 2o —\C‘(;(‘g)\' Forall g € G\ Z(G) we have 1 # IC‘G(‘g)I Gl

thus p | %, and hence p | |N| implies p | |Z(G) N N|. 1

(2.13) Theorem: Sylow [1872]. Let p be a prime, and G be a finite group.
a) If p? | |G| for some d € N, then Ny := [{Q < G;|Q| = p?}| =1 (mod p).
b) If P € Syl,(G) and @ < G is a p-subgroup, then Q9 < P for some g € G.

Proof: Wielandt [1959]. a) G acts on X := {M C G;|M| = p?} by right
multiplication. Let X = [[;.; X; be its decomposition into orbits, where 7
is an index set, let {M; C G;i € I} be a set of orbit representatives, and let
G; := Stabg(M;) < G. From M;G; = M; C G we conclude that M; is a union
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of left cosets of G; in G, and thus |G;| | |M;| = p?. Hence we have |G;| = p%
for some d; € {0,...,d}.

If Q < G such that |Q| = p?, then |Stabe(Q)| = |Q| = p?, and hence @ € X; for
some i € Z such that d; = d. If Q,Q’ < G such that |Q| = p? = |Q’| are in the
same orbit, then Q' = Qg for some g € G, thus g € Q' and hence Q = Q'g~ ! =
Q'. If i € T such that d; = d, then from |M;| = p? = |G;| we infer M; = glGi
for some g; € G. Thus for Migi_1 € X; we have Migi_1 = giGigi_l <G In
conclusion, there is a bijection between the subgroups @ < G such that |Q| = p?
and the orbits X; such that d; = d.

If d; < d, then |X;| = |g| = ﬁj = 0 (mod g LG 1), yielding (|G|) = |X| =
e 1Xil = 2 icr dl_dlpg = N;LG‘ (mod 3 LG ) In particular for the cyclic
group C|g| we from {Q < Cig;1Q| = pd}| =1 get (‘G‘) = L%' (mod 18,

This yields |G| = NZ‘G‘ (mod SN 1), thus ‘G‘ | W, hence p | Nd— 1.

b) Q acts on P\G by right multlphcatlon, the orbits being (Pg)? = {Pgh €
P\G;h € Q} for g € G, and PgQ = |J(Pg)% C G is called the associated P-Q-
double coset. Let G = [[;,.; Pg;Q, where T is an index set and g; € G. For
h € Q we have Pgh = Pg € P\G if and only if ghg™" € P, thus Stabg(Pg) =
Q N PY, hence |G| = Zzez |Pgl-Q| = T HQQQIIIDIZL Assume that Q N P9 < @

for all i € Z, then p | |Qmpgl‘, hence p | ‘P|, a contradiction. Thus there is
1 € T such that @ N P9 = @, implying @ < P9. #

(2.14) Corollary. Both Syl,(G) and {Ng(P); P € Syl,(G)} are a single con-

jugacy class of subgroups, and we have [Syl,(G)| =1 (mod p) and [Syl,(G)| =
G G

(G: Na(P)] = iy | 1ot

(2.15) Corollary: Cauchy’s Theorem. If p | |G|, then G has an element of

order p. Thus G is a p-group if and only if any element of G has p-power order.

(2.16) Example: The alternating group As. a) Let G := Ajs, hence |G| =
60 = 22-3-5, and G contains 24 elements of cycle type [5], 20 elements of cycle
type [3,12], 15 elements of cycle type [22,1], and the identity of cycle type [1°].
We determine the Sylow subgroups of G and their normalisers:

Any subgroup Ps € Syl;(G) contains 4 elements of order 5. Since PsNPF = {1}
for all m € G\ Ng(Ps), we have |Syl;(G)| = 6 and thus [Ng(Ps5)| = 10. We have
Dig = <7’5,0’5> < @G, see (16), thus T5 := <7’5> S Sy15(G) and Ng(T5) = Dp.

Any subgroup P; € Syl;(G) contains 2 elements of order 3. Since PsNPJ = {1}
for all # € G\ Ng(Ps), we have |Syl;(G)| = 10 and thus |Ng(Ps)| = 6. We
have As = ((1,2,3)) € Syl3(G) and N¢g(As) = ((1,2,3),(1,2)(4,5)). Since
Ng(Az) — S3: 7+ 7[(1,2,3) is an epimorphism we have Ng(Asz) = Ss.

Let Vi = ((1,2)(3,4),(1,3)(2,4)) < S4 be the Klein 4-group, which is a
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non-cyclic abelian group of order 4, thus Vy € Syl,(G). We have V; < Ay =
((1,2)(3,4),(1,2,3)) < G, thus Ay < Ng(Vy). Since G has 15 elements of order
2, we have |Syl,(G)| > 1, thus Ng(Vy) < G, and hence N (Vi) = A4. Thus we
have |Syl,(G)| = 5, implying V, NV = {1} for all # € G\ Ng(V4). i

A Sylow-type existence statement does not hold for arbitrary divisors of |G|,

not even for those n | |G| such that ggT(n, %) = 1: Assume thereis U < G
such that |U| € {15,20}, and let Ps € Syl;(G) such that Ps < U. From

[Syls (U)] | % € {3,4} and |Syl;(U)| =1 (mod 5) we get |Syl;(U)| = 1, thus

Ps; < U, hence U < Ng(Ps), a contradiction.

b) We consider the truncated icosahedron (Buckminsterfullerene, soccer
ball), centred at the origin of the Euclidean space R3: The icosahedron is
one of the 5 regular platonic solids, next to the tetrahedron, the cube,
the octahedron, and the dodecahedron. The icosahedron has 20 triangular
faces, and 12 vertices at each of which 5 of the faces meet. Truncating at the
12 vertices yields a regular solid having 60 vertices, and 12 pentagonal and 20
hexagonal faces, where each pentagonal face is surrounded by hexagonal ones,
and each hexagonal face is surrounded by hexagonal and pentagonal ones.

We consider its group G < SO3(R) of rotational symmetries, which acts reg-
ularly on the 12 -5 = 60 pairs of adjacent pentagon-hexagon pairs, implying
|G| = 60. There are 6 pairs of opposite pentagons, giving rise to 6 rotation
axes of order 5, yielding 24 elements of order 5; there are 10 pairs of opposite
hexagons, giving rise to 10 rotation axes of order 3, yielding 20 elements of or-
der 3; and there are 30 hexagon-hexagon edges, giving rise to 15 opposite pairs,
yielding 15 rotation axes of order 2, hence 15 elements of order 2.

We show that G = Ajs: Fixing a rotation axis of order 2, there are precisely
two other rotation axes of order 2 orthogonal to the given one. The associated
rotations 7,72 € G and 73 = 7172 € G generate a non-cyclic abelian subgroup
Vi 2V = (11, 72) € Syl,(G). Moreover, the orthogonality argument implies
VNV™ = {1} for all m € G\ Ng(V), hence we have |Syl,(G)| = 5 and |[Ng(V)| =
12. Thus the conjugation action of G on Syl,(G) yields an action homomorphism
¢: G — S5. Then g is injective such that im(y) < Aj:

There is a rotation axis of order 3 such that conjugation with the associated
rotation p € G yields k,: 71 — T +— 13 — 7. Hence Ng(V) = (V,p) =
Hi:o p*V, thus any ™ € Ng(V) can be written uniquely as 7 = kaliTg, where
i,j € {0,1} and k € {0,1,2}. Multiplication is determined by x, and V being
abelian, thus Ng(V) — Ay4: p — (1,2,3),71 — (1,2)(3,4), 72 — (1,4)(2,3) is
an isomorphism. Hence Ng (V) is generated by elements of order 3, and joining
an element of order 5 shows that GG is generated by elements of odd order,
thus im(p) < As. Assume that {1} # ker(p) < G. Since V < Ng(V) is the
only non-trivial proper normal subgroup, we get V < ker(p) < Ng(V), hence
V™ < ker(p) and thus V' = V™, for all 7 € G, contradicting V NV™ = {1} for
all m € G\ Ng(V). 1
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3 Rings and domains

(3.1) Rings and ideals. a) A set R together with an addition +: R x R —
R: [a,b] — a+ b and a multiplication -: R x R — R: [a,b] — ab fulfilling the
following conditions is called a ring:

i) R is an additive abelian group with neutral element 0,

ii) R is a multiplicative monoid with neutral element 1,

iii) and we have distributivity a(b+c¢) = (ab)+ (ac) and (a+b)c = (ac) + (bc)
for all a,b,c, € R.

If ab = ba holds for all a,b € R then R is called commutative.

For all a € R we have 0a = (0 + 0)a = (0a) + (0a), hence 0a = 0, and similarly
a0 = 0; and we have a+ (—1)a = (1+ (—1))a = 0a = 0, hence —a = (—1)a, and
similarly —a = a(—1). Thus for all a,b € R we have —(ab) = (—1)ab = (—a)b
and —(ab) = ab(—1) = a(—b). For all a,b € R such that ab = ba we have the
binomial formula (a + b)" =3I, ()a’d" " for all n € N.

E. g. let R := {0} with addition and multiplication given by 04+ 0 := 0 and
0-0 := 0, respectively, and 1 := 0, then R is a commutative ring, called the zero
ring. Conversely, for any ring R fulfilling 1 = 0 we have a = 1la = 0a = 0 for
all a € R, hence we have R = {0}. Thus for any ring R # {0} we have 1 # 0.

Let R* C R be the group of multiplicative units. Hence for R # {0} we have
1€ R* C R\ {0}. A ring R # {0} such that R* = R\ {0} is called a skew
field or division ring; a commutative skew field is called a field.

A subset S C R being an additive subgroup and a multiplicative submonoid is
called a subring; in particular we have 1 € R. The pair S C R is called a ring
extension. Similarly we have sub(skew)fields and (skew) field extensions;
e. g. Z CQ is aring extension and Q C R C C are field extensions.

If R and S are rings, a map ¢: R — S which is homomorphism of additive
groups and a homomorphism of multiplicative monoids is called a (ring) ho-
momorphism; in particular we have 1o = 1 and thus im(p) C S is a subring.

For the kernel ker(¢) := ¢~ 1({0}) = {a € R;ap = 0} we have ker(¢) < R
as additive groups. If S # {0} then from 1y = 1 we deduce that 1 & ker(yp),
hence ker(¢) C R in general is not a subring. For all a € R and b € ker(y) we
have (ab)p = ap -bp = ap -0 =0 and (ba)p = by - ap = 0 - ap = 0, implying
Rker(p)R C ker(yp), thus fulfilling the following:

b) An additive subgroup I < R such that RIR := {abc € R;a,c€ R,be I} C I
is called an ideal of R; we write I < R, and if R is commutative then RIR =
RI=1IR. E. g. we have {0} SR and R < R; if R # {0} and these are the only
ideals of R, then R is called simple.

Let {I;<AR;i € T}, where Z # () is an index set. Then I := (),.; [; IR is an ideal.
Hence for a subset S C Rlet (S) = (S)r := {I<IR;S C I} <R be the smallest
ideal of R containing S, being called the ideal generated by S. For S # ) the
ideal (S) consists of all finite sums of elements of RSR := {asb € R;a,b € R, s €
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S}; hence we also write (S) = > ¢ RsR, and if S = {s1,...,5,} is finite we
also write (S) = (s1,...,8,) = Rs1R+ -+ + Rs,R.

Given I,J <R, then I+ J :=(I,J) ={a+b€ Rac I,be J} IR is called
their sum, where TU J C I + J, and (IJ) < R consisting of all finite sums
of elements of IJ := {ab € R;a € I,b € J} is called their product, where
(IJ) CINdJ. Given a € R, the ideal (a) = RaR < R is called the associated
principal ideal. E. g. we have ((}) = (0) = {0} and (1) = R, and for n € Z we
have (n) =nZ <Z.

(3.2) Homomorphism Theorem. Let R be a ring, and let I < R.

a) R/I is a ring with respect to (a +I)(b+I) :=ab+ I for all a,b € R, called
the associated quotient ring, and the natural map v;: R - R/I:a— a+ 1
is an epimorphism such that ker(v;) = I.

b) Let ¢: R — S be a homomorphism such that I C ker(¢). Then the induced
map ¢': R/I — S:a+ I — ap is a homomorphism such that ker(¢!) =
ker(p) /I, yielding a factorisation ¢ = vyp!. In particular, **(?): R/ ker(p) —
im(¢) is an isomorphism.

Proof. a) b) By the homomorphism theorem for groups we only have to show
that multiplication on R/I is well-defined: For ¢, ¢ € I we have (a+¢)(b+¢') =
ab+acd +cb+cd €ab+ 1. 1

(3.3) Corollary: Isomorphism Theorems. Let R be a ring, and let I < R.
a) Let S C R be a subring and J< R such that J C I. Then we have S/(SNI) &
(S+1)/Tand (R/J)/(I/J) = R/I.

b) The map ¢: {J I R;1 C J} = {Q I R/I}:J — Jvy = (J+1)/]is an
inclusion-preserving bijection with inverse ®~1: Q + v; 1(Q). If |R/I] is finite
then ® and ®~! preserve cardinalities of quotient rings.

(3.4) Maximal ideals. Let R be a ring and I << R. Then I N R* # () implies
R C RIR C I C Randhence I = R, thus we have <R if and only if INR* = ().
An ideal I < R is called maximal, if for any ideal I C J < R we already have
I =J. Thus an ideal I < R is maximal if and only if R/I is simple.

Hence any skew field K is a simple ring; and since for any homomorphism
¢: K — R we have ker(p) <K, we conclude that either ker(yp) = K or ker(p) =
{0}, i. e. either ¢ = 0 or ¢ is injective. Conversely, any commutative simple
ring R is a field: For any 0 # a € R we have {0} # aR < R, hence R = aR, and
thus there is b € R such that ab = 1, hence a € R*. Thus if R is commutative,
then an ideal I < R is maximal if and only if R/T is a field; in particular R is a
field if and only if I < R is maximal.

E. g. let K be afield. Then Maps(K, K) becomes is a commutative ring with re-
spect to pointwise addition and multiplication f+g¢g: K — K: x +— f(x)+g(x)
and fg: K — K: x — f(x)g(x), respectively, for all f, g € Maps(K, K), where
the neutral elements are K — K: x — 0 and K — K: z + 1, respectively. For
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any subset U C K we have Iy := {f € Maps(K, K); f(U) = {0} } <Maps(K, K),
where U C V C K implies Iyy C Iy. Then I, := I,y <Maps(K, K) is maximal
for any = € K: Let v,: Maps(K,K) — K: f — f(z) be the natural evalu-
ation map. Then v, is an epimorphism such that ker(v,) = I, and hence
Maps(K, K)/I, 2 K is a field, implying that I, < Maps(K, K) is maximal.

(3.5) Zorn’s Lemma. Let X be a set, let < be a partial order on X, i. e. <
is a reflexive, antisymmetric and transitive relation on X, and let Y C X. Then
Y is called totally ordered, if for all 4,3’ € Y we have y < 3’ or ¢y <y. An
element x € X such that y < z for all y € Y is called an upper bound for Y.
An element y € Y such that for any 3y’ € Y such that y < ¢y’ we already have
y =3’ is called a maximal element of Y.

E. g. if M is a set, then its power set is partially ordered by inclusion C. In
particular, if R is a ring then the set {I <t R} is partially ordered by inclusion,
and an ideal of R is maximal if and only if it is a maximal element of {I < R}.

We have Zorn’s Lemma, actually being equivalent to the Axiom of Choice: If
X # 0 is a partially ordered set, such that any totally ordered subset of X has
an upper bound in X, then X has a maximal element.

(3.6) Theorem. Let R be a ring and I << R. Then there is a maximal ideal
P < R such that I C P. In particular any ring R # {0} has a maximal ideal.

Proof. Let X := {J< R;I C J}. Hence I € X # (), and X is partially ordered
by inclusion. Let @ # )Y C X be totally ordered, and let M := UJey J C R.
Then I C M < R: Let J C J € Y,and a € J and b € J'. Hence we have
RaRCJCManda—be J C M, implying M <R. Since 1 ¢ J forall J € Y,
we have 1 ¢ M C R. Hence M € X is an upper bound for ), and by Zorn’s
Lemma X has a maximal element. i

(3.7) Integral domains. Let R # {0} be a commutative ring. Then a € R is
called a divisor of b € R, and b is called a multiple of a, if there is ¢ € R such
that ac = b; we write a | b, and we have a | b if and only if bR C aR < R. We
have a | 0 and a | a, and w | a for all w € R*. Since aR = R if and only if
a € R*, we have a | u, for any v € R*, if and only if « € R*.

An element 0 # a € R such that there is 0 # b € R such that ab = 0 is called
a zero-divisor in R. If R does not contain any zero-divisors, i. e. if ab = 0
implies a = 0 or b = 0, for all a,b € R, then R is called an integral domain.
Thus if 0 # a € R then ab = ac implies a(b — ¢) = 0 and hence b = ¢, for all
b,c € R. If a € R* then from ab = 0, for any b € R, we get b = a~'ab = 0,
hence a € R is not a zero-divisor. In particular any field, and thus any subring
of a field, is an integral domain; e. g. Z is an integral domain.

An ideal I < R is called a prime ideal, if ab € I implies a € [ or b € I, for all
a,b € R. Hence an ideal I < R is prime if and only if R/I is an integral domain;
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in particular R is an integral domain if and only if {0} <t R is prime. If ] < R
is maximal, then R/I is a field, thus an integral domain, hence I < R is prime.

E. g. let n € Z\ {0,1} be squarefree, i. e. in the factorisation of n any prime
occurs at most once, see (4.4). Let v/n € Ry>g C Cif n > 0, and /n :=
V=1-4/[n] € Cif n < 0, where /=1 € C is the imaginary unit. Let Z[\/n] :=
{a+by/n € C;a,b € Z}; for n = —1 the elements of Z[/—1] are called Gaussian
integers. Then Z[y/n] C C is a subring, thus an integral domain.

(3.8) Fields of fractions. Let R be an integral domain, and let the relation ~
on R x (R\ {0}) be defined by [a,b] ~ [a’,b'] if and only if ab’ = a’b € R. Then
~ is an equivalence relation, where we only have to show transitivity: Letting
[a,b] ~ [a/,b'] and [a’,b'] ~ [a”,b"], then ab' = a'b and o'V = &V imply
ab’b’ = a'bb” = a”b'b, thus b’ # 0 implies ab” = a”’b, hence [a, b] ~ [a”,b"].

For a,b € R such that b # 0 let ¢ := [a,b]/~ € R x (R\ {0}) denote the
associated equivalence class, and let Q(R) := {§ € Rx(R\{0});a,b € R,b# 0};
be the set of all equivalence classes; e. g. we have Q(Z) = Q. Then Q(R) is a
field, called the field of fractions of R:

By &+ ¢ := adtbe and &. < .= 9 forall a,b,c,d € R such that b,d # 0, we get
an addition and a multiplication on Q(R), respectively: If £ = ‘;—: and ¢ = ;—,,
for a/,0',c’,d" € R such that v/,d’ # 0, then we have abl’ = a’b and cd’ = c/d,
and thus (ad + be)b/'d’ — (a'd + V' )bod = ab/dd’ 4 bb'ed’ — a’bdd' — /db = 0
and ach'd’ — a’'dbd = ab'ed’ — a’bc’d = 0. Then Q(R) is abelian additive group
with neutral element 2, the additive inverse of ¢ € Q(R) given by =% € Q(R),
and a commutative multiplicative monoid with neutral element %, such that
distributivity holds. For % # 7 € Q(R) we have a # 0, thus ¢ - % = Z—z = % €
O(R) implies & € Q(R)*, where (£)~! = L. i

a

The map R — Q(R): a — ¢ is a monomorphism, hence R C Q(R) can be
considered as a subring. If S # {0} is a commutative ring, and ¢: R — S is a
homomorphism such that (R \ {0}) C S*, hence in particular ker(p) = {0},
then ¢ uniquely extends to a monomorphism ¢: Q(R) — S: ¢ a?(b?)~1; in
particular if R is a field then R = Q(R): If £ = Z—,, € Q(R), where a,b,a’,b’ €
R and b,b" # 0, then ab’ = a’b € R implies a?(b')¥ = (a/)¥b¥ € S, where
b, (b')% # 0, hence a?(b¥)~! = (a')?((b')?)~! € S. Thus @ is well-defined, and

since ¢ = 2. (2)7! € Q(R) we conclude that § is uniquely determined by ¢.

E. g. for n € Z\ {0,1} squarefree we have Q(Z[v/n]) = Q(v/n) := {a+ by/n €
C;a,b € Q} C C: Since for a,b € Q such that [a,b] # [0,0] we have m =

(a+b;%)b(ﬁb\/ﬁ) = Z;_b;fz € C, we conclude that Q(v/n) C C is a subfield

containing Z[/n], hence we have Q U {/n} C Q(Z[\/n]) C Q(v/n).

(3.9) Monoid rings. Let R be a commutative ring, let G be a monoid, and
let R[G] := {p: G — R;xp = 0 for almost all z € G}; the elements of R[G]
can be written as p = ) psT, Where p, := rp € R and the sum is indeed
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finite. For p,o € R[G] we define pointwise addition p + 0 := > _.(p. +0.)z
and convolutional multiplication po := ) . ZyGG pzoyxy. For z € G let
0z: G — R be given by 6, , =1 and §,, =0 for all v # y € G.

Then R[G] is an abelian additive group with neutral element ) . 0,2, where
0, := 0 for all z € G. Then R[G] is a multiplicative monoid with neutral
element 01: For all p € R[G] we have d1p = (X ,cq01,02) (2 cqPyy) =
DG 2ayec O1,aPyTY = Y, cq Ppyy = p and similarly pd; = p. Since convo-
lutional multiplication is associative, R[G] is a multiplicative monoid, and since
distributivity holds, R[G] is a ring, called the monoid ring of G over R.

Since 620y = D . ca Doveq 02,20y,2022 = D e Ony 22" = dgy for all 2,y € G,
we have a monoid monomorphism G — R[G]: x — d,. Hence G C R[G] can be
considered as a submonoid, and convolutional multiplication is by distributivity
determined by multiplication in G; in particular, R[G] is a commutative ring if
and only G is a commutative monoid.

We define a scalar multiplication R[G] x R — R[G] by pr := > . rp.x for
all p € R[G] and r € R. This yields a ring monomorphism R — R[G]: r + 017,
hence R C R[G] can be considered as a subring. If K is a field, then K[G]
becomes a K-vector space having the submonoid G C K[G] as a K-basis.

(3.10) Polynomial rings. Let X be a variable or indeterminate. The set
{X%i € No} = {6, X, XX, XXX,...} of words in X, where X = ¢ is the
empty word, is a commutative monoid with respect to concatenation of
words, having neutral element X°, being called the free monoid over X.

Let R be a commutative ring. The monoid ring R[X] := R[{X%i € Ny}] is
called the (univariate) polynomial ring in X over R. The elements f =
>0 aiX® € R[X] are called polynomials, where a; € R is called the i-th
coefficient of f. If f # 0 let deg(f) := max{: € Np;a; # 0} € Ny be its
degree; polynomials of degree 0, ..., 3 are called constant, linear, quadratic
and cubic, respectively. Let lc(f) := aqeg(s) € R be its leading coefficient; if
le(f) =1 then f is called monic.

For g = Y,.0b;X7 € R[X] we have fg = Yoo (o wibk—)X* € R[X],
Hence for the degree function deg: R[X]\ {0} — Ny we have either fg = 0,
or f,g # 0 and deg(fg) < deg(f) + deg(g). If le(f)le(g) # 0, then we have
fg # 0 where Ic(fg) = lc(f)lc(g) and deg(fg) = deg(f) + deg(g).

Hence for any 0 # f € R[X] such that lc(f) € R is not a zero-divisor, f € R[X]
is not a zero-divisor either. Thus, since R C R[X] is a subring, R[X] is an
integral domain if and only if R is; in this case we have R[X]* = R*. If R is an
integral domain R(X) := Q(R[X]) is called the field of rational functions in
X over R; hence we have R C R[X] C Q(R)[X] C R(X) as subrings, yielding
Q(R[X]) = Q(Q(R)[X]) = Q(R)(X) = R(X).

More generally, let X # () be set of commuting indeterminates. Then the
set of commutative words in X is a commutative monoid with respect to
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concatenation of words, having the empty word as neutral element, and being
called the free commutative monoid over X. The associated monoid ring
R[X] is called the associated (multivariate) polynomial ring. For X € X
we have R[X] = R[X \ {X}][X], and if R is an integral domain then R[X] is as
well and R(X) := Q(R[X]) is the associated field of rational functions.

(3.11) Proposition. Let R # {0} be a commutative ring, let f € R[X] and
let 0 # g € R[X] such that lc(g) € R*. Then there are uniquely determined
q,r € R[X], called quotient and remainder, respectively, such that f = gg+r
where 7 = 0 or deg(r) < deg(g).

Proof. Let qg+r = f = ¢'g + v’ where ¢,¢',r,r" € R[X] such that » = 0 or
deg(r) < deg(g), and ' = 0 or deg(r’) < deg(g’). Then we have (¢—q’)g = r'—r,
where ' —r = 0 or deg(r’ — r) < deg(g), and where (¢ — ¢')g = 0 or since
le(g) € R* we have deg((¢ — ¢')g) = deg(g) + deg(q — ¢') > deg(g). Hence we
have ' = r and (¢ — ¢')g = 0, implying ¢ = ¢, showing uniqueness.

To show existence, we may assume that f # 0 and m := deg(f) > n := deg(g) >
0. We proceed by induction on m € N: Letting f’ := f —lc(f)le(g) " tgX™ " €
R[X], the m-th coefficient of f’ shows that f’ = 0 or deg(f’) < m. By induction
there are ¢/, € R[X] such that f' = ¢'g+r', where ' = 0 or deg(r’) < deg(g),
hence f = (¢'g +1") +1c(f)le(g) " 'gX ™" = (¢’ +1c(f)le(g) ' X™ " )g + 1. 4

The above proof is constructive, leading to the division algorithm for polynomi-
als. E.g. for R:=Zand f :=4X°4+6X3+X+2c Z[X]and g := X2+ X +1 €
Z|X] we get f = (4X? —4X? +6X — 2)g+ (—3X +4) € Z[X].

(3.12) Roots. a) Let R be a commutative ring, let S be a ring, and let
¢: R — S be a homomorphism such that ¢ -s = s-r¥ for all » € R and
s € S; the latter in particular holds if S is commutative. For £ € S let
pe: RIX] — S: f = YspaXt — Y opaf& =t f¢(£) be the associated
evaluation homomorphism; if S is commutative, then ¢ € S such that
f?(€) = 0 is called a root or zero of f in S. In particular, if S is commu-
tative, regarding S C S[X] as a subring, we have the evaluation homomorphism
ox: RIX]— S[X]: DX Y ,o,al X, where px is injective or surjec-
tive if and only if ¢ is injective or surjective, respectively.

For f € R[X] we have the polynomial map f: S — S: & f?(). Then
©: R[X] — Maps(S,S): f+— fis a homomorphism, the latter being a ring with
respect to pointwise addition and multiplication. Letting ve: Maps(S,S) —
S: o — a(§) be the natural evaluation homomorphism, we have pre = @¢: f —
]/”\(5) = f%(€), and @ is not necessarily injective, e. g. for R = S = Z/2Z
and f = X2 4+ X € (Z/2Z)[X] we have f(0) = 0 = f(1), hence f = 0 €
Maps(Z/27,7./27).

b) Let R be an integral domain, let 0 # f € R[X] and let a € R. Quotient
and remainder yields f = ¢,(X — a) + rq, where ¢, € R[X] and r, € R. Using
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f(a) = ga(a)(a — a) + ry = rq we conclude that a € R is a root of f if and only
if r, = 0, which holds if and only if X —a | f. If a # b € R are roots of f, then
0= f(b) = ¢a(b)(b — a) implies that b € R is a root of ¢, € R[X], and since
deg(qs) = deg(f) — 1 we by induction conclude that f has at most deg(f) roots
in R. Hence if R is infinite, the map R[X] — Maps(R, R): [ — f is injective,
thus R[X] and the ring of polynomial maps R — R are isomorphic.

Let K be a field, and let G < K* be finite. Then we have Artin’s Theorem:
G is cyclic: Given n € N, any element g € G such that |g| | n is a root of
X" —1 € K[X], hence there are at most n of them. Hence G has at most one
subgroup of order n, for all n € N, thus G is cyclic.

4 Factorial and Euclidean rings

(4.1) Divisibility. Let R be an integral domain. Then a,b € R are called
associate, if there is u € R* such that b = au € R; we write a ~ b. We have
a ~ bif and only if aR = bR< R, hence ~ is an equivalence relation on R: From
a ~ b wehave a | band b | a, being equivalent to aR = bR, and conversely
if a,b € R such that a | b and b | a, there are u,v € R such that b = au and
a = b, thus a = auv, implying a(1 — uv) = 0, hence a = 0 or uv = 1, where in
the first case a = b =0, and in the second case u,v € R* and a ~ b.

Let ) 25 C R be a subset. Then d € R such that d | a for all a € S is called
a common divisor of S; any v € R* always is a common divisor of S. If for
all common divisors ¢ € R of S we have ¢ | d, then d € R is called a greatest
common divisor of S. Let gcd(S) C R be the set of all greatest common
divisors of S. In general greatest common divisors do not exist; if ged(S) # 0
then it consists of an associate class: If d,d’ € ged(S), then d | d' and d' | d,
hence d ~ d'. For a € R we have a € ged(a) = ged(0, a); elements a,b € R such
that ged(a,b) = R* are called coprime.

An element 0 # ¢ € R\ R* is called irreducible or indecomposable, if ¢ = ab
implies a € R* or b € R* for all a,b € R; otherwise ¢ is called reducible or
decomposable. Hence if ¢ € R is irreducible then all its associates also are.
An element 0 # ¢ € R\ R* is irreducible if and only if ¢R < R is maximal
amongst the proper principal ideals of R:

If ¢ € R is irreducible and ¢R C aR <1 R for some a € R, then we have ¢ = ab for
some b € R, and since a ¢ R* we conclude b € R*, thus ¢cR = aR. Conversely,
if cR < R fulfils the maximality condition and ¢ = ab for some a € R\ R* and
b€ R, then cR C aR < R, hence cR = aR, implying ¢ ~ a and b € R*. #

An element 0 # ¢ € R\ R* is called a prime, if ¢ | ab implies ¢ | a or ¢ | b for
all a,b € R. Hence if ¢ € R is a prime then all its associates also are, and c € R
is a prime if and only if {0} # ¢R < R is prime. If ¢ € R is a prime, then ¢ € R
is irreducible: Let ¢ = ab for some a,b € R, where since ¢ | ab we may assume
that ¢ | a, then from a | ¢ we get a ~ ¢, hence b € R*. The converse does not
hold, i. e. an irreducible element in general is not a prime:
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(4.2) Example. Let R := Z[/-5] = {a + by/—5 € C;a,b € Z}. Then the
norm map N: R — Z: a + by/=5 — (a + bv/=5)(a — by/=5) = a® + 5b% is a
homomorphism of multiplicative monoids, hence we have N(R*) C Z* = {£1},
thus R* = {+1}. We have 2-3 = (14++/=5)(1—+/=5) € R, where 2,3,14++/-5 €
R are irreducible but not primes: Assume that 2 = ab € R, where a,b € R\ R*,
hence we have N(a)N(b) = N(2) = 4, and since N(a), N(b) # 1 we conclude
N(a) = N(b) = 2, a contradiction; since N(3) = 9 and N(1 + /=5) = 6 we
for 3 and 1 £ /=5 argue similarly. Assume 2 € R is a prime, then we have
2] 1+v/=bor2 | 1—+/=5,thus4 = N(2) | N(14++/=5) = 6, a contradiction;
for 3 and 1 £ /=5 we argue similarly.

(4.3) Proposition. Let R be an integral domain. The following are equivalent:
a) Any element 0 # a € R is of the form a = €- [[|_, p; € R, where the p; € R
are irreducible, n € Ny and € € R*, and this representation is unique up to
reordering and taking associates.

b) Any element 0 # a € R is of the form a = €[]}, p; € R, where the p; € R
are irreducible, n € Ny and € € R*, and any irreducible element of R is a prime.
c¢) Any element 0 # a € R is of the form a = €- [[;_, p; € R, where the p; € R
are primes, n € Ny and € € R*.

Proof. a)=b) Any irreducible element p € R is a prime: Let a,b € R such
that p | ab, hence there is ¢ € R such that pc = ab. We may assume that
a,b ¢ R*, and since p is irreducible we have ¢ ¢ R*. Hence let a = [[,», a; € R
and b= [];5,b; € R as well as ¢ = [[;-, ¢k € R, where the a;,bj,cr € R are
irreducible. This yields p - [[;5; ¢k = [[;51 @i - [[;5, b; € R, where uniqueness
implies p ~ a; for some i, or p ~ b; for some j, hence p | a or p | b.

c)=-a) To show uniqueness let @ = €-[[;_, p; € R, where the p; are primes. We

proceed by induction on n € Ny, where we have n = 0 if and only if a € R*.

Hence let n > 1, and let a = H;nzl gj € R, where the g; are irreducible and

m € N. Since p, € R is a prime we may assume p, | ¢m, and since ¢, € R
m—1

is irreducible we have p,, ~ ¢. Thus we have ¢’ - H?:_ll pi =[I;= g € R for

some ¢ € R*, and we are done by induction. i

(4.4) Factorial rings. An integral domain fulfilling the conditions of (4.3) is
called a factorial ring or Gaussian domain. In particular, in factorial rings
the notions of primality and irreducibility coincide.

Let R be factorial, and let P C R be a set of representatives of the associate
classes of primes in R; these exist by the Axiom of Choice. Then any 0 # a € R
has a unique factorisation a = ¢, - Hpeppap, where €, € R*, and a, € Ny are
the associated multiplicities; we have a, = 0 for all almost all p € P, and if
ap < 1for all p € P then a is called squarefree. Given 0 # a = ¢, - HpeP pir €
Rand 0 #b € ¢ - Hpeppbp € R, then a and b have greatest common divisors

in R, given as e [[ cp pirterbpt ¢ R where € € R*.
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(4.5) Principal ideal domains. An integral domain R such that any ideal of
R is principal is called a principal ideal domain.

Let R be a principal ideal domain, and let p € R be irreducible. Since any ideal
of R is principal, this implies that the maximal proper principal ideal pR <1 R
is a maximal ideal, and thus a prime ideal, hence p € R is a prime. Thus for
principal ideal domains the notions of primality and irreducibility coincide, and
p € R is a prime if and only if R/pR is a field.

Let ) # S C R. Then for d € R we have d € ged(S) if and only if dR = (S) < R;
in particular, there are aq,...,a, € 5 and Bézout coefficients c¢1,...,¢c, € R
such that d =Y.' | a;¢c; € R: Let dR = (S) < R. Hence there are aq,...,a, € S
and c1,...,¢, € R such that d =Y_" | a;¢; € R. Thus for any b € R such that
b | aforall @ € S wehaveb | d. Since aR C dR,i.e. d | a, for all a € S,
we have d € ged(S). Let conversely d € ged(S), then letting ¢ € R such that
(S) = cR, we by the above have ¢ € ged(S), thus d ~ ¢, hence dR = cR.

E. g. since the ideals of Z coincide with its additive subgroups, Z is a prin-
cipal ideal domain. Hence for any prime p € N there is the prime field
GF(p) = F), := Z/pZ having p elements. For n € N we have the group of
prime residues (Z/nZ)* = {T € Z/nZ;gcd(z,n) = {£1}}, where ged(x,n) is
independent of the chosen representative x.

(4.6) Theorem. Let R be a principal ideal domain. Then R is factorial.

Proof. Let S := {a € R\(R* U {0});a is not product of irreducible elements},
and assume that S # (. Then X := {aR<R;a € S} # 0 has a maximal element:
Let ) # Y C X be totally ordered, and let I := UJey J C R. Then we have
{0} # I < R, thus there is b € S such that I = bR € Y C X is an upper bound
for Y. Thus by Zorn’s Lemma there is a maximal element aR € X, for some
a € S. Since a € R is reducible, there are b,c € R\ R* such that a = be. Since
aR C bR,cR < R, the maximality of aR € X implies that both b,c € R\ S,
hence a = be € R\ S is a product of irreducible elements, a contradiction. #

(4.7) Euclidean rings. An integral domain R is called an Euclidean ring,
if there is a degree function 6: R\ {0} — Ny fulfilling: For all a,b € R such
that b # 0 there are ¢,r € R, such that b = qa + r where r = 0 or (r) < §(b).

E. g. Z is Euclidean with respect to Z \ {0} — Ny: z — |z|, any field K is
Euclidean with respect to K \ {0} — Ng: 2 — 0, and K[X] is Euclidean with
respect to K[X]\ {0} — Ny: f — deg(f). All these fulfil (a) < d(ab) for all
0#a,be R, and 6(a) < §(ab) if additionally b & R*.

This additional condition can always be fulfilled: Letting 6’: R\ {0} — Ny: a —
min{d(ab) € No;0 # b € R}, we have ¢'(a) < ¢’(ab) for all 0 # a,b € R, and
0" is a degree function: For @ € R and 0 # b € R, letting 0 # ¢ € R such
that 6’(b) = d(cb), there are ¢, € R such that a = qcb + r where r = 0 or
0'(r) < 6(r) < d(cb) = &' (b).
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(4.8) Theorem. Let R be Euclidean. Then R is a principal ideal domain.

Proof. Let {0} # I <Q R, then using the degree function § we have §(I) :=
{6(a) € No;0 # a € I} # 0, thus there is 0 # b € I such that 6(b) € §(1) is
minimal. For a € I let ¢,r € R such that a = gb+r where r = 0 or §(r) < 4(b).
Assume that 7 # 0, then r = a — ¢gb € I contradicts the minimality of b. Hence
we have r = 0, implying b | @ and T = bR. 1

(4.9) Extended Euclidean algorithm. Let R be Euclidean with respect to
the degree function 6: R\{0} — Ny, and let a,b € R such that a # 0. A greatest
common divisor r € R and Bézout coefficients s,t € R such that r = as+bt € R
are computed as follows; leaving out the computation of the s;,t; € R just yields
a greatest common divisor:

erg«—a,r1 b i—1
0859« 1,tg« 0,8 «0,1t1 «— 1
e while 7; # 0 do
® [gi,7i+1] «— QuotRem(r;_1,7;) # quotient and remainder
# i, i1 € R such that r;pq = r;—1 — q;r; where ;41 = 0 or 6(ri41) < 6(r;)
O Sit1 = Si—1 — ¢3Si, tit1 — tim1 — ¢it;
e «—1+1
T —Ti-1
08« 81, L+ t;1
e return [r, s, ]

Since (r;) > 0(ri41) > 0 for ¢ € N, there is | € N such that 7, # 0 and
ri+1 = 0, hence the algorithm terminates. We have r; = as; + bt; for all
i € {0,...,1 + 1}, hence it remains to show that r; € ged(a,b) = ged(ro,r1):
Let ¢ € ged(ro,r1). Then for all ¢ € {1,...,1} we by induction have ¢ | r;_1,7;
and thus ¢ | 7,1 — ¢;7; = 711, hence in particular ¢ | ;. Conversely, since
ri41 =0, for alli € {I,l —1,...,1} we by induction have r; | r;41,7; and thus
ri | ¢iri +7iv1 = 7i—1, hence in particular r; | 7o, 71, thus r; | c. #

(4.10) Example. a) For R :=Z and a := 126 and b := 35 the following shows
that d := 7 € ged(a,b) and that d = 2a — 7b:

illa] nil si] &

0 126 1 0
11 3| 35 0 1
2 1] 21 1]-3
3 1| 14 -1 4
41 2 7 2| =7
) 0] —-51 18

b) For R:=Q[X] and f:=3X3-7X?+5X —1land g:= —6X%2+5X — 1 the
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following shows that h :=3X — 1 € ged(f, g) and that h = 4f + (2X — 3)g:

L] g | nll s £ |
0 3X3—7X2+5X —1 1 0
1| —3x+3 —6X?+5X —1 0 1
2| —8X +4 53X -1 1 ix-3
3 08X —4|4X2-8X+4

(4.11) Example. For n € {—2,—1,2, 3} the ring R := Z[y/n] is Euclidean with
respect to the degree function R\ {0} — Ny: z — |N(z)|, where N: Q(R) =
Q(v/n) — Q: a+ byn — (a+ by/n)(a — by/n) = a® — nb? is the norm map; in
particular we have N(z) = 0 if and only if z = 0, and R* = {z € R;|N(z)| = 1}.
Let w :=a+byn € Rand 0 # v := ¢+ dy/n € R, where a,b,c,d € Z. Let
L= s+ tyn € Q(v/n) for some s,t € Q, let x,y € Z such that |s — 2| < %
and |t —y| < 3, and let ¢ := 2 +y/n € R and r := u— qu € R. Hence we
have r = v(uv™! — q) = v((s — x) + (t — y)/n), and since |(s — z)? — n(t —
)|<1—|—2%<1for|n|<2and—%<(s—:1:)—3( y)? < 1 for
n = 3, we from N being a homomorphism of multiplicative monoids obtain
-

N = [N@)| - [(s = )2 —n(t —)2| < [N (). f

(4.12) Theorem. Let p € N be a prime such that p =1 (mod 4). Then there
are a,b € N such that p = a? + b2,

Proof. Since Z/pZ is a field, we have o(p) = |(Z/pZ)*| = p — 1, and thus by
Lagrange’s Theorem we for all 0 # = € Z/pZ have 2P~! = 1 € Z/pZ, implying
the Euler-Fermat Theorem z? = x € Z/pZ for all x € Z/pZ.
Let R := Z[\/—1] and let ": R — R/pR be the natural homomorphism. Hence
for z = x + yy/—1 € R, where x,y € Z, we have 2 = (z+yy/—-1)P =
v (M)xk(yv/=1)»=F € R/pR. Since (V) € pZ C pRIRfork € {1,...,p—1},
we have ¥ = % + 7P/—1' € R/pR. Since from p = 1 (mod 4) we get
v—1" = V=1, and from 2? = z (mod p) we get T = T € R/pR and simi-
larly 7 =5 € R/pR, we conclude 2P = T +7/—1 =% € R/pR.
From pR = {x + yv/—1 € R,z,y € pZ} we get |R/pR| = p?, hence p ¢ R*.
Assume that p € R is irreducible, then R/pR is a field, hence |(R/pR)*| = p®>—1,
a contradiction. Thus p € R is reducible, hence there is an irreducible element
z=a+by-1| p € R, where a,b € Z. Thus 1 # N(z) = a>+b> € Z is a
proper divisor of N(p) = p? € Z, hence a® + b* = p. i

(4.13) Primitivity. a) Let R be factorial, and let 0 # f = Y1 a;X* € R[X].
Then ¢(f) € ged(ag, ..., an) € R\ {0} is called a content of f, and if ¢(f) € R*
then f is called primitive. In particular, if f is monic then it is primitive, thus
if R is a field then all non-zero polynomials are primitive.



25

For all @ € R we have c(af) ~ ac(f) € R. Thus letting a; = ale(f) € R for
suitable a; € R we have ged(ag, ..., al,) = R*, and letting f' := >"" jalX' €
R[X] we have f = ¢(f)f’ € R[X] where f' € R[X] is primitive. If af’ = bf" €
R[X], where 0 # a,b € R and f’, f € R[X] are primitive, then a ~ ac(f’) ~
be(f") ~ b€ R, and thus f’ ~ f” € R[X]. Hence the primitive part ' € R[X]
is uniquely determined up to taking associates; we have deg(f) = deg(f’) and
if f € R[X] is not primitive then f € R[X] is reducible.

b) Let K := Q(R), and let 0 # f = > ;2 - X' € K[X], where r;,s; € R are

coprime and s; # 0, for all i € {0,...,n}. Lsétting d(f) =TI, s: € R we have
F o= d(1)f = ST 55) - X' € RIX) € K[X]. Let o)) = e(]) € R be s
content of f € R[X] and f’ € R[X] be primitive such that f = ¢(f)f’ € R[X],
then we have f = S ' € K[X]. Tf f = §-f' = ¢- " € K[X], where a, b,¢,d €
R such that b,d # 0 and f', f” € R[X] are primitive, then ¢bf’ = adf” € R[X],
hence ¢b ~ ad € R and f’ ~ f” € R[X]. Hence the primitivisation f’ € R[X]
is uniquely determined up to taking associates; we have deg(f) = deg(f’).

(4.14) Lemma: Gaufl. Let R be factorial, and let f,g € R[X] be primitive.
Then fg € R[X] is primitive as well.

Proof. Let p € R be a prime, hence pR <1 R is prime. Then {0} # pR[X] =
{Xis0@X" € R[X];p | a; for all i > 0} < R[X] is prime as well; the following
proof is valid for arbitrary integral domains: Let h = 37,5 a; X" € R[X]\pR[X]
and h = YisobiX’ € R[X]\ pR[X], and let k,I € Ng be minimal such that
ar, € pR and b; € pR. Hence the (k 4 [)-th coefficient of hh € R[X] is given as
(Zi:ol aibiyi—;) + apb + (Zi;é ay1—ib;) € R, where the bracketed terms are
elements of pR, while ayb; & pR, thus hh & pR[X] as well.

Assume that ¢(fg) ¢ R*. Since R is factorial there is a prime p € R such that
p | ¢(fg), thus all coefficients of fg are elements of pR, hence fg € pR[X]. Thus
we may assume that f € pR[X], implying that p | ¢(f) € R, a contradiction. f

(4.15) Theorem. Let R be factorial, let K := Q(R) and f € R[X]\ R. Then
f is irreducible in R[X] if and only if f is primitive and irreducible in K[X].

Proof. Let f be reducible in R[X]. We may assume that f is primitive, hence
there are g, h € R[X]\ R such that f = gh. Thus g,h € K[X]\ K*, and hence
f is reducible in K[X].

Let conversely f be irreducible in R[X], hence f is primitive, and assume that
there are g,h € K[X]\ K* such that f = gh € K[X]. Hence there are
c(9),d(g),c(h),d(h) € K such that d(g),d(h) # 0 and ¢’,h’ € R[X]\ R prim-
itive such that g = fl%g; g € K[X] and h = 2%3 -k € K[X]. Thus we have
d(g)d(h)f = c(g)c(h)g’h’ € R[X], and since by GauB’s Lemma ¢'h’ € R[X]
is primitive we infer d(g)d(h)c(f) ~ ¢(g)c(h) € R. Thus we have d(g)d(h) |
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c(g)c(h) € R, hence letting ¢ := % € R we have f = cg'h/ € R[X],

implying that f is reducible in R[X], a contradiction. i

(4.16) Theorem: Gaufl. Let R be an integral domain. Then R[X] is factorial
if and only if R is.

Proof. We only have to show that R[X] is factorial whenever R is. Hence let
R be factorial, then any 0 # f € R[X] is a product of irreducible elements: Let
K := Q(R), and let f = ¢-[]"_, pi € K[X] be a factorisation in the factorial
ring K[X], where ¢ € K* and n € Ny. Hence we have f = ¢ -]\, p; € R[X],
where ¢/ € R and the p, € R[X]\ R are primitive. Since p; ~ p; € K[X] is
irreducible in K[X], we conclude that p} is irreducible in R[X], and since R is
factorial ¢’ is a product of irreducible elements of R.

For uniqueness let 0 # f =c¢-[[\, pi = d- H;nzl ¢; € R[X], where ¢,d € R and
the p;, q; € R[X]\ R are irreducible in R[X], hence primitive. Thus ¢,d € K*
and the p;, ¢; € K[X] are irreducible in K[X]. Since K[X] is factorial we have

n = m, and we may assume p; ~ ¢; € K[X] for all ¢ € {1,...,n}. Thus using
the primitivisations p., ¢} € R[X] we infer p; ~ p; ~ ¢, ~ ¢; € R[X]. Hence
¢~ d € R as well, uniqueness following from R being factorial. i

(4.17) Theorem: Eisenstein. Let R be factorial, and let f = >""" ja; X" €
R[X] be primitive such that deg(f) = n € N. If there is a prime p € R such that
p Jan, and p | a; for alli € {0,...,n — 1}, and p? J ag, then f is irreducible.

Proof. Let f = gh where g = Y% b;X? € R[X] and h = Y\, ;X" € R[X]
such that deg(g) = k and deg(h) = I, hence k + 1 = n. Thus we have p | ag =
boco, hence we may assume that p | by and thus p J cg. We have a,, = br¢; and
thus p )} bg. Hence let m € {1,...,k} be minimal such that p J b,,. Thus for
Am = bmco+Y i) bm—ic; we have p [ by,co, while p | by,—ic; fori € {1,...,m},
hence p ) ap,, implying n = m < k = deg(g) < n = deg(f). Thus we have
deg(h) =1 =0, and since f is primitive we conclude h € R* = R[X]*. i

(4.18) Irreducibility. Let R and S be integral domains, let ¢: R — S be a
homomorphism, and let px: R[X] — S[X]: f — f¥ be the associated evalu-
ation homomorphism. Let f € R[X]\ R be primitive such that f¥ € S[X] is
irreducible and deg(f¥) = deg(f); in particular the degree condition holds if
le(f) € R*. Then f € R[X] is irreducible: Assume that there are g,h € R[X]
such that f = gh € R[X]. Then we have f¥ = g*h¥ € S[X]. Since deg(f) =
deg(f?) = deg(g?) + deg(h¥) < deg(g) + deg(h) = deg(f) we conclude that
deg(g?) = deg(g) > 1 and deg(h¥) = deg(h) > 1, a contradiction.

No assertion is made if f¥ € S[X] is reducible. Since R C Q(R) is a subring,
the ‘if’ part of (4.15) is a particular case of the above observation. Another
special case is given as follows: Let a € R* and b € R*. Then the evaluation
homomorphism gy p: R[X] — R[Y]: X — aY + b is an isomorphism with
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inverse p,-1(x_p): R[Y] = R[X]: Y — a '(X —b), hence f(X) € R[X] is
irreducible if and only if f(aY + b) € R[Y] is irreducible; ¢, : R[X] — R[Y] is
injective for any g € R[Y], if ¢4 is surjective then g is linear with lc(g) € R*.

(4.19) Example. a) Let k € N, let n € Z \ {—1,0,1} be squarefree, and let
f = X¥ —n € Z[X]. The Eisenstein Criterion for any prime p | n implies
the irreducibility of f in Z[X], hence in Q[X]; in particular for k,n > 2 we
have Yn € R\ Q. For k > 2 and p | n, using the natural homomorphism
~ =1v,: Z — F,, the reduced polynomial f = X* € F,[X] is reducible.

Let g := X* — 1 € Z[X]. Since £1 € Z are roots of g, we have the factorisation
g= (X —1)(X +1)(X%+1) € Z[X], where h := X2 + 1 € Z[X] is irreducible:
Reducing modulo p = 3 the polynomial h = X2 + 1 € F3[X] has no root in F3,
thus is irreducible in F5[X].

b) Let p € N be a prime, and let ¢, := Ef:_ol X% € Z[X] be the p-th cy-
clotomic polynomial. Hence we have X? —1 = (X — 1)®, € Z[X], where
®,, € Z[X] is irreducible: Using the isomorphism ¢x41: Z[X] — Z[X] we get
X opX+1)=X+1)P-1=-1+3" (X' =X Zf:_ol (ifl)Xi’ im-
plying ®,(X +1) = Y075 (,7,) X" € Z[X]. Since (}) =1, and p | (,7,) for all
i €{0,...,p—2}, and (}) = p, the Eisenstein Criterion for the prime p implies
the irreducibility of ®,(X + 1) € Z[X].

5 Field extensions

(5.1) Field extensions. Let K C L be a field extension; we also write L/K.
Let S C L be a subset, then K C K(5) := ({M C L field extension; K U S C
M} C L is the smallest subfield of L containing K U .S, being called the subfield
obtained by adjoining S to K; if S = {s1,...,8,} is finite, we also write
K(S) = K(s1,...,8,). The field extension L/K is called simple, if there is
a € L such that L = K(a), then a € L is called a primitive element.

The field L being a K-vector space, the K-dimension [L: K] = deg(L/K) :=
dimg (L) € N U {oo} is called the degree of L/K. If [L: K| € N then L/K is
called finite, otherwise infinite.

E. g. we have Q C R C C, and since {1,/—1} C C is an R-basis we have
[C: R] = 2, while R/Q is infinite. We have the field extension K C K(X) =
Q(K[X]), and since K[X] < K(X) as K-vector spaces, where {X%i € N} C
K[X] is K-linearly independent, we conclude that K (X)/K is infinite.

(5.2) Proposition. Let L/K be a field extension and let V' be an L-vector
space. Then we have dimg (V) = [L: K| - dim(V); in particular if dimg (V) is
finite then dimy (V) | dimg (V) and [L: K] | dimg (V).

In particular, if K C L C M is a field extension then [M: K| = [M: L]-[L: K],
and if M/K is finite then [M: L] | [M: K] and [L: K] | [M: K].
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Proof. We may assume that V' # {0}. If either of dimp(V) or [L: K] is
infinite, then dimg (V) is infinite as well. Thus we may assume that both
m = dimz(V) € Nand n := [L: K] € N. Let A := {a1,...,a,} C L be a
K-basis, and let B := {b1,...,bm} C V be an L-basis. Then C := {bja; € V;i €
{1,...,n},7€{1,...,m}} CVisa K-basis:

Any v € V can be written as v = 37", bjc; wherec; € L. Forall j € {1,...,m}
we have ¢; = Y"1 a;aj; where aj; € K. Hence we have v = Z;nzl S bjaiai,
thus C C V is a K-generating set. If aj; € K such that 337" 371" | bjaaz = 0,
then by the L-linear independence of B we have Y. j a;a;; = 0 for all j €
{1,...,m}, and thus by the K-linear independence of A we have aj; = 0 for all
ie{l,....,n}and j € {1,...,m}, hence C is K-linearly independent. #

(5.3) Prime fields. Let K be a field. Then the prime field P(K) := [\{M C
K field extension} C K is the unique smallest subfield of K.

Let ¢x: Z — K: n+— n-1 be the natural homomorphism. Since Z/ ker(px) =
im(pg) C K is an integral domain, pZ := ker(¢x) < Z is prime, hence p = 0
or p € Z is a prime. Then char(K) := p > 0 is called the characteristic of
K; e. g. we have char(Q) = char(R) = char(C) = 0 and char(FF,) = p; thus any
prime p € N occurs as a characteristic of some field. Any finite field has prime
characteristic, thus fields of characteristic 0 are infinite.

Let L/K be a field extension. Since im(px) C P(K) as rings, we have im(px) =
im(¢r) € P(K) = P(L), hence char(K) = char(L); e. g. we have P(K) =
P(K(X)) and char(K) = char(K (X)), thus F,(X) is an infinite field of charac-
teristic p. If char(K) = p > 0 then we have im(px) = Z/ ker(¢x ) = Fp, imply-
ing P(K) = F,. If char(K) = 0 then we have i (Z\ {0}) € P(K)*, hence there
is a ring isomorphism Q = Q(2) = {Z£<™) € P(K);m,n € Z,n # 0} C P(K),
implying P(K) 2 Q; e. g. we have P(R) = P(C) = Q.

Let K be finite, thus char(K) = p > 0 and P(K) = F,, then K/F, is finite,
hence |K| = pl: Frl; conversely, if |K| = p™ for a prime p € N and some n € N
then char(K) = p. If L/K is finite, then |L| is finite as well, hence L* is cyclic,
thus there is @ € L* such that L = {0,1,a, ..., al*!=2}, implying that L = K (a),
thus L/K is simple.

(5.4) Algebraic extensions. Let L/K be a field extension. Fora € Llet ¢, =
¢or/K.a K[X] — L: f — f(a) be the associated evaluation homomorphism.
Hence Kla] := im(p,) = {f(a) € L; f € K[X]} C L is an integral domain, and
ker(p,) := {f € K[X]; f(a) = 0} < K[X] is called the order ideal of a over K.

If ker(¢,) = {0} then a is called transcendental over K; e. g. X € K(X) is
transcendental over K. If ker(p,) # {0} then a is called algebraic over K,
and there is a unique monic irreducible polynomial p, = pg.. € K[X] such
that ker(y,) = po K[X] < K[X], being called the minimum polynomial of a
over K, and degg(a) := deg(iq) € N is called the degree of a over K. If a is
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algebraic over K then a is algebraic over any intermediate field K C M C L,
and L/K is called algebraic if any element of L is algebraic over K.

E. g. any a € K is algebraic over K, and since p, = X —a € K[X] we have
degy(a) = 1; we have K(a) = K, thus [K(a): K] = 1. Forn € Z\ {0,1}
squarefree the polynomial X2 —n € Q[X] is irreducible, hence p m=X 2-ne
Q[X] shows that degg(y/n) = 2; since {1,1/n} is a Q-basis of the quadratic
number field Q(y/n) we have [Q(y/n): Q] = 2; a field K C C such that K/Q
is finite is called a number field.

(5.5) Theorem. Let L/K be a field extension.

a) If a € L is transcendental over K, then we have K(X) & K(a) C L; in
particular K(a)/K is infinite. If a € L is algebraic over K, then we have
K[X]/u,K[X] =2 K[a] = K(a) C L, and letting n := degg(a) € N the set
{1,a,...,a" '} C K(a) is a K-basis.

b) L/K is finite if and only if there are ay,...,a, € L algebraic over K such
that L = K(aq,...,a,); in particular, if L/K is finite then it is algebraic. If
K C M C L is an intermediate field, then L/K is algebraic if and only if both
M/K and L/M are algebraic.

Proof. a) If a € L is transcendental over K, then we have the isomorphism
vo: K[X] — Kla]: f — f(a). Since Q(K]Ja]) C L is the smallest subfield of L
containing K U {a}, we have Q(K|a]) = K(a) C L, and thus ¢, extends to an
isomorphism K(X) = Q(K[X]) — Q(Kla]) = K(a): % — f(a)g(a)™t. Ifa e L
is algebraic over K, then since p,K[X] < K[X] is maximal the isomorphism
K[X]/puoK[X] = KJa] shows that K[a] C L is a subfield, implying K[a] = K(a).
This isomorphism also provides a K-basis of K|[a]:

For any f € K[X]\ K, let ": K[X] — K[X]/fK[X] =: V denote the natural
homomorphism. Since KN fK[X] = {0} we have K C V', hence V is a K-vector
space. Letting n := deg(f) € N the set {YO, . ,7”71} C V is a K-basis: Let
S aiX =0¢€V where a; € K. Hence for g := > " a;X* € K[X] we have
f | g, implying g = 0, hence a; = 0 for i € {0,...,n—1}, thus {YO, o ,7”71} is
K-linearly independent. Let g € K[X], then there are ¢,r € K[X], where r =0
or deg(r) < deg(f) = n, suchthat g = gf+r € K[X], henceg=qf+r=7€V,
thus g is a K-linear combination of {70, e ,Yn_l}.

b) If L/K is finite, then for any a € L the degree [K(a): K] < [L: K] is
finite, thus L/ K is algebraic, and letting {a1,...,a,} C L be a K-basis we have
L = K(a1,...,a,). Conversely, let ai,...,a, € L be algebraic over K such
that L = K(a1,...,ay), then for ¢ € {1,...,n} the element a; € L is algebraic
over K(ay,...,a;—1), hence K(aq,...,a;)/K(a1,...,a;—1) is finite, and thus
[L: K] =]]",[K(a1,...,a;): K(a1,...,a;,-1)] is finite as well.

Let M/K and L/M be algebraic, and for a € L let g = piara = i @i X' €
M[X] be the minimum polynomial of @ € L over M. Since a;, € M is algebraic
over K, the field extension K C K (ao, ..., a,) =: M’ is finite. From p, € M'[X]
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we infer that a € L is algebraic over M’, thus M’(a)/M’' is finite. Hence
M'(a)/K is finite, thus algebraic, hence a € L is algebraic over K. i

(5.6) Splitting fields. Let K be a field and let f € K[X]\ K. A field extension
L/K such that f =lc(f) - [[i=, (X —a;) € L[X] splits and K(a1,...,a,) = L
is called a splitting field for f over K. If M/K is a field extension such that
f=1e(f) I, (X — a;) € M[X] splits, then L := K(a1,...,a,) C M is the
unique splitting field for f in M, and for any intermediate field K € M’ C M
the field M'(L) is a splitting field for f over M'.

Hence the a; € L for i € {1,...,n}, where n = deg(f) € N, are the roots of
f in L, thus algebraic over K, and L/K is finite, minimal inasmuch that f
does not split over any intermediate field K C M C L. We may assume that

{a1,...,a.} C L, for some r < n, are the pairwise distinct roots of f. Then we
have the factorisation f = le(f) - H;Zl(X —a;)™ € L[X], where the m; € N

are the associated multiplicities. If m; = 1 then a; € L is called a simple root,
otherwise a; € L is called a multiple root; since n = Z;Zl m; the polynomial
f has precisely n roots in L counting multiplicities.

(5.7) Theorem: Kronecker. Let K be a field and f € K[X] be irreducible.
a) There is a field extension L/K of degree [L: K| = deg(f) such that f has a
root in L.

b) Let K’ be a field, let ¢: K — K’ be an isomorphism, let L/K and L'/K’
be field extensions, let @ € L be a root of f, and let ' € L’ be a root of
f¥ € K'[X]. There is a unique isomorphism &: K(a) — K’(a’) such that
Pl = ¢ and a® = d’.

Proof. a) Since f € K[X] is irreducible, L := K[X]/fK[X] is an extension
field of K such that [L: K] = deg(f). Letting : K[X] — L be the natural
homomorphism, for X € L we have f(X) = f(X) =0 € L.

b) We have pq ~ f € K[X], hence ¢,: K[X]| — L induces an isomorphism
9, K[X]/fK[X] 2 K|a] = K(a) C L. Since ¢: K[X]| — K'[X] is an isomor-
phism, f¥ € K'[X] is irreducible, and hence we have @, : K'[X]/f?K'[X] =
K'ld'] = K'(a’) C L'. Since ¢ induces an isomorphism g: K[X]/fK[X] —
K'[X]/f?K'|X], the map ¢ := (§,) ‘9P, is as desired.

(5.8) Corollary. Let K be a field and let f € K[X]\ K.

a) Then there is a splitting field L for f such that [L: K] < deg(f)!.

b) Let K’ be a field, let ¢: K — K’ be an isomorphism, let L/K be a splitting
field for f, let L'/K’ be a splitting field for f¥ € K’[X]. Then there is an
isomorphism @: L — L’ such that ¢|x = ¢; in particular, ¢ induces a bijection
between the roots of f in L and the roots of f¥ in L', respecting multiplicities.

Proof. a) We proceed by induction on n := deg(f) € N, and assume that
f is monic. If n = 1 then f = X —a € K[X], thus K is a splitting field
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such that [K: K] = 1. Let n > 2, and let ¢ € K[X] be irreducible such
that g | f. Then there is a field extension M/K having an element a, € M
such that g(a,) = 0 and M = K(ay), hence [M: K] = deg(g) < n. Thus
there is f* € M[X] such that f = (X — ay)f’ € M[X], and since deg(f’) =
n — 1 there is a splitting field L := M(ay,...,a,—1) for f' over M, where
=TI (X = a;) € L[X], having degree [L: M] < (n — 1)l. Hence we
have K(a1,...,a,) = K(ap)(a1,...,an—1) = M(a1,...,an—1) = L, where f =
[T,(X —a;) € L[X],and [L: K| =[L: M]-[M: K] < (n—1)!-n=nl

b) We proceed by induction on d := [L: K] € N. If d = 1 then we have L = K,
thus there are a1, ..., a, € K such that f =le(f)-[];-,(X —a;) € K[X]. Hence
fe=1e(f)? T, (X —af) € K'[X], thus L' = K'(a?,...,a¥) = K’, and we
let = ¢. Let d > 2, and let g € K[X] be irreducible such that g | f, where we
may assume that deg(g) > 2. Then ¢g¥ € K'[X] is irreducible such that g¥ | f¥.
Let a € L be a root of g, and let a’ € L’ be a root of g¥, hence there is an
isomorphism @: K(a) — K'(a) extending ¢. Then L/K (a) is a splitting field

for f, and L'/K'(a’) is a splitting field for f®. Since [L: K(a)] = % =
[dLe;;(Ig < [L: K] = d, there is an isomorphism @: L — L’ extending . 1

(5.9) Example. a) Let f := X? + 1 € R[X], hence f is irreducible. By the
Kronecker construction L := R[Y]/(Y? 4+ 1)R[Y] contains the roots +Y of f,
where " : R[Y] — L is the natural homomorphism; hence L is a splitting field for
f=(X-Y)(X+Y) € L[X]. Thus we have an isomorphism L — L: Y + —Y
extending idg. Since X2+1 = (X —/—1)(X ++v/—1) € C[X] and R(y/—1) =C

there are isomorphisms L — C: Y + /=1 and L — C: Y + —/—1 extending
idg, as well as C — C: v/—1 — —+/—1, being called complex conjugation.

b) Let f := X3 — 2 € Q[X], hence f is irreducible. Letting p:= /2 € R C C
and ¢ = (3 = exp(z’r‘éj) = HF € C, we have ¢ = 1, and thus the roots
of f are p e R C C and p(*' € C\ R. Thus the Kronecker construction yields
Q[X]/(X? - 2)Q[X] &2 K. := Q(p¢¢) C C, where € € {0,1,—1}. We have
[f=X3—p=(X—p)(X?+pX +p?) € Ko[X], where X2 + pX + p* € Ko[X]
does not have a root in Ko C R, thus is irreducible. Hence K is not a splitting
field for f, and thus neither K; and K_; is.

Applying the Kronecker construction again yields Ko[X]/(X?%+ pX + p?)Ko[X],
which contains a root of X24 pX +p?, and thus is a splitting field for f. We have
X2+ pX +p? = (X —p¢)(X —p¢™1) € C[X], hence we have Ko[X]/(X?+pX +
P Ko[X] =2 L := Ko(p¢) = Q(p, p¢) = Q(p,¢) € C. Thus L is the splitting
field for f in C, and we have [L: Q] = [L: Ko] - [Ko: Q] =23 =6 = deg(f)!.

(5.10) Theorem. A finite field extension L/K is normal, i. e. any irreducible
polynomial in K[X] having a root in L already splits in L[X], if and only if L
is a splitting field for some polynomial in K[X]\ K.
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Proof. Let L/K be normal, let {a1,...,a,} C L be a K-basis, and let p; €
K[X] be the minimum polynomial of a; over K. Then the irreducible polynomial
pi € K[X] has the root a; € L, thus f := [ ; p; splits in L[X]. Since
L= K(a,...,a,) we conclude that L is a splitting field for f over K.

Let conversely L be a splitting field for f € K[X]\ K, and let g € K[X] be
irreducible having a root a € L. Let M/L be a splitting field for g, and let
b € M be a root of g. Hence there is an isomorphism ¢: K(a) — K(b) such
that ¢|x = idg. Since L(a) = L is a splitting field for f over K(a), and L(b)
is a splitting field for f over K (b), there is an isomorphism @: L(a) — L(b)
extending . Since p|x = idx is equivalent to @ being K-linear, we have
[L: K] =[L(b): K], thus L = L(b) and b € L, implying that g splits in L[X]. #

(5.11) Corollary. Let L/K be a finite field extension.
a) Then there is a normal finite field extension M/K such that L C M.
b) If L/K is normal, then L is normal over any intermediate field K C M C L.

(5.12) Derivatives. Let K be a field and let f =3, a; X" € K[X]. Then

the derivative of f is deﬁned as g—f( = Y10 X7 € K[X]. Hence we

have % =0 or deg( ) < deg(f), and if K C L is a field extension then
the derivative of f € K [ ] and the derivative of f € L[X] coincide. The map

aiX: K[X] — K[X] is K-linear, and we have % aj g+ f- 8g for all
f,g9 € K[X]: We may assume that f = X’ and g = X? Where i,J 6 No, and
since 9+ = 0 we may assume 4, j > 1, then we have aX ) (i +7) X1 =

0X
iXTLXT 4 XX = 65D Xy x 200D

For f € K[X]\ K let f € gcd(f7 ) C K[X]. Then the multiple roots of f
in a splitting field L for f coincide with the roots of f in L: By the Euclidean
algorithm we have f € gedppx(f, ax) C L[X] For a € L we have f = (X —

a)™g, where m € Ny and g € L[X] such that g( g # 0. If a is a root of f, then
le, thusﬂ—m(X—a)m g+ (X —a)m2L = (X —a)™™ 1(mg—i—(X—

) <) € LIX]. Ifalsamultlplerootoff hencem> 2, then X —a | f € L[X],
thus a is a root of f Conversely, if a is a root of f, then it is a root of f, thus
m > 1, and a root of J&, hence a root of 2L — (X —a)™ 2% = m(X —a)™ g,
which since g(a) # 0 implies m > 2.

Hence f has a multiple root in L if and only if we have fgz K. In particular, if
f is irreducible then f has a multiple root in L if and only if aj = 0: We have

cither f € K or f ~ f € K[X], where since W =0or deg(ax) < deg(f) the
latter case occurs if and only if % =0.

Thus for f irreducible, if char(K) = 0 then f has only simple roots in L, while
if char(K) = p > 0 then f has a multiple root in L if and only if there is
g € K[X] such that f = g(X?) € K[X]: If f =}, a; X" such that %

> isqia; X1 =0, then we have a; = O forallp Ji € Ny, thus f = Yo aZpX‘ ,
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and if conversely f =3, aipX P then we have % =D is1 ipa;, XP~1 = 0.

(5.13) Separability. Let K be a field. An irreducible polynomial f € K[X] is
called separable, if it has only simple roots in a splitting field for f; otherwise
f is called inseparable. A polynomial f € K[X]\ K is called separable, if
all its irreducible divisors are separable; in particular a squarefree polynomial
f € K[X]\ K is separable if and only if it has only simple roots in a splitting
field for f. The field K is called perfect if all irreducible polynomials in K[X]
are separable.

Let L/K be a field extension. An element a € L is called separable over K,
if a € L is algebraic over K and its minimum polynomial p, € K[X] over K is
separable, equivalently a € L is a simple root of p,. The field extension L/K is
called separable if any element of L is separable over K. E. g. any algebraic
extension of a perfect field is separable, if char(K) = 0 then K is perfect, and
if K is a finite field then K is perfect as well:

(5.14) Proposition. Let K be a field such that char(K) = p > 0. Then the
Frobenius map ¢,: K — K: a — a” is a monomorphism, and K is perfect if
and only if ¢,: K — K is surjective, i. e. if and only if ¢, is an isomorphism.

Proof. For a,b € K we have (ab)? = a’b? € K and 1? =1 € K, and since p |
(P), for alli € {1,...,p—1}, we have (a+b)P = >0 (P)a'bP~' =a? + VP € K.

Let ¢,: K — K be surjective, and assume there is f € K[X] irreducible and
inseparable. Then thereis g = > .., a; X’ € K[X]such that f = g(X?) € K[X].
Let b; € K such that a; = b¥ for all i > 0. Hence the Frobenius map on K (X)
yields f = g(XP) = > V' X? = (3,500 X")? € K[X], a contradiction.

Let ¢,: K — K be not surjective and let a € K\ im(p,). Hence f := XP —q €
K[X] does not have a root in K. Let g € K[X] be an irreducible divisor of f,
hence d := deg(g) > 1, and let b € L be a root of g in a splitting field L for g.
Thus we have 0 = f(b) = b —a € L, which yields f = XP—b? = (X -b)P € L[X].
Thus g = (X — b)? € L[X] has a multiple root in L, hence g is inseparable.

(5.15) Example. Let K be a field such that char(K) = p > 0. Then X €
K(X)\im(py), hence K(X) is not perfect: Assume there are f =37, a; X" €

K[X]and 0 # g = Y750 bi X" € K[X] such that X = (g)p € K(X), hence

s U X =fP=g" - X =3 WWXP € K[X], a contradiction.

(5.16) Theorem: Finite fields. a) Let K be a finite field such that | K| = p",
for a prime p € N and n € N. Then K is a splitting field for X?" — X e F,[X].
b) Let p € N be a prime and n € N, and let K be a splitting field for Xr'_X e
F,[X]. Then we have |K| = p".

Thus up to isomorphism there is a unique field of cardinality p™, being called
the associated Galois field GF(p™) = Fpn.
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Proof. a) Since |[K*| = p" —1 we have a? ~! = 1 € K for all a € K*, and thus
a?" —a=0€K for all a € K. Hence XP" — X =[], (X —a) € K[X] splits,
thus K is a splitting field for X?" — X

b) Letting f := XP" — X € F,[X], its set of roots M := {a € K; f(a) =0 €
K} ={a€ K;a”" =a} C K is a subfield: We have 0,1 € M, and for a,b € M
such that b # 0 we by iteration of the Frobenius map get (a —b)P" = a?" —bP" =
a—band (ab=1)P" =a?" (")"' = ab~', thus M C K is an additive subgroup
and M\ {0} C K*isa multlphcatlve subgroup. Hence M is a splitting field for
f,and thus M = K. Since 2L = —1 e F [X] we have ged(f, g—)f() =Fy, thus f

o0X
has only simple roots, hence |K| = |M| =

(5.17) Theorem: Existence of primitive elements. Let L/K be a field
extension, let ¢1,...,¢, € L be separable over K, and let b € L be algebraic
over K. Then K(b,c1,...,c,)/K is a simple field extension. In particular, if
L/K is finite and K is perfect then L/K is simple.

Proof. Letting a := ¢;, it suffices to show that K(a,b)/K is simple. Since
K(a,b)/K is finite, we are done if K is a finite field. Thus we may assume that
K is infinite, and we may assume that a ¢ K. Let u, € K[X] and up, € K[X]
be the minimum polynomials of a and b over K, respectively. We may assume
that y, and g split in L[X], hence we have po = [}, (X — a;) € L[X], where
n > 2, the a; are pairwise distinct and a = a1, and pp, = HT (X —b;) € L[X],
where b = b;. Lntje{l,...,m}} # 0 and
c:=ad+be K(a,b) CL. ThenwehaveK(a b) K(c):

Let f € ged(pa(X), po(c — dX)) C K(c)[X] C L[X] be monic. Since pq(a) =0
and up(c — da) = pp(b) = 0 we have X —a | f. Since f | pq, we conclude
that f splits in L[X], and its roots are amongst the a;. Assume pp(c —da;) =0
for some i € {2,...,n}, then for some j € {1 .,m} we have b; = ¢ — da; =
d(a — a;) + b, 1Inp1y1ng d= b::, —a; J up(c—dX)
for all i € {2,...,n}, hence a € L is the only root of fin L. Since pq € K[X]
is irreducible and separable, we have f = X —a € K(c¢)[X] C L[X]. Thus we
have a € K(c) and hence b = ¢ — ad € K(c), implying K(a,b) C K(c). i

6 Galois theory

(6.1) Galois groups. Let L/K be a field extension, and let Aut(L) be the
group of automorphisms of L. The subgroup Aut(L/K) := {¢ € Aut(L); p|x =
idg} < Aut(L) is called the Galois group of L over K, or the group of
K-automorphisms of L.

Hence we have Aut(L/K) = Aut(L) N Homg (L, L). For any intermediate
field K € M C L we have Aut(L/M) < Aut(L/K). We have Aut(L) =
Aut(L/P(L)): Letting ¢r: Z — L be the natural homomorphism, we have
P(L) = Q(im(pr)) C L, and for ¢ € Aut(L) we have plin(y,) = idim(y,), thus
Plotim(er) = ido(im(er))-
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For S C Aut(L/K) let Fixy(S) := {a € L;a¥ = aforall ¢ € S} be the
associated set of fixed points; we have Fixy(S) = Fixy ((S)). Hence we have
K C Fixr(S), and for a,b € Fixy(S) such that b # 0 we have a — b € Fixp(5)
and ab~! € Fix(S), implying that Fixy(9) is a field, being called the fixed
field of S. The field extension L/K is called Galois if Fixy (Aut(L/K)) = K.

(6.2) Proposition: Dedekind’s Theorem. Let K be a field, let G be a
monoid, and let 1, ..., v, G — K* be monoid homomorphisms. Then the set
{¢1,---,n}t € Maps(G, K) is K-linearly independent if and only if o1, ..., ¢,
are pairwise distinct; here Maps(G, K) is an K-vector space with respect to
pointwise addition and scalar multiplication.

Proof. Letting ¢1,...,¢, be pairwise distinct, we proceed by induction on
n € N: Let n = 1, and let ¢1a; = 0 for some a; € K, then 191 = 1 implies
ap = lag = 0. Let n > 2, let Z?:l pia; = 0 where a; € K, and let y €
G such that y?* # y¥~. For all z € G we have (3 1, 2¥a;)y¥* = 0 and
S (zy)Pia; = > a¥iy¥ia; = 0, thus we have Y | % (y#* — y¥i)a;, = 0.
Hence Y7 , i(y?* — y¥i)a; = 0 by induction implies (y** — y¥i)a; = 0 for
i €{2,...,n}, thus a,, = 0, and by induction a; =0 for i € {1,...,n —1}.

(6.3) Proposition. Let L/K and L'/K be finite field extensions. Then there
are at most [L: K] monomorphisms ¢: L — L’ such that ¢x = idg. In partic-
ular, we have [Aut(L/K)| < [L: K].

Proof. Let ¢1,...,¢n: L — L’ be pairwise distinct monomorphisms such that
¢ili = idg. Then the maps ¢} := ¢;|p«: L* — (L')* are pairwise distinct, thus
{¢%,..., 05} C Maps(L*, L') is L'-linearly independent, hence {¢1,...,pn} C
Maps(L, L’) is L’-linearly independent. Since Hompg (L, L’) < Maps(L,L’) as
L’-vector spaces, the set {®1,...,0n} C Homg(L,L’) is L’-linearly indepen-
dent, hence n < dimy,(Homg (L, L')). Since Homg (L, L') = KF': KIx[L: K] g
K-vector spaces we have [L': K|-dimy (Homg (L, L") = dimg (Homg (L, L)) =
[L': K]-[L: K], thus dimy,(Homg (L, L")) = [L: K]. i

(6.4) Proposition: Artin’s Theorem. Let L/K be a finite field extension,
and let H < Aut(L/K). Then we have [L: Fixy (H)] = |H]|.

Proof. Let M := Fix;(H). From ¢|y = idpy for all ¢ € H we conclude
n:= |H| < [L: M]. Conversely, let H = {¢1,...,¢n} and Tryg == > 1 ¢; €
Maps(L, L) be the associated trace map. Since {p1,...,9,} C Maps(L, L) is
L-linearly independent, we have Try # 0. For all ¢ € H and a € L we have
(Trp(a)? =31 a?® =3"  a? =Try(a), thus we have Try(a) € M.

-1
Let {a1,...,an+1} C L be any subset, and let A := [afi lij € L+ Hence
the system of L-linear equations A- X" = 0 € L™ ! where X = [X1,..., X,,11],
has a solution 0 # [z1,...,2Z,+1] € L™t Picking k € {1,...,n + 1} such that
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x # 0, and replacing [z1, ..., Zn41] by a non-zero scalar multiple if necessary,

we may assume that Try(zr) # 0. We thus have Z;Hll s zj = 0, hence

E"Jrll ajzft =0 for all s € {1,...,n}, implying Z ah aJTrH(J:J) = 0. Since
TI‘H(IJ) € M for all j € {1,. n—l— 1}, and TrH(xk) # 0, this implies that
{a1,...,any1} C Lis M—linearly dependent, and hence [L: M] < n. 1

(6.5) Theorem. For a finite field extension L/K the following are equivalent:
a) The field extension L/K is Galois, i. e. we have Fixy(Aut(L/K)) = K.

b) We have [L: K| = |[Aut(L/K)].

c) The field extension L/K is normal and separable.

d) The field L is a splitting field for a separable polynomial in K[X]\ K.

Proof. a)&b): Letting M := Fixy (Aut(L/K)) we have |Aut(L/K)| = [L: M],
and L/K is Galois if and only if [L: M| = [L: K].

a)=c): Let G := Aut(L/K). For a € L let a® = {a1,...,an} C L be the
associated G-orbit, where a; := a, and let fo := [[[*) (X —a;) = X7 b;X7 €
L[X]. For ¢ € G we have f¢ = [[" (X —af) = [[",(X — a;) = fa, hence
by = bj, thus b; € Fixg (Aut(L/K)) = K. Hence f, € K[X] has a as a root, and
since f, has pairwise distinct roots a is separable over K, thus L/ K is separable.

Let {a1,...,a,} C L be a K-basis, hence in particular L = K(aq,...,ay), and
for all j € {1,...,n} let a§ = {aj1,...,a;m,} C L be the associated G-orbit
and f; := [[;2) (X — aj;) € L[X]. Hence we have f; € K[X], and f :=[]}_, f;
splits in L[X]. Since f(a;) = 0 we conclude that L is a splitting field for f.

c¢)=d): By normality let L/K be a splitting field for f € K[X]\ K. Let
g € K[X] be irreducible such that g | f, hence g splits in L[X]. Since g is the
minimum polynomial of any of its roots in L, by separability g has only simple
roots in L. Hence g is separable, and thus f is separable as well.

d)=a): Let L/K be a splitting field for the separable polynomial f € K[X
which we may assume monic and squarefree, hence f =[]\ (X —a;) €
)

J\K,

L[X],
where the a; € L are pairwise distinct. We proceed by induction on r : |{z €
{1,...,n};a; € K}| € Ng: If r = 0 then K = L and thus Fixy (Aut(L/K)) =
Let r > 1, hence we may assume a := a; € L\ K. Thus we have K(a) #
and L/K ( ) is a splitting field for the separable polynomial f € K (a)[X]. Thus
by induction L/K(a) is Galois, and since Aut(L/K(a)) < Aut(L/K) we have
Fixy (Aut(L/K)) C Fixp (Aut(L/K(a))) = K(a).
Let p, € K[X] be the minimum polynomial of a over K. Hence we have
to | f € K[X], and thus we may assume that p, = [[~, (X — a;) € L[X]
where m < n. Hence for i € {1,...,m} there are pairwise distinct isomor-
phisms v;: K(a) — K(a;): a — a; extending idg, and thus there are isomor-
phisms ¢; € Aut(L/K) extending ¢;. Let b = Z;-n:_ol bja’ € Fixy (Aut(L/K)) C
K(a) & K[X]/paK[X], where b; € K. This yields b = b*' = Sy by(ad)¢ =

Py o bjal. Thus g := -b+ 300 "b; X7 € K(a)[X] has m > deg(g) pairwise
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distinct roots {a1,...,an,} C L, implying g = 0. Thus we have b = by € K, and
hence Fixy (Aut(L/K)) = K. 1

(6.6) Corollary. a) Let L/K be a finite field extension, generated by separable
elements. Then there is a finite Galois extension M /K such that L C M.

b) Let L/K be a field extension. Then the separable closure L, := {a €
L; a separable over K} of K in L is a subfield of L.

(6.7) Theorem: Galois correspondence. Let L/K be a finite Galois exten-
sion, and let G := Aut(L/K). Then the following maps are mutually inverse
inclusion-reversing bijections:

F: {H < G subgroup} — {K C M C L intermediate field}: H — Fixy(H)

G: {K C M C L intermediate field} — {H < G subgroup}: M — Aut(L/M)

For all subgroups H < G we have [L: F(H)] = |H|, and for all intermediate
fields K C M C L we have [M: K] = [G: G(M)].

For an intermediate field K C M C L the field extension M/K is Galois if and
only if My = M for all ¢ € G, which holds if and only if Aut(L/M) < G; in
this case we have G/Aut(L/M) = Aut(M/K).

Proof. For H < G we have H < Aut(L/Fix;(H)) = GF(H), and for K C
M C L we have M C Fixp(Aut(L/M)) = FG(M). Applying F to the first
inequality yields F(H) 2 FGF(H), and the second inequality for M = F(H)
yields F(H) C FGF(H), hence we have F(H) = FGF(H). Thus we have
|H| = [L: F(H)] = [L: FGF(H)] = |GF(H)|, and since H < GF(H) this
implies H = GF(H), thus GF = id; so far we only used that L/K is finite.

For any intermediate field K C M C L, the field extension L/M is a splitting
field for some separable polynomial in M[X]\ M, hence is Galois. Thus we
have M = Fixp(Aut(L/M)) = FG(M), hence FG = id as well. We have
|G| =[L: K| =[L: M]-[M: K] =[L: FG(M)]-[M: K] = |G(M)| - [M: K],

hence [M: K] = 55 = [G: G(M)],

We have G(M)<G if and only if G(M)¥ = G(M) for all ¢ € G, which holds if and
only if F(G(M)¥) = FG(M) = M. We have F(G(M)¥) = {a € Lyap 1y =
aforally € GM)} ={a€ Liap™t € FG(M)} = (FG(M))p = Mp. Thus we
have Aut(L/M) <G if and only if My = M for all ¢ € G. The latter condition
holds if and only if M/K is normal, which holds if and only if M/K is Galois:

By separability we have M = K(a) for some primitive element a € L. Let
My = M for all p € G, and let f := [[ cq(X —a®) € M[X]. For ¢ € G
we have f¥ = [Tpea(X — a¥¥) = [[,eq(X —a?) = f. Thus we have f €
Fixy(G)[X] = K[X] such that f(a) = 0, splitting in M[X], hence M/K is a
splitting field for f, and thus M /K is normal.
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Conversely let M/K be normal, then the minimum polynomial u, € K[X] of a
over K, having the root a € M, splits in M[X]. Thus M contains all roots of
e in L. Since for ¢ € G we have p,(a®) = (pq(a))? =0, we conclude a® € M,
and thus My C M, by K-linearity and M /K finite implying M¢ = M.

If M/K is Galois, since My = M for all ¢ € G, we have the group homo-
morphism rest;: G — Aut(M/K): ¢ — ¢|p. Since L/M is a splitting field
for some polynomial in M[X]\ M, any element of Aut(M/K) extends to an
element of G, thus resk; is surjective. We have ker(resk,) = {p € G;¢|m =

idpr} = Aut(L/M), and thus G/Aut(L/M) = Aut(M/K). i

(6.8) Example. a) Since C = R(y/—1) is a splitting field for X2 + 1 € R[X],
the field extension C/R is Galois, and we have Aut(C/R) = {idc, } = Cs,
where " : C — C: v/—1 — —+/—1 is complex conjugation.

b) Let f := X3 —2 € Q[X], see (5.9), hence f is irreducible. Letting p :=
V2 € R CCand(:=(3:= exp(%T‘/?l) € C, the roots of f in C are p(¢,
where € € {0,1,—1}. Thus L := Q(¢,p) C C is the splitting field for f in C,
hence L/Q is Galois such that [L: Q] = 6, see Table 3. Let K. := Q(p¢°),
hence we have [K.: Q] = 3 and K./Q is not normal. Letting M := Q((), from
pe =X?+ X +1€Q[X] we get [M: Q] =2, hence M/Q is normal.

Let G := Aut(L/Q), hence we have |G| = 6. We have L = M(p), and since
[L: M] = 3 we conclude that f = X3 — 2 € M[X] is irreducible, thus there
is 7 € Aut(L/M) given by 7: ( — (,p — (p. Hence 7: p+— (pr— Ctp—p
shows || = 3, thus Aut(L/M) = (1) = C3 and Fixy(r) = M. We have
L = Ky(¢), and since [L: Ko] = 2 we conclude that pe = X? 4+ X + 1 € Ko[X]
is irreducible, thus there is ¢ € Aut(L/Kp) given by o: p — p,( — (1, hence
Aut(L/Ko) = <0’> = CQ and FiXL(U) = KQ.

We have 77: ¢ — (,p+— (" 1p, hence 7° = 771, and thus G = Dg = S3. The
subgroup lattice of G shows that we have found all intermediate fields of L/Q.
Since |o7| = |o77!| = 2 we have Fixy(07) = K_; and Fixz(o771) = K;.

c) Let f:= X* —2 € Q[X], hence f is irreducible. Letting p:= v2 € R C C
and ¢ := ¢4 = V=1 € C, we have f = [[}_,(X — ¢¥p) € C[X]. Thus L :=
Q(¢, p) C C is the splitting field for f in C, see Table 4.

Letting K := Q(p) C R, we have [K: Q] =4 and f = (X —p)(X +p)(X%+p?) €
K|[X], where g := X? + p? € K[X] is irreducible, hence K/Q is not normal.
Since g = (X — (p)(X + Cp) € L[X], we have L = K(Cp), and thus [L: K| = 2,
yielding [L: Q] = 8. Similarly, letting K’ := Q({p) € R, we have [K': Q] = 4
and f = (X —(p) (X +p)(X?%—p?) € K'[X], where hence ¢ := X?—p? € K'[X]
is irreducible, while ¢’ = (X — p)(X + p) € L[X], hence K'/Q is not normal.

We have Q(p?) = Q(¢%p?) = Q(v2) = KNK', where since p1,2 = X?—2 € Q[X]
we have [Q(p?): Q] = 2, hence Q(p?)/Q is normal. Letting M := Q((), from
pe = X?+1 € Q[X] we get [M: Q] =2, hence M/Q is normal. Since ¢ & Q(p?)
we have [Q(, p?): Q] = 4, and being a splitting field for (X2 —2)(X?+1) € Q[X]
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Table 3: Galois correspondence for Q((3, v/2)/Q.

<(1,2,3),(1,2)>
<(2,3)>

<(1,2,3)>
<(1,2>
<(1,3)>

the field extension Q((, p?)/Q is normal. We have Q((p?) = Q(v/—2), where
ez = X2 +2 € Q[X] implies [Q(¢p?): Q] = 2, hence Q((p?)/Q is normal.

Let G := Aut(L/Q), hence we have |G| = 8. We have L = M (p), and since
[L: M] = 4 we conclude that f = X* — 2 € M[X] is irreducible, thus there is
7€ Aut(L/M) given by 7: ( +— (,p (p. Hence 7: pr—= Cp— —pr—=C lpp
shows |7| = 4 and thus Aut(L/M) = (1) = C4. We have Q((, p?) C Fixz(72),
thus from [L: Q(¢, p?)] = 2 = |72| we get Fixp(72) = Q((, p?).

We have L = K (¢), and since [L: K| = 2 we conclude that pc = X2 +1 € K[X]
is irreducible, thus there is 0 € Aut(L/K) given by o: p+— p,{ — —( = (71,
hence Aut(L/K) = (o) = Cy. Since Fixy(r) NFixp(c) = M N K = Q and
L=Q(M,K), we get (r,0) = G and () N (o) = {1}, respectively.

We have 77: ¢ — (,p — (" !p, hence 7° = 771, Thus we have G = Dg.
From the subgroup lattice of G we determine all intermediate fields of L/Q:
We have Fixy ({0, 72)) = K N Q(¢, p?) = Q(p?) and Fixy(072) = K', as well as
Fixr ((o1,72)) = Q(¢p?).

To find Fixy(o7) and Fixy (073) we use the trace map Tr,,y =id +o7: L —
Fixy (o7): We have Tri,-y(¢) = ¢+ (71 = 0 as well as Triory(p) = p+(p =
(14 ¢)p =: w. Since w™ = (2w # w we have w & Q(¢p?), hence Fixy(o7) =
Q(w); since (g := exp(zﬂT‘/jl) = \/iﬁ (1 +¢) € C we have w = (3p® € C,
hence w* = —8, thus p, = X%+ 8 € Q[X]. Since o7® = (07)7, we have
Fixy(073) = Fixp(07)7 = Q(w?) = Q((1 — {)p).

(6.9) Finite fields. Let p € N be a prime and n € N. Since F,» is a split-
ting field for X?" — X € F,[X], the field extension F,./F, is Galois, and
we have |Aut(Fpn/Fp)| = [Fpn: Fy] = n. Let the Frobenius automorphism

¢p € Aut(Fpn /F,) have order k | n. Then ¢f = idg,, implies a?* = a for
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Table 4: Galois correspondence for Q((4, v2)/Q.

<o,1>

Q(¢.p)
Q(p) Q((1+2)p)
2

a € Fpyn, hence all elements of Fy» are roots of X' —X e F,[X]. Thus we have
pk > p", implying that k = n and Aut(F,n /F,) = (p,) = Ch.

The Galois correspondence is given as follows: For any d € N such that d | n
there is a unique subgroup (%) <(y,) of index d. Hence for any such d there is a
unique intermediate field F,, € M := Fixg,, (¢) C Fyn such that [M: F)] = d,
where from |M| = p? we infer M = F,a. The field extension Fpn /F,a is Galois
such that Aut(Fyn/Fpa) = (%), and the field extension F,q/F, is Galois such

that (plr,,) = Aut(Fpa/Fp) = Aut(Fpn /Fp)/Aut(Fpn /Fpa) = (pp)/(5)-

(6.10) Cyclotomic fields. For n € N let (, := exp(%—;{__l) € C. Then
Q(¢n) C C is called the n-th cyclotomic field; we have ¢; = 1 and (o = —1

and ¢4 = /=1, thus Q = Q(¢1) = Q(¢2), and Q(¢4) = Q(V—1) is called the

Gaussian number field.

The group (¢,) < C* of n-th roots of unity has order n, its generators are
called primitive n-th roots of unity. Thus we have X" —1 = erz/nZ(X—Cﬁ) €
C[X]. Running over the primitive roots yields the n-th cyclotomic polyno-
mial ®,, := [[;c(7/n7)- (X — ¢F) € C[X], thus deg(®,) = p(n) = [(Z/nZ)*|.
Hence X" —1 =], ®4 € C[X], by induction yielding ®; = X —1 € Z[X] and

. xXn_1 .. . .
o, = oo @ € Z[X] for all n # 1. Then ®,, € Z[X] C Q[X] is irreducible:
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Let ®, = fg € Z[X], where f,g are monic and f is irreducible, and let ¢
be a primitive n-th root of unity such that f(¢) = 0. We show that for any
k € (Z/nZ)* we have f(¢*) = 0 as well, implying that ®,, = f; it suffices to show
f(¢?) = 0 for all primes p € N such that p J/ n: Assume that f({?) # 0, then
g(¢?) = 0 implies pe = f | g(X?) € Z|X], hence g(XP) = fh for some h € Z[X].
Using the natural homomorphism ~: Z — F,, and that [, is the prime field of
characteristic p, this implies fh = g(X?) = g¥ € F,[X], and hence 1 & gcd(f, 7).
From X" —1 = fg-[1;|n 40 Pa € Fp[X] we infer that X™ —1 € F,[X] has

a multiple root in a splitting field. Since 6(‘){;}_1) =nX""1 £0 € Fp[X], thus

1 € ged(X™ —1,mX"~1), this is a contradiction. i
We thus have g, = @5, hence [Q((,): Q] = ¢(n). Since @, splits in Q(¢,)[X],
we conclude that Q(¢,) C C is the splitting field for ®,, in C, hence Q({,)/Q
is Galois. Thus we have |[Aut(Q(¢,)/Q)| = ¢(n) = |(Z/nZ)*|, and for any
k € (Z/nZ)* there is an automorphism ¢ : Q(¢,) — Q(¢u): G = ¢ extending
idg; in particular p_; is the restriction of complex conjugation to Q(¢,). Hence
(Z/nZ)* — Aut(Q((n)/Q): k +— ¢ is an isomorphism.

7 Applications

(7.1) Construction with ruler and compass. We consider the Euclidean
plane R?, and assume the points [0, 0], [1,0] € R? to be given. To construct new
points, we draw lines through two distinct points already constructed, or circles
around points already constructed whose radii are the distances of points already
constructed, and take the finite non-empty line-line, line-circle and circle-circle
intersections as new points.

Let M C R be the set of all coordinates of all points which can be thus con-
structed in a finite number of steps; instead, only the first or only the second
coordinates may be considered. We have 0,1 € M, and for a,b € M such
that b # 0 we have a — b € M and ab™' € M, hence M C C is a field.
For 0 < a € M we have y/a € M as well, hence any quadratic polynomial
X2+ pX+q=(X+5)2—-((5)*—q € M[X] such that (§)* — ¢ > 0 splits.

Let a € R. Then we have a € M if and only if there are fields Q = My C M; C
-+ C M,, CR, where n € Ny, such that [M;: M;_1] =2 fori € {1,...,n} and
a € M,: If the M; are as above, we by induction on i € Ny have M; C M,
where My = Q C M: For i > 1 there is b € M; such that M; = M;_1(b), having
minimum polynomial i, = X?+pX +q € M;_1[X] such that (§)*—¢ > 0. Thus
we have M; = M;_1(,/(5)? —q) € M. Conversely, if M C M is a subfield,
lines and circles are given by equations aX +bY = c and (X —s)?+(Y —t)? = 12,
where a,b,c,r,s,t € M. If any two of these intersect in a finite non-empty set,
the intersection consists of one or two points, whose coordinates are roots of
polynomials over M of degree at most 2; for circle-circle intersections we by
translation, dilatation and rotation may assume that the circles are given as
the unit circle X2+ Y2 = 1 and (X — s)? + Y2 = 72, where s # 0, implying
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(:C—S)Q—xzer—landthusx:%6Mandy2=1—:62.

This allows to show the insolubility of various problems from classical geometry:
Given a unit cube in the Euclidean space R?, Deli’s problem is to construct
a cube having volume 2, hence to construct /2, but X3 — 2 € Q[X] being
irreducible we have [Q(v/2): Q] = 3, thus v/2 ¢ M. Given a unit circle, the
squaring problem is to construct a square having area m, to construct /T,
but 7 being transcendental over Q we have m ¢ M, see (7.4).

Given a constructible angle 0 < 8 < 7, i. e. cos(8) € M, the trisection
problem is to construct %, i. e. to construct cos(%) € R. But there is 0 <
o < Z such that cos(3a) € M and cos(a) ¢ M: From exp(3ay/—1)

exp(ay/—1)3, taking real and imaginary parts and using sin(a)? + cos(a)? =
yields cos(3a) = cos(a)® — 3sin(a)? cos(a) = 4 cos(a)® — 3 cos(a). Letting o :
Z, hence cos(3a) = £, shows that a := cos(%) is a root of f :=4X? —3X — ]
Q[X]. Since f(XF) = 1(X?+3X? - 3) € Q[X], the Eisenstein Criterion for
p = 3 shows that f is irreducible. Hence we have [Q(a): Q] = 3, thus a ¢ M.

m =

A regular n-gon, for n € N, is constructible if and only if ¢(n) is a 2-power: A
regular n-gon is constructible if and only if a := COS(%’T) € M, equivalently b :=
sin(22) € M. If a € M, then [Q(a)/Q] is a 2-power, and since a* + b*> = 1 and
¢ = a+by/—1 we conclude that [Q(a,b)/Q)] and p(n) = [Q((,)/Q] are 2-powers.
Conversely, if [Q(¢,)/Q] is a 2-power, let M := Fixg(c,)(¢-1) = Q(¢x)NR be the
real subfield of the Galois extension Q(¢,)/Q; since Aut(Q(¢,)/Q) is abelian,
M/Q is Galois. Since [M: Q] is a 2-power this implies that there are fields
Q=MyC M C---C My =M, where k € Ny, such that [M;: M;_1] = 2 for
i€{l,...,k}. Since a = 1((y + (') € M we conclude a € M.

We determine ¢(n): Let m € N be coprime to n. Then for the natural
homomorphism v: Z — (Z/mZ) x (Z/nZ), where the right hand side is a
ring with respect to componentwise addition and multiplication, we have
ker(v) = mZNnZ = mnZ <Z, and since |Z/mnZ| = mn = |(Z/mZ) x (Z/nZ))
the induced map Z/mnZ — (Z/mZ) x (Z/nZ) is an isomorphism. Hence we
have (Z/mnZ)* = ((Z/mZ) x (Z/nZ))* = (Z/mZ)* x (Z/nZ)* as groups, and
thus o(mn) = p(m)p(n), i. e. ¢ is a number theoretic function. This
reduces us to the case p® where p € N is a prime and e € N: We have
(Z[p°Z) \ (Z/p°L) ={T € Z|p°Lyx € Lpe,p | v} ={Tp € Z/p°ZL;x € Lype-1},
hence @(p¢) = p* —p*~! = (p— 1)p*~*.

Thus ¢(n) is a 2-power if and only if for p® | n, where p € N is a prime and
e € N, the number ¢(p®) = (p — 1)p°~! is a 2-power, which holds if and only if
for any such prime power we have p =2, or e =1 and p = 2™ + 1 is a Fermat
prime for some m € N.

If p=2" +1 is a Fermat prime, for some m = kl € N where k,! € N such that
lis odd, then X* +1 = (X* +1)- Y\ (=1)1X*(=) ¢ Z[X] implies that
2F +1 | 2™ + 1, hence k = m and [ = 1. Thus p is of the form F}, =22" 41
for some k € Ny, where Fy = 3, F; =5, F5 =17, F3 = 257, and F; = 65537 are
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the only known Fermat primes; it is not known whether this list is complete,
not even whether there are only finitely many Fermat primes.

(7.2) Theorem: Wedderburn [1905]. Any finite skewfield is a field.

Proof. Let K be a finite skewfield. For a € K let Ck (a) := {b € K;ab = ba} be
the associated centraliser, and let Z(K) := [, Ck (a) be the centre of K.
The Ck (a) are subskewfields, and Z(K) is a subfield of K, thus K and Ck (a) are
Z(K )-vector spaces. Let n := dimyzk)(K) € Nand n, := dimzk)(Ck (a)) € N,
letting ¢ := |Z(K)| > 2 we get |[K| = ¢" and |Ck (a)| = ¢™.

From Ck(a)* < K* we get ¢"= —1 | ¢" — 1, which implies n, | n: For
méeNlet k€ Zandl € {0,...,m — 1} such that n = km + [; hence we have
ged(n,m) = ged(m,l) € Z. Then X" —1 = (X™ — 1) - Zle Xmk=i+l 4
(X' —1) € Z[X] implies ged(¢" — 1,¢™ — 1) = ged(¢™ — 1,¢' — 1) C Z and thus
ged(¢™ — 1,¢™ — 1) = ¢¢ — 1, where 0 < d € ged(n, m).

Writing K* as the disjoint union of its conjugacy classes, where 7 C K™ is
a set of representatives, we from Z(K)* = {a € T;n, = n} get |K*| =
* K* n _ "—1
|Z(K> | + ZaET,na<n W’ hence q - IS q— 1+ ZaET,na<n h
Since (X™ — 1)®,, | (X" — 1) € Z[X] for n # m | n, we infer ®,(q) |
(@"=1) = eTmo<n % =gq—1€Z, hence |P,(q)] <g—1. For n > 2 and
k € (Z/nZ)* we by the triangle inequality have |¢ — ¢¥| > ¢ — 1 > 1, implying
1P (9)] = Ire@/nzy- 19— ¢kl > (g —1)#™ > g — 1, a contradiction. Hence we
have n =1, thus K = Z(K) is commutative. i

(7.3) Theorem: Fundamental Theorem of Algebra [Gaufl, 1801]. Let
L/C be an algebraic field extension. Then we have L = C.

Proof: Artin. We may assume that L/C is finite. Hence L/R is finite as
well, and since L/R is separable we may assume that L/R is Galois. Let G :=
Aut(L/R), for S € Syl,(G) let R C K := Fixy(S) C L, and let a € K such that
K = R(a), having minimum polynomial p, € R[X]. Since deg(pq) = [K: R] =
% is odd, by the mean value theorem we conclude that u, has a root in R,

thus deg(pq) = 1. Hence we have G = S, thus G is a 2-group.

Hence L/C is Galois such that H := Aut(L/C) < G is a 2-group. Assume
that |H| > 1, then H has a normal subgroup of index 2, and replacing L
by the associated fixed field, we may assume that [L: C] = 2. Thus there is
b € L such that L = C(b), having minimum polynomial ju, = X2 + pX +q =
(X +8)? = ((5)* — ¢) € C[X]. Since any element rexp(ay/—1) € C, where
r € R>o and a € R, has the square roots /7 exp(o‘T‘/?l) € C, we deduce that
wp splits, a contradiction. Thus we have |H| =1 and hence L = C. 1
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(7.4) Algebraic closure. Let L/K be a field extension. Then K := {a €
L; a algebraic over K } C L is a subfield, called the algebraic closure of K
in L: Let a,b € K such that b # 0, then since K(a,b)/K is finite and thus
algebraic we have a — b, ab~! € K(a,b) C K. Thus K/K is algebraic, and we
hawe K=KCL If K=K C L, then K is called algebraically closed in L.

If K is algebraically closed in any field extension L/K, then K is called al-
gebraically closed; e. g. C is algebraically closed. A field K is algebraically
closed if and only if any f € K[X]\ K splits; in particular algebraically closed
fields are perfect: Let K be algebraically closed, and let f € K[X] be irreducible,
then L := K[X]/fK[X] is algebraic over K, thus deg(f) = [L: K] = 1. Con-
versely, let the property on polynomials be fulfilled, let L/K be a field extension
and let a € L be algebraic over K, then the minimum polynomial p, € K[X] of
a over K is irreducible, thus deg(,) = 1, hence a € K.

If L/K is algebraic such that L is algebraically closed, then L is called an
algebraic closure of K; e. g. C/R is an algebraic closure. An algebraic field
extension L/K is an algebraic closure if and only if any f € K[X]\ K splits in
L[X]: Let the property on polynomials be fulfilled, let M/L be a field extension,
and let @ € M be algebraic over L, then a is also algebraic over K, and the
minimum polynomial u, € K[X] of a over K splits in L[X], hence a € L.

If L/K is a field extension such that L is algebraically closed, then the algebraic
closure K C L of K in L is an algebraic closure of K: Any f € K[X] \ K splits
in L[X], and all roots of f in L are algebraic over K, hence f splits in K[X].

Thus to show the existence of algebraic closures in general, it suffices to show the
existence of an algebraically closed field extension: Let Y = {Yy; f € K[X]|\ K}
be commuting indeterminates. Then we have I := (f(Yy); f € K[X]\ K) <
K[Y]: Assume that there are f1,...,f, € K[X]\ K and ¢1,...,9, € K[Y)]
such that 7" | f;(Yy,)gi = 1 € K[Y]. Let Yy, ,,,..., Y5, , for some m > n, be
the further indeterminates occurring in the g;, let M/K be a field extension
such that f; has a root a; € M for i € {1,...,n}, and let a; := 0 for i €
{n+1,...,n}. The evaluation map K[Yy,,...,Ys ] — M:Y; — a; yields
1=3" fila)gi(as, ... ,am) =0 € M, a contradiction. Hence let J <1 K[Y)] be
maximal such that I C J, and Ly := K[Y]/J. Then L;/K is a field extension
such that any polynomial in K[X]\ K has a root in L;. By induction there are
field extensions K =: Ly C L1 C Ly C ---, such that for ¢ € Ny any polynomial
in L;[X]\ L; has a root in L;+1. Then L := UiEN L; is a field extension such
that any polynomial in L[X]\ L has a root in L, hence L is algebraically closed.

We show uniqueness of algebraic closures: Let L/K and L’/K be algebraic
closures. Then the set ® of all isomorphisms ¢: M — M’ extending idg,
for some K € M C L and K C M’ C L/, is partially ordered by letting
(p: M - M) < (p: N— N)YUIMCN and ¢y = p. U U := {f;: M; —
Mj;i € N} C @ is totally ordered, then N := J,cy M; and N’ := (J,; oy M are
fields, and there is an isomorphism ¢: N — N’ such that 9|y, = v; for all
1 € N, hence ¥ is an upper bound for ¥ in ®. Thus by Zorn’s Lemma there
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is a maximal element : M — M’ in ®. Let a € L, and let pu, € M[X] be its
minimum polynomial over M. Since pu# € M’[X] splits in L'[X], thereisa’ € L’
and an isomorphism M (a) — M’'(a’) extending ¢. By the maximality of ¢ we
have a € M, implying M = L. Let b € L', and let p, € M’[X] be its minimum
polynomial over M'. Since M’ = M¥ = L¥ is algebraically closed, puy splits,
thus b € M’, implying M’ = L'.

E. g. the algebraic closure Q C C of Q in C, being called the field of algebraic
numbers, is algebraically closed. Since Q is countable, Q[X] is countable as
well, thus Q also is countable. Since C is not countable, we have Q # C, thus C
contains more than countably many transcendental numbers [Cantor, 1874].
There are criteria to decide whether a given complex number is algebraic or
transcendental [Liouville, 1844; Thue-Siegel-Roth, 1955]. These have been used
to specify a particular transcendental number in the first place, while still it
is not too easy to decide this for a given number. E. g. the Euler number
e:=>>2 L eRCCandr:=2 min{r € Rsp;cos(z) = 0} € R C C are

n=0 n!

transcendental [Hermite, 1873; Lindemann, 1882].

(7.5) Kummer extensions. Let n € N, let K be a field such that char(K) J n
and X" — 1 € P(K)[X] splits in K[X]. Since % = nX""1 #£ 0, the
polynomial X™ — 1 € P(K)[X] has n pairwise distinct roots in K, called n-th
roots of unity. The latter form a cyclic subgroup of K* of order n. Let ( € K
be a primitive root of unity, i. e. having order n, then all primitive roots of
unity in K are given as {¢¥ € K;k € (Z/nZ)*}, and for the n-th cyclotomic
polynomial we have ®;, = ;¢ (z/nz)- (X — ¢k e K[X].

If p := char(K) > 0, then from XP'" —1 = (X" — 1)?" € P(K)[X] we conclude
that X?"" —1 also splits in K[X], hence p®n-th roots of unity and n-th roots of
unity in K coincide, and there are no primitive p®n-th roots of unity for a > 1.
Let 0 £ a € K and f := X" —a € K[X], called the associated pure equation.
Since 6();{‘1) = nX""! # 0 the polynomial f has pairwise distinct roots in
any extension field, thus is separable. Letting L/K be a field extension such
that b € L is a root of f, its roots in L are {b(* € L;k € Z/nZ}, hence the
Kummer extension K (b)/K is a splitting field for f, thus is Galois.

For ¢ € Aut(K(b)/K) we have f(b¥) = f(b)? = 0, hence b? = b(*¢ for some
k, € Z/nZ. The map Aut(K(b)/K) — Z/nZ: ¢ — k, is an injective group
homomorphism: For ) € Aut(K (b)/K) we since ¢ € K have b¥¥ = (b¢Fe)¥ =
bCkekw  hence kyy = kpky; and if k, = 0 then b% = b implies p = id (). Hence
Aut(K (b)/K) is isomorphic to a subgroup of Z/nZ, in particular is cyclic. Since
K (b)/K is Galois, if f is irreducible then we have Aut(K (b)/K) = Z/nZ.

Conversely, let L/K be a Galois extension such that Aut(L/K) = Z/nZ, and
let p € Aut(L/K) be a generator. Hence {¢* € Homg(L,L);k € Z/nZ} is K-
linearly independent, and thus for the Lagrange resolvent we have 0 # p :=
Zkez/nz ©*¢* € Homg (L, L). Letting ¢ € L such that 0 # b := ¢” € L, we have

k k1 B k
b2 = ¥ = ZkEZ/nZ(C@ ¢h)? = Ekel/nl c? k=t 'ZkeZ/nZ c? ¢t =
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b¢~1, implying (b™)% = ((~1b)™ = b", thus a := b" € Fixy(p) = K, hence b is a
root of f := X" —a € K[X]. Let u, € K[X] be the minimum polynomial of b
over K, hence y;, | f. For k € Z/nZ we have (b %) = ,ub(b“’k) = ,ub(b)“’k =0,
hence {b¢C* € L;k € Z/nZ} are roots of up, and since b # 0 these are pairwise

distinct. Hence we have deg(up) > n = deg(f), thus f = py is irreducible. Since
[K(b): K] =n=[L: K] we have L = K(b), hence L/K is a Kummer extension.

(7.6) Radical extensions. A field extension L/K is called a radical exten-
sion, if there are intermediate fields K = K1 C Ky C --- C K,;, = L, where
m € N, such that there are 0 # a; € K; and n; > 2 and roots b; € K;11 of
X" —a; € K;[X] such that K,41 = K;(b;), for all i € {1,...,m — 1}; radical
extensions are finite, and Kummer extensions are radical extensions.

If L/K is a separable radical extension then the m; can be chosen such that
char(K) J n,, for all ¢ € {1,...,m — 1}: By choosing intermediate fields appro-
priately we may assume that K, # K; and that n; is a prime, hence assuming
n; = char(K) implies X™ —a; = X™ — b = (X — b;)™, contradicting the
separability of K;1/K;. If L/K is a radical extension such that char(K) J n;
for i € {1,...,m — 1}, then there is a Galois radical extension M/K such that
L C M; in particular L/K is separable:

We proceed by induction on [L: K|, where we may assume that [L: K] > 2:
Letting K =K, C Ky C---C L := K,,_1 C K,, = L be intermediate fields as
above, we have m > 2 and we may assume that L’ # L, hence [L': K| < [L: KJ;
let n :=npy_1 and a := ap,—1 € L' and b := b, 1 € L. By induction there is
a Galois radical extension M’/K such that L' C M’. Let M /M’ be a splitting
field for f := [ e aue(nrr 5y (X" —a®) € M'[X]; since b € Lis aroot of f we may

assume that L = L'(b) C M. Since char(K) J n we have w =nX" 1 #
0, thus f is separable, and its shape implies that M/M’ is a Galois radical
extension. Since M'/K is a radical extension, M/K also is a radical extension.
Since for all ¢ € Aut(M'/K) we have f¥ = I eaneiar /m (X" — a?¥) = f €
M'[X], we infer f € Fixpy (Aut(M'/K))[X] = K[X]. Since M/M’ is a splitting
field for the separable polynomial f € K[X]\ K, and M’'/K is a splitting field for
some separable polynomial g € K[X]\ K, we conclude that M/K is a splitting
field for the separable polynomial fg € K[X]\ K, hence is Galois. i

(7.7) Soluble groups. Let G be a finite group. A chain of subgroups {1} =
Gm < Gp—1 <---<Gyp =Gsuchthat G411 <G, for i € {1,...,m—1} is called
a subnormal series, the groups G;/G,41 are called the associated sections.
If G has a subnormal series with abelian sections, then G is called soluble; in
this case, since any non-trivial abelian group has a normal subgroup of prime
order, G has a subnormal series with cyclic sections of prime order.

If G is soluble, then so is any subgroup H < G and quotient group G/N,
where N < G: The chain of subgroups {1} = HN G, < HN Gy < -+ <
HNG; = H is a subnormal series with abelian sections (H NG;)/(HNG41) =
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(H N G;)Gi11/Git1 < G;/Giq1; the chain of subgroups {1} = G,,N/N <

Gm-1N/N < .- < GiN/N = G/N is a subnormal series whose sections
(G;N/N)/(G;4+1N/N) are epimorphic images of the abelian groups G;/G;11.

E. g. any abelian group is soluble; the symmetric groups S3 and Sy are soluble,
with subnormal series {1} < A3 < 83 and {1} < V4 < Ay < Sy, respectively,
having abelian sections; for n > 3 the dihedral groups Ds, are soluble, with
subnormal series {1} < T,, < Day, having abelian sections, see (2.9).

For n > 5 the symmetric group S, is not soluble: Assume that {1} = G,, <

Gm-1 < --- < Gy = 8, is a subnormal series having abelian sections. Then
for i € {1,...,m} we successively conclude that G; contains every 3-cycle,
which holds for ¢ = 1, and thus since G,, = {1} is a contradiction: Let-
ting a,b,c,d,e € {1,...,n} be pairwise distinct, using the natural homomor-

phism ~: G; — G;/G,41 to the abelian group G;/G;1, the commutator for-
mula (a,b,c)"!(c,d,e)"(a,b,c)(c,d,e) = (a,c,d) € S, shows that (a,c,d) =

(a,b,c) 1(0, d,e) 1(a,b,c)(c, d,e) =1¢€ G;/G;11, hence (a,c,d) € Giyq.

(7.8) Theorem. Let L/K be Galois extension.

a) If L/K is a radical extension, then Aut(L/K) is soluble.

b) If Aut(L/K) is soluble where char(K) ) [L: K|, then letting n € N be the
product of the distinct prime divisors of [L: K| and M/L be a splitting field for
X™—1 € Q[X], the field extension M/K is a Galois radical extension.

Proof. a) Let K = K; C Ky C --- C K,, = L be intermediate fields, such
that there are 0 # a; € K; and n; > 2 and roots b; € K; 11 of X™ —a; € K;[X]
such that K;; = K;(b;); since L/K is separable we may assume char(K) J n;
for all i € {1,...,m —1}. Let 0 < n € lem{ny,...,nm—1}, hence we have
char(K) J/ n. Let M/L be a splitting field for X™ —1 € Q[X], let ¢ € M be a
primitive n-th root of unity, and letting K/ := K;(¢) for i € {1,...,m} we have
KCK(Q)=K| CE}C - C Ky = L(¢) = M.

K(¢)/K is a splitting field for the separable polynomial ®,, € K[X], hence is
Galois. Since for ¢ € Aut(K(¢)/K) we have ®,(¢¥) = @,(¢)¥ = 0, there is
k, € (Z/nZ)* such that (¥ = ¢(*¢. The map Aut(K(¢)/K) — (Z/nZ)*: ¢+ ky,
is an injective group homomorphism, hence Aut(K(¢)/K) is abelian. Since
K}y = K|(b;) forie{1,...,m—1}, and X" =1 = [[1ez/p2(X — (7)) €
Kj[X] splits, K /K] is a Kummer extension and Aut(Kj,,/Kj]) is cyclic.

Since L/K is a splitting field for some separable polynomial g € K[X]\ K,
we conclude that L({)/K is a splitting field for ®,,g € K[X], hence is Galois.
We have {1} = Aut(K! /K’ ) < Aut(K/ /K! ) < --- < Aut(K!,/K}) <
Aut(K,,/K), where Aut(K), /K] ;) < Aut(K],/K]) for i € {1,...,m — 1},
and Aut(K/,/K]) QAut(K/ /K). Since we have Aut(K! /K)/Aut(K! /K/) =
Aut(K(¢)/K) and Aut(K,,/K])/Aut(K,, /K ) = Aut(K] ,/K]), this is a
subnormal series with abelian sections, hence Aut(L({)/K) is soluble. We have
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Aut(L(¢)/L) < Aut(L(¢)/K) and Aut(L(¢)/K)/Aut(L(¢)/L) = Aw(L/K),
hence Aut(L/K) is soluble.

b) Let {1} = G, < Gp—1 < -+ < G1 := Aut(L/K) be a subnormal se-
ries with cyclic sections of prime order. Letting K; := Fixy(G;) for i €
{1,...,m}, we have K = K1 C Ko C--- C K,, = L. Since G;41 G, for i €
{1,...,m—1}, the field extension K;1/K; is Galois such that Aut(K;1/K;) =
Aut(Kp, /K;) /AWKy, /K1) =2 Gi/Git1 =2 Z/piZ is cyclic of prime order.

Hence we have n € lem{p1,...,pm-1}, and let ¢ € M be a primitive n-th root
of unity. Letting K := K;(¢) fori € {1,...,m} yields K C K({) = K] C K} C
-+ C K] = L(¢) = M, where since L/K is Galois, L({)/K is Galois. Since
Ki1/K; is Galois, K /K; and Kj /K] are Galois for i € {1,...,m — 1},

and we have the restriction map res?“: Aut(Kj, ,/K;) — Aut(K;/K;). If

41
¢ € Aut(K] ,/K]) < Aut(K],,/K;) such that ¢ € ker(resﬁiﬁ), then a¥ = a
for all @ € K} U K11 implies ¢ = idg;, . Hence resgii: Aut(K[ ,/K]) —
Aut(K;11/K;) is injective, thus Aut(K, | /K}) = Z/n;Z, where n; | p;. Hence
X" =1 = [liez/mz(X — (¢")*) € K[[X] splits, thus K[,,/K/ is a Kummer

extension. Since K (¢)/K is a radical extension, L(¢)/K is as well. i

(7.9) Corollary. Let L/K be a splitting field for f € K[X]\ K separable.

a) If f is solvable by radicals, i. e. there is a separable radical extension
M/ K such that f splits in M[X], then Aut(L/K) is soluble.

b) If char(K) ) [L: K] and Aut(L/K) is soluble then f is solvable by radicals.

Proof. a) There is a Galois radical extension M/K such that f splits in M[X],
where Aut(M/K) is soluble. There is a splitting field L/K for f such that
L C M, hence Aut(L/K) = Aut(M/K)/Aut(M/L) is soluble.

b) There is a Galois radical extension M /K such that L C M. i

(7.10) Symmetric polynomials. a) Let K be a field, let n € N, and let
X = {X1,..., X} be commuting indeterminates. Then f :=[[/_, (X — X;) =
X"+ 30 (—1)FS, x X% € K(X)[X], where the elementary symmetric
polynomials are S, = Zl§i1<i2<---ik§n H;C:l X;, € K[X]; we have S,,1 =
Xi+-+Xpand Sy, = X1+ X, Letting S := {Sp1,. .., Snn} we conclude
that K (X)/K(S) is a splitting field for f, hence [K(X): K(S)] < deg(f)! = n!.

For m € S, the evaluation map n: K[X] — K[X]: X; — X, is a ring auto-
morphism, hence extends uniquely to a field automorphism of K(X). Hence S,
acts on K(X), yielding an injective action homomorphism S,, — Aut(K(X)).
For m € S, we have f™ = [[/_; (X — XT) = [[}_,(X — X;) = f € K(X)[X],
thus ST, = Spk forall k € {1,...,n}, hence K(S) C M := Fixg(x)(Sn). Since
K(X)/K(S) is finite, K(X)/M is Galois such that Aut(K(X)/M) = S,, and
from [K(X): M] =|S,| = n! we conclude M = K(S).
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For G < §,, we have G = Aut(K(X)/Fixg(x)(G)) < Aut(K(X)/K(S)) = S,.
Since any finite group is isomorphic to a subgroup of some symmetric group,
any finite group can be realised as a Galois group of a suitable Galois extension.

b) The set S is algebraically independent over K, i. e. if Z:={Z,...,Z,}
are commuting indeterminates, the evaluation map K[Z] — K[X]: Zy — Sy
is injective: Let Y := {Y¥1,...,Y,} be commuting indeterminates and g :=
X"+ 3, (-1D)*Y,X"* € K(Y)[X] be the general polynomial of degree n.
Let L/K(Y) be a splitting field for g, hence we have g = [[_, (X —y;) € L[X],
and the evaluation map K[X] — L: X; — y; implies Yy, = Sp k(y1,...,yn) for
ke {1,...,n}. Thus for h € K[Z] such that A(Sp1,...,5n) =0 € K[X] we
get 0=n(Sn1(¥1s---,Yn)s-- s SnnWi,-- - yn)) = h(Y1,...,Y,) € L, and since
Y is algebraically independent over K we infer h = 0.

Since S is algebraically independent, the evaluation map K[Y] — K|[S]: Vi —
Shn,k is a ring isomorphism, which hence extends uniquely to a field isomorphism
K(Y) — K(S), and thus to a ring isomorphism K ())[X] — K (S)[X] such that
g = X"+ 50 (—1)FY, X"k s X4 S0 (—1)5S, , X"k = f. Hence
this extends to an isomorphism ¢: L — K(X) of the respective splitting fields,
inducing a bijection between the roots {y1,...,yn} of gin L and {X4,..., X, } of
fin K(X), and implying that Aut(K (X)/K(S)) — Aut(L/K(Y)): 7 emp~!
is a group isomorphism. Hence we have Aut(L/K())) & S,, where the action
of S, is given by permutations of {y1,...,yn}

Hence we have Abel’s Theorem: For n > 5 the general polynomial of degree
n is not solvable by radicals. If n = 2 and char(K) # 2, or n € {3,4} and
char(K) € {2, 3}, the general polynomial of degree n is solvable by radicals.

(7.11) Cardano’s Formula. a) Let K be a field such that char(K) # 2, and
let g := X2+ PX +Q € M[X], where M := K(P,Q). From g = (X — X1)(X —
X3) € K(X)[X], where X := {X1, Xa}, we get P = —(X1+X2) and Q = X; Xo.
We have Aut(K (X)/M) = Sy = {(1,2)), thus the Lagrange resolvent associated
to (1,2) maps X; to the discriminant A := X; — X5. Hence we have A2 € M
and thus K (X) = M(X1) = M(A). We get A% = (X; — X2)? = P? — 4Q, and

thus X; = —2(P+ (-1)'A) = -2 + (—1)1‘_1\/1372 —Q for i € {1,2}.

b) Let K be a field such that char(K) ¢ {2,3} and X® -1 = (X —1)(X?+ X +
1) € K[X] splits, and let ¢ € K be a primitive 3-rd root of unity; hence we have
14+¢+¢?=0. Let g:= X3+ PX?+ QX+ R € M[X], where M := K(P,Q, R).
From g = (X — X1)(X — X2)(X — X3) € K(X)[X], where X := {X, X2, X3},
we get P = —(Xl +X2+X3) and Q = X1X2—|—X1X3—|—X2X3 and R = X1X2X3.
We have Aut(K(X)/M) = S3, with subnormal series {1} < A3 = ((1,2,3)) <
Ss=1{((1,2,3),(1,2)) having cyclic sections of order 2 and 3, respectively.

Let A = (X, — Xo)(X1 — X3)(Xo — X3) = X2Xo — X2X;3 — X1 X2 + X, X2 +
X2X3 — X2X2 be the discriminant. From A(123) = A and A2 = —A
we infer Fixgx)((1,2,3)) = M(A), where [M(A): M] = 2. The Lagrange

resolvent associated to S3/Asz = ((1,2)) maps A to 2A, and we get A? =
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—4P3R + P2Q2 + 18PQR — 4Q® — 2TR2 € M.

The Lagrange resolvents associated to Az = ((1,2,3)) = ((1,3,2)) map X; to
0 := X; + (X3 + (*X3 and © = X; + (2X, + (X3, respectively, hence we
have ©3,0% € M(A) and K(X) = M(A,X1) = M(A,0) = M(A,0). We
get OF == ©3 + 03 = —2P3 4+ 9PQ — 27R and O~ = ©% — 03 = 3(¢ —
¢*)A = 3y=3A, hence ©3 = L(OF + ©7) and © = 1(6F — ©7). This yields
X, = (P4 O+ ¢10) forie {1,...,3}.

For simplification we let X’ := X +£. This yields g = (X' £)3+P(X'—£)%+
QX' = L)+ R= X"+ QX'+ R, where Q' := Q— 2% and R’ := R—£2 4 222
Hence we have A? = —4Q"® — 27R"?, and ©F = —27R’ and ©~ = 3y/=3A,
yielding ©% = —2TR' 4 3\/=3A and ©3 = —2I R’ — 2\/=3A, and thus

P » 3 R Q/S R2 . 3 R/ Q/S R2
Xi:__ i+1 _ i -~ i—1 o i -
3 e \/ 2 + V 27 + 4 6 2 27 + 4




51

8 Exercises (in German)

(8.1) Aufgabe: Gruppenaxiome.

Es seien G eine Menge und -: G x G — G eine assoziative Verkniipfung auf
G. AuBlerdem gebe es ein rechts-neutrales Element 1 € G mit g - 1 = g fiir
alle g € G, und zu jedem Element g € G gebe es ein rechts-inverses Element
h € G mit gh = 1. Man zeige: G ist eine Gruppe.

(8.2) Aufgabe: Rechnen in Gruppen.

Es sei G eine Gruppe.

a) Man bestimme alle Elemente g € G mit g% = g.

b) Fiir alle f, g, h € G zeige man die folgenden Kiirzungsregeln: Es ist fh =
gh genau dann, wenn f = g ist, und dies gilt genau dann, wenn hf = hg ist.
c) Man zeige: G ist genau dann abelsch, wenn g?h? = (gh)? fiir alle g,h € G.

(8.3) Aufgabe: Komplexprodukt.

Es sei G eine Gruppe. Fiir Teilmengen A, B C G sei A~! := {a~! € G;a € A}
und das Komplexprodukt AB := {ab € G;a € A,b € B}.

a) Man zeige: Eine Teilmenge (} # U C G ist genau dann eine Untergruppe,
wenn UU 1 C U gilt.

b) Man zeige: Eine endliche Teilmenge (§ # U C G ist genau dann eine Unter-
gruppe, wenn UU C U gilt.

c) Fir Untergruppen U,V < G zeige man: Es ist UV genau dann eine Unter-
gruppe, wenn VU C UV gilt. Was folgt daraus fiir abelsche Gruppen?

(8.4) Aufgabe: Matrixgruppen.

Man zeige: b € R2%2;02 + b2 £ O} ist eine Untergruppe von GL2(R),

a
-b
die isomorph zur Einheitengruppe C* ist.

(8.5) Aufgabe: Symmetrische Gruppen.
Fiir endliche Mengen X, Y # () zeige man: Die symmetrischen Gruppen Sx und
Sy sind genau dann isomorph, wenn |X| = |Y| gilt.

(8.6) Aufgabe: Index.

Es seien G eine Gruppe und U,V < G. Man zeige:

a) Sind |U]| und |V endlich mit ggT(|U|,|V]) =1, s0 gilt UNV = {1}.

b) Sind U <V < G mit [G: U] endlich, so sind auch [G: V] und [V : U] endlich,
und es gilt [G: U] =[G: V]-[V: U].

c) Es gilt der Satz von Poincaré: Sind [G: U] und [G: V] endlich, so ist
[G: (UNV)] endlich, und es gilt [G: (UNV)] < [G: U]-[G: V]. Unter welcher
hinreichenden Bedingung gilt Gleichheit?

(8.7) Aufgabe: Vereinigung von Untergruppen.
Es seien G eine endliche Gruppe und U < G. Man zeige: Es ist quc U9 #£G.
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(8.8) Aufgabe: Tetraedergruppe.

a) Man bestimme die Symmetriegruppe eines regularen Tetraeders im Euk-
lidischen Raum R3 als Gruppe von Permutationen seiner 4 Ecken. Wieviele
Drehungen und Spiegelungen gibt es? Man zeige, dafl die Menge der Drehun-
gen eine Untergruppe bildet. Zu welchen bekannten Gruppen sind die volle
Symmetriegruppe und die Drehgruppe isomorph?

b) Man bestimme die Anzahl der verschiedenen Farbungen der 4 Ecken eines
regularen Tetraeders mit bis zu 4 Farben, beziiglich der vollen Symmetriegruppe
und der Drehgruppe. Wie kann man das Ergebnis geometrisch interpretieren?

(8.9) Aufgabe: Lineare Gruppen.
Es sei K ein Korper mit ¢ € N Elementen. Fiur n € N bestimme man die
Ordnungen der linearen Gruppen GL,, (K) und SL, (X).

(8.10) Aufgabe: Elementordnungen.

Es sei G eine endliche Gruppe. Dann heiit exp(G) := kgV{|g|; g € G} € N der
Exponent von G. Man zeige:

a) Fiir alle g,h € G gilt |g~!| = |g| sowie |gh| = |hg| und |g lg].

b) Sind ¢g,h € G mit gh = hg, so gilt genau dann |gh| = |g| - |h|, wenn
geT(|g|, |h|) = 1 ist. Was gilt im Falle gh # hg?

c) Ist G abelsch, so ist exp(G) = max{|g|; g € G}. Gilt dies auch allgemein?
d) Ist exp(G) < 2, so ist G abelsch.

b =

(8.11) Aufgabe: Untergruppenverbinde.

Man bestimme die Untergruppen, Normalteiler und Zentren der folgenden Grup-
pen, und zeichne jeweils das Hasse-Diagramm des Untergruppenverbandes:

a) Zyklische Gruppen C,, fir n < 12,

b) Kleinsche Vierergruppe Vj,

c) Diedergruppen Dg, D1g und Do,

d) alternierende Gruppe A,.

(8.12) Aufgabe: Quaternionengruppe.
Es seien A, B € GLy(C) gegeben durch

0 1 i 0
A.—[_l 0} und B.—[O —i}’

sowie Qs := (A, B) < GL2(C) die Quaternionengruppe. Man bestimme
die Gruppenordnung, die Untergruppen, Normalteiler und das Zentrum von
Qs, zeichne das Hasse-Diagramm des Untergruppenverbandes, und gebe einen
Monomorphismus Qs — Sg an.

(8.13) Aufgabe: Symmetrische Gruppen.

Es seien n € N und §,, die zugehorige symmetrische Gruppe. Ist 7 € S, ein
Produkt von r € N disjunkten Zykeln der Léngen nqy > ng > --- > n, > 0, so
heifit die nicht-aufsteigende Folge [n1,...,n,] der Zykeltyp von 7.
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a) Fir 7 € S, zeige man (1,...,n)" = (Im,...,nn) € S,,. Daraus folgere man:
Elemente 7, 7' € S,, sind genau dann konjugiert, wenn sie den gleichen Zykeltyp
besitzen. Man bestimme die Konjugiertenklassen in S, fir n € {3,4,5}.

b) Man gebe eine Transversale fiir Stabgs, (n) in S, an. Zu welcher bekan-
nten Gruppe ist Stabs, (n) isomorph? Daraus folgere man: Es gilt S, =

(1,2),(2,3),...,(n —1,n)) = {(1,2),(1,2,...,n)).

(8.14) Aufgabe: Frattini-Argument.

Es seien p € N prim und G eine endliche Gruppe.

a) Es seien P € Syl (G) und Ng(P) <U < G. Man zeige: Es ist Ng(U) =U.
b) Es seien N <G und P € Syl,(N). Man zeige: Es ist Ng(P)N = G.

(8.15) Aufgabe: Gruppenordnungen mit wenigen Primteilern.

Es seien p # ¢ € N prim und G eine endliche Gruppe. Man zeige:

a) Ist |G| = pg mit p < g, so hat G eine normale ¢-Sylow-Gruppe; ist zudem
g # 1 (mod p), so ist G zyklisch. Gilt dies auch im Falle ¢ =1 (mod p)?

b) Ist |G| = 2p, so ist G = Cyp, oder G = Dy,

c) Ist |G| = p%q, so hat G einen nicht-trivialen echten Normalteiler.

d) Ist |G| = 8k, wobei k < 8, so hat G einen nicht-trivialen echten Normalteiler.

(8.16) Aufgabe: Zentrum.

Es seien p € N prim und G eine Gruppe.

a) Man zeige: Ist G/Z(G) zyklisch, so ist G abelsch.

b) Man bestimme alle Gruppen G der Ordnung |G| = pZ.
¢) Man zeige: Ist |G| = p3, so ist G abelsch oder |Z(G)| = p.

(8.17) Aufgabe: Gruppen kleiner Ordnung.

Man bestimme bis auf Isomorphie

a) die nicht-abelschen Gruppen G der Ordnung |G| = 8,
b) die Gruppen G der Ordnung |G| = 12,

c) die Gruppen G der Ordnung |G| = 21.

(8.18) Aufgabe: Zyklische Gruppen.
Es sei n € N. Man zeige: Es ist Aut(C,,) = (Z/nZ)*.

(8.19) Aufgabe: Satz von Wilson.
Es sei p € N prim. Man zeige man: Es gilt (p — 1)! = —1 (mod p).

(8.20) Aufgabe: Quaternionen-Schiefkorper.
Fir u,v € C sei Qy = [ _% ; ] € C**2, wobei ~: C — C die komplexe
Konjugation bezeichne.

a) Man zeige: H = {Qu. € C**%u,v € C} ist ein Teilring von C2*2? und
ein nicht-kommutativer Schiefkérper; H heif3t der Schiefkorper der Hamilton-
Quaternionen. Fiir [0,0] # [u,v] € C? gilt Q, | = m - Qu,—v-
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b) Esseien I := Q /—1 o und J := Qo 1 sowie K := Q, ,—7 die Pauli-Matrizen.
Man zeige: Jedes Element @@ € H hat eine eindeutige Darstellung der Form
Q = aEy+bl+cJ+dK € H, wobei a,b,c,d € R, und es gilt I2 = J? = K2 = —1
und IJ = —JI = K sowie JK = —-KJ=1Tund KI =—-IK = J.

c) Man zeige: Z := {aFy+ bl +c¢J+dK € H;a,b,c,d € Z} ist ein Teilring von
H. Zu welcher bekannten Gruppe ist die Einheitengruppe Z* isomorph?

(8.21) Aufgabe: Matrixringe.

Es seien K ein Korper und n € N. Man zeige: Der Ring K™*" ist einfach,
aber kein Schiefkérper, und jedes von 0 verschiedene Element ist entweder eine
Einheit oder ein Nullteiler.

(8.22) Aufgabe: Integrititsringe.

Man zeige: In einem endlichen kommutativen Ring ist jedes von 0 verschiedene
Element entweder eine Einheit oder ein Nullteiler. Ein endlicher Integritatsring
ist ein Korper.

(8.23) Aufgabe: Teilbarkeit.

Es seien R ein Integritdtsring und K := Q(R) sein Quotientenkorper.

a) Man zeige: Sind p € R prim und a € R, so gilt entweder p | a oder
1 € ggT(a,p). Sind p,q € R prim, so gilt entweder p ~ ¢ oder 1 € ggT(p, q).

b) Man gebe eine formale Definition von kleinsten gemeinsamen Vielfachen
zweier Elemente vom R an, und formuliere eine Eindeutigkeitsaussage. Man
zeige: Ist R faktoriell, so gibt es kleinste gemeinsame Vielfache. Wie kann man
eines berechnen? Wie kann man eines in Hauptidealringen berechnen?

c) Es sei R faktoriell. Man zeige: Sind 0 # a,b € R teilerfremd und ¢ € R,
so gilt a | bc genau dann, wenn a | ¢, und aus a | cund b | ¢ folgt adb | c.
Ist ¢ € K, so gibt es bis auf Assoziiertheit eindeutig bestimmte teilerfremde
Elemente a € Rund 0 #b € Rmit c= § € K.

(8.24) Aufgabe: Quadratische Ringe.

Fir n € Z\ {0,1} quadratfrei sei R := Z[\/n] := {z + yv/n € C;z,y € Z}.

a) Man bestimme R* fiir n < 0, und zeige, daf Z[/3]* unendlich ist.

b) Man faktorisiere 2, 3 und 5 in Z[y/—1].

¢) Man bestimme alle Teiler von 21 in Z[/—5].

d) Man zeige: (3,2++/—5)<Z[v/—5] und (3,2—+/—5)<Z[\/=5] sind Primideale,
und es gilt (3,2 + v =5)(3,2 — v/=5) = (3) I Z[v/=5).

(8.25) Aufgabe: Grofite gemeinsame Teiler.

a) Man bestimme jeweils einen grofiten gemeinsamen Teiler von a,b € R und
zugehorige Bézout-Koeffizienten:

i) R:=7, a:=1256, b := 14372.

ii) R:==Z[V-1],a:=2+/-1,b:=2— /1.

iii) R:=Z[vV—1],a:=5+3-v/—1,b:= 13+ 8- /1.

iv) R:=Q[X],a:= X°+X*-X3-3X2-3X—-1,b:= X*-2X3-X?-2X 1.
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v) R:i=Q[X],a:=X3—6X2+ X +4,b:=X5—6X +1.

b) Fiir a,b € Ny sei ggT, (a,b) € Ny der nichtnegative grofite gemeinsame
Teiler. Fiir k,m,n € N zeige man: Es gilt ggT, (k™ —1,k"—1) = keeT+(mmn) 1,

(8.26) Aufgabe: Polynomringe.

a) Man zeige: Das Ideal (2, X) < Z[X] ist kein Hauptideal.

b) Man zeige: Fiir einen kommutativen Ring R sind dquivalent:
i) Der Polynomring R[X] ist ein Euklidischer Ring.

ii) Der Polynomring R[X] ist ein Hauptidealring.

iii) Der Ring R ist ein Korper.

(8.27) Aufgabe: Multivariate Polynome.

Es seien R ein kommutativer Ring und n € N. Man zeige:

a) Fir 7 € S, gilt R[X1x,...,Xnx] & R[X1,...,X,], und fir n > 2 gilt
R[X1,...,Xn]) 2 R[X1,..., X 1][X0)

b) Ist R faktoriell, so ist R[X1,..., X,] ebenfalls faktoriell.

c) Firn>2ist X{ + X3+ -+ X2 —1€Z[Xy,...,X,] irreduzibel.

(8.28) Aufgabe: Lagrange-Interpolation.

Es seien K ein unendlicher Korper, n € N, sowie a4,...,a, € K paarweise
verschieden, b1,...,b, € K und f := > 1" (b; - 1. f:ij) € K[X]. Man
i A

zeige: Es ist f € K[X] das eindeutig bestimmte Interpolationspolynom mit
fla;) =0b; firi e {1,...,n}, wobei f =0 oder Grad(f) < n.

(8.29) Aufgabe: Irreduzibilitit.
Man zeige: Das Polynom X% — 10X2 + 1 € Z[X] ist irreduzibel in Q[X], aber
reduzibel in F)[X] fiir alle p € N prim.

Hinweis. Fiir p # 2 ist F? := {2? € F};2 € F;} < F} eine Untergruppe vom

Index 2. Daraus folgere man fiir p > 3, daB {2,3,6} NF3? # 0 gilt.

(8.30) Aufgabe: Kronecker-Faktorisierung in Z[X].

Essei f =Y " ,a; X" € Z[X] primitiv mit Grad(f) =n € N.

a) Es sei g = >i" b; X" € Z[X] primitiv mit Grad(g) = m € N. Man zeige:
Es gilt g | f € Z[X] genau dann, wenn g | f € Q[X] gilt. In diesem Falle ist
b | an € Z und by | ag € Z, sowie g(a) | f(a) € Z fir alle a € Z.

b) Wie kann man alle linearen Teiler von f bestimmen? Wie kann man mit-
tels Lagrange-Interpolation, siehe (8.28), alle Teiler des Grades m bestimmen?
Wieso reicht es aus, m € {2,..., | 5]} zu betrachten?

c¢) Man faktorisiere X® 4+ 2X% 4+ 5X3 + 6X2? +5X + 6 € Z[X].

(8.31) Aufgabe: Faktorisierung in Z[X].
Man faktorisiere die folgenden Polynome in Z[X]:
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a) X34+39X2-4X+8 b) X*+11X34+34X2+46X+232 c) X441
d) X*1-10X2%+1 e) 12X1—4X346X2+ X —1 f) X4-X2+1
g) X°—2X*+6X+10 h) X"+21X°+35X24+34X -8 i) X°-1
J) 18X94+3X8—15X7+66X6+12X5—60X*+48X3+12X2—60X —24

(8.32) Aufgabe: Korpererweiterungen.

Es seien L/K eine Korpererweiterung und a,b € L. Man zeige:

a) Ist [L: K] € N prim, so ist a € L genau dann primitiv, wenn a ¢ K ist.

b) Sind die Grade [K(a): K] und [K(b): K] endlich und teilerfremd, so gilt
[K(a,b): K] =[K(a): K]-[K(): K].

c) Ist b transzendent {iber K und algebraisch {iber K (a), so ist a transzendent
tiber K und algebraisch iiber K (b).

d) Ist a # 0, so ist a genau dann algebraisch iiber K, wenn a=! € K[a] C L
ist. Die Korpererweiterung L/K ist genau dann algebraisch, wenn jeder Teilring
K C R C L ein Korper ist.

(8.33) Aufgabe: Transzendente Korpererweiterungen.

Es sei K ein Korper. Man zeige:

a) Ist f € K(X) algebraisch iiber K, so ist f € K.

b) Fiir n > 2 ist K(X™) C K(X) und K(X") 2 K(X).

c) Die Kérpererweiterung K (X)/K besitzt unendlich viele Zwischenkorper.

(8.34) Aufgabe: Algebraische Kérpererweiterungen.
Es sei K := Q({{/2;n € N}) C C. Man zeige: Es ist K/Q eine unendliche
algebraische Korpererweiterung.

(8.35) Aufgabe: Kubische Zahlkérper.

Es sei a € C eine Nullstelle von f := X3 — 6X? + 9X + 3 € Q[X]. Man
zeige: Es ist {1,a,a?} C Q(a) eine Q-Basis. Man schreibe die Elemente a® und
3a* —2a% + 1 und (a +2)~! von Q(a) als Q-Linearkombinationen in {1, a, a?}.

(8.36) Aufgabe: Biquadratische Zahlkorper.

Es sei K := Q(v/2,v/3) C C. Man zeige:

a) Esist {1, V2,4/3, \/6} C K ist eine Q-Basis. Fiir 0 # a = a1 +a2v2+asV3+
asV6 € K, wobei ay,...,as € Q, gebe man a~' € K als Q-Linearkombination
in {1,v2,v/3,V6} an.

b) Es ist V2 4+ /3 € K ein primitives Element von K/Q. Man gebe das
zugehorige Minimalpolynom an.

(8.37) Aufgabe: Algebraische Zahlkorper.

Es seien p # ¢ € N prim und K := Q(\/p, &/q) € C. Man zeige: Es ist
[K: Q] = 6. Man bestimme die Minimalpolynome von /p und {/q sowie von
VP /qund \/p+ {/q iiber Q. Welche dieser Elemente sind primitiv fiir £/Q?
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(8.38) Aufgabe: Grad von Zerfillungskérpern.
Es seien K ein Korper, f € K[X]\ K und L/K ein Zerfallungskorper fiir f.
Man zeige: Es gilt [L: K] | Grad(f)!.

(8.39) Aufgabe: Zerfiallungskoérper.

Man bestimme die jeweiligen Zerfallungskérper K C C fiir die folgenden Poly-
nome in Q[X] und die Kérpergrade [K : Q]:

a) X*+1 b)X*-2 c¢)X*-2X2+2 d)X°—-1 e)XO+1

(8.40) Aufgabe: Nullstellenvielfachheiten.

Es seien K ein Korper, f € K[X]|\ K und L/K ein Zerféllungskorper fiir f.
a) Es seien char(K) = 0 und f € ggT(f, g—)f() € K[X]. Man zeige: Das Polynom
% € K[X] hat als Nullstellen in L genau die Nullstellen von f, und diese sind

alle einfach. Welche Bedeutung hat dies fiir das Faktorisierungsproblem?

b) Es seien char(K) = p > 0 und f € K[X] irreduzibel. Man zeige: Alle
Nullstellen von f in L haben die gleiche Vielfachheit.

c) Es seien n € Nund f:= X" —1 € K[X]. Man gebe ein hinreichendes und
notwendiges Kriterium an n dafiir an, dafl f in L nur einfache Nullstellen hat.

(8.41) Aufgabe: Separabilitat.

Es seien L/K eine algebraische Korpererweiterung mit char(K) = p > 0, und
a € L. Man zeige:

a) Es ist genau dann a € L separabel tiber K, wenn K (a) = K (a?) gilt.

b) Es gibt n € Ny, so da8 a?" € L separabel iiber K ist.

¢) Ist L/K endlich mit p J [L: K], so ist L/K separabel.

(8.42) Aufgabe: Perfekte Korper.

Es sei L/K eine algebraische Korpererweiterung. Man zeige:
a) Ist K perfekt, so ist auch L perfekt.

b) Ist L perfekt und L/K separabel, so ist auch K perfekt.

(8.43) Aufgabe: Existenz primitiver Elemente.

Es seien L/K eine Korpererweiterung mit char(K) = p > 0, sowie a,b € L mit
aP,b? € K und [K(a,b): K] = p%. Man gebe ein Beispiel fiir diese Situation an,
und zeige, daB8 K (a,b)/K kein primitives Element besitzt.

(8.44) Aufgabe: Endliche Korper.

Es seien p € N prim und n € N.

a) Es sei " : Fpn[X] — Abb(Fpn,F,n) der Homomorphismus, der jedes Polynom
auf die zugehorige Polynomabbildung abbildet. Man bestimme Kern(").

b) Fiir f € F,[X] irreduzibel zeige man: Es gilt genau dann f | X?" — X, wenn
Grad(f) | n gilt.
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(8.45) Aufgabe: Positive Charakteristik.

Es sei K ein Korper mit char(K) = p > 0 und Frobenius-Abbildung ¢,,.

a) Man zeige: Das Polynom f := X? — X — q € K[X] ist separabel, und f ist
genau dann irreduzibel, wenn f keine Nullstelle in K hat. Hat f eine Nullstelle
in K, so zerfallt f bereits. Fiir welche a € F, ist f € F,[X] irreduzibel?

b) Man zeige: Das Polynom g := X? —a € K[X] ist genau dann irreduzibel,
wenn g keine Nullstelle in K hat. Sind L/K eine Korpererweiterung und b € L
eine Nullstelle von g, so ist genau dann K (b) # K (bP), wenn [K (b): K (bP)] = p.
c) Esseia € K\Bild(gp,). Fiir n € N zeige man: X?" —a € K[X] ist irreduzibel.

(8.46) Aufgabe: Charakteristik 2.
Man zeige: X2" + X + 1 € Fy[X] ist genau dann irreduzibel, wenn n < 2 ist.

(8.47) Aufgabe: Spurabbildung.

Es seien L/K eine endliche Galois-Erweiterung mit char(K) = 0, sowie H <
Aut(L/K) und M := Fixy,(H). Man zeige:

a) Die Spurabbildung Trgy: L — M ist M-linear und surjektiv.

b) Ist {a1,...,a,} C L eine K-Basis, so gilt M = K(Trg(a1),...,Trg(as)).

(8.48) Aufgabe: Galois-Korrespondenz.

Fiir die folgenden Korper K C C untersuche man, zu welcher bekannten Gruppe
Aut(K/Q) isomorph ist, bestimme alle Zwischenkorper von K /Q und jeweils ein
primitives Element, und gebe die Galois-Korrespondenz explizit an:

a) K Zerfillungskérper von X4 — 2 € Q[X]

b) K = Q(v2,v/3)

(8.49) Aufgabe: Galois-Gruppen von Polynomen.

Es seien K ein Korper, f € K[X]|\ K und L/K ein Zerfallungskorper fiir f.
a) Man zeige: Aut(L/K) operiert auf der Menge Z der Nullstellen von f in L,
und via dieser Operation ist Aut(L/K) isomorph zu einer Untergruppe von Sz.
Ist f irreduzibel, so operiert Aut(L/K) transitiv auf Z.

b) Es seien K ein perfekter Korper, f irreduzibel und Aut(L/K) abelsch. Man
zeige: Es gilt |Aut(L/K)| = Grad(f).

c) Es sei f € Q[X] irreduzibel mit Grad(f) € N prim, und f besitze genau zwei
Nullstellen in C\ R. Man zeige: Es ist Aut(L/Q) = Sgraq(f)-

d) Essei f:= X5—kX +1€ Q[X] mit 3 <k € N. Man zeige: Aut(L/Q) = Ss.

(8.50) Aufgabe: Kreisteilungspolynome.

a) Fiir n,m € N zeige man X#8T+(™™) _ 1 ¢ ged(X™ — 1, X™ — 1) C Z[X].

b) Man zeige: Es gilt X¢™ @, (+) = ®,(X) € Q(X).

c) Es sei p € N prim. Man zeige: Ist n # 1 ungerade, so gilt &5, (X) = &,,(—X);
ist p | m, so gilt ®p,(X) = @, (XP); ist p J n, so gilt $p, (X)Dp(X) = D, (X7P).
Man gebe ®,» € Z[X] explizit an.

d) Man berechne ®,, € Z[X] fir n € {1,...,30}.
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(8.51) Aufgabe: Gauflsche Summen.

Es seien p € N prim und ¢, := exp(%TF) e C.

a) Man zeige: Es ist Aut(Q(¢,)/Q) = Cp_1 zyKklisch.

b) Es seien p > 5 prim und ¢ € Aut(Q((,)/Q) ein Erzeuger, sowie a, :=

Eiez/pTaZ C]fm € Q(¢p) und ap = af € Q((p). Fiir die zugehdrigen Mini-
malpolynome zeige man: Es gilt p1q, = pa, = X2+X+i(1+(—1)p7+lp) € Q[X].

c) Man zeige: Es ist Q( (—1)1%1 -p) CQ(&).

(8.52) Aufgabe: Kreisteilungskorper.

Fiir n € N seien ¢, := exp(%nﬂ) €Cund p, :=¢, + ¢t eC.

a) Man zeige: Es gilt Q(¢,) NR = Q(p,,). Man bestimme [Q(p,,): Q.

b) Man bestimme die Minimalpolynome von p; und p7 iiber Q. Wie kann man
damit das reguldre 5-Eck konstruieren?

(8.53) Aufgabe: Winkeldreiteilung.
Fiir n € N sei der Winkel o := 27” gegeben. Man zeige: Ist 3 J/ n, so kann « mit
Zirkel und Lineal in drei gleiche Teile geteilt werden.

(8.54) Aufgabe: Konstruktion mit Zirkel und Lineal.

In der Euklidischen Ebene R? sei die Parabel 7 mit der Gleichung Y = X2+ X
gegeben. Zulassige Konstruktionen seien die iiblichen Konstruktionen mit Zirkel
und Lineal und das Schneiden von konstruierbaren Geraden und Kreisen mit
7. Man zeige: Ist /2 € R mit diesen Mitteln konstruierbar, so ist n = 2%3°,
wobei a,b € N. Man gebe eine Konstruktion fiir ¥/2 € R explizit an.

(8.55) Aufgabe: Algebraischer Abschluf.
Es seien L/K eine Korpererweiterung mit L algebraisch abgeschlossen, und
K C L der algebraische Abschlufl von K in L. Man zeige: L ist unendlich, und

ist K endlich, so sind alle Elemente von (K)* Einheitswurzeln.

(8.56) Aufgabe: Kummer-Erweiterungen.

a) Es sei L C C der Zerfallungskérper fiir das Polynom X3 — 10 € Q[X]. Fiir
K € {Q,Q(v/-3)} zeige man K C L und bestimme Aut(L/K).

b) Es sei L C C der Zerfillungskorper fiir das Polynom X4 — 5 € Q[X]. Fiir
K € {Q,Q(v5,Q(v/=5),Q(v/—1)} zeige man K C L und bestimme Aut(L/K).
c) Es seien Y eine Unbestimmte tiber C und M/C(Y') ein Zerfallungskorper fiir
X" —Y € C(Y)[X], wobei n € N. Man bestimme Aut(M/C(Y)).

d) Es seien Y eine Unbestimmte tiber Fy und M/F3(Y') ein Zerfallungskorper fiir
X2 +Y € Fy(Y)[X]. Man bestimme Aut(M/Fo(Y)). Ist M/F2(Y) Galoissch?

(8.57) Aufgabe: Radikalerweiterungen.
Fir n < 10 seien ¢, = exp(%T‘/jl) € Cund K,, := Q((,). Man unter-
suche, zu welcher bekannten Gruppe Aut(K, /Q) isomorph ist, bestimme alle
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Zwischenkorper und jeweils ein primitives Element, und gebe die Galois-Korres-
pondenz explizit an. Welche Zwischenkorper sind Radikalerweiterungen von Q7

(8.58) Aufgabe: Auflésbarkeit durch Radikale.

Es seien Y eine Unbestimmte iiber Fa, und L/Fo(Y') ein Zerfallungskorper fiir
f:=X?+ X +Y € Fy(Y)[X]. Man zeige: f ist separabel, Aut(L/F2(Y)) ist
auflosbar, aber f ist iiber F2(Y) nicht durch Radikale lésbar.
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