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1 Groups and actions

(1.1) Monoids. a) A set G together with a multiplication · : G × G →
G : [g, h] 7→ gh fulfilling the following conditions is called a monoid:
i) There is a neutral element 1 ∈ G such that 1 · g = g = g · 1 for all g ∈ G,
ii) and we have associativity (fg)h = f(gh) for all f, g, h ∈ G.

If gh = hg for all g, h ∈ G then G is called commutative or abelian.

In particular we have G 6= ∅. The neutral element is uniquely defined: If 1′ ∈ G
also is a neutral element then we have 1 = 1·1′ = 1′. The product g1g2 · · · gn ∈ G
is well-defined independently from the bracketing for all g1, . . . , gn ∈ G, and if G
is commutative then the product g1g2 · · · gn ∈ G is independent from the order
of its factors. For g ∈ G let g0 := 1, and recursively gn+1 := gng for all n ∈ N0.
Then we have gmgn = gm+n and (gm)n = gmn for all m,n ∈ N0. If g, h ∈ G
commute, i. e. we have gh = hg, then (gh)n = gnhn = hngn for all n ∈ N0.

A subset U ⊆ G is called a submonoid, if 1 ∈ U and multiplication restricts
to a map · : U × U → U . Then U with the restricted multiplication again is a
monoid; e. g. {1} and G are submonoids of G.

If G and H are monoids, a map ϕ : G → H is called a (monoid) homomor-
phism, if 1ϕ = 1 and (gg′)ϕ = gϕ · g′ϕ for all g, g′ ∈ G; hence im(ϕ) ⊆ H is a
submonoid. If ϕ is surjective it is called an epimorphism, if ϕ is injective it is
called a monomorphism, if ϕ is bijective it is called an isomorphism; in this
case ϕ−1 is an isomorphism, we write G ∼= H . If G = H , then ϕ is called an
endomorphism, and a bijective endomorphism is called an automorphism.

(1.2) Groups. a) Let G be a monoid. An element g ∈ G is called right
invertible if there is a right inverse h′ ∈ G such that gh′ = 1, it is called left
invertible if there is a left inverse h′′ ∈ G such that h′′g = 1.

If g ∈ G is both right and left invertible then it is called invertible or a
unit. If h′ ∈ G is a right inverse and h′′ ∈ G is a left inverse, then we have
h′′ = h′′ ·1 = h′′(gh′) = (h′′g)h′ = 1 ·h′ = h′. Thus in this case there is a unique
inverse g−1 := h′ = h′′ ∈ G such that gg−1 = 1 = g−1g.

Let G∗ ⊆ G be the set of units. Then we have 1 ∈ G∗, where 1−1 = 1. For all
g, h ∈ G∗ we from gh(h−1g−1) = 1 = (h−1g−1)gh conclude (gh)−1 = h−1g−1

and thus gh ∈ G∗; hence G∗ is a submonoid ofG. For g ∈ G∗ we have (g−1)−1 =
g, thus g−1 ∈ G∗, hence (G∗)∗ = G∗.

For g ∈ G∗ and n ∈ N we let g−n := (g−1)n. Then we have gmgn = gm+n

and (gm)n = gmn for all m,n ∈ Z. If g, h ∈ G∗ commute the we have (gh)n =
gnhn = hngn for all n ∈ Z.

b) A monoid G such that G = G∗ is called a group. If G is finite then |G| ∈ N

is called its order, and G is called commutative or abelian if the underlying
monoid is. For any monoid G the set G∗ is called the group of units of G.

A submonoid U of a group G such that for all g ∈ U we also have g−1 ∈ U , is
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called a subgroup; we write U ≤ G. Then U with the restricted multiplication
again is a group; e. g. we have the trivial subgroup {1} ≤ G and G ≤ G.

If G and H are groups, a map ϕ : G→ H is called a (group) homomorphism,
if (gg′)ϕ = gϕ · g′ϕ for all g, g′ ∈ G. From 1ϕ = (1 · 1)ϕ = 1ϕ · 1ϕ we get
1 = 1ϕ·(1ϕ)−1 = 1ϕ·1ϕ·(1ϕ)−1 = 1ϕ, hence ϕ also is a monoid homomorphism.
For g ∈ G we have 1 = 1ϕ = (gg−1)ϕ = gϕ · (g−1)ϕ, hence (g−1)ϕ = (gϕ)−1,
and thus we have (gn)ϕ = (gϕ)n for all n ∈ Z. We have im(ϕ) ≤ H , and for
any U ≤ H we have ϕ−1(U) ≤ G.

(1.3) Example. a) Z is an abelian additive group with neutral element 0,
and a commutative multiplicative monoid with neutral element 1 and group of
units Z∗ = {±1}. For n ∈ Z the set nZ ≤ Z is an additive subgroup, and
{2n ∈ N;n ∈ N0} ⊆ N ⊆ Z are multiplicative submonoids.

b) Let K be a field. Any K-vector space is an abelian additive group with
neutral element 0. The set Kn×n of (n×n)-matrices with matrix multiplication
is a monoid with neutral element En. Since for n ≥ 2 we have

[
1 1
0 1

]
·
[

1 0
1 1

]
=

[
2 1
1 1

]
6=

[
1 1
1 2

]
=

[
1 0
1 1

]
·
[

1 1
0 1

]
,

the monoidKn×n is commutative if and only if n = 1. Its group of units is called
the general linear group GLn(K) := (Kn×n)∗ = {A ∈ Kn×n;A invertible} =
{A ∈ Kn×n; rkK(A) = n} = {A ∈ Kn×n; det(A) 6= 0}, which is abelian if and
only if n = 1; the latter case coincides with K∗ = K \ {0}.

(1.4) Symmetric groups. a) LetX 6= ∅ be a set, let Maps(X,X) := {f : X →
X}, and let · : Maps(X,X) ×Maps(X,X) → Maps(X,X) : [f, g] → fg be the
composition of maps, i. e. fg : X → X : x 7→ xfg = g(f(x)). Then Maps(X,X)
is a monoid with neutral element idX : X → X : x 7→ x: We have f · idX =
idX · f = f for all f ∈ Maps(X,X), and x(fg)h = (xfg)h = ((xf )g)h = (xf )gh =
xf(gh) for all x ∈ X , thus (fg)h = f(gh) for all f, g, h ∈ Maps(X,X).

f ∈ Maps(X,X) is right invertible if and only if f is injective: Let f be right
invertible with right inverse g ∈ Maps(X,X). Then for x, y ∈ X such that
xf = yf we have x = x · idX = xfg = yfg = y · idX = y, hence f is injective.
Let conversely f be injective. Then we define g ∈ Maps(X,X) by yg := x ∈ X
whenever y = xf ∈ im(f), and yg := y whenever y ∈ X \ im(f). Then we have
xfg = (xf)g = x for all x ∈ X , hence fg = idX , thus g is a right inverse of f .

f ∈ Maps(X,X) is left invertible if and only if f is surjective: Let f be left
invertible with left inverse g ∈ Maps(X,X). Then for all x ∈ X we have
x = x · idX = xgf , hence x ∈ im(f), thus f is surjective. Let conversely f be
surjective. Then for all y ∈ X we have f−1({y}) := {x ∈ X ;xf = y} 6= ∅.
Hence for all y ∈ X , by the Axiom of Choice we pick an element xy ∈ X such
that xyf = y. This defines a map g : X → X : y 7→ xy , and for all y ∈ X we
have ygf = (yg)f = xyf = y, hence gf = idX , thus g is a left inverse of f .
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Hence f is invertible if and only if f is bijective, the inverse of f ∈Maps(X,X)
being the inverse map f−1 ∈ Maps(X,X). The set SX := Maps(X,X)∗ =
{f : X → X ; f bijective} is called the symmetric group on X ; its elements
are called permutations. In particular, if X = {1, . . . , n} for some n ∈ N we
write Sn := S{1,...,n}; for X = ∅ we let S0 := {1}.
b) For n ∈ N we have |Sn| = n! := n(n − 1) · · · 1, a factorial, as is seen
by induction: For n = 1 we have S1 = {id{1}}. For n ≥ 2 and π ∈ Sn
we have nπ = m for some m ∈ {1, . . . , n}, and hence π : {1, . . . , n − 1} →
{1, . . . , n} \ {m} is bijective as well. Since there are n possibilities to choose m,
there are n · |Sn−1| = n! possibilities for π.

E. g. for n = 3 we have the following 6 permutations, where in the second row
we record the images of the elements given in the first row:

[
1 2 3
2 3 1

]
,

[
1 2 3
3 2 1

]
,

[
1 2 3
1 3 2

]
,

[
1 2 3
3 1 2

]
,

[
1 2 3
1 2 3

]
,

[
1 2 3
2 1 3

]
.

More space saving is the cycle notation, where permutations are written as
products of disjoint cycles and 1-cycles typically are left out. Due to bijectivity
any permutation can be written uniquely this way, up to reordering the factors,
where due to disjointness the order of the factors does not matter. If the cycles
of a permutation have lengths n1 ≥ n2 ≥ · · · ≥ nr > 0, where r ∈ N, the
partition [n1, n2, . . . , nr] ⊢ n is called the associated cycle type.

E. g. we have S1 = {()} and S2 = {(), (1, 2)}, and ordering the elements as above
S3 = {(1, 2, 3), (1, 3), (2, 3), (1, 3, 2), (), (1, 2)}. Inverses are given by reading
cycles backwardly, e. g. we have (1, 2, 3)−1 = (1, 3, 2) and (1, 3, 2)−1 = (1, 2, 3),
while the other elements of S3 are their own inverses. While S1 and S2 are
abelian, we from (1, 2, 3)(1, 2) = (1, 3) 6= (2, 3) = (1, 2)(1, 2, 3) deduce that for
n ≥ 3 the group Sn is not abelian.

(1.5) Actions. a) Let G be a group, and let X 6= ∅ be a set. Then G is called
to act on the G-set X , if there is an action map X × G → X : [x, g] 7→ xg
such that i) x1 = x, and ii) x(gh) = (xg)h for all g, h ∈ G and x ∈ X .

Given an action of G on X , for g ∈ G let ϕg : X → X : x 7→ xg. Hence
from ϕgϕg−1 = idX = ϕg−1ϕg we infer ϕg ∈ SX for all g ∈ G, and since
ϕgϕh = ϕgh for all g, h ∈ G we have an action homomorphismG→ SX : g 7→
ϕg. Conversely, if ϕ : G → SX : g 7→ ϕg is a homomorphism, then X × G →
X : [x, g] 7→ xϕg defines an action of G on X : We have ϕ1 = idX ∈ SX , and
ϕgϕh = ϕgh implies (xg)h = x(gh) for all g, h ∈ G and x ∈ X .

If X and Y are G-sets, then a map α : X → Y such that (xg)α = (xα)g for all
x ∈ X and g ∈ G is called a (G-set) homomorphism.

b) The relation O := {[x, y] ∈ X×X ; y = xg for some g ∈ G} is an equivalence
relation on X : From x1 = x we infer that O is reflexive; from y = xg we get
yg−1 = x, implying that O is symmetric; and from y = xg and z = yh we get
z = xgh, implying that O is transitive.
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Given x ∈ X , its equivalence class xG := {xg ∈ X ; g ∈ G} again is a G-set,
called the (G-)orbit of x; its cardinality |xG| is called its length, and a subset
T ⊆ G such that T → xG : t 7→ xt is a bijection is called a transversal of xG
with respect to x; transversals exist by the Axiom of Choice.

Let X/G := {xG ⊆ X ;x ∈ X}. A subset S ⊆ X such that S → X/G : x 7→ xG
is a bijection is called a set of orbit representatives ofX ; orbit representatives
exist by the Axiom of Choice, and we have X =

∐
x∈S xG. If X = xG for any

and thus all x ∈ X , then X is called a transitive G-set.

For x ∈ X let StabG(x) := Gx := {g ∈ G;xg = x} ⊆ G be the stabiliser of x
in G. Then StabG(x) ≤ G: We have 1 ∈ StabG(x) 6= ∅, and for g, h ∈ StabG(x)
from xg = x = xh we get xg−1 = x = xgh, hence g−1, gh ∈ StabG(x) as well.
For g ∈ G we have StabG(xg) = g−1StabG(x)g: For h ∈ StabG(x) we have
(xg)g−1hg = xg, and the other inclusion follows from x = (xg)g−1.

E. g. any group G acts trivially on any set X 6= ∅ by ϕg : X → X : x 7→ x
for all g ∈ G. The associated action homomorphism is G→ SX : g 7→ idX , the
orbits are the singleton subsets of X , and we have StabG(x) = G for all x ∈ X .

The group Sn, for n ∈ N, acts naturally on {1, . . . , n} by ϕπ : {1, . . . , n} →
{1, . . . , n} : i 7→ iπ for all π ∈ Sn. The associated action homomorphism is idSn ,
the action is transitive, and we have StabSn(n) = {π ∈ Sn;nπ = n} ∼= Sn−1.

(1.6) Dihedral groups. Let R2 be the Euclidean plane equipped with the
standard scalar product, and let O2(R) := {g ∈ R2×2; ggtr = E2} ≤ GL2(R)
be the associated orthogonal group. We have O2(R) = {g ∈ O2(R); det(g) =
1} .∪ {g ∈ O2(R); det(g) = −1}, where the elements of the special orthogonal
group SO2(R) := {g ∈ O2(R); det(g) = 1} ≤ O2(R) are called rotations, while
those of O2(R) \ SO2(R) are called reflections.

For n ≥ 3 let D ⊆ R2 be a regular n-gon centred at the origin, and let
G := {g ∈ O2(R);Dg = D} ≤ O2(R) be its group of symmetries, where
G ∩ SO2(R) = {g ∈ SO2(R);Dg = D} is called its group of rotations.
Hence G acts transitively on the n vertices of D, and numbering the ver-
tices counterclockwise yields an action homomorphism ϕ : G→ Sn. The image
D2n := im(ϕ) ≤ Sn is called the associated dihedral group. Since the vertices
contain an R-basis of R2, we conclude that ϕ : G→ D2n is an isomorphism.

We describe the elements of D2n, showing that |D2n| = 2n: Since rotations in
O2(R) are determined by their rotation angle, the rotations in D2n are those
with angle 2πk

n for k ∈ {0, . . . , n− 1}. Thus D2n contains precisely n rotations,
given as τkn ∈ Sn for k ∈ {0, . . . , n − 1}, where τn := (1, 2, . . . , n) ∈ Sn. Since
reflections in O2(R) are determined by their reflection axis, we distinguish the
cases n odd and n even:

For n odd the axis of a reflection inD2n runs through one of the vertices ofD and
the edge opposite. Thus in this case D2n contains precisely n reflections, one of
them being σn := (1)(2, n)(3, n−1) · · · (n+1

2 , n+3
2 ) ∈ Sn. For n even the axis of a
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reflection in D2n either runs through a pair of opposite vertices, or runs through
a pair of opposite edges. Thus in this case D2n contains precisely n

2 + n
2 = n

reflections, one of the former being σn := (1)(n+2
2 )(2, n)(3, n− 1) · · · (n2 , n+4

2 ) ∈
Sn and one of the latter being (1, 2)(3, n)(4, n − 1) · · · (n+2

2 , n+4
2 ) ∈ Sn; e. g.

the elements of D6 = S3 and D8 are given in Table 1. In both cases we have
|StabD2n

(1)| = |{(), σn}| = 2.

(1.7) Cosets. Let G be a group, and let U ≤ G. Then U acts on G by left
multiplication λu : G→ G : x 7→ u−1x for all u ∈ U : We have xλ1 = 1−1x = x
and xλuv = (uv)−1x = v−1u−1x = (xλu)λv for all x ∈ G and u, v ∈ U . Hence
the U -orbit of x ∈ G is the (right) coset Ux := {ux ∈ G;u ∈ U} ⊆ G.

The group G acts transitively on U\G := {Ux ⊆ G;x ∈ G} by right multipli-
cation ρg : U\G→ U\G : Ux 7→ Uxg for all g ∈ G: We have (Ux)1 = Ux and
(Ux)gh = (Uxg)h for all g, h, x ∈ G, and Ux = (U · 1)x. Since ug ∈ U if and
only if g ∈ U , for g ∈ G, we have StabG(U · 1) = U .

A subset T ⊆ G such that T → U\G : t 7→ Ut is a bijection is called a (right)
transversal for U in G; in particular we have G =

∐
t∈T Ut. The cardinality

[G : U ] := |U\G| = |T | ∈ N
.∪ {∞} is called the index of U in G.

Similarly, we get left cosets and left transversals. If T ⊆ G is a right
transversal, from G =

∐
t∈T Ut by inversion G → G : g 7→ g−1 we get G =∐

t∈T t
−1U , hence T−1 := {t−1 ∈ G; t ∈ T } is a left transversal. Thus [G : U ] is

independent from whether right or left cosets are considered. In general, left and
right cosets do not coincide, and left transversals are not right transversals: E. g.
for U := {(), (1, 2)} ≤ G := S3 we have S3 = {(), (1, 2)} .∪ {(1, 2, 3), (2, 3)} .∪
{(1, 3, 2), (1, 3)} = {(), (1, 2)} .∪ {(1, 2, 3), (1, 3)} .∪ {(1, 3, 2), (1, 3)} as right and
left cosets, respectively, hence a right transversal is {(), (1, 2, 3), (1, 3)}, which is
not a left transversal.

U ≤ G is called normal, if gU ⊆ Ug for all g ∈ G; we write U E G. In this
case, from Ug−1 ⊆ g−1U we get gU = Ug, equivalently g−1Ug = U . E. g. we
have {1}EG and GEG, any subgroup of an abelian group is normal, and any
subgroup of index 2, since G = U

.∪ Ug = U
.∪ gU for any g ∈ G \U , is normal.

(1.8) Theorem. Let G be a group, let X be a transitive G-set, and let x ∈ X .
Then α : StabG(x)\G→ X : StabG(x)g 7→ xg is a G-set isomorphism.

Proof. For g ∈ G and u ∈ StabG(x) we have xug = xg, hence α is well-defined.
Since X is transitive α is surjective. For g, g′ ∈ G such that xg = xg′ we
have g′g−1 ∈ StabG(x), hence g′ ∈ StabG(x)g, thus α is injective. We have
(StabG(x)gh)α = xgh = (xg)h = (StabG(x)g)αh for all g, h ∈ G. ♯

(1.9) Corollary: Lagrange. Let G be a finite group.

a) Let U ≤ G. Then we have [G : U ] = |G|
|U| ; in particular we have |U | | |G|.
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b) Let X be a transitive G-set. Then we have |X | = [G : StabG(x)] = |G|
|StabG(x)|

for any x ∈ X ; in particular we have |X | | |G|.

Proof. a) Let T ⊆ G be a transversal for U in G, hence G =
∐
t∈T Ut. For the

U -orbit Ut we have StabU (t) = {u ∈ U ;u−1t = t} = {1}. Hence U → {1}\U →
Ut : u 7→ {1}u 7→ u−1t is a bijection, thus |Ut| = |U | and |G| = |T | · |U |. ♯

(1.10) Corollary: Cayley. G is isomorphic to a subgroup of SG.

Proof. LetG act regularly on G, i. e. by right multiplication, thus G ∼= {1}\G
as G-sets, and let ρ : G → SG be the associated action homomorphism. Since
gρ = hρ for g, h ∈ G implies g = 1 · g = 1 · h = h, we infer that ρ is injective. ♯

(1.11) Theorem: Cauchy-Frobenius-Burnside Lemma. Let G be a finite
group, and let X be a finite G-set. Then we have |X/G| = 1

|G| ·
∑

g∈G |FixX(g)|,
where FixX(g) := {x ∈ X ;xg = x} is the set of fixed points of g ∈ G.

Proof. Letting O := {[x, g] ∈ X × G;xg = x} we use double counting: On
the one hand we have |O| = ∑

g∈G |{x ∈ X ;xg = x}| = ∑
g∈G |FixX(g)|. On

the other hand we have |O| =
∑
x∈X |{g ∈ G;xg = x}| =

∑
x∈X |StabG(x)|.

For y ∈ xG we have |yG| = |xG|, and thus |StabG(x)| = |StabG(y)|. Let-
ting T ⊆ X be a set of orbit representatives, we get

∑
x∈X |StabG(x)| =∑

x∈T
∑

y∈xG |StabG(y)| = ∑
x∈T |xG| · |StabG(x)| = ∑

x∈T |G| = |X/G| · |G|. ♯

(1.12) Example. A necklace with n ≥ 3 pearls having k ∈ N colours is a
map η : {1, . . . , n} → {1, . . . , k}. The set {1, . . . , n} may be considered as the
set of vertices of a regular n-gon D, and necklaces are called equivalent if they
arise from each other by a symmetry of D.

Let Nn,k := {η : {1, . . . , n} → {1, . . . , k}} be the set of all necklaces, hence we
have |Nn,k| = kn. Then D2n ≤ Sn acts on Nn,k by η 7→ ηπ := π−1η for all
π ∈ D2n. The equivalence classes of necklaces are precisely the orbits on Nn,k,
hence tn,k := |Nn,k/D2n| ∈ N can be determined using Burnside’s Lemma:
For π ∈ Sn and η ∈ Nn,k we have ηπ = η if and only if iπ−1η = iη for all
i ∈ {1, . . . , n}. This holds if and only if η is constant on the r ∈ N disjoint
cycles of π, where 1-cycles count, yielding |FixNn,k(π)| = kr.

E. g. for n = 3 and n = 4 we from Table 1 get t3,k = 1
6 · (k3 + 3k2 + 2k) =

1
6 ·k(k+1)(k+2) =

(
k+2
3

)
and t4,k = 1

8 ·(k4+2k3+3k2+2k) = 1
8 ·k(k+1)(k2+k+2).

2 Homomorphisms and subgroups

(2.1) Kernels. Let G and H be groups, let ϕ : G → H be a homomorphism,
and let ker(ϕ) := ϕ−1({1}) = {g ∈ G; gϕ = 1} E G be its kernel: Since for
g ∈ G and u ∈ ker(ϕ) we have (g−1ug)ϕ = 1, we infer g−1 ker(ϕ)g ⊆ ker(ϕ).
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Table 1: D6 and D8.

π ∈ D6 type r

() [13] 3
(1, 2, 3) [3] 1
(1, 3, 2) [3] 1
(2, 3) [2, 1] 2
(1, 2) [2, 1] 2
(1, 3) [2, 1] 2

π ∈ D8 type r

() [14] 4
(1, 2, 3, 4) [4] 1
(1, 3)(2, 4) [22] 2
(1, 4, 3, 2) [4] 1
(2, 4) [2, 12] 3
(1, 3) [2, 12] 3
(1, 2)(3, 4) [22] 2
(1, 4)(2, 3) [22] 2

For g ∈ G and h := gϕ ∈ im(ϕ), we have ϕ−1({h}) = ker(ϕ)g ∈ ker(ϕ)\G:
For k ∈ ker(ϕ) we have (kg)ϕ = kϕ · gϕ = h, thus ker(ϕ)g ⊆ ϕ−1({h}), and
for g′ ∈ ϕ−1({h}) we have (g′g−1)ϕ = 1, thus g′ = (g′g−1)g ∈ ker(ϕ)g. In
particular, ϕ is injective if and only if ker(ϕ) = {1}.

(2.2) Homomorphism Theorem. Let G be a group, and let N EG.
a) G/N is a group with respect to (gN)(hN) := ghN for all g, h ∈ G, called the
associated factor group or quotient group, and the natural map νN : G→
G/N : g 7→ gN is an epimorphism such that ker(νN ) = N .
b) Let ϕ : G → H be a homomorphism such that N ≤ ker(ϕ). Then the
induced map ϕN : G/N → H : gN 7→ gϕ is a homomorphism such that
ker(ϕN ) = ker(ϕ)/N , yielding a factorisation ϕ = νNϕ

N . In particular,
ϕker(ϕ) : G/ ker(ϕ)→ im(ϕ) is an isomorphism.

Proof. a) We only have to show that multiplication is well-defined: Let g′ ∈ gN
and h′ ∈ hN . Then we have g′ = gm and h′ = hn for some m,n ∈ N , and thus
g′h′ = gm · hn = gh · h−1mh · n ∈ ghN . For g ∈ G we have g ∈ ker(νN ) if and
only if gN = N , which holds if and only if g ∈ N .
b) The map ϕN is well-defined: Let g′ ∈ gN , then we have g′ = gn for some

n ∈ N ≤ ker(ϕ), thus g′ϕ = (gn)ϕ = gϕ. We have (gN)ϕ
N

= 1 if and only if
gϕ = 1, if and only if g ∈ ker(ϕ), if and only if gN ∈ ker(ϕ)/N . ♯

(2.3) Corollary: Isomorphism Theorems. Let G be a group, and letNEG.
a) Let U ≤ G and MEG such that M ≤ N . Then we have U/(U∩N) ∼= UN/N
and (G/M)/(N/M) ∼= G/N .
b) The map Φ: {U ≤ G;N ≤ U} → {V ≤ G/N} : U 7→ UνN = UN/N is an
inclusion-preserving bijection with inverse Φ−1 : V 7→ ν−1

N (V ). The maps Φ and
Φ−1 preserve normality, and if [G : N ] is finite then subgroup indices as well.

Proof. a) Since NU = UN we have N EUN ≤ G, hence im((νN )|U ) = UN/N
and ker((νN )|U ) = U ∩N E U ; and we have ker(νMN ) = N/M .
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b) Since NνN = 1 we have N ≤ ν−1
N (V ) ≤ G, hence Φ and Φ−1 are well-

defined and inclusion-preserving. From ν−1
N (UνN ) = ν−1

N (UN/N) = UN = U
and (ν−1

N (V ))νN = V we conclude that Φ and Φ−1 mutually inverse.

If N ≤ U E G, then for g ∈ G we have (gN)−1 · UN/N · gN = g−1UgN/N =
UN/N , hence UN/N EG/N , thus Φ preserves normality. If V EG/N , then for
g ∈ G we have (g−1ν−1

N (V )g)νN = (gN)−1 · V · gN = V , hence g−1ν−1
N (V )g ⊆

ν−1
N (V ), thus ν−1

N (V ) EG, hence Φ−1 preserves normality.

If [G : N ] is finite, then [G : U ] is finite as well, and letting {s1, . . . , sm} ⊆ U be
a transversal for N , and {t1, . . . , tn} ⊆ G be a transversal for U , then {sitj ∈
G; i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}} is a transversal for N in G. Hence we have

[G : U ] = n = mn
m = [G : N ]

[U : N ] = |G/N |
|UN/N | = [(G/N) : (UN/N)]. ♯

(2.4) Example. a) For the trivial homomorphism ϕ : G→ H : g 7→ 1 we have
ker(ϕ) = G, yielding G/G ∼= {1}. For the identity idG : G→ G : g 7→ g we have
ker(idG) = {1}, yielding G/{1} ∼= G.
b) For n ∈ N we have nZ = −nZ E Z, where the natural homomorphism is
given as νn : Z→ Z/nZ : x 7→ x := x + nZ = {y ∈ Z; y ≡ x (mod n)}. The set
Zn := {0, . . . , n− 1} ⊆ Z is a transversal for nZ, hence Zn becomes an abelian
group by using the bijection νn : Zn → Z/nZ.
c) Let K be a field. Then det : GLn(K)→ K∗ is surjective, letting SLn(K) :=
ker(det)EGLn(K) be the special linear group yields GLn(K)/SLn(K) ∼= K∗.
d) exp: R → R∗ is a homomorphism from the additive group R to the multi-
plicative group R∗, where im(exp) = R>0 and ker(exp) = {0} yields R ∼= R>0.

(2.5) Lemma. Let n ∈ N, and let π ∈ Sn be a product of r ∈ N disjoint cycles.
If π = τ1 · · · τs ∈ Sn, where s ∈ N0 and the τi ∈ Sn are transpositions, i. e.
2-cycles, then we have s ≡ n− r (mod 2).

Proof. We proceed by induction on s ∈ N0: For s = 0 we have π = (), and
hence r = n. For s > 0 let τs = (i, j) ∈ Sn, and let σ := τ1 · · · τs−1 ∈
Sn be a product of r′ ∈ N disjoint cycles, hence by induction we have s −
1 ≡ n − r′ (mod 2). If i, j occur in the same cycle of σ, then π = στs =
(. . .)(i, . . . , k, j, . . . , l)(i, j) = (. . .)(i, . . . , k)(j, . . . , l), where possibly k = i or j =
l, hence π is a product of r = r′ +1 disjoint cycles. If i, j occur in distinct cycles
of σ, then we have π = στs = (. . .)(i, . . . , k)(j, . . . , l)(i, j) = (. . .)(i . . . k, j, . . . , l),
where possibly k = i or j = l, hence π is a product of r = r′ − 1 disjoint cycles.
In both cases we have n− r ≡ s (mod 2). ♯

(2.6) Alternating groups. For a n-cycle, for n ≥ 2, we have (a1, a2, . . . , ak) =
(a1, a2)(a1, a3) · · · (a1, ak) ∈ Sn, which is a product of n − 1 transpositions.
Hence any finite permutation can be written as a product of transpositions. In
general this representation is not unique, not even the number of transpositions
is: (1, 2, 3) = (1, 2)(1, 3) = (2, 3)(1, 2) = (1, 2)(2, 3)(1, 3)(1, 2) ∈ S3.
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Thus by (2.5) we for n ∈ N have the sign homomorphism sgn: Sn → {±1} : π 7→
(−1)n−r = (−1)s, where π is a product of r ∈ N disjoint cycles, and a product
of s ∈ N0 transpositions.

The kernel An := ker(sgn)ESn is called the associated alternating group; the
elements of An and Sn\An are called even and odd permutations, respectively.
For n ≥ 2 we from sgn((1, 2)) = −1 infer that sgn is surjective, hence we have
Sn/An ∼= {±1}, in particular |An| = n!

2 ; for n = 1 we have A1 = S1
∼= {1}.

(2.7) Generating sets. Let G be a group, and let {Ui ≤ G; i ∈ I} where
I 6= ∅ is an index set. Then

⋂
i∈I Ui ≤ G is a subgroup, and if Ui E G for all

i ∈ I, then
⋂
i∈I Ui EG as well; in general

⋃
i∈I Ui ⊆ G is not a subgroup.

Let S ⊆ G. Then 〈S〉 :=
⋂{U ≤ G;S ⊆ U} ≤ G is the smallest subgroup of

G containing S, being called the subgroup generated by S, where S called a
generating set of 〈S〉, and if S is finite then 〈S〉 is called finitely generated.
Letting S−1 := {g−1; g ∈ S}, we conclude that 〈S〉 consists of all finite products
of elements of S ∪ S−1. E. g. we have 〈∅〉 = 〈1〉 = {1} and 〈G〉 = G, hence in
particular any finite group is finitely generated.

A subgroup U ≤ G is called cyclic, if there is g ∈ U such that U = 〈g〉. For
g ∈ G we have 〈g〉 = {gk; k ∈ Z}, where |g| := |〈g〉| ∈ N

.∪ {∞} is called the
order of g. Hence cyclic groups are abelian; e. g. we have Z = 〈1〉 = 〈−1〉 and
for n ∈ N we have Z/nZ = 〈1〉. If G is finite, then we have |g| | |G| for all
g ∈ G; in particular, if |G| is a prime then G is cyclic.

(2.8) Theorem: Cyclic groups. Let G = 〈g〉 be a cyclic group.
a) Then αg : Z → G : k 7→ gk is an epimorphism. We have ker(αg){0} if and
only if G is infinite; in this case we have Z ∼= G. If G is finite then we have
ker(αg) = |g|Z and thus Z/|g|Z ∼= G = {gk; k ∈ {0, . . . , |g| − 1}}; in particular

we have Euler’s Theorem g|G| = g|g| = 1, and for any n ∈ N
.∪ {∞} up to

isomorphism there is precisely one cyclic group Cn of order n.
b) Any non-trivial subgroup of G is cyclic of finite index. If G is infinite, then
for all m ∈ N there is a unique subgroup of index m. If G is finite then there is a
subgroup of index m if and only if m | |g|; in this case it is uniquely determined.
c) A finite group H is cyclic if and only if for any m ∈ N there is at most one
subgroup of order m.

Proof. a) b) Let {0} 6= U E Z, and let n ∈ N be minimal such that n ∈ U ,
hence nZ ≤ U . For k ∈ U let i ∈ Z and j ∈ {0, . . . , n− 1} such that k = in+ j,
then from j ∈ U and the choice of n we get j = 0, hence k ∈ nZ, thus nZ = U .
Thus any non-trivial subgroup of Z is the form nZ for some n ∈ N.

We have Z/ ker(αg) ∼= G, hence if ker(αg) = {0} then Z ∼= G is infinite. If
ker(αg) = nZ for some n ∈ N, then Z/nZ ∼= G is finite and |g| = |Z/nZ| = n,
showing a). From |Z/nZ| = n we infer that nZ is the unique subgroup of Z of
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Table 2: Subgroup lattice of S3.

<(2,3)>

<(1,3)>

<(1,2,3)>

<(1,2)>

<(1,2,3),(1,2)>

<()>

index n. This shows b) for G infinite, while for Z/nZ ∼= G finite, using nZ ≤ mZ

if and only if m | n, the assertion follows from (2.3).

c) For n ∈ N and k ∈ Z the coset k ∈ Z/nZ is contained in a proper subgroup
if and only if there is 1 6= m | n such that k ∈ mZ, i. e. m | k, which holds
if and only if gcd(k, n) 6= {±1}, see (4.5). Thus 〈k〉 = Z/nZ if and only if k ∈
(Z/nZ)∗ := {x ∈ Z/nZ; gcd(x, n) = {±1}}, where gcd(x, n) is independent of
the chosen representative x. Letting ϕ(n) := |(Z/nZ)∗| ∈ N be Euler’s totient
function, the subgroup structure of Z/nZ implies

∑
m∈N,m |n ϕ(m) = n.

Let H 6= {1} fulfil the assumption on subgroups. Then for m ∈ N there is an
element of order m only if m | n := |H |, where there at most ϕ(m) of them.
Thus by

∑
m∈N,n6=m |n ϕ(m) = n− ϕ(n) > 0 there is an element of order n. ♯

(2.9) Example. a) We consider the dihedral group D2n for n ≥ 3, see (1.6):
The subgroup of rotations Tn := {τkn ; k ∈ {0, . . . , n− 1}} = 〈τn〉 ≤ D2n is cyclic
of order n. Since [D2n : Tn] = 2 we have Tn ED2n, and from σn 6∈ Tn we get
D2n = 〈τn, σn〉. From σ−1

n τnσn = (1, n, n − 1, . . . , 2) = τ−1
n we conclude that

D2n is not abelian. Any element π ∈ D2n = Tn
.∪ σnTn can be written uniquely

as π = σinτ
k
n , where i ∈ {0, 1} and k ∈ {0, . . . , n−1}, and multiplication is given

by σinτ
k
n · σi

′

n τ
k′

n = σi+i
′

n τ−ki
′+k′

n .
b) We consider the symmetric group S3: We have S3 = D6 = 〈(1, 2, 3), (1, 2)〉.
As any non-cyclic subgroup coincides with S3, the only non-trivial proper sub-
groups are the non-normal cyclic subgroups 〈(1, 2)〉, 〈(1, 3)〉 and 〈(2, 3)〉 of order
2, and the normal cyclic subgroup 〈(1, 2, 3)〉 = 〈(1, 3, 2)〉 of order 3. The lattice
of subgroups is depicted as a Hasse diagram in Table 2.

(2.10) Conjugation action. Let G be a group, and let Aut(G) be the group
of automorphisms of G, whose multiplication is given by composition of maps.

For g ∈ G let κg : G → G : x 7→ g−1xg =: xg be the associated conjugation
map. Since x1 = x and xgh = h−1g−1xgh = (xg)h, for all x, g, h ∈ G, this
induces an action of G on G; in particular κg is bijective. The associated orbits
are called the conjugacy classes of elements of G; the action is transitive if
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and only if G = {1}. The stabiliser CG(x) := StabG(x) = {g ∈ G;xg = x} =
{g ∈ G;xg = gx}, for x ∈ G, is called the centraliser of x in G.

Since (xy)g = g−1xyg = g−1xg · g−1yg = xgyg, for all x, y, g ∈ G, we conclude
that κg is a homomorphism, hence κ : G → Aut(G) : g 7→ κg. The image
Inn(G) := im(κ) ≤ Aut(G) is called the group of inner automorphisms of
G; we have Inn(G) E Aut(G): For all x, g ∈ G and α ∈ Aut(G) we have xκαg =
xα−1κgα = (g−1(xα−1)g)α = (gα)−1x(gα) = xκgα, thus καg = κgα ∈ Aut(G).

The kernel Z(G) := ker(κ) =
⋂
x∈GCG(x) = {g ∈ G;xg = x for all x ∈ G} =

{g ∈ G;xg = gx for all x ∈ G} E G is called the centre of G; hence we have
G/Z(G) ∼= Inn(G). The group G is abelian if and only if G = Z(G), which
holds if and only if Inn(G) = {1}.
Similarly, G acts on the set of its subgroups via κg : U 7→ g−1Ug =: Ug, for all
U ≤ G and g ∈ G. The associated orbits are called the conjugacy classes of
subgroups of G; the action is transitive if and only if G = {1}. The stabiliser
NG(U) := StabG(U) = {g ∈ G;Ug = U} = {g ∈ G;Ug = gU}, for U ≤ G,
is called the normaliser of U in G. Hence U ≤ NG(U) ≤ G is the largest
subgroup of G having U as a normal subgroup; in particular U ≤ G is a fixed
point if and only if NG(U) = G, which holds if and only if U EG.

(2.11) Definition. Let p be a prime, and let G be a finite group. If |G| = pd,
for some d ∈ N0, then G called a p-group; in particular {1} is a p-group.

A p-subgroup P ≤ G such that p 6 | [G : P ] = |G|
|P | is called a Sylow p-subgroup

of G. Let Sylp(G) be the set of Sylow p-subgroups of G; if p 6 | |G| then we have
Sylp(G) = {{1}}.

(2.12) Theorem. Let p be a prime, let G be a p-group, and let {1} 6= N EG.
Then we have Z(G) ∩N 6= {1}; in particular we have Z(G) 6= {1}.

Proof. The normal subgroupN is a union of conjugacy classes, hence let T ⊆ G
be a set of representatives of these classes. Since Z(G) = {g ∈ G; |gG| =
1} = {g ∈ G;CG(g) = G}, we have Z(G) ∩ N = Z(G) ∩ T and thus |N | =

|Z(G)∩N |+∑
g∈T\Z(G)

|G|
|CG(g)| . For all g ∈ G\Z(G) we have 1 6= |G|

|CG(g)| | |G|,
thus p | |G|

|CG(g)| , and hence p | |N | implies p | |Z(G) ∩N |. ♯

(2.13) Theorem: Sylow [1872]. Let p be a prime, and G be a finite group.
a) If pd | |G| for some d ∈ N, then Nd := |{Q ≤ G; |Q| = pd}| ≡ 1 (mod p).
b) If P ∈ Sylp(G) and Q ≤ G is a p-subgroup, then Qg ≤ P for some g ∈ G.

Proof: Wielandt [1959]. a) G acts on X := {M ⊆ G; |M | = pd} by right
multiplication. Let X =

∐
i∈I Xi be its decomposition into orbits, where I

is an index set, let {Mi ⊆ G; i ∈ I} be a set of orbit representatives, and let
Gi := StabG(Mi) ≤ G. From MiGi = Mi ⊆ G we conclude that Mi is a union
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of left cosets of Gi in G, and thus |Gi| | |Mi| = pd. Hence we have |Gi| = pdi

for some di ∈ {0, . . . , d}.
If Q ≤ G such that |Q| = pd, then |StabG(Q)| = |Q| = pd, and hence Q ∈ Xi for
some i ∈ I such that di = d. If Q,Q′ ≤ G such that |Q| = pd = |Q′| are in the
same orbit, then Q′ = Qg for some g ∈ G, thus g ∈ Q′, and hence Q = Q′g−1 =
Q′. If i ∈ I such that di = d, then from |Mi| = pd = |Gi| we infer Mi = giGi
for some gi ∈ G. Thus for Mig

−1
i ∈ Xi we have Mig

−1
i = giGig

−1
i ≤ G. In

conclusion, there is a bijection between the subgroups Q ≤ G such that |Q| = pd

and the orbits Xi such that di = d.

If di < d, then |Xi| = |G|
|Gi| = |G|

pdi
≡ 0 (mod |G|

pd−1 ), yielding
(|G|
pd

)
= |X | =

∑
i∈I |Xi| ≡

∑
i∈I;di=d

|G|
pd = Nd|G|

pd (mod |G|
pd−1 ). In particular for the cyclic

group C|G| we from |{Q ≤ C|G|; |Q| = pd}| = 1 get
(|G|
pd

)
≡ |G|

pd
(mod |G|

pd−1 ).

This yields |G|
pd
≡ Nd|G|

pd
(mod |G|

pd−1 ), thus |G|
pd−1 | (Nd−1)|G|

pd
, hence p | Nd − 1.

b) Q acts on P\G by right multiplication, the orbits being (Pg)Q = {Pgh ∈
P\G;h ∈ Q} for g ∈ G, and PgQ =

⋃
(Pg)Q ⊆ G is called the associated P -Q-

double coset. Let G =
∐
i∈I PgiQ, where I is an index set and gi ∈ G. For

h ∈ Q we have Pgh = Pg ∈ P\G if and only if ghg−1 ∈ P , thus StabQ(Pg) =

Q ∩ P g, hence |G| = ∑
i∈I |PgiQ| =

∑
i∈I

|Q||P |
|Q∩P gi | . Assume that Q ∩ P gi < Q

for all i ∈ I, then p | |Q|
|Q∩P gi | , hence p | |G|

|P | , a contradiction. Thus there is

i ∈ I such that Q ∩ P gi = Q, implying Q ≤ P gi . ♯

(2.14) Corollary. Both Sylp(G) and {NG(P );P ∈ Sylp(G)} are a single con-
jugacy class of subgroups, and we have |Sylp(G)| ≡ 1 (mod p) and |Sylp(G)| =
[G : NG(P )] = |G|

|NG(P )| |
|G|
|P | .

(2.15) Corollary: Cauchy’s Theorem. If p | |G|, then G has an element of
order p. Thus G is a p-group if and only if any element of G has p-power order.

(2.16) Example: The alternating group A5. a) Let G := A5, hence |G| =
60 = 22 · 3 · 5, and G contains 24 elements of cycle type [5], 20 elements of cycle
type [3, 12], 15 elements of cycle type [22, 1], and the identity of cycle type [15].
We determine the Sylow subgroups of G and their normalisers:

Any subgroup P5 ∈ Syl5(G) contains 4 elements of order 5. Since P5∩P π5 = {1}
for all π ∈ G\NG(P5), we have |Syl5(G)| = 6 and thus |NG(P5)| = 10. We have
D10 = 〈τ5, σ5〉 < G, see (1.6), thus T5 := 〈τ5〉 ∈ Syl5(G) and NG(T5) = D10.

Any subgroup P3 ∈ Syl3(G) contains 2 elements of order 3. Since P3∩P π3 = {1}
for all π ∈ G \ NG(P3), we have |Syl3(G)| = 10 and thus |NG(P3)| = 6. We
have A3 = 〈(1, 2, 3)〉 ∈ Syl3(G) and NG(A3) = 〈(1, 2, 3), (1, 2)(4, 5)〉. Since
NG(A3)→ S3 : π 7→ π|{1,2,3} is an epimorphism we have NG(A3) ∼= S3.

Let V4 := 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ≤ S4 be the Klein 4-group, which is a
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non-cyclic abelian group of order 4, thus V4 ∈ Syl2(G). We have V4 ⊳ A4 =
〈(1, 2)(3, 4), (1, 2, 3)〉 < G, thus A4 ≤ NG(V4). Since G has 15 elements of order
2, we have |Syl2(G)| > 1, thus NG(V4) < G, and hence NG(V4) = A4. Thus we
have |Syl2(G)| = 5, implying V4 ∩ V π4 = {1} for all π ∈ G \NG(V4). ♯

A Sylow-type existence statement does not hold for arbitrary divisors of |G|,
not even for those n | |G| such that ggT(n, |G|

n ) = 1: Assume there is U < G
such that |U | ∈ {15, 20}, and let P5 ∈ Syl5(G) such that P5 < U . From

|Syl5(U)| | |U|
|P5| ∈ {3, 4} and |Syl5(U)| ≡ 1 (mod 5) we get |Syl5(U)| = 1, thus

P5 ⊳ U , hence U ≤ NG(P5), a contradiction.

b) We consider the truncated icosahedron (Buckminsterfullerene, soccer
ball), centred at the origin of the Euclidean space R3: The icosahedron is
one of the 5 regular platonic solids, next to the tetrahedron, the cube,
the octahedron, and the dodecahedron. The icosahedron has 20 triangular
faces, and 12 vertices at each of which 5 of the faces meet. Truncating at the
12 vertices yields a regular solid having 60 vertices, and 12 pentagonal and 20
hexagonal faces, where each pentagonal face is surrounded by hexagonal ones,
and each hexagonal face is surrounded by hexagonal and pentagonal ones.

We consider its group G ≤ SO3(R) of rotational symmetries, which acts reg-
ularly on the 12 · 5 = 60 pairs of adjacent pentagon-hexagon pairs, implying
|G| = 60. There are 6 pairs of opposite pentagons, giving rise to 6 rotation
axes of order 5, yielding 24 elements of order 5; there are 10 pairs of opposite
hexagons, giving rise to 10 rotation axes of order 3, yielding 20 elements of or-
der 3; and there are 30 hexagon-hexagon edges, giving rise to 15 opposite pairs,
yielding 15 rotation axes of order 2, hence 15 elements of order 2.

We show that G ∼= A5: Fixing a rotation axis of order 2, there are precisely
two other rotation axes of order 2 orthogonal to the given one. The associated
rotations τ1, τ2 ∈ G and τ3 = τ1τ2 ∈ G generate a non-cyclic abelian subgroup
V4
∼= V := 〈τ1, τ2〉 ∈ Syl2(G). Moreover, the orthogonality argument implies

V ∩V π = {1} for all π ∈ G\NG(V ), hence we have |Syl2(G)| = 5 and |NG(V )| =
12. Thus the conjugation action ofG on Syl2(G) yields an action homomorphism
ϕ : G→ S5. Then ϕ is injective such that im(ϕ) ≤ A5:

There is a rotation axis of order 3 such that conjugation with the associated
rotation ρ ∈ G yields κρ : τ1 7→ τ2 7→ τ3 7→ τ1. Hence NG(V ) = 〈V, ρ〉 =∐2
k=0 ρ

kV , thus any π ∈ NG(V ) can be written uniquely as π = ρkτ i1τ
j
2 , where

i, j ∈ {0, 1} and k ∈ {0, 1, 2}. Multiplication is determined by κρ and V being
abelian, thus NG(V ) → A4 : ρ 7→ (1, 2, 3), τ1 7→ (1, 2)(3, 4), τ2 7→ (1, 4)(2, 3) is
an isomorphism. Hence NG(V ) is generated by elements of order 3, and joining
an element of order 5 shows that G is generated by elements of odd order,
thus im(ϕ) ≤ A5. Assume that {1} 6= ker(ϕ) E G. Since V ⊳ NG(V ) is the
only non-trivial proper normal subgroup, we get V ≤ ker(ϕ) ≤ NG(V ), hence
V π ≤ ker(ϕ) and thus V = V π, for all π ∈ G, contradicting V ∩ V π = {1} for
all π ∈ G \NG(V ). ♯
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3 Rings and domains

(3.1) Rings and ideals. a) A set R together with an addition +: R×R→
R : [a, b] 7→ a+ b and a multiplication · : R×R→ R : [a, b] 7→ ab fulfilling the
following conditions is called a ring:
i) R is an additive abelian group with neutral element 0,
ii) R is a multiplicative monoid with neutral element 1,
iii) and we have distributivity a(b+ c) = (ab)+(ac) and (a+ b)c = (ac)+(bc)
for all a, b, c,∈ R.

If ab = ba holds for all a, b ∈ R then R is called commutative.

For all a ∈ R we have 0a = (0 + 0)a = (0a) + (0a), hence 0a = 0, and similarly
a0 = 0; and we have a+(−1)a = (1+ (−1))a = 0a = 0, hence −a = (−1)a, and
similarly −a = a(−1). Thus for all a, b ∈ R we have −(ab) = (−1)ab = (−a)b
and −(ab) = ab(−1) = a(−b). For all a, b ∈ R such that ab = ba we have the
binomial formula (a+ b)n =

∑n
i=0

(
n
i

)
aibn−i for all n ∈ N.

E. g. let R := {0} with addition and multiplication given by 0 + 0 := 0 and
0 ·0 := 0, respectively, and 1 := 0, then R is a commutative ring, called the zero
ring. Conversely, for any ring R fulfilling 1 = 0 we have a = 1a = 0a = 0 for
all a ∈ R, hence we have R = {0}. Thus for any ring R 6= {0} we have 1 6= 0.

Let R∗ ⊆ R be the group of multiplicative units. Hence for R 6= {0} we have
1 ∈ R∗ ⊆ R \ {0}. A ring R 6= {0} such that R∗ = R \ {0} is called a skew
field or division ring; a commutative skew field is called a field.

A subset S ⊆ R being an additive subgroup and a multiplicative submonoid is
called a subring; in particular we have 1 ∈ R. The pair S ⊆ R is called a ring
extension. Similarly we have sub(skew)fields and (skew) field extensions;
e. g. Z ⊆ Q is a ring extension and Q ⊆ R ⊆ C are field extensions.

If R and S are rings, a map ϕ : R → S which is homomorphism of additive
groups and a homomorphism of multiplicative monoids is called a (ring) ho-
momorphism; in particular we have 1ϕ = 1 and thus im(ϕ) ⊆ S is a subring.

For the kernel ker(ϕ) := ϕ−1({0}) = {a ∈ R; aϕ = 0} we have ker(ϕ) ≤ R
as additive groups. If S 6= {0} then from 1ϕ = 1 we deduce that 1 6∈ ker(ϕ),
hence ker(ϕ) ⊆ R in general is not a subring. For all a ∈ R and b ∈ ker(ϕ) we
have (ab)ϕ = aϕ · bϕ = aϕ · 0 = 0 and (ba)ϕ = bϕ · aϕ = 0 · aϕ = 0, implying
R ker(ϕ)R ⊆ ker(ϕ), thus fulfilling the following:

b) An additive subgroup I ≤ R such that RIR := {abc ∈ R; a, c ∈ R, b ∈ I} ⊆ I
is called an ideal of R; we write I E R, and if R is commutative then RIR =
RI = IR. E. g. we have {0}ER and RER; if R 6= {0} and these are the only
ideals of R, then R is called simple.

Let {IiER; i ∈ I}, where I 6= ∅ is an index set. Then I :=
⋂
i∈I IiER is an ideal.

Hence for a subset S ⊆ R let 〈S〉 = 〈S〉R :=
⋂{IER;S ⊆ I}ER be the smallest

ideal of R containing S, being called the ideal generated by S. For S 6= ∅ the
ideal 〈S〉 consists of all finite sums of elements of RSR := {asb ∈ R; a, b ∈ R, s ∈
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S}; hence we also write 〈S〉 =
∑
s∈S RsR, and if S = {s1, . . . , sn} is finite we

also write 〈S〉 = 〈s1, . . . , sn〉 = Rs1R + · · ·+RsnR.

Given I, J E R, then I + J := 〈I, J〉 = {a + b ∈ R; a ∈ I, b ∈ J} E R is called
their sum, where I ∪ J ⊆ I + J , and 〈IJ〉 E R consisting of all finite sums
of elements of IJ := {ab ∈ R; a ∈ I, b ∈ J} is called their product, where
〈IJ〉 ⊆ I ∩ J . Given a ∈ R, the ideal 〈a〉 = RaR E R is called the associated
principal ideal. E. g. we have 〈∅〉 = 〈0〉 = {0} and 〈1〉 = R, and for n ∈ Z we
have 〈n〉 = nZ E Z.

(3.2) Homomorphism Theorem. Let R be a ring, and let I ER.
a) R/I is a ring with respect to (a+ I)(b + I) := ab+ I for all a, b ∈ R, called
the associated quotient ring, and the natural map νI : R → R/I : a 7→ a + I
is an epimorphism such that ker(νI) = I.
b) Let ϕ : R→ S be a homomorphism such that I ⊆ ker(ϕ). Then the induced
map ϕI : R/I → S : a + I 7→ aϕ is a homomorphism such that ker(ϕI) =
ker(ϕ)/I, yielding a factorisation ϕ = νIϕ

I . In particular, ϕker(ϕ) : R/ ker(ϕ)→
im(ϕ) is an isomorphism.

Proof. a) b) By the homomorphism theorem for groups we only have to show
that multiplication on R/I is well-defined: For c, c′ ∈ I we have (a+c)(b+c′) =
ab+ ac′ + cb+ cc′ ∈ ab+ I. ♯

(3.3) Corollary: Isomorphism Theorems. Let R be a ring, and let I ER.
a) Let S ⊆ R be a subring and JER such that J ⊆ I. Then we have S/(S∩I) ∼=
(S + I)/I and (R/J)/(I/J) ∼= R/I.
b) The map Φ: {J E R; I ⊆ J} → {Q E R/I} : J 7→ JνI = (J + I)/I is an
inclusion-preserving bijection with inverse Φ−1 : Q 7→ ν−1

I (Q). If |R/I| is finite
then Φ and Φ−1 preserve cardinalities of quotient rings.

(3.4) Maximal ideals. Let R be a ring and I E R. Then I ∩R∗ 6= ∅ implies
R ⊆ RIR ⊆ I ⊆ R and hence I = R, thus we have I⊳R if and only if I∩R∗ = ∅.
An ideal I ⊳ R is called maximal, if for any ideal I ⊆ J ⊳ R we already have
I = J . Thus an ideal I ER is maximal if and only if R/I is simple.

Hence any skew field K is a simple ring; and since for any homomorphism
ϕ : K → R we have ker(ϕ)EK, we conclude that either ker(ϕ) = K or ker(ϕ) =
{0}, i. e. either ϕ = 0 or ϕ is injective. Conversely, any commutative simple
ring R is a field: For any 0 6= a ∈ R we have {0} 6= aRER, hence R = aR, and
thus there is b ∈ R such that ab = 1, hence a ∈ R∗. Thus if R is commutative,
then an ideal I ER is maximal if and only if R/I is a field; in particular R is a
field if and only if I ⊳R is maximal.

E. g. let K be a field. Then Maps(K,K) becomes is a commutative ring with re-
spect to pointwise addition and multiplication f+g : K → K : x 7→ f(x)+g(x)
and fg : K → K : x 7→ f(x)g(x), respectively, for all f, g ∈ Maps(K,K), where
the neutral elements are K → K : x 7→ 0 and K → K : x 7→ 1, respectively. For
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any subset U ⊆ K we have IU := {f ∈ Maps(K,K); f(U) = {0}}EMaps(K,K),
where U ⊆ V ⊆ K implies IV ⊆ IU . Then Ix := I{x} E Maps(K,K) is maximal
for any x ∈ K: Let νx : Maps(K,K) → K : f 7→ f(x) be the natural evalu-
ation map. Then νx is an epimorphism such that ker(νx) = Ix, and hence
Maps(K,K)/Ix ∼= K is a field, implying that Ix ⊳ Maps(K,K) is maximal.

(3.5) Zorn’s Lemma. Let X be a set, let ≤ be a partial order on X , i. e. ≤
is a reflexive, antisymmetric and transitive relation on X , and let Y ⊆ X . Then
Y is called totally ordered, if for all y, y′ ∈ Y we have y ≤ y′ or y′ ≤ y. An
element x ∈ X such that y ≤ x for all y ∈ Y is called an upper bound for Y .
An element y ∈ Y such that for any y′ ∈ Y such that y ≤ y′ we already have
y = y′ is called a maximal element of Y .

E. g. if M is a set, then its power set is partially ordered by inclusion ⊆. In
particular, if R is a ring then the set {I ⊳R} is partially ordered by inclusion,
and an ideal of R is maximal if and only if it is a maximal element of {I ⊳R}.
We have Zorn’s Lemma, actually being equivalent to the Axiom of Choice: If
X 6= ∅ is a partially ordered set, such that any totally ordered subset of X has
an upper bound in X , then X has a maximal element.

(3.6) Theorem. Let R be a ring and I ⊳ R. Then there is a maximal ideal
P ⊳R such that I ⊆ P . In particular any ring R 6= {0} has a maximal ideal.

Proof. Let X := {J ⊳R; I ⊆ J}. Hence I ∈ X 6= ∅, and X is partially ordered
by inclusion. Let ∅ 6= Y ⊆ X be totally ordered, and let M :=

⋃
J∈Y J ⊆ R.

Then I ⊆ M ⊳ R: Let J ⊆ J ′ ∈ Y, and a ∈ J and b ∈ J ′. Hence we have
RaR ⊆ J ⊆M and a− b ∈ J ′ ⊆M , implying M ER. Since 1 6∈ J for all J ∈ Y,
we have 1 6∈ M ⊂ R. Hence M ∈ X is an upper bound for Y, and by Zorn’s
Lemma X has a maximal element. ♯

(3.7) Integral domains. Let R 6= {0} be a commutative ring. Then a ∈ R is
called a divisor of b ∈ R, and b is called a multiple of a, if there is c ∈ R such
that ac = b; we write a | b, and we have a | b if and only if bR ⊆ aR ER. We
have a | 0 and a | a, and u | a for all u ∈ R∗. Since aR = R if and only if
a ∈ R∗, we have a | u, for any u ∈ R∗, if and only if a ∈ R∗.

An element 0 6= a ∈ R such that there is 0 6= b ∈ R such that ab = 0 is called
a zero-divisor in R. If R does not contain any zero-divisors, i. e. if ab = 0
implies a = 0 or b = 0, for all a, b ∈ R, then R is called an integral domain.
Thus if 0 6= a ∈ R then ab = ac implies a(b − c) = 0 and hence b = c, for all
b, c ∈ R. If a ∈ R∗ then from ab = 0, for any b ∈ R, we get b = a−1ab = 0,
hence a ∈ R is not a zero-divisor. In particular any field, and thus any subring
of a field, is an integral domain; e. g. Z is an integral domain.

An ideal I ⊳R is called a prime ideal, if ab ∈ I implies a ∈ I or b ∈ I, for all
a, b ∈ R. Hence an ideal IER is prime if and only if R/I is an integral domain;
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in particular R is an integral domain if and only if {0} ⊳ R is prime. If I ⊳ R
is maximal, then R/I is a field, thus an integral domain, hence I ⊳R is prime.

E. g. let n ∈ Z \ {0, 1} be squarefree, i. e. in the factorisation of n any prime
occurs at most once, see (4.4). Let

√
n ∈ R≥0 ⊆ C if n > 0, and

√
n :=√

−1 ·
√
|n| ∈ C if n < 0, where

√
−1 ∈ C is the imaginary unit. Let Z[

√
n] :=

{a+b√n ∈ C; a, b ∈ Z}; for n = −1 the elements of Z[
√
−1] are called Gaussian

integers. Then Z[
√
n] ⊆ C is a subring, thus an integral domain.

(3.8) Fields of fractions. Let R be an integral domain, and let the relation ∼
on R× (R \ {0}) be defined by [a, b] ∼ [a′, b′] if and only if ab′ = a′b ∈ R. Then
∼ is an equivalence relation, where we only have to show transitivity: Letting
[a, b] ∼ [a′, b′] and [a′, b′] ∼ [a′′, b′′], then ab′ = a′b and a′b′′ = a′′b′ imply
ab′b′′ = a′bb′′ = a′′b′b, thus b′ 6= 0 implies ab′′ = a′′b, hence [a, b] ∼ [a′′, b′′].

For a, b ∈ R such that b 6= 0 let a
b := [a, b]/∼ ⊆ R × (R \ {0}) denote the

associated equivalence class, and letQ(R) := {ab ⊆ R×(R\{0}); a, b ∈ R, b 6= 0};
be the set of all equivalence classes; e. g. we have Q(Z) = Q. Then Q(R) is a
field, called the field of fractions of R:

By a
b + c

d := ad+bc
bd and a

b · cd := ac
bd , for all a, b, c, d ∈ R such that b, d 6= 0, we get

an addition and a multiplication on Q(R), respectively: If a
b = a′

b′ and c
d = c′

d′

for a′, b′, c′, d′ ∈ R such that b′, d′ 6= 0, then we have ab′ = a′b and cd′ = c′d,
and thus (ad + bc)b′d′ − (a′d′ + b′c′)bd = ab′dd′ + bb′cd′ − a′bdd′ − c′dbb′ = 0
and acb′d′ − a′c′bd = ab′cd′ − a′bc′d = 0. Then Q(R) is abelian additive group
with neutral element 0

1 , the additive inverse of a
b ∈ Q(R) given by −a

b ∈ Q(R),
and a commutative multiplicative monoid with neutral element 1

1 , such that

distributivity holds. For 0
1 6= a

b ∈ Q(R) we have a 6= 0, thus a
b · ba = ab

ab = 1
1 ∈

Q(R) implies a
b ∈ Q(R)∗, where (ab )

−1 = b
a . ♯

The map R → Q(R) : a 7→ a
1 is a monomorphism, hence R ⊆ Q(R) can be

considered as a subring. If S 6= {0} is a commutative ring, and ϕ : R → S is a
homomorphism such that ϕ(R \ {0}) ⊆ S∗, hence in particular ker(ϕ) = {0},
then ϕ uniquely extends to a monomorphism ϕ̂ : Q(R)→ S : ab 7→ aϕ(bϕ)−1; in

particular if R is a field then R ∼= Q(R): If a
b = a′

b′ ∈ Q(R), where a, b, a′, b′ ∈
R and b, b′ 6= 0, then ab′ = a′b ∈ R implies aϕ(b′)ϕ = (a′)ϕbϕ ∈ S, where
bϕ, (b′)ϕ 6= 0, hence aϕ(bϕ)−1 = (a′)ϕ((b′)ϕ)−1 ∈ S. Thus ϕ̂ is well-defined, and
since a

b = a
1 · ( b1 )−1 ∈ Q(R) we conclude that ϕ̂ is uniquely determined by ϕ.

E. g. for n ∈ Z \ {0, 1} squarefree we have Q(Z[
√
n]) ∼= Q(

√
n) := {a+ b

√
n ∈

C; a, b ∈ Q} ⊆ C: Since for a, b ∈ Q such that [a, b] 6= [0, 0] we have 1
a+b

√
n

=
a−b√n

(a+b
√
n)(a−b√n)

= a−b√n
a2−nb2 ∈ C, we conclude that Q(

√
n) ⊆ C is a subfield

containing Z[
√
n], hence we have Q

.∪ {√n} ⊆ Q(Z[
√
n]) ⊆ Q(

√
n).

(3.9) Monoid rings. Let R be a commutative ring, let G be a monoid, and
let R[G] := {ρ : G → R;xρ = 0 for almost all x ∈ G}; the elements of R[G]
can be written as ρ =

∑
x∈G ρxx, where ρx := xρ ∈ R and the sum is indeed



18

finite. For ρ, σ ∈ R[G] we define pointwise addition ρ + σ :=
∑
z∈G(ρz + σz)z

and convolutional multiplication ρσ :=
∑
x∈G

∑
y∈G ρxσyxy. For x ∈ G let

δx : G→ R be given by δx,x = 1 and δx,y = 0 for all x 6= y ∈ G.

Then R[G] is an abelian additive group with neutral element
∑

x∈G 0xx, where
0x := 0 for all x ∈ G. Then R[G] is a multiplicative monoid with neutral
element δ1: For all ρ ∈ R[G] we have δ1ρ = (

∑
x∈G δ1,xx)(

∑
y∈G ρyy) =∑

x∈G
∑

y∈G δ1,xρyxy =
∑
y∈G ρyy = ρ and similarly ρδ1 = ρ. Since convo-

lutional multiplication is associative, R[G] is a multiplicative monoid, and since
distributivity holds, R[G] is a ring, called the monoid ring of G over R.

Since δxδy =
∑

z∈G
∑
z′∈G δx,zδy,z′zz

′ =
∑

z′′∈G δxy,z′′z
′′ = δxy for all x, y ∈ G,

we have a monoid monomorphism G→ R[G] : x 7→ δx. Hence G ⊆ R[G] can be
considered as a submonoid, and convolutional multiplication is by distributivity
determined by multiplication in G; in particular, R[G] is a commutative ring if
and only G is a commutative monoid.

We define a scalar multiplication R[G]×R→ R[G] by ρr :=
∑

x∈G rρxx for
all ρ ∈ R[G] and r ∈ R. This yields a ring monomorphism R→ R[G] : r 7→ δ1r,
hence R ⊆ R[G] can be considered as a subring. If K is a field, then K[G]
becomes a K-vector space having the submonoid G ⊆ K[G] as a K-basis.

(3.10) Polynomial rings. Let X be a variable or indeterminate. The set
{X i; i ∈ N0} = {ǫ,X,XX,XXX, . . .} of words in X , where X0 = ǫ is the
empty word, is a commutative monoid with respect to concatenation of
words, having neutral element X0, being called the free monoid over X .

Let R be a commutative ring. The monoid ring R[X ] := R[{X i; i ∈ N0}] is
called the (univariate) polynomial ring in X over R. The elements f =∑
i≥0 aiX

i ∈ R[X ] are called polynomials, where ai ∈ R is called the i-th
coefficient of f . If f 6= 0 let deg(f) := max{i ∈ N0; ai 6= 0} ∈ N0 be its
degree; polynomials of degree 0, . . . , 3 are called constant, linear, quadratic
and cubic, respectively. Let lc(f) := adeg(f) ∈ R be its leading coefficient; if
lc(f) = 1 then f is called monic.

For g =
∑
j≥0 bjX

j ∈ R[X ] we have fg =
∑
k≥0(

∑k
l=0 albk−l)X

k ∈ R[X ],
Hence for the degree function deg : R[X ] \ {0} → N0 we have either fg = 0,
or f, g 6= 0 and deg(fg) ≤ deg(f) + deg(g). If lc(f)lc(g) 6= 0, then we have
fg 6= 0 where lc(fg) = lc(f)lc(g) and deg(fg) = deg(f) + deg(g).

Hence for any 0 6= f ∈ R[X ] such that lc(f) ∈ R is not a zero-divisor, f ∈ R[X ]
is not a zero-divisor either. Thus, since R ⊆ R[X ] is a subring, R[X ] is an
integral domain if and only if R is; in this case we have R[X ]∗ = R∗. If R is an
integral domain R(X) := Q(R[X ]) is called the field of rational functions in
X over R; hence we have R ⊆ R[X ] ⊆ Q(R)[X ] ⊆ R(X) as subrings, yielding
Q(R[X ]) = Q(Q(R)[X ]) = Q(R)(X) = R(X).

More generally, let X 6= ∅ be set of commuting indeterminates. Then the
set of commutative words in X is a commutative monoid with respect to
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concatenation of words, having the empty word as neutral element, and being
called the free commutative monoid over X . The associated monoid ring
R[X ] is called the associated (multivariate) polynomial ring. For X ∈ X
we have R[X ] ∼= R[X \ {X}][X ], and if R is an integral domain then R[X ] is as
well and R(X ) := Q(R[X ]) is the associated field of rational functions.

(3.11) Proposition. Let R 6= {0} be a commutative ring, let f ∈ R[X ] and
let 0 6= g ∈ R[X ] such that lc(g) ∈ R∗. Then there are uniquely determined
q, r ∈ R[X ], called quotient and remainder, respectively, such that f = qg+r
where r = 0 or deg(r) < deg(g).

Proof. Let qg + r = f = q′g + r′ where q, q′, r, r′ ∈ R[X ] such that r = 0 or
deg(r) < deg(g), and r′ = 0 or deg(r′) < deg(g′). Then we have (q−q′)g = r′−r,
where r′ − r = 0 or deg(r′ − r) < deg(g), and where (q − q′)g = 0 or since
lc(g) ∈ R∗ we have deg((q − q′)g) = deg(g) + deg(q − q′) ≥ deg(g). Hence we
have r′ = r and (q − q′)g = 0, implying q = q′, showing uniqueness.

To show existence, we may assume that f 6= 0 and m := deg(f) ≥ n := deg(g) >
0. We proceed by induction on m ∈ N: Letting f ′ := f − lc(f)lc(g)−1gXm−n ∈
R[X ], the m-th coefficient of f ′ shows that f ′ = 0 or deg(f ′) < m. By induction
there are q′, r′ ∈ R[X ] such that f ′ = q′g+ r′, where r′ = 0 or deg(r′) < deg(g),
hence f = (q′g + r′) + lc(f)lc(g)−1gXm−n = (q′ + lc(f)lc(g)−1Xm−n)g + r′. ♯

The above proof is constructive, leading to the division algorithm for polynomi-
als. E. g. for R := Z and f := 4X5+6X3+X+2 ∈ Z[X ] and g := X2+X+1 ∈
Z[X ] we get f = (4X3 − 4X2 + 6X − 2)g + (−3X + 4) ∈ Z[X ].

(3.12) Roots. a) Let R be a commutative ring, let S be a ring, and let
ϕ : R → S be a homomorphism such that rϕ · s = s · rϕ for all r ∈ R and
s ∈ S; the latter in particular holds if S is commutative. For ξ ∈ S let
ϕξ : R[X ] → S : f =

∑
i≥0 aiX

i 7→ ∑
i≥0 a

ϕ
i ξ

i =: fϕ(ξ) be the associated
evaluation homomorphism; if S is commutative, then ξ ∈ S such that
fϕ(ξ) = 0 is called a root or zero of f in S. In particular, if S is commu-
tative, regarding S ⊆ S[X ] as a subring, we have the evaluation homomorphism
ϕX : R[X ]→ S[X ] :

∑
i≥0 aiX

i 7→∑
i≥0 a

ϕ
i X

i, where ϕX is injective or surjec-
tive if and only if ϕ is injective or surjective, respectively.

For f ∈ R[X ] we have the polynomial map f̂ : S → S : ξ 7→ fϕ(ξ). Then

ϕ̂ : R[X ]→ Maps(S, S) : f 7→ f̂ is a homomorphism, the latter being a ring with
respect to pointwise addition and multiplication. Letting νξ : Maps(S, S) →
S : α 7→ α(ξ) be the natural evaluation homomorphism, we have ϕ̂νξ = ϕξ : f 7→
f̂(ξ) = fϕ(ξ), and ϕ̂ is not necessarily injective, e. g. for R = S = Z/2Z

and f = X2 + X ∈ (Z/2Z)[X ] we have f̂(0) = 0 = f̂(1), hence f̂ = 0 ∈
Maps(Z/2Z,Z/2Z).

b) Let R be an integral domain, let 0 6= f ∈ R[X ] and let a ∈ R. Quotient
and remainder yields f = qa(X − a) + ra, where qa ∈ R[X ] and ra ∈ R. Using
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f(a) = qa(a)(a− a) + ra = ra we conclude that a ∈ R is a root of f if and only
if ra = 0, which holds if and only if X − a | f . If a 6= b ∈ R are roots of f , then
0 = f(b) = qa(b)(b − a) implies that b ∈ R is a root of qa ∈ R[X ], and since
deg(qa) = deg(f)− 1 we by induction conclude that f has at most deg(f) roots

in R. Hence if R is infinite, the map R[X ] → Maps(R,R) : f 7→ f̂ is injective,
thus R[X ] and the ring of polynomial maps R→ R are isomorphic.

Let K be a field, and let G ≤ K∗ be finite. Then we have Artin’s Theorem:
G is cyclic: Given n ∈ N, any element g ∈ G such that |g| | n is a root of
Xn − 1 ∈ K[X ], hence there are at most n of them. Hence G has at most one
subgroup of order n, for all n ∈ N, thus G is cyclic.

4 Factorial and Euclidean rings

(4.1) Divisibility. Let R be an integral domain. Then a, b ∈ R are called
associate, if there is u ∈ R∗ such that b = au ∈ R; we write a ∼ b. We have
a ∼ b if and only if aR = bRER, hence ∼ is an equivalence relation on R: From
a ∼ b we have a | b and b | a, being equivalent to aR = bR, and conversely
if a, b ∈ R such that a | b and b | a, there are u, v ∈ R such that b = au and
a = bv, thus a = auv, implying a(1− uv) = 0, hence a = 0 or uv = 1, where in
the first case a = b = 0, and in the second case u, v ∈ R∗ and a ∼ b.
Let ∅ 6= S ⊆ R be a subset. Then d ∈ R such that d | a for all a ∈ S is called
a common divisor of S; any u ∈ R∗ always is a common divisor of S. If for
all common divisors c ∈ R of S we have c | d, then d ∈ R is called a greatest
common divisor of S. Let gcd(S) ⊆ R be the set of all greatest common
divisors of S. In general greatest common divisors do not exist; if gcd(S) 6= ∅
then it consists of an associate class: If d, d′ ∈ gcd(S), then d | d′ and d′ | d,
hence d ∼ d′. For a ∈ R we have a ∈ gcd(a) = gcd(0, a); elements a, b ∈ R such
that gcd(a, b) = R∗ are called coprime.

An element 0 6= c ∈ R\R∗ is called irreducible or indecomposable, if c = ab
implies a ∈ R∗ or b ∈ R∗ for all a, b ∈ R; otherwise c is called reducible or
decomposable. Hence if c ∈ R is irreducible then all its associates also are.
An element 0 6= c ∈ R \ R∗ is irreducible if and only if cR ⊳ R is maximal
amongst the proper principal ideals of R:

If c ∈ R is irreducible and cR ⊆ aR⊳R for some a ∈ R, then we have c = ab for
some b ∈ R, and since a 6∈ R∗ we conclude b ∈ R∗, thus cR = aR. Conversely,
if cR ⊳ R fulfils the maximality condition and c = ab for some a ∈ R \R∗ and
b ∈ R, then cR ⊆ aR⊳R, hence cR = aR, implying c ∼ a and b ∈ R∗. ♯

An element 0 6= c ∈ R \R∗ is called a prime, if c | ab implies c | a or c | b for
all a, b ∈ R. Hence if c ∈ R is a prime then all its associates also are, and c ∈ R
is a prime if and only if {0} 6= cR⊳R is prime. If c ∈ R is a prime, then c ∈ R
is irreducible: Let c = ab for some a, b ∈ R, where since c | ab we may assume
that c | a, then from a | c we get a ∼ c, hence b ∈ R∗. The converse does not
hold, i. e. an irreducible element in general is not a prime:
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(4.2) Example. Let R := Z[
√
−5] = {a + b

√
−5 ∈ C; a, b ∈ Z}. Then the

norm map N : R → Z : a + b
√
−5 7→ (a + b

√
−5)(a − b

√
−5) = a2 + 5b2 is a

homomorphism of multiplicative monoids, hence we have N(R∗) ⊆ Z∗ = {±1},
thus R∗ = {±1}. We have 2·3 = (1+

√
−5)(1−

√
−5) ∈ R, where 2, 3, 1±

√
−5 ∈

R are irreducible but not primes: Assume that 2 = ab ∈ R, where a, b ∈ R \R∗,
hence we have N(a)N(b) = N(2) = 4, and since N(a), N(b) 6= 1 we conclude
N(a) = N(b) = 2, a contradiction; since N(3) = 9 and N(1 ±

√
−5) = 6 we

for 3 and 1 ±
√
−5 argue similarly. Assume 2 ∈ R is a prime, then we have

2 | 1+
√
−5 or 2 | 1−

√
−5, thus 4 = N(2) | N(1±

√
−5) = 6, a contradiction;

for 3 and 1±
√
−5 we argue similarly.

(4.3) Proposition. Let R be an integral domain. The following are equivalent:
a) Any element 0 6= a ∈ R is of the form a = ǫ ·∏n

i=1 pi ∈ R, where the pi ∈ R
are irreducible, n ∈ N0 and ǫ ∈ R∗, and this representation is unique up to
reordering and taking associates.
b) Any element 0 6= a ∈ R is of the form a = ǫ ·∏n

i=1 pi ∈ R, where the pi ∈ R
are irreducible, n ∈ N0 and ǫ ∈ R∗, and any irreducible element of R is a prime.
c) Any element 0 6= a ∈ R is of the form a = ǫ ·∏n

i=1 pi ∈ R, where the pi ∈ R
are primes, n ∈ N0 and ǫ ∈ R∗.

Proof. a)⇒b) Any irreducible element p ∈ R is a prime: Let a, b ∈ R such
that p | ab, hence there is c ∈ R such that pc = ab. We may assume that
a, b 6∈ R∗, and since p is irreducible we have c 6∈ R∗. Hence let a =

∏
i≥1 ai ∈ R

and b =
∏
j≥1 bj ∈ R as well as c =

∏
k≥1 ck ∈ R, where the ai, bj , ck ∈ R are

irreducible. This yields p ·∏k≥1 ck =
∏
i≥1 ai ·

∏
j≥1 bj ∈ R, where uniqueness

implies p ∼ ai for some i, or p ∼ bj for some j, hence p | a or p | b.
c)⇒a) To show uniqueness let a = ǫ ·∏n

i=1 pi ∈ R, where the pi are primes. We
proceed by induction on n ∈ N0, where we have n = 0 if and only if a ∈ R∗.
Hence let n ≥ 1, and let a =

∏m
j=1 qj ∈ R, where the qj are irreducible and

m ∈ N. Since pn ∈ R is a prime we may assume pn | qm, and since qm ∈ R
is irreducible we have pn ∼ qm. Thus we have ǫ′ ·∏n−1

i=1 pi =
∏m−1
j=1 qj ∈ R for

some ǫ′ ∈ R∗, and we are done by induction. ♯

(4.4) Factorial rings. An integral domain fulfilling the conditions of (4.3) is
called a factorial ring or Gaussian domain. In particular, in factorial rings
the notions of primality and irreducibility coincide.

Let R be factorial, and let P ⊆ R be a set of representatives of the associate
classes of primes in R; these exist by the Axiom of Choice. Then any 0 6= a ∈ R
has a unique factorisation a = ǫa ·

∏
p∈P p

ap , where ǫa ∈ R∗, and ap ∈ N0 are
the associated multiplicities; we have ap = 0 for all almost all p ∈ P , and if
ap ≤ 1 for all p ∈ P then a is called squarefree. Given 0 6= a = ǫa ·

∏
p∈P p

ap ∈
R and 0 6= b ∈ ǫb ·

∏
p∈P p

bp ∈ R, then a and b have greatest common divisors

in R, given as ǫ ·∏p∈P p
min{ap,bp} ∈ R where ǫ ∈ R∗.
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(4.5) Principal ideal domains. An integral domain R such that any ideal of
R is principal is called a principal ideal domain.

Let R be a principal ideal domain, and let p ∈ R be irreducible. Since any ideal
of R is principal, this implies that the maximal proper principal ideal pR ⊳ R
is a maximal ideal, and thus a prime ideal, hence p ∈ R is a prime. Thus for
principal ideal domains the notions of primality and irreducibility coincide, and
p ∈ R is a prime if and only if R/pR is a field.

Let ∅ 6= S ⊆ R. Then for d ∈ R we have d ∈ gcd(S) if and only if dR = 〈S〉ER;
in particular, there are a1, . . . , an ∈ S and Bézout coefficients c1, . . . , cn ∈ R
such that d =

∑n
i=1 aici ∈ R: Let dR = 〈S〉ER. Hence there are a1, . . . , an ∈ S

and c1, . . . , cn ∈ R such that d =
∑n

i=1 aici ∈ R. Thus for any b ∈ R such that
b | a for all a ∈ S we have b | d. Since aR ⊆ dR, i. e. d | a, for all a ∈ S,
we have d ∈ gcd(S). Let conversely d ∈ gcd(S), then letting c ∈ R such that
〈S〉 = cR, we by the above have c ∈ gcd(S), thus d ∼ c, hence dR = cR.

E. g. since the ideals of Z coincide with its additive subgroups, Z is a prin-
cipal ideal domain. Hence for any prime p ∈ N there is the prime field
GF(p) = Fp := Z/pZ having p elements. For n ∈ N we have the group of
prime residues (Z/nZ)∗ = {x ∈ Z/nZ; gcd(x, n) = {±1}}, where gcd(x, n) is
independent of the chosen representative x.

(4.6) Theorem. Let R be a principal ideal domain. Then R is factorial.

Proof. Let S := {a ∈ R\(R∗ .∪ {0}); a is not product of irreducible elements},
and assume that S 6= ∅. Then X := {aR⊳R; a ∈ S} 6= ∅ has a maximal element:
Let ∅ 6= Y ⊆ X be totally ordered, and let I :=

⋃
J∈Y J ⊆ R. Then we have

{0} 6= I ⊳R, thus there is b ∈ S such that I = bR ∈ Y ⊆ X is an upper bound
for Y. Thus by Zorn’s Lemma there is a maximal element aR ∈ X , for some
a ∈ S. Since a ∈ R is reducible, there are b, c ∈ R \R∗ such that a = bc. Since
aR ⊂ bR, cR ⊳ R, the maximality of aR ∈ X implies that both b, c ∈ R \ S,
hence a = bc ∈ R \ S is a product of irreducible elements, a contradiction. ♯

(4.7) Euclidean rings. An integral domain R is called an Euclidean ring,
if there is a degree function δ : R \ {0} → N0 fulfilling: For all a, b ∈ R such
that b 6= 0 there are q, r ∈ R, such that b = qa+ r where r = 0 or δ(r) < δ(b).

E. g. Z is Euclidean with respect to Z \ {0} → N0 : z 7→ |z|, any field K is
Euclidean with respect to K \ {0} → N0 : x 7→ 0, and K[X ] is Euclidean with
respect to K[X ] \ {0} → N0 : f 7→ deg(f). All these fulfil δ(a) ≤ δ(ab) for all
0 6= a, b ∈ R, and δ(a) < δ(ab) if additionally b 6∈ R∗.

This additional condition can always be fulfilled: Letting δ′ : R\{0} → N0 : a 7→
min{δ(ab) ∈ N0; 0 6= b ∈ R}, we have δ′(a) ≤ δ′(ab) for all 0 6= a, b ∈ R, and
δ′ is a degree function: For a ∈ R and 0 6= b ∈ R, letting 0 6= c ∈ R such
that δ′(b) = δ(cb), there are q, r ∈ R such that a = qcb + r where r = 0 or
δ′(r) ≤ δ(r) < δ(cb) = δ′(b).
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(4.8) Theorem. Let R be Euclidean. Then R is a principal ideal domain.

Proof. Let {0} 6= I E R, then using the degree function δ we have δ(I) :=
{δ(a) ∈ N0; 0 6= a ∈ I} 6= ∅, thus there is 0 6= b ∈ I such that δ(b) ∈ δ(I) is
minimal. For a ∈ I let q, r ∈ R such that a = qb+ r where r = 0 or δ(r) < δ(b).
Assume that r 6= 0, then r = a− qb ∈ I contradicts the minimality of b. Hence
we have r = 0, implying b | a and I = bR. ♯

(4.9) Extended Euclidean algorithm. Let R be Euclidean with respect to
the degree function δ : R\{0} → N0, and let a, b ∈ R such that a 6= 0. A greatest
common divisor r ∈ R and Bézout coefficients s, t ∈ R such that r = as+bt ∈ R
are computed as follows; leaving out the computation of the si, ti ∈ R just yields
a greatest common divisor:

• r0 ← a, r1 ← b, i← 1
◦ s0 ← 1, t0 ← 0, s1 ← 0, t1 ← 1
• while ri 6= 0 do

• [qi, ri+1]← QuotRem(ri−1, ri) # quotient and remainder

# qi, ri+1 ∈ R such that ri+1 = ri−1 − qiri where ri+1 = 0 or δ(ri+1) < δ(ri)
◦ si+1 ← si−1 − qisi, ti+1 ← ti−1 − qiti
• i← i+ 1

• r ← ri−1

◦ s← si−1, t← ti−1

• return [r, s, t]

Since δ(ri) > δ(ri+1) ≥ 0 for i ∈ N, there is l ∈ N such that rl 6= 0 and
rl+1 = 0, hence the algorithm terminates. We have ri = asi + bti for all
i ∈ {0, . . . , l + 1}, hence it remains to show that rl ∈ gcd(a, b) = gcd(r0, r1):
Let c ∈ gcd(r0, r1). Then for all i ∈ {1, . . . , l} we by induction have c | ri−1, ri
and thus c | ri−1 − qiri = ri+1, hence in particular c | rl. Conversely, since
rl+1 = 0, for all i ∈ {l, l− 1, . . . , 1} we by induction have rl | ri+1, ri and thus
rl | qiri + ri+1 = ri−1, hence in particular rl | r0, r1, thus rl | c. ♯

(4.10) Example. a) For R := Z and a := 126 and b := 35 the following shows
that d := 7 ∈ gcd(a, b) and that d = 2a− 7b:

i qi ri si ti

0 126 1 0
1 3 35 0 1
2 1 21 1 −3
3 1 14 −1 4
4 2 7 2 −7
5 0 −5 18

b) For R := Q[X ] and f := 3X3 − 7X2 + 5X − 1 and g := −6X2 + 5X − 1 the
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following shows that h := 3X − 1 ∈ gcd(f, g) and that h = 4f + (2X − 3)g:

i qi ri si ti

0 3X3 − 7X2 + 5X − 1 1 0
1 − 1

2X + 3
4 −6X2 + 5X − 1 0 1

2 −8X + 4 3
4X − 1

4 1 1
2X − 3

4
3 0 8X − 4 4X2 − 8X + 4

(4.11) Example. For n ∈ {−2,−1, 2, 3} the ring R := Z[
√
n] is Euclidean with

respect to the degree function R \ {0} → N0 : z 7→ |N(z)|, where N : Q(R) =
Q(
√
n) → Q : a+ b

√
n 7→ (a+ b

√
n)(a − b√n) = a2 − nb2 is the norm map; in

particular we have N(z) = 0 if and only if z = 0, and R∗ = {z ∈ R; |N(z)| = 1}.
Let u := a + b

√
n ∈ R and 0 6= v := c + d

√
n ∈ R, where a, b, c, d ∈ Z. Let

uv−1 = s+ t
√
n ∈ Q(

√
n) for some s, t ∈ Q, let x, y ∈ Z such that |s− x| ≤ 1

2
and |t − y| ≤ 1

2 , and let q := x + y
√
n ∈ R and r := u − qv ∈ R. Hence we

have r = v(uv−1 − q) = v((s − x) + (t − y)√n), and since |(s − x)2 − n(t −
y)2| ≤ 1

4 + 2 · 1
4 < 1 for |n| ≤ 2, and − 3

4 ≤ (s − x)2 − 3(t − y)2 ≤ 1
4 for

n = 3, we from N being a homomorphism of multiplicative monoids obtain
|N(r)| = |N(v)| · |(s− x)2 − n(t− y)2| < |N(v)|. ♯

(4.12) Theorem. Let p ∈ N be a prime such that p ≡ 1 (mod 4). Then there
are a, b ∈ N such that p = a2 + b2.

Proof. Since Z/pZ is a field, we have ϕ(p) = |(Z/pZ)∗| = p − 1, and thus by
Lagrange’s Theorem we for all 0 6= x ∈ Z/pZ have xp−1 = 1 ∈ Z/pZ, implying
the Euler-Fermat Theorem xp = x ∈ Z/pZ for all x ∈ Z/pZ.

Let R := Z[
√
−1] and let : R → R/pR be the natural homomorphism. Hence

for z = x + y
√
−1 ∈ R, where x, y ∈ Z, we have zp = (x+ y

√
−1)p =∑p

k=0

(
p
k

)
xk(y
√
−1)p−k ∈ R/pR. Since

(
p
k

)
∈ pZ ⊆ pRER for k ∈ {1, . . . , p−1},

we have zp = xp + yp
√
−1

p ∈ R/pR. Since from p ≡ 1 (mod 4) we get√
−1

p
=
√
−1, and from xp ≡ x (mod p) we get xp = x ∈ R/pR and simi-

larly yp = y ∈ R/pR, we conclude zp = x+ y
√
−1 = z ∈ R/pR.

From pR = {x + y
√
−1 ∈ R, x, y ∈ pZ} we get |R/pR| = p2, hence p 6∈ R∗.

Assume that p ∈ R is irreducible, then R/pR is a field, hence |(R/pR)∗| = p2−1,
a contradiction. Thus p ∈ R is reducible, hence there is an irreducible element
z = a + b

√
−1 | p ∈ R, where a, b ∈ Z. Thus 1 6= N(z) = a2 + b2 ∈ Z is a

proper divisor of N(p) = p2 ∈ Z, hence a2 + b2 = p. ♯

(4.13) Primitivity. a) Let R be factorial, and let 0 6= f =
∑n
i=0 aiX

i ∈ R[X ].
Then c(f) ∈ gcd(a0, . . . , an) ⊆ R\{0} is called a content of f , and if c(f) ∈ R∗

then f is called primitive. In particular, if f is monic then it is primitive, thus
if R is a field then all non-zero polynomials are primitive.
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For all a ∈ R we have c(af) ∼ ac(f) ∈ R. Thus letting ai = a′ic(f) ∈ R for
suitable a′i ∈ R we have gcd(a′0, . . . , a

′
n) = R∗, and letting f ′ :=

∑n
i=0 a

′
iX

i ∈
R[X ] we have f = c(f)f ′ ∈ R[X ] where f ′ ∈ R[X ] is primitive. If af ′ = bf ′′ ∈
R[X ], where 0 6= a, b ∈ R and f ′, f ′′ ∈ R[X ] are primitive, then a ∼ ac(f ′) ∼
bc(f ′′) ∼ b ∈ R, and thus f ′ ∼ f ′′ ∈ R[X ]. Hence the primitive part f ′ ∈ R[X ]
is uniquely determined up to taking associates; we have deg(f) = deg(f ′) and
if f ∈ R[X ] is not primitive then f ∈ R[X ] is reducible.

b) Let K := Q(R), and let 0 6= f =
∑n
i=0

ri
si
·X i ∈ K[X ], where ri, si ∈ R are

coprime and si 6= 0, for all i ∈ {0, . . . , n}. Letting d(f) :=
∏n
i=0 si ∈ R we have

f̃ := d(f)f =
∑n

i=0(
∏
j 6=i sj) · riX i ∈ R[X ] ⊆ K[X ]. Let c(f) := c(f̃) ∈ R be a

content of f̃ ∈ R[X ] and f ′ ∈ R[X ] be primitive such that f̃ = c(f)f ′ ∈ R[X ],

then we have f = c(f)
d(f) ·f ′ ∈ K[X ]. If f = c

d ·f ′ = a
b ·f ′′ ∈ K[X ], where a, b, c, d ∈

R such that b, d 6= 0 and f ′, f ′′ ∈ R[X ] are primitive, then cbf ′ = adf ′′ ∈ R[X ],
hence cb ∼ ad ∈ R and f ′ ∼ f ′′ ∈ R[X ]. Hence the primitivisation f ′ ∈ R[X ]
is uniquely determined up to taking associates; we have deg(f) = deg(f ′).

(4.14) Lemma: Gauß. Let R be factorial, and let f, g ∈ R[X ] be primitive.
Then fg ∈ R[X ] is primitive as well.

Proof. Let p ∈ R be a prime, hence pR ⊳ R is prime. Then {0} 6= pR[X ] =
{∑i≥0 aiX

i ∈ R[X ]; p | ai for all i ≥ 0}⊳R[X ] is prime as well; the following

proof is valid for arbitrary integral domains: Let h =
∑

i≥0 aiX
i ∈ R[X ]\pR[X ]

and h̃ =
∑

i≥0 biX
i ∈ R[X ] \ pR[X ], and let k, l ∈ N0 be minimal such that

ak 6∈ pR and bl 6∈ pR. Hence the (k + l)-th coefficient of hh̃ ∈ R[X ] is given as

(
∑k−1

i=0 aibk+l−i) + akbl + (
∑l−1

i=0 ak+l−ibi) ∈ R, where the bracketed terms are

elements of pR, while akbl 6∈ pR, thus hh̃ 6∈ pR[X ] as well.

Assume that c(fg) 6∈ R∗. Since R is factorial there is a prime p ∈ R such that
p | c(fg), thus all coefficients of fg are elements of pR, hence fg ∈ pR[X ]. Thus
we may assume that f ∈ pR[X ], implying that p | c(f) ∈ R, a contradiction. ♯

(4.15) Theorem. Let R be factorial, let K := Q(R) and f ∈ R[X ] \R. Then
f is irreducible in R[X ] if and only if f is primitive and irreducible in K[X ].

Proof. Let f be reducible in R[X ]. We may assume that f is primitive, hence
there are g, h ∈ R[X ] \R such that f = gh. Thus g, h ∈ K[X ] \K∗, and hence
f is reducible in K[X ].

Let conversely f be irreducible in R[X ], hence f is primitive, and assume that
there are g, h ∈ K[X ] \ K∗ such that f = gh ∈ K[X ]. Hence there are
c(g), d(g), c(h), d(h) ∈ K such that d(g), d(h) 6= 0 and g′, h′ ∈ R[X ] \ R prim-

itive such that g = c(g)
d(g) · g′ ∈ K[X ] and h = c(h)

d(h) · h′ ∈ K[X ]. Thus we have

d(g)d(h)f = c(g)c(h)g′h′ ∈ R[X ], and since by Gauß’s Lemma g′h′ ∈ R[X ]
is primitive we infer d(g)d(h)c(f) ∼ c(g)c(h) ∈ R. Thus we have d(g)d(h) |
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c(g)c(h) ∈ R, hence letting c := c(g)c(h)
d(g)d(h) ∈ R we have f = cg′h′ ∈ R[X ],

implying that f is reducible in R[X ], a contradiction. ♯

(4.16) Theorem: Gauß. Let R be an integral domain. Then R[X ] is factorial
if and only if R is.

Proof. We only have to show that R[X ] is factorial whenever R is. Hence let
R be factorial, then any 0 6= f ∈ R[X ] is a product of irreducible elements: Let
K := Q(R), and let f = c ·∏n

i=1 pi ∈ K[X ] be a factorisation in the factorial
ring K[X ], where c ∈ K∗ and n ∈ N0. Hence we have f = c′ ·∏n

i=1 p
′
i ∈ R[X ],

where c′ ∈ R and the p′i ∈ R[X ] \ R are primitive. Since p′i ∼ pi ∈ K[X ] is
irreducible in K[X ], we conclude that p′i is irreducible in R[X ], and since R is
factorial c′ is a product of irreducible elements of R.

For uniqueness let 0 6= f = c ·∏n
i=1 pi = d ·∏m

j=1 qj ∈ R[X ], where c, d ∈ R and
the pi, qj ∈ R[X ] \ R are irreducible in R[X ], hence primitive. Thus c, d ∈ K∗

and the pi, qj ∈ K[X ] are irreducible in K[X ]. Since K[X ] is factorial we have
n = m, and we may assume pi ∼ qi ∈ K[X ] for all i ∈ {1, . . . , n}. Thus using
the primitivisations p′i, q

′
i ∈ R[X ] we infer pi ∼ p′i ∼ q′i ∼ qi ∈ R[X ]. Hence

c ∼ d ∈ R as well, uniqueness following from R being factorial. ♯

(4.17) Theorem: Eisenstein. Let R be factorial, and let f =
∑n
i=0 aiX

i ∈
R[X ] be primitive such that deg(f) = n ∈ N. If there is a prime p ∈ R such that
p 6 | an, and p | ai for all i ∈ {0, . . . , n− 1}, and p2 6 | a0, then f is irreducible.

Proof. Let f = gh where g =
∑k
i=0 biX

i ∈ R[X ] and h =
∑l

i=0 ciX
i ∈ R[X ]

such that deg(g) = k and deg(h) = l, hence k + l = n. Thus we have p | a0 =
b0c0, hence we may assume that p | b0 and thus p 6 | c0. We have an = bkcl and
thus p 6 | bk. Hence let m ∈ {1, . . . , k} be minimal such that p 6 | bm. Thus for
am = bmc0+

∑m
i=1 bm−ici we have p 6 | bmc0, while p | bm−ici for i ∈ {1, . . . ,m},

hence p 6 | am, implying n = m ≤ k = deg(g) ≤ n = deg(f). Thus we have
deg(h) = l = 0, and since f is primitive we conclude h ∈ R∗ = R[X ]∗. ♯

(4.18) Irreducibility. Let R and S be integral domains, let ϕ : R → S be a
homomorphism, and let ϕX : R[X ] → S[X ] : f 7→ fϕ be the associated evalu-
ation homomorphism. Let f ∈ R[X ] \ R be primitive such that fϕ ∈ S[X ] is
irreducible and deg(fϕ) = deg(f); in particular the degree condition holds if
lc(f) ∈ R∗. Then f ∈ R[X ] is irreducible: Assume that there are g, h ∈ R[X ]
such that f = gh ∈ R[X ]. Then we have fϕ = gϕhϕ ∈ S[X ]. Since deg(f) =
deg(fϕ) = deg(gϕ) + deg(hϕ) ≤ deg(g) + deg(h) = deg(f) we conclude that
deg(gϕ) = deg(g) ≥ 1 and deg(hϕ) = deg(h) ≥ 1, a contradiction.

No assertion is made if fϕ ∈ S[X ] is reducible. Since R ⊆ Q(R) is a subring,
the ‘if’ part of (4.15) is a particular case of the above observation. Another
special case is given as follows: Let a ∈ R∗ and b ∈ R∗. Then the evaluation
homomorphism ϕaY+b : R[X ] → R[Y ] : X 7→ aY + b is an isomorphism with
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inverse ϕa−1(X−b) : R[Y ] → R[X ] : Y 7→ a−1(X − b), hence f(X) ∈ R[X ] is
irreducible if and only if f(aY + b) ∈ R[Y ] is irreducible; ϕg : R[X ] → R[Y ] is
injective for any g ∈ R[Y ], if ϕg is surjective then g is linear with lc(g) ∈ R∗.

(4.19) Example. a) Let k ∈ N, let n ∈ Z \ {−1, 0, 1} be squarefree, and let
f := Xk − n ∈ Z[X ]. The Eisenstein Criterion for any prime p | n implies
the irreducibility of f in Z[X ], hence in Q[X ]; in particular for k, n ≥ 2 we
have k

√
n ∈ R \ Q. For k ≥ 2 and p | n, using the natural homomorphism

= νp : Z→ Fp, the reduced polynomial f = Xk ∈ Fp[X ] is reducible.

Let g := X4 − 1 ∈ Z[X ]. Since ±1 ∈ Z are roots of g, we have the factorisation
g = (X − 1)(X + 1)(X2 + 1) ∈ Z[X ], where h := X2 + 1 ∈ Z[X ] is irreducible:
Reducing modulo p = 3 the polynomial h = X2 + 1 ∈ F3[X ] has no root in F3,
thus is irreducible in F3[X ].

b) Let p ∈ N be a prime, and let Φp :=
∑p−1

i=0 X
i ∈ Z[X ] be the p-th cy-

clotomic polynomial. Hence we have Xp − 1 = (X − 1)Φp ∈ Z[X ], where
Φp ∈ Z[X ] is irreducible: Using the isomorphism ϕX+1 : Z[X ] → Z[X ] we get

X · Φp(X + 1) = (X + 1)p − 1 = −1 +
∑p
i=0

(
p
i

)
X i = X ·∑p−1

i=0

(
p
i+1

)
X i, im-

plying Φp(X + 1) =
∑p−1
i=0

(
p
i+1

)
X i ∈ Z[X ]. Since

(
p
p

)
= 1, and p |

(
p
i+1

)
for all

i ∈ {0, . . . , p− 2}, and
(
p
1

)
= p, the Eisenstein Criterion for the prime p implies

the irreducibility of Φp(X + 1) ∈ Z[X ].

5 Field extensions

(5.1) Field extensions. Let K ⊆ L be a field extension; we also write L/K.
Let S ⊆ L be a subset, then K ⊆ K(S) :=

⋂{M ⊆ L field extension;K ∪ S ⊆
M} ⊆ L is the smallest subfield of L containing K ∪S, being called the subfield
obtained by adjoining S to K; if S = {s1, . . . , sn} is finite, we also write
K(S) = K(s1, . . . , sn). The field extension L/K is called simple, if there is
a ∈ L such that L = K(a), then a ∈ L is called a primitive element.

The field L being a K-vector space, the K-dimension [L : K] = deg(L/K) :=
dimK(L) ∈ N

.∪ {∞} is called the degree of L/K. If [L : K] ∈ N then L/K is
called finite, otherwise infinite.

E. g. we have Q ⊆ R ⊆ C, and since {1,
√
−1} ⊆ C is an R-basis we have

[C : R] = 2, while R/Q is infinite. We have the field extension K ⊆ K(X) =
Q(K[X ]), and since K[X ] ≤ K(X) as K-vector spaces, where {X i; i ∈ N0} ⊆
K[X ] is K-linearly independent, we conclude that K(X)/K is infinite.

(5.2) Proposition. Let L/K be a field extension and let V be an L-vector
space. Then we have dimK(V ) = [L : K] · dimL(V ); in particular if dimK(V ) is
finite then dimL(V ) | dimK(V ) and [L : K] | dimK(V ).

In particular, if K ⊆ L ⊆M is a field extension then [M : K] = [M : L] · [L : K],
and if M/K is finite then [M : L] | [M : K] and [L : K] | [M : K].
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Proof. We may assume that V 6= {0}. If either of dimL(V ) or [L : K] is
infinite, then dimK(V ) is infinite as well. Thus we may assume that both
m := dimL(V ) ∈ N and n := [L : K] ∈ N. Let A := {a1, . . . , an} ⊆ L be a
K-basis, and let B := {b1, . . . , bm} ⊆ V be an L-basis. Then C := {bjai ∈ V ; i ∈
{1, . . . , n}, j ∈ {1, . . . ,m}} ⊆ V is a K-basis:

Any v ∈ V can be written as v =
∑m

j=1 bjcj where cj ∈ L. For all j ∈ {1, . . . ,m}
we have cj =

∑n
i=1 aiaji where aji ∈ K. Hence we have v =

∑m
j=1

∑n
i=1 bjaiaji,

thus C ⊆ V is a K-generating set. If aji ∈ K such that
∑m
j=1

∑n
i=1 bjaiaji = 0,

then by the L-linear independence of B we have
∑n

i=1 aiaji = 0 for all j ∈
{1, . . . ,m}, and thus by the K-linear independence of A we have aji = 0 for all
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, hence C is K-linearly independent. ♯

(5.3) Prime fields. Let K be a field. Then the prime field P (K) :=
⋂{M ⊆

K field extension} ⊆ K is the unique smallest subfield of K.

Let ϕK : Z→ K : n 7→ n · 1 be the natural homomorphism. Since Z/ ker(ϕK) ∼=
im(ϕK) ⊆ K is an integral domain, pZ := ker(ϕK) ⊳ Z is prime, hence p = 0
or p ∈ Z is a prime. Then char(K) := p ≥ 0 is called the characteristic of
K; e. g. we have char(Q) = char(R) = char(C) = 0 and char(Fp) = p; thus any
prime p ∈ N occurs as a characteristic of some field. Any finite field has prime
characteristic, thus fields of characteristic 0 are infinite.

Let L/K be a field extension. Since im(ϕK) ⊆ P (K) as rings, we have im(ϕK) =
im(ϕL) ⊆ P (K) = P (L), hence char(K) = char(L); e. g. we have P (K) =
P (K(X)) and char(K) = char(K(X)), thus Fp(X) is an infinite field of charac-
teristic p. If char(K) = p > 0 then we have im(ϕK) ∼= Z/ ker(ϕK) = Fp, imply-
ing P (K) ∼= Fp. If char(K) = 0 then we have ϕK(Z\{0}) ⊆ P (K)∗, hence there

is a ring isomorphism Q = Q(Z) ∼= {ϕK(m)
ϕK(n) ∈ P (K);m,n ∈ Z, n 6= 0} ⊆ P (K),

implying P (K) ∼= Q; e. g. we have P (R) = P (C) = Q.

Let K be finite, thus char(K) = p > 0 and P (K) ∼= Fp, then K/Fp is finite,
hence |K| = p[K : Fp]; conversely, if |K| = pn for a prime p ∈ N and some n ∈ N

then char(K) = p. If L/K is finite, then |L| is finite as well, hence L∗ is cyclic,
thus there is a ∈ L∗ such that L = {0, 1, a, . . . , a|L|−2}, implying that L = K(a),
thus L/K is simple.

(5.4) Algebraic extensions. Let L/K be a field extension. For a ∈ L let ϕa =
ϕL/K,a : K[X ] → L : f 7→ f(a) be the associated evaluation homomorphism.
Hence K[a] := im(ϕa) = {f(a) ∈ L; f ∈ K[X ]} ⊆ L is an integral domain, and
ker(ϕa) := {f ∈ K[X ]; f(a) = 0}⊳K[X ] is called the order ideal of a over K.

If ker(ϕa) = {0} then a is called transcendental over K; e. g. X ∈ K(X) is
transcendental over K. If ker(ϕa) 6= {0} then a is called algebraic over K,
and there is a unique monic irreducible polynomial µa = µK,a ∈ K[X ] such
that ker(ϕa) = µaK[X ] ⊳K[X ], being called the minimum polynomial of a
over K, and degK(a) := deg(µa) ∈ N is called the degree of a over K. If a is
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algebraic over K then a is algebraic over any intermediate field K ⊆ M ⊆ L,
and L/K is called algebraic if any element of L is algebraic over K.

E. g. any a ∈ K is algebraic over K, and since µa = X − a ∈ K[X ] we have
degK(a) = 1; we have K(a) = K, thus [K(a) : K] = 1. For n ∈ Z \ {0, 1}
squarefree the polynomial X2−n ∈ Q[X ] is irreducible, hence µ√

n = X2−n ∈
Q[X ] shows that degQ(

√
n) = 2; since {1,√n} is a Q-basis of the quadratic

number field Q(
√
n) we have [Q(

√
n) : Q] = 2; a field K ⊆ C such that K/Q

is finite is called a number field.

(5.5) Theorem. Let L/K be a field extension.
a) If a ∈ L is transcendental over K, then we have K(X) ∼= K(a) ⊆ L; in
particular K(a)/K is infinite. If a ∈ L is algebraic over K, then we have
K[X ]/µaK[X ] ∼= K[a] = K(a) ⊆ L, and letting n := degK(a) ∈ N the set
{1, a, . . . , an−1} ⊆ K(a) is a K-basis.
b) L/K is finite if and only if there are a1, . . . , an ∈ L algebraic over K such
that L = K(a1, . . . , an); in particular, if L/K is finite then it is algebraic. If
K ⊆ M ⊆ L is an intermediate field, then L/K is algebraic if and only if both
M/K and L/M are algebraic.

Proof. a) If a ∈ L is transcendental over K, then we have the isomorphism
ϕa : K[X ] → K[a] : f 7→ f(a). Since Q(K[a]) ⊆ L is the smallest subfield of L
containing K ∪ {a}, we have Q(K[a]) = K(a) ⊆ L, and thus ϕa extends to an
isomorphism K(X) = Q(K[X ])→ Q(K[a]) = K(a) : fg 7→ f(a)g(a)−1. If a ∈ L
is algebraic over K, then since µaK[X ] ⊳ K[X ] is maximal the isomorphism
K[X ]/µaK[X ] ∼= K[a] shows thatK[a] ⊆ L is a subfield, implyingK[a] = K(a).
This isomorphism also provides a K-basis of K[a]:

For any f ∈ K[X ] \K, let : K[X ] → K[X ]/fK[X ] =: V denote the natural
homomorphism. Since K∩fK[X ] = {0} we have K ⊆ V , hence V is a K-vector

space. Letting n := deg(f) ∈ N the set {X0
, . . . , X

n−1} ⊆ V is a K-basis: Let∑n−1
i=0 aiX

i
= 0 ∈ V where ai ∈ K. Hence for g :=

∑n−1
i=0 aiX

i ∈ K[X ] we have

f | g, implying g = 0, hence ai = 0 for i ∈ {0, . . . , n−1}, thus {X0
, . . . , X

n−1} is
K-linearly independent. Let g ∈ K[X ], then there are q, r ∈ K[X ], where r = 0
or deg(r) < deg(f) = n, such that g = qf+r ∈ K[X ], hence g = qf + r = r ∈ V ,

thus g is a K-linear combination of {X0
, . . . , X

n−1}.
b) If L/K is finite, then for any a ∈ L the degree [K(a) : K] ≤ [L : K] is
finite, thus L/K is algebraic, and letting {a1, . . . , an} ⊆ L be a K-basis we have
L = K(a1, . . . , an). Conversely, let a1, . . . , an ∈ L be algebraic over K such
that L = K(a1, . . . , an), then for i ∈ {1, . . . , n} the element ai ∈ L is algebraic
over K(a1, . . . , ai−1), hence K(a1, . . . , ai)/K(a1, . . . , ai−1) is finite, and thus
[L : K] =

∏n
i=1[K(a1, . . . , ai) : K(a1, . . . , ai−1)] is finite as well.

Let M/K and L/M be algebraic, and for a ∈ L let µa = µM,a =
∑n

i=0 aiX
i ∈

M [X ] be the minimum polynomial of a ∈ L over M . Since ai ∈M is algebraic
overK, the field extensionK ⊆ K(a0, . . . , an) =: M ′ is finite. From µa ∈M ′[X ]
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we infer that a ∈ L is algebraic over M ′, thus M ′(a)/M ′ is finite. Hence
M ′(a)/K is finite, thus algebraic, hence a ∈ L is algebraic over K. ♯

(5.6) Splitting fields. LetK be a field and let f ∈ K[X ]\K. A field extension
L/K such that f = lc(f) ·∏n

i=1(X − ai) ∈ L[X ] splits and K(a1, . . . , an) = L
is called a splitting field for f over K. If M/K is a field extension such that
f = lc(f) ·∏n

i=1(X − ai) ∈ M [X ] splits, then L := K(a1, . . . , an) ⊆ M is the
unique splitting field for f in M , and for any intermediate field K ⊆ M ′ ⊆ M
the field M ′(L) is a splitting field for f over M ′.

Hence the ai ∈ L for i ∈ {1, . . . , n}, where n = deg(f) ∈ N, are the roots of
f in L, thus algebraic over K, and L/K is finite, minimal inasmuch that f
does not split over any intermediate field K ⊆ M ⊂ L. We may assume that
{a1, . . . , ar} ⊆ L, for some r ≤ n, are the pairwise distinct roots of f . Then we
have the factorisation f = lc(f) ·∏r

j=1(X − aj)mj ∈ L[X ], where the mj ∈ N

are the associated multiplicities. If mj = 1 then aj ∈ L is called a simple root,
otherwise aj ∈ L is called a multiple root; since n =

∑r
j=1mj the polynomial

f has precisely n roots in L counting multiplicities.

(5.7) Theorem: Kronecker. Let K be a field and f ∈ K[X ] be irreducible.
a) There is a field extension L/K of degree [L : K] = deg(f) such that f has a
root in L.
b) Let K ′ be a field, let ϕ : K → K ′ be an isomorphism, let L/K and L′/K ′

be field extensions, let a ∈ L be a root of f , and let a′ ∈ L′ be a root of
fϕ ∈ K ′[X ]. There is a unique isomorphism ϕ̂ : K(a) → K ′(a′) such that
ϕ̂|K = ϕ and abϕ = a′.

Proof. a) Since f ∈ K[X ] is irreducible, L := K[X ]/fK[X ] is an extension
field of K such that [L : K] = deg(f). Letting : K[X ] → L be the natural
homomorphism, for X ∈ L we have f(X) = f(X) = 0 ∈ L.
b) We have µa ∼ f ∈ K[X ], hence ϕa : K[X ] → L induces an isomorphism
ϕa : K[X ]/fK[X ] ∼= K[a] = K(a) ⊆ L. Since ϕ : K[X ] → K ′[X ] is an isomor-
phism, fϕ ∈ K ′[X ] is irreducible, and hence we have ϕa′ : K

′[X ]/fϕK ′[X ] ∼=
K ′[a′] = K ′(a′) ⊆ L′. Since ϕ induces an isomorphism ϕ : K[X ]/fK[X ] →
K ′[X ]/fϕK ′[X ], the map ϕ̂ := (ϕa)

−1ϕϕa′ is as desired. ♯

(5.8) Corollary. Let K be a field and let f ∈ K[X ] \K.
a) Then there is a splitting field L for f such that [L : K] ≤ deg(f)!.
b) Let K ′ be a field, let ϕ : K → K ′ be an isomorphism, let L/K be a splitting
field for f , let L′/K ′ be a splitting field for fϕ ∈ K ′[X ]. Then there is an
isomorphism ϕ̂ : L→ L′ such that ϕ̂|K = ϕ; in particular, ϕ̂ induces a bijection
between the roots of f in L and the roots of fϕ in L′, respecting multiplicities.

Proof. a) We proceed by induction on n := deg(f) ∈ N, and assume that
f is monic. If n = 1 then f = X − a ∈ K[X ], thus K is a splitting field
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such that [K : K] = 1. Let n ≥ 2, and let g ∈ K[X ] be irreducible such
that g | f . Then there is a field extension M/K having an element an ∈ M
such that g(an) = 0 and M = K(an), hence [M : K] = deg(g) ≤ n. Thus
there is f ′ ∈ M [X ] such that f = (X − an)f ′ ∈ M [X ], and since deg(f ′) =
n − 1 there is a splitting field L := M(a1, . . . , an−1) for f ′ over M , where

f ′ =
∏n−1
i=1 (X − ai) ∈ L[X ], having degree [L : M ] ≤ (n − 1)!. Hence we

have K(a1, . . . , an) = K(an)(a1, . . . , an−1) = M(a1, . . . , an−1) = L, where f =∏n
i=1(X − ai) ∈ L[X ], and [L : K] = [L : M ] · [M : K] ≤ (n− 1)! · n = n!.

b) We proceed by induction on d := [L : K] ∈ N. If d = 1 then we have L = K,
thus there are a1, . . . , an ∈ K such that f = lc(f) ·∏n

i=1(X−ai) ∈ K[X ]. Hence
fϕ = lc(f)ϕ ·∏n

i=1(X − aϕi ) ∈ K ′[X ], thus L′ = K ′(aϕ1 , . . . , a
ϕ
n) = K ′, and we

let ϕ̂ = ϕ. Let d ≥ 2, and let g ∈ K[X ] be irreducible such that g | f , where we
may assume that deg(g) ≥ 2. Then gϕ ∈ K ′[X ] is irreducible such that gϕ | fϕ.
Let a ∈ L be a root of g, and let a′ ∈ L′ be a root of gϕ, hence there is an
isomorphism ϕ̃ : K(a) → K ′(a′) extending ϕ. Then L/K(a) is a splitting field

for f , and L′/K ′(a′) is a splitting field for fϕ. Since [L : K(a)] = [L : K]
[K(a) : K] =

[L : K]
deg(g) < [L : K] = d, there is an isomorphism ϕ̂ : L→ L′ extending ϕ̃. ♯

(5.9) Example. a) Let f := X2 + 1 ∈ R[X ], hence f is irreducible. By the
Kronecker construction L := R[Y ]/(Y 2 + 1)R[Y ] contains the roots ±Y of f ,
where : R[Y ]→ L is the natural homomorphism; hence L is a splitting field for
f = (X − Y )(X + Y ) ∈ L[X ]. Thus we have an isomorphism L→ L : Y 7→ −Y
extending idR. Since X2 +1 = (X−

√
−1)(X+

√
−1) ∈ C[X ] and R(

√
−1) = C

there are isomorphisms L→ C : Y 7→
√
−1 and L→ C : Y 7→ −

√
−1 extending

idR, as well as C→ C :
√
−1 7→ −

√
−1, being called complex conjugation.

b) Let f := X3 − 2 ∈ Q[X ], hence f is irreducible. Letting ρ := 3
√

2 ∈ R ⊆ C

and ζ := ζ3 = exp(2π
√−1
3 ) = 1+

√−3
2 ∈ C, we have ζ3 = 1, and thus the roots

of f are ρ ∈ R ⊆ C and ρζ±1 ∈ C \ R. Thus the Kronecker construction yields
Q[X ]/(X3 − 2)Q[X ] ∼= Kǫ := Q(ρζǫ) ⊆ C, where ǫ ∈ {0, 1,−1}. We have
f = X3 − ρ3 = (X − ρ)(X2 + ρX + ρ2) ∈ K0[X ], where X2 + ρX + ρ2 ∈ K0[X ]
does not have a root in K0 ⊆ R, thus is irreducible. Hence K0 is not a splitting
field for f , and thus neither K1 and K−1 is.

Applying the Kronecker construction again yields K0[X ]/(X2+ρX+ρ2)K0[X ],
which contains a root of X2+ρX+ρ2, and thus is a splitting field for f . We have
X2 +ρX+ρ2 = (X−ρζ)(X−ρζ−1) ∈ C[X ], hence we have K0[X ]/(X2 +ρX+
ρ2)K0[X ] ∼= L := K0(ρζ) = Q(ρ, ρζ) = Q(ρ, ζ) ⊆ C. Thus L is the splitting
field for f in C, and we have [L : Q] = [L : K0] · [K0 : Q] = 2 · 3 = 6 = deg(f)!.

(5.10) Theorem. A finite field extension L/K is normal, i. e. any irreducible
polynomial in K[X ] having a root in L already splits in L[X ], if and only if L
is a splitting field for some polynomial in K[X ] \K.
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Proof. Let L/K be normal, let {a1, . . . , an} ⊆ L be a K-basis, and let µi ∈
K[X ] be the minimum polynomial of ai overK. Then the irreducible polynomial
µi ∈ K[X ] has the root ai ∈ L, thus f :=

∏n
i=1 µi splits in L[X ]. Since

L = K(a1, . . . , an) we conclude that L is a splitting field for f over K.

Let conversely L be a splitting field for f ∈ K[X ] \ K, and let g ∈ K[X ] be
irreducible having a root a ∈ L. Let M/L be a splitting field for g, and let
b ∈ M be a root of g. Hence there is an isomorphism ϕ : K(a) → K(b) such
that ϕ|K = idK . Since L(a) = L is a splitting field for f over K(a), and L(b)
is a splitting field for f over K(b), there is an isomorphism ϕ̂ : L(a) → L(b)
extending ϕ. Since ϕ̂|K = idK is equivalent to ϕ̂ being K-linear, we have
[L : K] = [L(b) : K], thus L = L(b) and b ∈ L, implying that g splits in L[X ]. ♯

(5.11) Corollary. Let L/K be a finite field extension.
a) Then there is a normal finite field extension M/K such that L ⊆M .
b) If L/K is normal, then L is normal over any intermediate field K ⊆M ⊆ L.

(5.12) Derivatives. Let K be a field and let f =
∑
i≥0 aiX

i ∈ K[X ]. Then

the derivative of f is defined as ∂f
∂X :=

∑
i≥1 iaiX

i−1 ∈ K[X ]. Hence we

have ∂f
∂X = 0 or deg( ∂f∂X ) < deg(f), and if K ⊆ L is a field extension then

the derivative of f ∈ K[X ] and the derivative of f ∈ L[X ] coincide. The map
∂
∂X : K[X ] → K[X ] is K-linear, and we have ∂(fg)

∂X = ∂f
∂X · g + f · ∂g∂X for all

f, g ∈ K[X ]: We may assume that f = X i and g = Xj where i, j ∈ N0, and

since ∂ 1
∂X = 0 we may assume i, j ≥ 1, then we have ∂(Xi+j)

∂X = (i+ j)X i+j−1 =

iX i−1Xj + jX iXj−1 = ∂(Xi)
∂X ·Xj +X i · ∂(Xj)

∂X .

For f ∈ K[X ] \ K let f̃ ∈ gcd(f, ∂f∂X ) ⊆ K[X ]. Then the multiple roots of f

in a splitting field L for f coincide with the roots of f̃ in L: By the Euclidean
algorithm we have f̃ ∈ gcdL[X](f,

∂f
∂X ) ⊆ L[X ]. For a ∈ L we have f = (X −

a)mg, where m ∈ N0 and g ∈ L[X ] such that g(a) 6= 0. If a is a root of f , then
m ≥ 1, thus ∂f

∂X = m(X − a)m−1g + (X − a)m ∂g
∂X = (X − a)m−1(mg + (X −

a) ∂g∂X ) ∈ L[X ]. If a is a multiple root of f , hence m ≥ 2, then X−a | f̃ ∈ L[X ],

thus a is a root of f̃ . Conversely, if a is a root of f̃ , then it is a root of f , thus
m ≥ 1, and a root of ∂f

∂X , hence a root of ∂f
∂X − (X − a)m ∂g

∂X = m(X − a)m−1g,
which since g(a) 6= 0 implies m ≥ 2.

Hence f has a multiple root in L if and only if we have f̃ 6∈ K. In particular, if
f is irreducible then f has a multiple root in L if and only if ∂f

∂X = 0: We have

either f̃ ∈ K or f̃ ∼ f ∈ K[X ], where since ∂f
∂X = 0 or deg( ∂f∂X ) < deg(f) the

latter case occurs if and only if ∂f
∂X = 0.

Thus for f irreducible, if char(K) = 0 then f has only simple roots in L, while
if char(K) = p > 0 then f has a multiple root in L if and only if there is
g ∈ K[X ] such that f = g(Xp) ∈ K[X ]: If f =

∑
i≥0 aiX

i such that ∂f
∂X =∑

i≥1 iaiX
i−1 = 0, then we have ai = 0 for all p 6 | i ∈ N0, thus f =

∑
i≥0 aipX

ip,
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and if conversely f =
∑

i≥0 aipX
ip then we have ∂f

∂X =
∑

i≥1 ipaipX
ip−1 = 0.

(5.13) Separability. Let K be a field. An irreducible polynomial f ∈ K[X ] is
called separable, if it has only simple roots in a splitting field for f ; otherwise
f is called inseparable. A polynomial f ∈ K[X ] \ K is called separable, if
all its irreducible divisors are separable; in particular a squarefree polynomial
f ∈ K[X ] \K is separable if and only if it has only simple roots in a splitting
field for f . The field K is called perfect if all irreducible polynomials in K[X ]
are separable.

Let L/K be a field extension. An element a ∈ L is called separable over K,
if a ∈ L is algebraic over K and its minimum polynomial µa ∈ K[X ] over K is
separable, equivalently a ∈ L is a simple root of µa. The field extension L/K is
called separable if any element of L is separable over K. E. g. any algebraic
extension of a perfect field is separable, if char(K) = 0 then K is perfect, and
if K is a finite field then K is perfect as well:

(5.14) Proposition. Let K be a field such that char(K) = p > 0. Then the
Frobenius map ϕp : K → K : a 7→ ap is a monomorphism, and K is perfect if
and only if ϕp : K → K is surjective, i. e. if and only if ϕp is an isomorphism.

Proof. For a, b ∈ K we have (ab)p = apbp ∈ K and 1p = 1 ∈ K, and since p |(
p
i

)
, for all i ∈ {1, . . . , p− 1}, we have (a+ b)p =

∑p
i=0

(
p
i

)
aibp−i = ap + bp ∈ K.

Let ϕp : K → K be surjective, and assume there is f ∈ K[X ] irreducible and
inseparable. Then there is g =

∑
i≥0 aiX

i ∈ K[X ] such that f = g(Xp) ∈ K[X ].

Let bi ∈ K such that ai = bpi for all i ≥ 0. Hence the Frobenius map on K(X)
yields f = g(Xp) =

∑
i≥0 b

p
iX

ip = (
∑

i≥0 biX
i)p ∈ K[X ], a contradiction.

Let ϕp : K → K be not surjective and let a ∈ K \ im(ϕp). Hence f := Xp− a ∈
K[X ] does not have a root in K. Let g ∈ K[X ] be an irreducible divisor of f ,
hence d := deg(g) > 1, and let b ∈ L be a root of g in a splitting field L for g.
Thus we have 0 = f(b) = bp−a ∈ L, which yields f = Xp−bp = (X−b)p ∈ L[X ].
Thus g = (X − b)d ∈ L[X ] has a multiple root in L, hence g is inseparable. ♯

(5.15) Example. Let K be a field such that char(K) = p > 0. Then X ∈
K(X) \ im(ϕp), hence K(X) is not perfect: Assume there are f =

∑
i≥0 aiX

i ∈
K[X ] and 0 6= g =

∑
i≥0 biX

i ∈ K[X ] such that X = ( fg )p ∈ K(X), hence∑
i≥0 a

p
iX

ip = fp = gp ·X =
∑
i≥0 b

p
iX

ip+1 ∈ K[X ], a contradiction.

(5.16) Theorem: Finite fields. a) Let K be a finite field such that |K| = pn,
for a prime p ∈ N and n ∈ N. Then K is a splitting field for Xpn −X ∈ Fp[X ].
b) Let p ∈ N be a prime and n ∈ N, and let K be a splitting field for Xpn−X ∈
Fp[X ]. Then we have |K| = pn.

Thus up to isomorphism there is a unique field of cardinality pn, being called
the associated Galois field GF(pn) = Fpn .
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Proof. a) Since |K∗| = pn−1 we have ap
n−1 = 1 ∈ K for all a ∈ K∗, and thus

ap
n − a = 0 ∈ K for all a ∈ K. Hence Xpn −X =

∏
a∈K(X − a) ∈ K[X ] splits,

thus K is a splitting field for Xpn −X .
b) Letting f := Xpn − X ∈ Fp[X ], its set of roots M := {a ∈ K; f(a) = 0 ∈
K} = {a ∈ K; ap

n

= a} ⊆ K is a subfield: We have 0, 1 ∈M , and for a, b ∈M
such that b 6= 0 we by iteration of the Frobenius map get (a−b)pn = ap

n−bpn =
a− b and (ab−1)p

n

= ap
n

(bp
n

)−1 = ab−1, thus M ⊆ K is an additive subgroup
and M \ {0} ⊆ K∗ is a multiplicative subgroup. Hence M is a splitting field for
f , and thus M = K. Since ∂f

∂X = −1 ∈ Fp[X ] we have gcd(f, ∂f∂X ) = F∗
p, thus f

has only simple roots, hence |K| = |M | = pn. ♯

(5.17) Theorem: Existence of primitive elements. Let L/K be a field
extension, let c1, . . . , cn ∈ L be separable over K, and let b ∈ L be algebraic
over K. Then K(b, c1, . . . , cn)/K is a simple field extension. In particular, if
L/K is finite and K is perfect then L/K is simple.

Proof. Letting a := c1, it suffices to show that K(a, b)/K is simple. Since
K(a, b)/K is finite, we are done if K is a finite field. Thus we may assume that
K is infinite, and we may assume that a 6∈ K. Let µa ∈ K[X ] and µb ∈ K[X ]
be the minimum polynomials of a and b over K, respectively. We may assume
that µa and µb split in L[X ], hence we have µa =

∏n
i=1(X − ai) ∈ L[X ], where

n ≥ 2, the ai are pairwise distinct and a = a1, and µb =
∏m
j=1(X − bj) ∈ L[X ],

where b = b1. Let d ∈ K \ { bj−ba−ai ∈ L; i ∈ {2, . . . , n}, j ∈ {1, . . . ,m}} 6= ∅ and
c := ad+ b ∈ K(a, b) ⊆ L. Then we have K(a, b) = K(c):

Let f ∈ gcd(µa(X), µb(c− dX)) ⊆ K(c)[X ] ⊆ L[X ] be monic. Since µa(a) = 0
and µb(c − da) = µb(b) = 0 we have X − a | f . Since f | µa, we conclude
that f splits in L[X ], and its roots are amongst the ai. Assume µb(c− dai) = 0
for some i ∈ {2, . . . , n}, then for some j ∈ {1, . . . ,m} we have bj = c − dai =

d(a − ai) + b, implying d =
bj−b
a−ai , a contradiction. Thus X − ai 6 | µb(c − dX)

for all i ∈ {2, . . . , n}, hence a ∈ L is the only root of f in L. Since µa ∈ K[X ]
is irreducible and separable, we have f = X − a ∈ K(c)[X ] ⊆ L[X ]. Thus we
have a ∈ K(c) and hence b = c− ad ∈ K(c), implying K(a, b) ⊆ K(c). ♯

6 Galois theory

(6.1) Galois groups. Let L/K be a field extension, and let Aut(L) be the
group of automorphisms of L. The subgroup Aut(L/K) := {ϕ ∈ Aut(L);ϕ|K =
idK} ≤ Aut(L) is called the Galois group of L over K, or the group of
K-automorphisms of L.

Hence we have Aut(L/K) = Aut(L) ∩ HomK(L,L). For any intermediate
field K ⊆ M ⊆ L we have Aut(L/M) ≤ Aut(L/K). We have Aut(L) =
Aut(L/P (L)): Letting ϕL : Z → L be the natural homomorphism, we have
P (L) = Q(im(ϕL)) ⊆ L, and for ϕ ∈ Aut(L) we have ϕ|im(ϕL) = idim(ϕL), thus
ϕ|Q(im(ϕL)) = idQ(im(ϕL)).
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For S ⊆ Aut(L/K) let FixL(S) := {a ∈ L; aϕ = a for all ϕ ∈ S} be the
associated set of fixed points; we have FixL(S) = FixL(〈S〉). Hence we have
K ⊆ FixL(S), and for a, b ∈ FixL(S) such that b 6= 0 we have a− b ∈ FixL(S)
and ab−1 ∈ FixL(S), implying that FixL(S) is a field, being called the fixed
field of S. The field extension L/K is called Galois if FixL(Aut(L/K)) = K.

(6.2) Proposition: Dedekind’s Theorem. Let K be a field, let G be a
monoid, and let ϕ1, . . . , ϕn : G→ K∗ be monoid homomorphisms. Then the set
{ϕ1, . . . , ϕn} ⊆ Maps(G,K) is K-linearly independent if and only if ϕ1, . . . , ϕn
are pairwise distinct; here Maps(G,K) is an K-vector space with respect to
pointwise addition and scalar multiplication.

Proof. Letting ϕ1, . . . , ϕn be pairwise distinct, we proceed by induction on
n ∈ N: Let n = 1, and let ϕ1a1 = 0 for some a1 ∈ K, then 1ϕ1 = 1 implies
a1 = 1a1 = 0. Let n ≥ 2, let

∑n
i=1 ϕiai = 0 where ai ∈ K, and let y ∈

G such that yϕ1 6= yϕn . For all x ∈ G we have (
∑n
i=1 x

ϕiai)y
ϕ1 = 0 and∑n

i=1(xy)
ϕiai =

∑n
i=1 x

ϕiyϕiai = 0, thus we have
∑n
i=1 x

ϕi(yϕ1 − yϕi)ai = 0.
Hence

∑n
i=2 ϕi(y

ϕ1 − yϕi)ai = 0 by induction implies (yϕ1 − yϕi)ai = 0 for
i ∈ {2, . . . , n}, thus an = 0, and by induction ai = 0 for i ∈ {1, . . . , n− 1}. ♯

(6.3) Proposition. Let L/K and L′/K be finite field extensions. Then there
are at most [L : K] monomorphisms ϕ : L→ L′ such that ϕK = idK . In partic-
ular, we have |Aut(L/K)| ≤ [L : K].

Proof. Let ϕ1, . . . , ϕn : L→ L′ be pairwise distinct monomorphisms such that
ϕi|K = idK . Then the maps ϕ∗

i := ϕi|L∗ : L∗ → (L′)∗ are pairwise distinct, thus
{ϕ∗

1, . . . , ϕ
∗
n} ⊆ Maps(L∗, L′) is L′-linearly independent, hence {ϕ1, . . . , ϕn} ⊆

Maps(L,L′) is L′-linearly independent. Since HomK(L,L′) ≤ Maps(L,L′) as
L′-vector spaces, the set {ϕ1, . . . , ϕn} ⊆ HomK(L,L′) is L′-linearly indepen-
dent, hence n ≤ dimL′(HomK(L,L′)). Since HomK(L,L′) ∼= K [L′ : K]×[L : K] as
K-vector spaces we have [L′ : K]·dimL′(HomK(L,L′)) = dimK(HomK(L,L′)) =
[L′ : K] · [L : K], thus dimL′(HomK(L,L′)) = [L : K]. ♯

(6.4) Proposition: Artin’s Theorem. Let L/K be a finite field extension,
and let H ≤ Aut(L/K). Then we have [L : FixL(H)] = |H |.

Proof. Let M := FixL(H). From ϕ|M = idM for all ϕ ∈ H we conclude
n := |H | ≤ [L : M ]. Conversely, let H = {ϕ1, . . . , ϕn} and TrH :=

∑n
i=1 ϕi ∈

Maps(L,L) be the associated trace map. Since {ϕ1, . . . , ϕn} ⊆ Maps(L,L) is
L-linearly independent, we have TrH 6= 0. For all ϕ ∈ H and a ∈ L we have
(TrH(a))ϕ =

∑n
i=1 a

ϕiϕ =
∑n

i=1 a
ϕi = TrH(a), thus we have TrH(a) ∈M .

Let {a1, . . . , an+1} ⊆ L be any subset, and let A := [a
ϕ−1

i

j ]ij ∈ Ln×(n+1). Hence

the system of L-linear equations A ·X tr = 0 ∈ Ln×1, where X = [X1, . . . , Xn+1],
has a solution 0 6= [x1, . . . , xn+1] ∈ Ln+1. Picking k ∈ {1, . . . , n+ 1} such that
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xk 6= 0, and replacing [x1, . . . , xn+1] by a non-zero scalar multiple if necessary,

we may assume that TrH(xk) 6= 0. We thus have
∑n+1
j=1 a

ϕ−1

i

j xj = 0, hence
∑n+1
j=1 ajx

ϕi
j = 0 for all i ∈ {1, . . . , n}, implying

∑n+1
j=1 ajTrH(xj) = 0. Since

TrH(xj) ∈ M for all j ∈ {1, . . . , n + 1}, and TrH(xk) 6= 0, this implies that
{a1, . . . , an+1} ⊆ L is M -linearly dependent, and hence [L : M ] ≤ n. ♯

(6.5) Theorem. For a finite field extension L/K the following are equivalent:
a) The field extension L/K is Galois, i. e. we have FixL(Aut(L/K)) = K.
b) We have [L : K] = |Aut(L/K)|.
c) The field extension L/K is normal and separable.
d) The field L is a splitting field for a separable polynomial in K[X ] \K.

Proof. a)⇔b): LettingM := FixL(Aut(L/K)) we have |Aut(L/K)| = [L : M ],
and L/K is Galois if and only if [L : M ] = [L : K].

a)⇒c): Let G := Aut(L/K). For a ∈ L let aG = {a1, . . . , am} ⊆ L be the
associated G-orbit, where a1 := a, and let fa :=

∏m
i=1(X − ai) =

∑m
j=0 bjX

j ∈
L[X ]. For ϕ ∈ G we have fϕa =

∏m
i=1(X − a

ϕ
i ) =

∏m
i=1(X − ai) = fa, hence

bϕj = bj, thus bj ∈ FixL(Aut(L/K)) = K. Hence fa ∈ K[X ] has a as a root, and
since fa has pairwise distinct roots a is separable over K, thus L/K is separable.

Let {a1, . . . , an} ⊆ L be a K-basis, hence in particular L = K(a1, . . . , an), and
for all j ∈ {1, . . . , n} let aGj = {aj1, . . . , ajmj} ⊆ L be the associated G-orbit

and fj :=
∏mj
i=1(X − aji) ∈ L[X ]. Hence we have fj ∈ K[X ], and f :=

∏n
j=1 fj

splits in L[X ]. Since f(aj) = 0 we conclude that L is a splitting field for f .

c)⇒d): By normality let L/K be a splitting field for f ∈ K[X ] \ K. Let
g ∈ K[X ] be irreducible such that g | f , hence g splits in L[X ]. Since g is the
minimum polynomial of any of its roots in L, by separability g has only simple
roots in L. Hence g is separable, and thus f is separable as well.

d)⇒a): Let L/K be a splitting field for the separable polynomial f ∈ K[X ]\K,
which we may assume monic and squarefree, hence f =

∏n
i=1(X − ai) ∈ L[X ],

where the ai ∈ L are pairwise distinct. We proceed by induction on r := |{i ∈
{1, . . . , n}; ai 6∈ K}| ∈ N0: If r = 0 then K = L and thus FixL(Aut(L/K)) = K.
Let r ≥ 1, hence we may assume a := a1 ∈ L \ K. Thus we have K(a) 6= K,
and L/K(a) is a splitting field for the separable polynomial f ∈ K(a)[X ]. Thus
by induction L/K(a) is Galois, and since Aut(L/K(a)) ≤ Aut(L/K) we have
FixL(Aut(L/K)) ⊆ FixL(Aut(L/K(a))) = K(a).

Let µa ∈ K[X ] be the minimum polynomial of a over K. Hence we have
µa | f ∈ K[X ], and thus we may assume that µa =

∏m
i=1(X − ai) ∈ L[X ]

where m ≤ n. Hence for i ∈ {1, . . . ,m} there are pairwise distinct isomor-
phisms ψi : K(a) → K(ai) : a 7→ ai extending idK , and thus there are isomor-

phisms ϕi ∈ Aut(L/K) extending ψi. Let b =
∑m−1
j=0 bja

j ∈ FixL(Aut(L/K)) ⊆
K(a) ∼= K[X ]/µaK[X ], where bj ∈ K. This yields b = bϕi =

∑m−1
j=0 bj(a

j)ϕi =
∑m−1
j=0 bja

j
i . Thus g := −b +

∑m−1
j=0 bjX

j ∈ K(a)[X ] has m > deg(g) pairwise
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distinct roots {a1, . . . , am} ⊆ L, implying g = 0. Thus we have b = b0 ∈ K, and
hence FixL(Aut(L/K)) = K. ♯

(6.6) Corollary. a) Let L/K be a finite field extension, generated by separable
elements. Then there is a finite Galois extension M/K such that L ⊆M .
b) Let L/K be a field extension. Then the separable closure Ls := {a ∈
L; a separable over K} of K in L is a subfield of L.

(6.7) Theorem: Galois correspondence. Let L/K be a finite Galois exten-
sion, and let G := Aut(L/K). Then the following maps are mutually inverse
inclusion-reversing bijections:

F : {H ≤ G subgroup} → {K ⊆M ⊆ L intermediate field} : H 7→ FixL(H)

G : {K ⊆M ⊆ L intermediate field} → {H ≤ G subgroup} : M 7→ Aut(L/M)

For all subgroups H ≤ G we have [L : F(H)] = |H |, and for all intermediate
fields K ⊆M ⊆ L we have [M : K] = [G : G(M)].

For an intermediate field K ⊆M ⊆ L the field extension M/K is Galois if and
only if Mϕ = M for all ϕ ∈ G, which holds if and only if Aut(L/M) E G; in
this case we have G/Aut(L/M) ∼= Aut(M/K).

Proof. For H ≤ G we have H ≤ Aut(L/FixL(H)) = GF(H), and for K ⊆
M ⊆ L we have M ⊆ FixL(Aut(L/M)) = FG(M). Applying F to the first
inequality yields F(H) ⊇ FGF(H), and the second inequality for M = F(H)
yields F(H) ⊆ FGF(H), hence we have F(H) = FGF(H). Thus we have
|H | = [L : F(H)] = [L : FGF(H)] = |GF(H)|, and since H ≤ GF(H) this
implies H = GF(H), thus GF = id; so far we only used that L/K is finite.

For any intermediate field K ⊆ M ⊆ L, the field extension L/M is a splitting
field for some separable polynomial in M [X ] \ M , hence is Galois. Thus we
have M = FixL(Aut(L/M)) = FG(M), hence FG = id as well. We have
|G| = [L : K] = [L : M ] · [M : K] = [L : FG(M)] · [M : K] = |G(M)| · [M : K],

hence [M : K] = |G|
|G(M)| = [G : G(M)].

We have G(M)EG if and only if G(M)ϕ = G(M) for all ϕ ∈ G, which holds if and
only if F(G(M)ϕ) = FG(M) = M . We have F(G(M)ϕ) = {a ∈ L; aϕ−1ψϕ =
a for all ψ ∈ G(M)} = {a ∈ L; aϕ−1 ∈ FG(M)} = (FG(M))ϕ = Mϕ. Thus we
have Aut(L/M)EG if and only if Mϕ = M for all ϕ ∈ G. The latter condition
holds if and only if M/K is normal, which holds if and only if M/K is Galois:

By separability we have M = K(a) for some primitive element a ∈ L. Let
Mϕ = M for all ϕ ∈ G, and let f :=

∏
ϕ∈G(X − aϕ) ∈ M [X ]. For ψ ∈ G

we have fψ =
∏
ϕ∈G(X − aϕψ) =

∏
ϕ∈G(X − aϕ) = f . Thus we have f ∈

FixL(G)[X ] = K[X ] such that f(a) = 0, splitting in M [X ], hence M/K is a
splitting field for f , and thus M/K is normal.
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Conversely let M/K be normal, then the minimum polynomial µa ∈ K[X ] of a
over K, having the root a ∈ M , splits in M [X ]. Thus M contains all roots of
µa in L. Since for ϕ ∈ G we have µa(a

ϕ) = (µa(a))
ϕ = 0, we conclude aϕ ∈M ,

and thus Mϕ ⊆M , by K-linearity and M/K finite implying Mϕ = M .

If M/K is Galois, since Mϕ = M for all ϕ ∈ G, we have the group homo-
morphism resLM : G → Aut(M/K) : ϕ 7→ ϕ|M . Since L/M is a splitting field
for some polynomial in M [X ] \M , any element of Aut(M/K) extends to an
element of G, thus resLM is surjective. We have ker(resLM ) = {ϕ ∈ G;ϕ|M =
idM} = Aut(L/M), and thus G/Aut(L/M) ∼= Aut(M/K). ♯

(6.8) Example. a) Since C = R(
√
−1) is a splitting field for X2 + 1 ∈ R[X ],

the field extension C/R is Galois, and we have Aut(C/R) = {idC, } ∼= C2,
where : C→ C :

√
−1→ −

√
−1 is complex conjugation.

b) Let f := X3 − 2 ∈ Q[X ], see (5.9), hence f is irreducible. Letting ρ :=
3
√

2 ∈ R ⊆ C and ζ := ζ3 := exp(2π
√−1
3 ) ∈ C, the roots of f in C are ρζǫ,

where ǫ ∈ {0, 1,−1}. Thus L := Q(ζ, ρ) ⊆ C is the splitting field for f in C,
hence L/Q is Galois such that [L : Q] = 6, see Table 3. Let Kǫ := Q(ρζǫ),
hence we have [Kǫ : Q] = 3 and Kǫ/Q is not normal. Letting M := Q(ζ), from
µζ = X2 +X + 1 ∈ Q[X ] we get [M : Q] = 2, hence M/Q is normal.

Let G := Aut(L/Q), hence we have |G| = 6. We have L = M(ρ), and since
[L : M ] = 3 we conclude that f = X3 − 2 ∈ M [X ] is irreducible, thus there
is τ ∈ Aut(L/M) given by τ : ζ 7→ ζ, ρ 7→ ζρ. Hence τ : ρ 7→ ζρ 7→ ζ−1ρ 7→ ρ
shows |τ | = 3, thus Aut(L/M) = 〈τ〉 ∼= C3 and FixL(τ) = M . We have
L = K0(ζ), and since [L : K0] = 2 we conclude that µζ = X2 +X + 1 ∈ K0[X ]
is irreducible, thus there is σ ∈ Aut(L/K0) given by σ : ρ 7→ ρ, ζ 7→ ζ−1, hence
Aut(L/K0) = 〈σ〉 ∼= C2 and FixL(σ) = K0.

We have τσ : ζ 7→ ζ, ρ 7→ ζ−1ρ, hence τσ = τ−1, and thus G ∼= D6
∼= S3. The

subgroup lattice of G shows that we have found all intermediate fields of L/Q.
Since |στ | = |στ−1| = 2 we have FixL(στ) = K−1 and FixL(στ−1) = K1.

c) Let f := X4 − 2 ∈ Q[X ], hence f is irreducible. Letting ρ := 4
√

2 ∈ R ⊆ C

and ζ := ζ4 =
√
−1 ∈ C, we have f =

∏3
k=0(X − ζkρ) ∈ C[X ]. Thus L :=

Q(ζ, ρ) ⊆ C is the splitting field for f in C, see Table 4.

Letting K := Q(ρ) ⊆ R, we have [K : Q] = 4 and f = (X−ρ)(X+ρ)(X2+ρ2) ∈
K[X ], where g := X2 + ρ2 ∈ K[X ] is irreducible, hence K/Q is not normal.
Since g = (X − ζρ)(X + ζρ) ∈ L[X ], we have L = K(ζρ), and thus [L : K] = 2,
yielding [L : Q] = 8. Similarly, letting K ′ := Q(ζρ) 6⊆ R, we have [K ′ : Q] = 4
and f = (X−ζρ)(X+ζρ)(X2−ρ2) ∈ K ′[X ], where hence g′ := X2−ρ2 ∈ K ′[X ]
is irreducible, while g′ = (X − ρ)(X + ρ) ∈ L[X ], hence K ′/Q is not normal.

We have Q(ρ2) = Q(ζ2ρ2) = Q(
√

2) = K∩K ′, where since µρ2 = X2−2 ∈ Q[X ]
we have [Q(ρ2) : Q] = 2, hence Q(ρ2)/Q is normal. Letting M := Q(ζ), from
µζ = X2 +1 ∈ Q[X ] we get [M : Q] = 2, hence M/Q is normal. Since ζ 6∈ Q(ρ2)
we have [Q(ζ, ρ2) : Q] = 4, and being a splitting field for (X2−2)(X2+1) ∈ Q[X ]
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Table 3: Galois correspondence for Q(ζ3,
3
√

2)/Q.

{1}

Q

<(1,2)>

<(1,3)>

<(1,2,3)>

<(2,3)>

Q(  )ρ
ρQ(      )ζ

ρ ζQ(        )

<(1,2,3),(1,2)>

2

Q(   ,   )ζ ρ

Q(   )ζ

the field extension Q(ζ, ρ2)/Q is normal. We have Q(ζρ2) = Q(
√
−2), where

µζρ2 = X2 + 2 ∈ Q[X ] implies [Q(ζρ2) : Q] = 2, hence Q(ζρ2)/Q is normal.

Let G := Aut(L/Q), hence we have |G| = 8. We have L = M(ρ), and since
[L : M ] = 4 we conclude that f = X4 − 2 ∈ M [X ] is irreducible, thus there is
τ ∈ Aut(L/M) given by τ : ζ 7→ ζ, ρ 7→ ζρ. Hence τ : ρ 7→ ζρ 7→ −ρ 7→ ζ−1ρ 7→ ρ
shows |τ | = 4 and thus Aut(L/M) = 〈τ〉 ∼= C4. We have Q(ζ, ρ2) ⊆ FixL(τ2),
thus from [L : Q(ζ, ρ2)] = 2 = |τ2| we get FixL(τ2) = Q(ζ, ρ2).

We have L = K(ζ), and since [L : K] = 2 we conclude that µζ = X2 +1 ∈ K[X ]
is irreducible, thus there is σ ∈ Aut(L/K) given by σ : ρ 7→ ρ, ζ 7→ −ζ = ζ−1,
hence Aut(L/K) = 〈σ〉 ∼= C2. Since FixL(τ) ∩ FixL(σ) = M ∩ K = Q and
L = Q(M,K), we get 〈τ, σ〉 = G and 〈τ〉 ∩ 〈σ〉 = {1}, respectively.

We have τσ : ζ 7→ ζ, ρ 7→ ζ−1ρ, hence τσ = τ−1. Thus we have G ∼= D8.
From the subgroup lattice of G we determine all intermediate fields of L/Q:
We have FixL(〈σ, τ2〉) = K ∩ Q(ζ, ρ2) = Q(ρ2) and FixL(στ2) = K ′, as well as
FixL(〈στ, τ2〉) = Q(ζρ2).

To find FixL(στ) and FixL(στ3) we use the trace map Tr〈στ〉 = id + στ : L →
FixL(στ): We have Tr〈στ〉(ζ) = ζ + ζ−1 = 0 as well as Tr〈στ〉(ρ) = ρ + ζρ =

(1 + ζ)ρ =: ω. Since ωτ
2

= ζ2ω 6= ω we have ω 6∈ Q(ζρ2), hence FixL(στ) =

Q(ω); since ζ8 := exp(2π
√−1
8 ) = 1√

2
· (1 + ζ) ∈ C we have ω = ζ8ρ

3 ∈ C,

hence ω4 = −8, thus µω = X4 + 8 ∈ Q[X ]. Since στ3 = (στ)σ , we have
FixL(στ3) = FixL(στ)σ = Q(ωσ) = Q((1− ζ)ρ).

(6.9) Finite fields. Let p ∈ N be a prime and n ∈ N. Since Fpn is a split-
ting field for Xpn − X ∈ Fp[X ], the field extension Fpn/Fp is Galois, and
we have |Aut(Fpn/Fp)| = [Fpn : Fp] = n. Let the Frobenius automorphism

ϕp ∈ Aut(Fpn/Fp) have order k | n. Then ϕkp = idFpn implies ap
k

= a for
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Table 4: Galois correspondence for Q(ζ4,
4
√

2)/Q.

Q(ζ )

<τ2 >

Q(ζρ ) Q(ζ,ρ2 )

Q(ζ,ρ )

Q(ρ )

Q(ρ2 ) Q(ζρ2 )

<στ2 >

<σ,τ2> <στ,τ 2 >

<στ 3>

Q( (1−ζ)ρ)
Q( )(1+ζ)ρ

Q

<σ,τ>

<τ>

<σ>

 

<στ>

{1}

a ∈ Fpn , hence all elements of Fpn are roots of Xpk −X ∈ Fp[X ]. Thus we have
pk ≥ pn, implying that k = n and Aut(Fpn/Fp) = 〈ϕp〉 ∼= Cn.

The Galois correspondence is given as follows: For any d ∈ N such that d | n
there is a unique subgroup 〈ϕdp〉E〈ϕp〉 of index d. Hence for any such d there is a

unique intermediate field Fp ⊆ M := FixFpn (ϕdp) ⊆ Fpn such that [M : Fp] = d,

where from |M | = pd we infer M ∼= Fpd . The field extension Fpn/Fpd is Galois
such that Aut(Fpn/Fpd) = 〈ϕdp〉, and the field extension Fpd/Fp is Galois such

that 〈ϕp|F
pd
〉 = Aut(Fpd/Fp) ∼= Aut(Fpn/Fp)/Aut(Fpn/Fpd) = 〈ϕp〉/〈ϕdp〉.

(6.10) Cyclotomic fields. For n ∈ N let ζn := exp(2π
√−1
n ) ∈ C. Then

Q(ζn) ⊆ C is called the n-th cyclotomic field; we have ζ1 = 1 and ζ2 = −1
and ζ4 =

√
−1, thus Q = Q(ζ1) = Q(ζ2), and Q(ζ4) = Q(

√
−1) is called the

Gaussian number field.

The group 〈ζn〉 ≤ C∗ of n-th roots of unity has order n, its generators are
called primitive n-th roots of unity. Thus we haveXn−1 =

∏
k∈Z/nZ(X−ζkn) ∈

C[X ]. Running over the primitive roots yields the n-th cyclotomic polyno-
mial Φn :=

∏
k∈(Z/nZ)∗(X − ζkn) ∈ C[X ], thus deg(Φn) = ϕ(n) = |(Z/nZ)∗|.

Hence Xn−1 =
∏
d |n Φd ∈ C[X ], by induction yielding Φ1 = X−1 ∈ Z[X ] and

Φn = Xn−1Q
d |n,d 6=n Φd

∈ Z[X ] for all n 6= 1. Then Φn ∈ Z[X ] ⊆ Q[X ] is irreducible:
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Let Φn = fg ∈ Z[X ], where f, g are monic and f is irreducible, and let ζ
be a primitive n-th root of unity such that f(ζ) = 0. We show that for any
k ∈ (Z/nZ)∗ we have f(ζk) = 0 as well, implying that Φn = f ; it suffices to show
f(ζp) = 0 for all primes p ∈ N such that p 6 | n: Assume that f(ζp) 6= 0, then
g(ζp) = 0 implies µζ = f | g(Xp) ∈ Z[X ], hence g(Xp) = fh for some h ∈ Z[X ].
Using the natural homomorphism : Z→ Fp, and that Fp is the prime field of

characteristic p, this implies fh = g(Xp) = gp ∈ Fp[X ], and hence 1 6∈ gcd(f, g).
From Xn − 1 = fg ·∏d |n,d 6=nΦd ∈ Fp[X ] we infer that Xn − 1 ∈ Fp[X ] has

a multiple root in a splitting field. Since ∂(Xn−1)
∂X = nXn−1 6= 0 ∈ Fp[X ], thus

1 ∈ gcd(Xn − 1, nXn−1), this is a contradiction. ♯

We thus have µζn = Φn, hence [Q(ζn) : Q] = ϕ(n). Since Φn splits in Q(ζn)[X ],
we conclude that Q(ζn) ⊆ C is the splitting field for Φn in C, hence Q(ζn)/Q
is Galois. Thus we have |Aut(Q(ζn)/Q)| = ϕ(n) = |(Z/nZ)∗|, and for any
k ∈ (Z/nZ)∗ there is an automorphism ϕk : Q(ζn)→ Q(ζn) : ζn 7→ ζkn extending
idQ; in particular ϕ−1 is the restriction of complex conjugation to Q(ζn). Hence
(Z/nZ)∗ → Aut(Q(ζn)/Q) : k 7→ ϕk is an isomorphism.

7 Applications

(7.1) Construction with ruler and compass. We consider the Euclidean
plane R2, and assume the points [0, 0], [1, 0] ∈ R2 to be given. To construct new
points, we draw lines through two distinct points already constructed, or circles
around points already constructed whose radii are the distances of points already
constructed, and take the finite non-empty line-line, line-circle and circle-circle
intersections as new points.

Let M ⊆ R be the set of all coordinates of all points which can be thus con-
structed in a finite number of steps; instead, only the first or only the second
coordinates may be considered. We have 0, 1 ∈ M, and for a, b ∈ M such
that b 6= 0 we have a − b ∈ M and ab−1 ∈ M, hence M ⊆ C is a field.
For 0 ≤ a ∈ M we have

√
a ∈ M as well, hence any quadratic polynomial

X2 + pX + q = (X + p
2 )2 − ((p2 )2 − q) ∈ M[X ] such that (p2 )2 − q ≥ 0 splits.

Let a ∈ R. Then we have a ∈M if and only if there are fields Q = M0 ⊆M1 ⊆
· · · ⊆ Mn ⊆ R, where n ∈ N0, such that [Mi : Mi−1] = 2 for i ∈ {1, . . . , n} and
a ∈ Mn: If the Mi are as above, we by induction on i ∈ N0 have Mi ⊆ M,
where M0 = Q ⊆M: For i ≥ 1 there is b ∈Mi such that Mi = Mi−1(b), having
minimum polynomial µb = X2+pX+q ∈Mi−1[X ] such that (p2 )2−q > 0. Thus

we have Mi = Mi−1(
√

(p2 )2 − q) ⊆ M. Conversely, if M ⊆ M is a subfield,
lines and circles are given by equations aX+bY = c and (X−s)2+(Y −t)2 = r2,
where a, b, c, r, s, t ∈M . If any two of these intersect in a finite non-empty set,
the intersection consists of one or two points, whose coordinates are roots of
polynomials over M of degree at most 2; for circle-circle intersections we by
translation, dilatation and rotation may assume that the circles are given as
the unit circle X2 + Y 2 = 1 and (X − s)2 + Y 2 = r2, where s 6= 0, implying
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(x− s)2 − x2 = r2 − 1 and thus x = s2−r2+1
2s ∈M and y2 = 1− x2.

This allows to show the insolubility of various problems from classical geometry:
Given a unit cube in the Euclidean space R3, Deli’s problem is to construct
a cube having volume 2, hence to construct 3

√
2, but X3 − 2 ∈ Q[X ] being

irreducible we have [Q( 3
√

2): Q] = 3, thus 3
√

2 6∈ M. Given a unit circle, the
squaring problem is to construct a square having area π, to construct

√
π,

but π being transcendental over Q we have π 6∈ M, see (7.4).

Given a constructible angle 0 ≤ β ≤ π, i. e. cos(β) ∈ M, the trisection
problem is to construct β

3 , i. e. to construct cos(β3 ) ∈ R. But there is 0 ≤
α ≤ π

3 such that cos(3α) ∈ M and cos(α) 6∈ M: From exp(3α
√
−1) =

exp(α
√
−1)3, taking real and imaginary parts and using sin(α)2 + cos(α)2 = 1

yields cos(3α) = cos(α)3 − 3 sin(α)2 cos(α) = 4 cos(α)3 − 3 cos(α). Letting α :=
π
9 , hence cos(3α) = 1

2 , shows that a := cos(π9 ) is a root of f := 4X3− 3X − 1
2 ∈

Q[X ]. Since f(X+1
2 ) = 1

2 (X3 + 3X2 − 3) ∈ Q[X ], the Eisenstein Criterion for
p = 3 shows that f is irreducible. Hence we have [Q(a) : Q] = 3, thus a 6∈ M.

A regular n-gon, for n ∈ N, is constructible if and only if ϕ(n) is a 2-power: A
regular n-gon is constructible if and only if a := cos(2π

n ) ∈ M, equivalently b :=
sin(2π

n ) ∈ M. If a ∈ M, then [Q(a)/Q] is a 2-power, and since a2 + b2 = 1 and

ζn = a+b
√
−1 we conclude that [Q(a, b)/Q] and ϕ(n) = [Q(ζn)/Q] are 2-powers.

Conversely, if [Q(ζn)/Q] is a 2-power, letM := FixQ(ζn)(ϕ−1) = Q(ζn)∩R be the
real subfield of the Galois extension Q(ζn)/Q; since Aut(Q(ζn)/Q) is abelian,
M/Q is Galois. Since [M : Q] is a 2-power this implies that there are fields
Q = M0 ⊆ M1 ⊆ · · · ⊆ Mk = M , where k ∈ N0, such that [Mi : Mi−1] = 2 for
i ∈ {1, . . . , k}. Since a = 1

2 (ζn + ζ
ϕ−1

n ) ∈M we conclude a ∈ M.

We determine ϕ(n): Let m ∈ N be coprime to n. Then for the natural
homomorphism ν : Z → (Z/mZ) × (Z/nZ), where the right hand side is a
ring with respect to componentwise addition and multiplication, we have
ker(ν) = mZ∩nZ = mnZ E Z, and since |Z/mnZ| = mn = |(Z/mZ)× (Z/nZ)|
the induced map Z/mnZ → (Z/mZ) × (Z/nZ) is an isomorphism. Hence we
have (Z/mnZ)∗ ∼= ((Z/mZ) × (Z/nZ))∗ = (Z/mZ)∗ × (Z/nZ)∗ as groups, and
thus ϕ(mn) = ϕ(m)ϕ(n), i. e. ϕ is a number theoretic function. This
reduces us to the case pe where p ∈ N is a prime and e ∈ N: We have
(Z/peZ) \ (Z/peZ)∗ = {x ∈ Z/peZ;x ∈ Zpe , p | x} = {xp ∈ Z/peZ;x ∈ Zpe−1},
hence ϕ(pe) = pe − pe−1 = (p− 1)pe−1.

Thus ϕ(n) is a 2-power if and only if for pe | n, where p ∈ N is a prime and
e ∈ N, the number ϕ(pe) = (p− 1)pe−1 is a 2-power, which holds if and only if
for any such prime power we have p = 2, or e = 1 and p = 2m + 1 is a Fermat
prime for some m ∈ N.

If p = 2m + 1 is a Fermat prime, for some m = kl ∈ N where k, l ∈ N such that
l is odd, then Xkl + 1 = (Xk + 1) ·∑l

i=1(−1)i−1Xk(l−i) ∈ Z[X ] implies that

2k + 1 | 2m + 1, hence k = m and l = 1. Thus p is of the form Fk = 22k + 1
for some k ∈ N0, where F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537 are
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the only known Fermat primes; it is not known whether this list is complete,
not even whether there are only finitely many Fermat primes.

(7.2) Theorem: Wedderburn [1905]. Any finite skewfield is a field.

Proof. LetK be a finite skewfield. For a ∈ K let CK(a) := {b ∈ K; ab = ba} be
the associated centraliser, and let Z(K) :=

⋂
a∈K CK(a) be the centre of K.

The CK(a) are subskewfields, and Z(K) is a subfield ofK, thusK andCK(a) are
Z(K)-vector spaces. Let n := dimZ(K)(K) ∈ N and na := dimZ(K)(CK(a)) ∈ N,
letting q := |Z(K)| ≥ 2 we get |K| = qn and |CK(a)| = qna .

From CK(a)∗ ≤ K∗ we get qna − 1 | qn − 1, which implies na | n: For
m ∈ N let k ∈ Z and l ∈ {0, . . . ,m − 1} such that n = km+ l; hence we have

gcd(n,m) = gcd(m, l) ⊆ Z. Then Xn − 1 = (Xm − 1) ·∑k
i=1X

m(k−i)+l +
(X l− 1) ∈ Z[X ] implies gcd(qn − 1, qm − 1) = gcd(qm − 1, ql − 1) ⊆ Z and thus
gcd(qn − 1, qm − 1) = qd − 1, where 0 < d ∈ gcd(n,m).

Writing K∗ as the disjoint union of its conjugacy classes, where T ⊆ K∗ is
a set of representatives, we from Z(K)∗ = {a ∈ T ;na = n} get |K∗| =

|Z(K)∗| + ∑
a∈T ,na<n

|K∗|
|CK(a)∗| , hence qn − 1 = q − 1 +

∑
a∈T ,na<n

qn−1
qna−1 .

Since (Xm − 1)Φn | (Xn − 1) ∈ Z[X ] for n 6= m | n, we infer Φn(q) |
(qn − 1)−∑

a∈T ,na<n
qn−1
qna−1 = q− 1 ∈ Z, hence |Φn(q)| ≤ q− 1. For n ≥ 2 and

k ∈ (Z/nZ)∗ we by the triangle inequality have |q − ζkn| > q − 1 ≥ 1, implying
|Φn(q)| =

∏
k∈(Z/nZ)∗ |q − ζkn| > (q − 1)ϕ(n) ≥ q − 1, a contradiction. Hence we

have n = 1, thus K = Z(K) is commutative. ♯

(7.3) Theorem: Fundamental Theorem of Algebra [Gauß, 1801]. Let
L/C be an algebraic field extension. Then we have L = C.

Proof: Artin. We may assume that L/C is finite. Hence L/R is finite as
well, and since L/R is separable we may assume that L/R is Galois. Let G :=
Aut(L/R), for S ∈ Syl2(G) let R ⊆ K := FixL(S) ⊆ L, and let a ∈ K such that
K = R(a), having minimum polynomial µa ∈ R[X ]. Since deg(µa) = [K : R] =
|G|
|S| is odd, by the mean value theorem we conclude that µa has a root in R,

thus deg(µa) = 1. Hence we have G = S, thus G is a 2-group.

Hence L/C is Galois such that H := Aut(L/C) < G is a 2-group. Assume
that |H | > 1, then H has a normal subgroup of index 2, and replacing L
by the associated fixed field, we may assume that [L : C] = 2. Thus there is
b ∈ L such that L = C(b), having minimum polynomial µb = X2 + pX + q =
(X + p

2 )2 − ((p2 )2 − q) ∈ C[X ]. Since any element r exp(α
√
−1) ∈ C, where

r ∈ R≥0 and α ∈ R, has the square roots ±√r exp(α
√−1
2 ) ∈ C, we deduce that

µb splits, a contradiction. Thus we have |H | = 1 and hence L = C. ♯
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(7.4) Algebraic closure. Let L/K be a field extension. Then K := {a ∈
L; a algebraic over K} ⊆ L is a subfield, called the algebraic closure of K
in L: Let a, b ∈ K such that b 6= 0, then since K(a, b)/K is finite and thus
algebraic we have a − b, ab−1 ∈ K(a, b) ⊆ K. Thus K/K is algebraic, and we

have K = K ⊆ L. If K = K ⊆ L, then K is called algebraically closed in L.

If K is algebraically closed in any field extension L/K, then K is called al-
gebraically closed; e. g. C is algebraically closed. A field K is algebraically
closed if and only if any f ∈ K[X ] \K splits; in particular algebraically closed
fields are perfect: LetK be algebraically closed, and let f ∈ K[X ] be irreducible,
then L := K[X ]/fK[X ] is algebraic over K, thus deg(f) = [L : K] = 1. Con-
versely, let the property on polynomials be fulfilled, let L/K be a field extension
and let a ∈ L be algebraic over K, then the minimum polynomial µa ∈ K[X ] of
a over K is irreducible, thus deg(µa) = 1, hence a ∈ K.

If L/K is algebraic such that L is algebraically closed, then L is called an
algebraic closure of K; e. g. C/R is an algebraic closure. An algebraic field
extension L/K is an algebraic closure if and only if any f ∈ K[X ] \K splits in
L[X ]: Let the property on polynomials be fulfilled, let M/L be a field extension,
and let a ∈ M be algebraic over L, then a is also algebraic over K, and the
minimum polynomial µa ∈ K[X ] of a over K splits in L[X ], hence a ∈ L.

If L/K is a field extension such that L is algebraically closed, then the algebraic
closure K ⊆ L of K in L is an algebraic closure of K: Any f ∈ K[X ] \K splits
in L[X ], and all roots of f in L are algebraic over K, hence f splits in K[X ].

Thus to show the existence of algebraic closures in general, it suffices to show the
existence of an algebraically closed field extension: Let Y = {Yf ; f ∈ K[X ]\K}
be commuting indeterminates. Then we have I := 〈f(Yf ); f ∈ K[X ] \ K〉 ⊳
K[Y]: Assume that there are f1, . . . , fn ∈ K[X ] \ K and g1, . . . , gn ∈ K[Y]
such that

∑n
i=1 fi(Yfi)gi = 1 ∈ K[Y]. Let Yfn+1

, . . . , Yfm , for some m ≥ n, be
the further indeterminates occurring in the gi, let M/K be a field extension
such that fi has a root ai ∈ M for i ∈ {1, . . . , n}, and let ai := 0 for i ∈
{n + 1, . . . , n}. The evaluation map K[Yf1 , . . . , Yfm ] → M : Yfi 7→ ai yields
1 =

∑n
i=1 fi(ai)gi(a1, . . . , am) = 0 ∈M , a contradiction. Hence let J ⊳K[Y] be

maximal such that I ⊆ J , and L1 := K[Y]/J . Then L1/K is a field extension
such that any polynomial in K[X ] \K has a root in L1. By induction there are
field extensions K =: L0 ⊆ L1 ⊆ L2 ⊆ · · · , such that for i ∈ N0 any polynomial
in Li[X ] \ Li has a root in Li+1. Then L :=

⋃
i∈N Li is a field extension such

that any polynomial in L[X ]\L has a root in L, hence L is algebraically closed.

We show uniqueness of algebraic closures: Let L/K and L′/K be algebraic
closures. Then the set Φ of all isomorphisms ϕ : M → M ′ extending idK ,
for some K ⊆ M ⊆ L and K ⊆ M ′ ⊆ L′, is partially ordered by letting
(ϕ : M → M ′) ≤ (ψ : N → N ′) if M ⊆ N and ψM = ϕ. If Ψ := {ψi : Mi →
M ′
i ; i ∈ N} ⊆ Φ is totally ordered, then N :=

⋃
i∈N Mi and N ′ :=

⋃
i∈N M

′
i are

fields, and there is an isomorphism ψ : N → N ′ such that ψ|Mi
= ψi for all

i ∈ N, hence ψ is an upper bound for Ψ in Φ. Thus by Zorn’s Lemma there
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is a maximal element ϕ : M → M ′ in Φ. Let a ∈ L, and let µa ∈ M [X ] be its
minimum polynomial overM . Since µϕa ∈M ′[X ] splits in L′[X ], there is a′ ∈ L′

and an isomorphism M(a) → M ′(a′) extending ϕ. By the maximality of ϕ we
have a ∈M , implying M = L. Let b ∈ L′, and let µb ∈M ′[X ] be its minimum
polynomial over M ′. Since M ′ = Mϕ = Lϕ is algebraically closed, µb splits,
thus b ∈M ′, implying M ′ = L′.

E. g. the algebraic closure Q ⊆ C of Q in C, being called the field of algebraic
numbers, is algebraically closed. Since Q is countable, Q[X ] is countable as
well, thus Q also is countable. Since C is not countable, we have Q 6= C, thus C

contains more than countably many transcendental numbers [Cantor, 1874].
There are criteria to decide whether a given complex number is algebraic or
transcendental [Liouville, 1844; Thue-Siegel-Roth, 1955]. These have been used
to specify a particular transcendental number in the first place, while still it
is not too easy to decide this for a given number. E. g. the Euler number
e :=

∑∞
n=0

1
n! ∈ R ⊆ C and π := 2 · min{x ∈ R≥0; cos(x) = 0} ∈ R ⊆ C are

transcendental [Hermite, 1873; Lindemann, 1882].

(7.5) Kummer extensions. Let n ∈ N, let K be a field such that char(K) 6 | n
and Xn − 1 ∈ P (K)[X ] splits in K[X ]. Since ∂(Xn−1)

∂X = nXn−1 6= 0, the
polynomial Xn − 1 ∈ P (K)[X ] has n pairwise distinct roots in K, called n-th
roots of unity. The latter form a cyclic subgroup of K∗ of order n. Let ζ ∈ K
be a primitive root of unity, i. e. having order n, then all primitive roots of
unity in K are given as {ζk ∈ K; k ∈ (Z/nZ)∗}, and for the n-th cyclotomic
polynomial we have Φn =

∏
k∈(Z/nZ)∗(X − ζk) ∈ K[X ].

If p := char(K) > 0, then from Xpan − 1 = (Xn− 1)p
a ∈ P (K)[X ] we conclude

that Xpan− 1 also splits in K[X ], hence pan-th roots of unity and n-th roots of
unity in K coincide, and there are no primitive pan-th roots of unity for a ≥ 1.

Let 0 6= a ∈ K and f := Xn− a ∈ K[X ], called the associated pure equation.

Since ∂(Xn−a)
∂X = nXn−1 6= 0 the polynomial f has pairwise distinct roots in

any extension field, thus is separable. Letting L/K be a field extension such
that b ∈ L is a root of f , its roots in L are {bζk ∈ L; k ∈ Z/nZ}, hence the
Kummer extension K(b)/K is a splitting field for f , thus is Galois.

For ϕ ∈ Aut(K(b)/K) we have f(bϕ) = f(b)ϕ = 0, hence bϕ = bζkϕ for some
kϕ ∈ Z/nZ. The map Aut(K(b)/K) → Z/nZ : ϕ 7→ kϕ is an injective group
homomorphism: For ψ ∈ Aut(K(b)/K) we since ζ ∈ K have bϕψ = (bζkϕ)ψ =
bζkϕkψ , hence kϕψ = kϕkψ ; and if kϕ = 0 then bϕ = b implies ϕ = idK(b). Hence
Aut(K(b)/K) is isomorphic to a subgroup of Z/nZ, in particular is cyclic. Since
K(b)/K is Galois, if f is irreducible then we have Aut(K(b)/K) ∼= Z/nZ.

Conversely, let L/K be a Galois extension such that Aut(L/K) ∼= Z/nZ, and
let ϕ ∈ Aut(L/K) be a generator. Hence {ϕk ∈ HomK(L,L); k ∈ Z/nZ} is K-
linearly independent, and thus for the Lagrange resolvent we have 0 6= ρ :=∑
k∈Z/nZ ϕ

kζk ∈ HomK(L,L). Letting c ∈ L such that 0 6= b := cρ ∈ L, we have

bϕ = cρϕ =
∑

k∈Z/nZ(cϕ
k

ζk)ϕ =
∑

k∈Z/nZ c
ϕk+1

ζk = ζ−1 ·∑k∈Z/nZ c
ϕkζk =
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bζ−1, implying (bn)ϕ = (ζ−1b)n = bn, thus a := bn ∈ FixL(ϕ) = K, hence b is a
root of f := Xn − a ∈ K[X ]. Let µb ∈ K[X ] be the minimum polynomial of b

overK, hence µb | f . For k ∈ Z/nZ we have µb(bζ
−k) = µb(b

ϕk) = µb(b)
ϕk = 0,

hence {bζk ∈ L; k ∈ Z/nZ} are roots of µb, and since b 6= 0 these are pairwise
distinct. Hence we have deg(µb) ≥ n = deg(f), thus f = µb is irreducible. Since
[K(b) : K] = n = [L : K] we have L = K(b), hence L/K is a Kummer extension.

(7.6) Radical extensions. A field extension L/K is called a radical exten-
sion, if there are intermediate fields K = K1 ⊆ K2 ⊆ · · · ⊆ Km = L, where
m ∈ N, such that there are 0 6= ai ∈ Ki and ni ≥ 2 and roots bi ∈ Ki+1 of
Xni − ai ∈ Ki[X ] such that Ki+1 = Ki(bi), for all i ∈ {1, . . . ,m − 1}; radical
extensions are finite, and Kummer extensions are radical extensions.

If L/K is a separable radical extension then the ni can be chosen such that
char(K) 6 | ni, for all i ∈ {1, . . . ,m− 1}: By choosing intermediate fields appro-
priately we may assume that Ki+1 6= Ki and that ni is a prime, hence assuming
ni = char(K) implies Xni − ai = Xni − bnii = (X − bi)ni , contradicting the
separability of Ki+1/Ki. If L/K is a radical extension such that char(K) 6 | ni
for i ∈ {1, . . . ,m− 1}, then there is a Galois radical extension M/K such that
L ⊆M ; in particular L/K is separable:

We proceed by induction on [L : K], where we may assume that [L : K] ≥ 2:
Letting K = K1 ⊆ K2 ⊆ · · · ⊆ L′ := Km−1 ⊆ Km = L be intermediate fields as
above, we have m ≥ 2 and we may assume that L′ 6= L, hence [L′ : K] < [L : K];
let n := nm−1 and a := am−1 ∈ L′ and b := bm−1 ∈ L. By induction there is
a Galois radical extension M ′/K such that L′ ⊆ M ′. Let M/M ′ be a splitting
field for f :=

∏
ϕ∈Aut(M ′/K)(X

n−aϕ) ∈M ′[X ]; since b ∈ L is a root of f we may

assume that L = L′(b) ⊆M . Since char(K) 6 | n we have ∂(Xn−aϕ)
∂X = nXn−1 6=

0, thus f is separable, and its shape implies that M/M ′ is a Galois radical
extension. Since M ′/K is a radical extension, M/K also is a radical extension.
Since for all ψ ∈ Aut(M ′/K) we have fψ =

∏
ϕ∈Aut(M ′/K)(X

n − aϕψ) = f ∈
M ′[X ], we infer f ∈ FixM ′(Aut(M ′/K))[X ] = K[X ]. Since M/M ′ is a splitting
field for the separable polynomial f ∈ K[X ]\K, and M ′/K is a splitting field for
some separable polynomial g ∈ K[X ] \K, we conclude that M/K is a splitting
field for the separable polynomial fg ∈ K[X ] \K, hence is Galois. ♯

(7.7) Soluble groups. Let G be a finite group. A chain of subgroups {1} =
Gm ≤ Gm−1 ≤ · · · ≤ G1 = G such that Gi+1 EGi for i ∈ {1, . . . ,m−1} is called
a subnormal series, the groups Gi/Gi+1 are called the associated sections.
If G has a subnormal series with abelian sections, then G is called soluble; in
this case, since any non-trivial abelian group has a normal subgroup of prime
order, G has a subnormal series with cyclic sections of prime order.

If G is soluble, then so is any subgroup H ≤ G and quotient group G/N ,
where N E G: The chain of subgroups {1} = H ∩ Gm ≤ H ∩ Gm−1 ≤ · · · ≤
H ∩G1 = H is a subnormal series with abelian sections (H ∩Gi)/(H ∩Gi+1) ∼=
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(H ∩ Gi)Gi+1/Gi+1 ≤ Gi/Gi+1; the chain of subgroups {1} = GmN/N ≤
Gm−1N/N ≤ · · · ≤ G1N/N = G/N is a subnormal series whose sections
(GiN/N)/(Gi+1N/N) are epimorphic images of the abelian groups Gi/Gi+1.

E. g. any abelian group is soluble; the symmetric groups S3 and S4 are soluble,
with subnormal series {1} < A3 < S3 and {1} < V4 < A4 < S4, respectively,
having abelian sections; for n ≥ 3 the dihedral groups D2n are soluble, with
subnormal series {1} < Tn < D2n having abelian sections, see (2.9).

For n ≥ 5 the symmetric group Sn is not soluble: Assume that {1} = Gm ≤
Gm−1 ≤ · · · ≤ G1 = Sn is a subnormal series having abelian sections. Then
for i ∈ {1, . . . ,m} we successively conclude that Gi contains every 3-cycle,
which holds for i = 1, and thus since Gm = {1} is a contradiction: Let-
ting a, b, c, d, e ∈ {1, . . . , n} be pairwise distinct, using the natural homomor-
phism : Gi → Gi/Gi+1 to the abelian group Gi/Gi+1, the commutator for-
mula (a, b, c)−1(c, d, e)−1(a, b, c)(c, d, e) = (a, c, d) ∈ Sn shows that (a, c, d) =

(a, b, c)
−1

(c, d, e)
−1

(a, b, c)(c, d, e) = 1 ∈ Gi/Gi+1, hence (a, c, d) ∈ Gi+1.

(7.8) Theorem. Let L/K be Galois extension.
a) If L/K is a radical extension, then Aut(L/K) is soluble.
b) If Aut(L/K) is soluble where char(K) 6 | [L : K], then letting n ∈ N be the
product of the distinct prime divisors of [L : K] and M/L be a splitting field for
Xn − 1 ∈ Q[X ], the field extension M/K is a Galois radical extension.

Proof. a) Let K = K1 ⊆ K2 ⊆ · · · ⊆ Km = L be intermediate fields, such
that there are 0 6= ai ∈ Ki and ni ≥ 2 and roots bi ∈ Ki+1 of Xni − ai ∈ Ki[X ]
such that Ki+1 = Ki(bi); since L/K is separable we may assume char(K) 6 | ni
for all i ∈ {1, . . . ,m − 1}. Let 0 < n ∈ lcm{n1, . . . , nm−1}, hence we have
char(K) 6 | n. Let M/L be a splitting field for Xn − 1 ∈ Q[X ], let ζ ∈ M be a
primitive n-th root of unity, and letting K ′

i := Ki(ζ) for i ∈ {1, . . . ,m} we have
K ⊆ K(ζ) = K ′

1 ⊆ K ′
2 ⊆ · · · ⊆ K ′

m = L(ζ) = M .

K(ζ)/K is a splitting field for the separable polynomial Φn ∈ K[X ], hence is
Galois. Since for ϕ ∈ Aut(K(ζ)/K) we have Φn(ζ

ϕ) = Φn(ζ)
ϕ = 0, there is

kϕ ∈ (Z/nZ)∗ such that ζϕ = ζkϕ . The map Aut(K(ζ)/K)→ (Z/nZ)∗ : ϕ 7→ kϕ
is an injective group homomorphism, hence Aut(K(ζ)/K) is abelian. Since

K ′
i+1 = K ′

i(bi) for i ∈ {1, . . . ,m− 1}, and Xni − 1 =
∏
k∈Z/niZ

(X − (ζ
n
ni )k) ∈

K ′
i[X ] splits, K ′

i+1/K
′
i is a Kummer extension and Aut(K ′

i+1/K
′
i) is cyclic.

Since L/K is a splitting field for some separable polynomial g ∈ K[X ] \ K,
we conclude that L(ζ)/K is a splitting field for Φng ∈ K[X ], hence is Galois.
We have {1} = Aut(K ′

m/K
′
m) ≤ Aut(K ′

m/K
′
m−1) ≤ · · · ≤ Aut(K ′

m/K
′
1) ≤

Aut(K ′
m/K), where Aut(K ′

m/K
′
i+1) E Aut(K ′

m/K
′
i) for i ∈ {1, . . . ,m − 1},

and Aut(K ′
m/K

′
1) E Aut(K ′

m/K). Since we have Aut(K ′
m/K)/Aut(K ′

m/K
′
1)
∼=

Aut(K(ζ)/K) and Aut(K ′
m/K

′
i)/Aut(K ′

m/K
′
i+1)

∼= Aut(K ′
i+1/K

′
i), this is a

subnormal series with abelian sections, hence Aut(L(ζ)/K) is soluble. We have
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Aut(L(ζ)/L) E Aut(L(ζ)/K) and Aut(L(ζ)/K)/Aut(L(ζ)/L) ∼= Aut(L/K),
hence Aut(L/K) is soluble.

b) Let {1} = Gm ≤ Gm−1 ≤ · · · ≤ G1 := Aut(L/K) be a subnormal se-
ries with cyclic sections of prime order. Letting Ki := FixL(Gi) for i ∈
{1, . . . ,m}, we have K = K1 ⊆ K2 ⊆ · · · ⊆ Km = L. Since Gi+1 E Gi for i ∈
{1, . . . ,m−1}, the field extension Ki+1/Ki is Galois such that Aut(Ki+1/Ki) ∼=
Aut(Km/Ki)/Aut(Km/Ki+1) ∼= Gi/Gi+1

∼= Z/piZ is cyclic of prime order.

Hence we have n ∈ lcm{p1, . . . , pm−1}, and let ζ ∈ M be a primitive n-th root
of unity. Letting K ′

i := Ki(ζ) for i ∈ {1, . . . ,m} yields K ⊆ K(ζ) = K ′
1 ⊆ K ′

2 ⊆
· · · ⊆ K ′

m = L(ζ) = M , where since L/K is Galois, L(ζ)/K is Galois. Since
Ki+1/Ki is Galois, K ′

i+1/Ki and K ′
i+1/K

′
i are Galois for i ∈ {1, . . . ,m − 1},

and we have the restriction map res
K′
i+1

Ki+1
: Aut(K ′

i+1/Ki) → Aut(Ki+1/Ki). If

ϕ ∈ Aut(K ′
i+1/K

′
i) ≤ Aut(K ′

i+1/Ki) such that ϕ ∈ ker(res
K′
i+1

Ki+1
), then aϕ = a

for all a ∈ K ′
i ∪ Ki+1 implies ϕ = idK′

i+1
. Hence res

K′
i+1

Ki+1
: Aut(K ′

i+1/K
′
i) →

Aut(Ki+1/Ki) is injective, thus Aut(K ′
i+1/K

′
i)
∼= Z/niZ, where ni | pi. Hence

Xni − 1 =
∏
k∈Z/niZ

(X − (ζ
n
ni )k) ∈ K ′

i[X ] splits, thus K ′
i+1/K

′
i is a Kummer

extension. Since K(ζ)/K is a radical extension, L(ζ)/K is as well. ♯

(7.9) Corollary. Let L/K be a splitting field for f ∈ K[X ] \K separable.
a) If f is solvable by radicals, i. e. there is a separable radical extension
M/K such that f splits in M [X ], then Aut(L/K) is soluble.
b) If char(K) 6 | [L : K] and Aut(L/K) is soluble then f is solvable by radicals.

Proof. a) There is a Galois radical extension M/K such that f splits in M [X ],
where Aut(M/K) is soluble. There is a splitting field L/K for f such that
L ⊆M , hence Aut(L/K) ∼= Aut(M/K)/Aut(M/L) is soluble.
b) There is a Galois radical extension M/K such that L ⊆M . ♯

(7.10) Symmetric polynomials. a) Let K be a field, let n ∈ N, and let
X = {X1, . . . , Xn} be commuting indeterminates. Then f :=

∏n
j=1(X −Xj) =

Xn +
∑n

k=1(−1)kSn,kX
n−k ∈ K(X )[X ], where the elementary symmetric

polynomials are Sn,k :=
∑

1≤i1<i2<···ik≤n
∏k
j=1Xij ∈ K[X ]; we have Sn,1 =

X1+· · ·+Xn and Sn,n = X1 ·· · · ·Xn. Letting S := {Sn,1, . . . , Sn,n} we conclude
that K(X )/K(S) is a splitting field for f , hence [K(X ) : K(S)] ≤ deg(f)! = n!.

For π ∈ Sn the evaluation map π : K[X ] → K[X ] : Xi 7→ Xiπ is a ring auto-
morphism, hence extends uniquely to a field automorphism of K(X ). Hence Sn
acts on K(X ), yielding an injective action homomorphism Sn → Aut(K(X )).
For π ∈ Sn we have fπ =

∏n
j=1(X − Xπ

j ) =
∏n
j=1(X −Xj) = f ∈ K(X )[X ],

thus Sπn,k = Sn,k for all k ∈ {1, . . . , n}, hence K(S) ⊆M := FixK(X )(Sn). Since
K(X )/K(S) is finite, K(X )/M is Galois such that Aut(K(X )/M) ∼= Sn, and
from [K(X ) : M ] = |Sn| = n! we conclude M = K(S).
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For G ≤ Sn we have G ∼= Aut(K(X )/FixK(X )(G)) ≤ Aut(K(X )/K(S)) ∼= Sn.
Since any finite group is isomorphic to a subgroup of some symmetric group,
any finite group can be realised as a Galois group of a suitable Galois extension.

b) The set S is algebraically independent over K, i. e. if Z := {Z1, . . . , Zn}
are commuting indeterminates, the evaluation map K[Z] → K[X ] : Zk 7→ Sn,k
is injective: Let Y := {Y1, . . . , Yn} be commuting indeterminates and g :=
Xn+

∑n
k=1(−1)kYkX

n−k ∈ K(Y)[X ] be the general polynomial of degree n.
Let L/K(Y) be a splitting field for g, hence we have g =

∏n
j=1(X − yj) ∈ L[X ],

and the evaluation map K[X ] → L : Xj 7→ yj implies Yk = Sn,k(y1, . . . , yn) for
k ∈ {1, . . . , n}. Thus for h ∈ K[Z] such that h(Sn,1, . . . , Sn,n) = 0 ∈ K[X ] we
get 0 = h(Sn,1(y1, . . . , yn), . . . , Sn,n(y1, . . . , yn)) = h(Y1, . . . , Yn) ∈ L, and since
Y is algebraically independent over K we infer h = 0.

Since S is algebraically independent, the evaluation map K[Y] → K[S] : Yk 7→
Sn,k is a ring isomorphism, which hence extends uniquely to a field isomorphism
K(Y)→ K(S), and thus to a ring isomorphism K(Y)[X ]→ K(S)[X ] such that
g = Xn +

∑n
k=1(−1)kYkX

n−k 7→ Xn +
∑n

k=1(−1)kSn,kX
n−k = f . Hence

this extends to an isomorphism ϕ : L→ K(X ) of the respective splitting fields,
inducing a bijection between the roots {y1, . . . , yn} of g in L and {X1, . . . , Xn} of
f in K(X ), and implying that Aut(K(X )/K(S))→ Aut(L/K(Y)) : π 7→ ϕπϕ−1

is a group isomorphism. Hence we have Aut(L/K(Y)) ∼= Sn, where the action
of Sn is given by permutations of {y1, . . . , yn}.
Hence we have Abel’s Theorem: For n ≥ 5 the general polynomial of degree
n is not solvable by radicals. If n = 2 and char(K) 6= 2, or n ∈ {3, 4} and
char(K) 6∈ {2, 3}, the general polynomial of degree n is solvable by radicals.

(7.11) Cardano’s Formula. a) Let K be a field such that char(K) 6= 2, and
let g := X2 +PX+Q ∈M [X ], where M := K(P,Q). From g = (X −X1)(X −
X2) ∈ K(X )[X ], where X := {X1, X2}, we get P = −(X1+X2) and Q = X1X2.
We have Aut(K(X )/M) ∼= S2 = 〈(1, 2)〉, thus the Lagrange resolvent associated
to (1, 2) maps X1 to the discriminant ∆ := X1−X2. Hence we have ∆2 ∈M
and thus K(X ) = M(X1) = M(∆). We get ∆2 = (X1 −X2)

2 = P 2 − 4Q, and

thus Xi = − 1
2 (P + (−1)i∆) = −P2 + (−1)i−1

√
P 2

4 −Q for i ∈ {1, 2}.

b) Let K be a field such that char(K) 6∈ {2, 3} and X3−1 = (X−1)(X2 +X+
1) ∈ K[X ] splits, and let ζ ∈ K be a primitive 3-rd root of unity; hence we have
1+ ζ+ ζ2 = 0. Let g := X3 +PX2 +QX+R ∈M [X ], where M := K(P,Q,R).
From g = (X −X1)(X −X2)(X −X3) ∈ K(X )[X ], where X := {X1, X2, X3},
we get P = −(X1+X2+X3) and Q = X1X2+X1X3+X2X3 and R = X1X2X3.
We have Aut(K(X )/M) ∼= S3, with subnormal series {1} < A3 = 〈(1, 2, 3)〉 <
S3 = 〈(1, 2, 3), (1, 2)〉 having cyclic sections of order 2 and 3, respectively.

Let ∆ := (X1 −X2)(X1 −X3)(X2 −X3) = X2
1X2 −X2

1X3 −X1X
2
2 +X1X

2
3 +

X2
2X3 − X2X

2
3 be the discriminant. From ∆(1,2,3) = ∆ and ∆(1,2) = −∆

we infer FixK(X )((1, 2, 3)) = M(∆), where [M(∆): M ] = 2. The Lagrange

resolvent associated to S3/A3 = 〈(1, 2)〉 maps ∆ to 2∆, and we get ∆2 =
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−4P 3R+ P 2Q2 + 18PQR− 4Q3 − 27R2 ∈M .

The Lagrange resolvents associated to A3 = 〈(1, 2, 3)〉 = 〈(1, 3, 2)〉 map X1 to

Θ := X1 + ζX2 + ζ2X3 and Θ̃ := X1 + ζ2X2 + ζX3, respectively, hence we
have Θ3, Θ̃3 ∈ M(∆) and K(X ) = M(∆, X1) = M(∆,Θ) = M(∆, Θ̃). We

get Θ+ := Θ3 + Θ̃3 = −2P 3 + 9PQ − 27R and Θ− := Θ3 − Θ̃3 = 3(ζ −
ζ2)∆ = 3

√
−3∆, hence Θ3 = 1

2 (Θ+ + Θ−) and Θ̃3 = 1
2 (Θ+ − Θ−). This yields

Xi = 1
3 (−P + ζ−i+1Θ + ζi−1Θ̃) for i ∈ {1, . . . , 3}.

For simplification we let X ′ := X+ P
3 . This yields g = (X ′− P

3 )3+P (X ′− P
3 )2+

Q(X ′− P
3 )+R = X ′3+Q′X ′+R′, where Q′ := Q− P 2

3 and R′ := R− PQ
3 + 2P 3

27 .

Hence we have ∆2 = −4Q′3 − 27R′2, and Θ+ = −27R′ and Θ− = 3
√
−3∆,

yielding Θ3 = − 27
2 R

′ + 3
2

√
−3∆ and Θ̃3 = − 27

2 R
′ − 3

2

√
−3∆, and thus

Xi = −P
3

+ ζ−i+1 · 3

√

−R
′

2
+

√
Q′3

27
+
R′2

4
+ ζi−1 · 3

√

−R
′

2
−

√
Q′3

27
+
R′2

4
.
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8 Exercises (in German)

(8.1) Aufgabe: Gruppenaxiome.
Es seien G eine Menge und · : G × G → G eine assoziative Verknüpfung auf
G. Außerdem gebe es ein rechts-neutrales Element 1 ∈ G mit g · 1 = g für
alle g ∈ G, und zu jedem Element g ∈ G gebe es ein rechts-inverses Element
h ∈ G mit gh = 1. Man zeige: G ist eine Gruppe.

(8.2) Aufgabe: Rechnen in Gruppen.
Es sei G eine Gruppe.
a) Man bestimme alle Elemente g ∈ G mit g2 = g.
b) Für alle f, g, h ∈ G zeige man die folgenden Kürzungsregeln: Es ist fh =
gh genau dann, wenn f = g ist, und dies gilt genau dann, wenn hf = hg ist.
c) Man zeige: G ist genau dann abelsch, wenn g2h2 = (gh)2 für alle g, h ∈ G.

(8.3) Aufgabe: Komplexprodukt.
Es sei G eine Gruppe. Für Teilmengen A,B ⊆ G sei A−1 := {a−1 ∈ G; a ∈ A}
und das Komplexprodukt AB := {ab ∈ G; a ∈ A, b ∈ B}.
a) Man zeige: Eine Teilmenge ∅ 6= U ⊆ G ist genau dann eine Untergruppe,
wenn UU−1 ⊆ U gilt.
b) Man zeige: Eine endliche Teilmenge ∅ 6= U ⊆ G ist genau dann eine Unter-
gruppe, wenn UU ⊆ U gilt.
c) Für Untergruppen U, V ≤ G zeige man: Es ist UV genau dann eine Unter-
gruppe, wenn V U ⊆ UV gilt. Was folgt daraus für abelsche Gruppen?

(8.4) Aufgabe: Matrixgruppen.

Man zeige:

{[
a b
−b a

]
∈ R2×2; a2 + b2 6= 0

}
ist eine Untergruppe von GL2(R),

die isomorph zur Einheitengruppe C∗ ist.

(8.5) Aufgabe: Symmetrische Gruppen.
Für endliche Mengen X,Y 6= ∅ zeige man: Die symmetrischen Gruppen SX und
SY sind genau dann isomorph, wenn |X | = |Y | gilt.

(8.6) Aufgabe: Index.
Es seien G eine Gruppe und U, V ≤ G. Man zeige:
a) Sind |U | und |V | endlich mit ggT(|U |, |V |) = 1, so gilt U ∩ V = {1}.
b) Sind U ≤ V ≤ G mit [G : U ] endlich, so sind auch [G : V ] und [V : U ] endlich,
und es gilt [G : U ] = [G : V ] · [V : U ].
c) Es gilt der Satz von Poincaré: Sind [G : U ] und [G : V ] endlich, so ist
[G : (U ∩ V )] endlich, und es gilt [G : (U ∩ V )] ≤ [G : U ] · [G : V ]. Unter welcher
hinreichenden Bedingung gilt Gleichheit?

(8.7) Aufgabe: Vereinigung von Untergruppen.
Es seien G eine endliche Gruppe und U < G. Man zeige: Es ist

⋃
g∈G U

g 6= G.
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(8.8) Aufgabe: Tetraedergruppe.
a) Man bestimme die Symmetriegruppe eines regulären Tetraeders im Euk-
lidischen Raum R3 als Gruppe von Permutationen seiner 4 Ecken. Wieviele
Drehungen und Spiegelungen gibt es? Man zeige, daß die Menge der Drehun-
gen eine Untergruppe bildet. Zu welchen bekannten Gruppen sind die volle
Symmetriegruppe und die Drehgruppe isomorph?
b) Man bestimme die Anzahl der verschiedenen Färbungen der 4 Ecken eines
regulären Tetraeders mit bis zu 4 Farben, bezüglich der vollen Symmetriegruppe
und der Drehgruppe. Wie kann man das Ergebnis geometrisch interpretieren?

(8.9) Aufgabe: Lineare Gruppen.
Es sei K ein Körper mit q ∈ N Elementen. Für n ∈ N bestimme man die
Ordnungen der linearen Gruppen GLn(K) und SLn(K).

(8.10) Aufgabe: Elementordnungen.
Es sei G eine endliche Gruppe. Dann heißt exp(G) := kgV{|g|; g ∈ G} ∈ N der
Exponent von G. Man zeige:
a) Für alle g, h ∈ G gilt |g−1| = |g| sowie |gh| = |hg| und |gh| = |g|.
b) Sind g, h ∈ G mit gh = hg, so gilt genau dann |gh| = |g| · |h|, wenn
ggT(|g|, |h|) = 1 ist. Was gilt im Falle gh 6= hg?
c) Ist G abelsch, so ist exp(G) = max{|g|; g ∈ G}. Gilt dies auch allgemein?
d) Ist exp(G) ≤ 2, so ist G abelsch.

(8.11) Aufgabe: Untergruppenverbände.
Man bestimme die Untergruppen, Normalteiler und Zentren der folgenden Grup-
pen, und zeichne jeweils das Hasse-Diagramm des Untergruppenverbandes:
a) Zyklische Gruppen Cn für n ≤ 12,
b) Kleinsche Vierergruppe V4,
c) Diedergruppen D8, D10 und D12,
d) alternierende Gruppe A4.

(8.12) Aufgabe: Quaternionengruppe.
Es seien A,B ∈ GL2(C) gegeben durch

A :=

[
0 1
−1 0

]
und B :=

[
i 0
0 −i

]
,

sowie Q8 := 〈A,B〉 ≤ GL2(C) die Quaternionengruppe. Man bestimme
die Gruppenordnung, die Untergruppen, Normalteiler und das Zentrum von
Q8, zeichne das Hasse-Diagramm des Untergruppenverbandes, und gebe einen
Monomorphismus Q8 → S8 an.

(8.13) Aufgabe: Symmetrische Gruppen.
Es seien n ∈ N und Sn die zugehörige symmetrische Gruppe. Ist π ∈ Sn ein
Produkt von r ∈ N disjunkten Zykeln der Längen n1 ≥ n2 ≥ · · · ≥ nr > 0, so
heißt die nicht-aufsteigende Folge [n1, . . . , nr] der Zykeltyp von π.
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a) Für π ∈ Sn zeige man (1, . . . , n)π = (1π, . . . , nπ) ∈ Sn. Daraus folgere man:
Elemente π, π′ ∈ Sn sind genau dann konjugiert, wenn sie den gleichen Zykeltyp
besitzen. Man bestimme die Konjugiertenklassen in Sn für n ∈ {3, 4, 5}.
b) Man gebe eine Transversale für StabSn(n) in Sn an. Zu welcher bekan-
nten Gruppe ist StabSn(n) isomorph? Daraus folgere man: Es gilt Sn =
〈(1, 2), (2, 3), . . . , (n− 1, n)〉 = 〈(1, 2), (1, 2, . . . , n)〉.

(8.14) Aufgabe: Frattini-Argument.
Es seien p ∈ N prim und G eine endliche Gruppe.
a) Es seien P ∈ Sylp(G) und NG(P ) ≤ U ≤ G. Man zeige: Es ist NG(U) = U .
b) Es seien N EG und P ∈ Sylp(N). Man zeige: Es ist NG(P )N = G.

(8.15) Aufgabe: Gruppenordnungen mit wenigen Primteilern.
Es seien p 6= q ∈ N prim und G eine endliche Gruppe. Man zeige:
a) Ist |G| = pq mit p < q, so hat G eine normale q-Sylow-Gruppe; ist zudem
q 6≡ 1 (mod p), so ist G zyklisch. Gilt dies auch im Falle q ≡ 1 (mod p)?
b) Ist |G| = 2p, so ist G ∼= C2p oder G ∼= D2p.
c) Ist |G| = p2q, so hat G einen nicht-trivialen echten Normalteiler.
d) Ist |G| = 8k, wobei k ≤ 8, so hat G einen nicht-trivialen echten Normalteiler.

(8.16) Aufgabe: Zentrum.
Es seien p ∈ N prim und G eine Gruppe.
a) Man zeige: Ist G/Z(G) zyklisch, so ist G abelsch.
b) Man bestimme alle Gruppen G der Ordnung |G| = p2.
c) Man zeige: Ist |G| = p3, so ist G abelsch oder |Z(G)| = p.

(8.17) Aufgabe: Gruppen kleiner Ordnung.
Man bestimme bis auf Isomorphie
a) die nicht-abelschen Gruppen G der Ordnung |G| = 8,
b) die Gruppen G der Ordnung |G| = 12,
c) die Gruppen G der Ordnung |G| = 21.

(8.18) Aufgabe: Zyklische Gruppen.
Es sei n ∈ N. Man zeige: Es ist Aut(Cn) ∼= (Z/nZ)∗.

(8.19) Aufgabe: Satz von Wilson.
Es sei p ∈ N prim. Man zeige man: Es gilt (p− 1)! ≡ −1 (mod p).

(8.20) Aufgabe: Quaternionen-Schiefkörper.

Für u, v ∈ C sei Qu,v :=

[
u v
−v u

]
∈ C2×2, wobei : C → C die komplexe

Konjugation bezeichne.
a) Man zeige: H := {Qu,v ∈ C2×2;u, v ∈ C} ist ein Teilring von C2×2 und
ein nicht-kommutativer Schiefkörper; H heißt der Schiefkörper der Hamilton-
Quaternionen. Für [0, 0] 6= [u, v] ∈ C2 gilt Q−1

u,v = 1
|u|2+|v|2 ·Qu,−v.
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b) Es seien I := Q√−1,0 und J := Q0,1 sowieK := Q0,
√−1 die Pauli-Matrizen.

Man zeige: Jedes Element Q ∈ H hat eine eindeutige Darstellung der Form
Q = aE2+bI+cJ+dK ∈ H, wobei a, b, c, d ∈ R, und es gilt I2 = J2 = K2 = −1
und IJ = −JI = K sowie JK = −KJ = I und KI = −IK = J .
c) Man zeige: Z := {aE2 + bI + cJ + dK ∈ H; a, b, c, d ∈ Z} ist ein Teilring von
H. Zu welcher bekannten Gruppe ist die Einheitengruppe Z∗ isomorph?

(8.21) Aufgabe: Matrixringe.
Es seien K ein Körper und n ∈ N. Man zeige: Der Ring Kn×n ist einfach,
aber kein Schiefkörper, und jedes von 0 verschiedene Element ist entweder eine
Einheit oder ein Nullteiler.

(8.22) Aufgabe: Integritätsringe.
Man zeige: In einem endlichen kommutativen Ring ist jedes von 0 verschiedene
Element entweder eine Einheit oder ein Nullteiler. Ein endlicher Integritätsring
ist ein Körper.

(8.23) Aufgabe: Teilbarkeit.
Es seien R ein Integritätsring und K := Q(R) sein Quotientenkörper.
a) Man zeige: Sind p ∈ R prim und a ∈ R, so gilt entweder p | a oder
1 ∈ ggT(a, p). Sind p, q ∈ R prim, so gilt entweder p ∼ q oder 1 ∈ ggT(p, q).
b) Man gebe eine formale Definition von kleinsten gemeinsamen Vielfachen
zweier Elemente vom R an, und formuliere eine Eindeutigkeitsaussage. Man
zeige: Ist R faktoriell, so gibt es kleinste gemeinsame Vielfache. Wie kann man
eines berechnen? Wie kann man eines in Hauptidealringen berechnen?
c) Es sei R faktoriell. Man zeige: Sind 0 6= a, b ∈ R teilerfremd und c ∈ R,
so gilt a | bc genau dann, wenn a | c, und aus a | c und b | c folgt ab | c.
Ist c ∈ K, so gibt es bis auf Assoziiertheit eindeutig bestimmte teilerfremde
Elemente a ∈ R und 0 6= b ∈ R mit c = a

b ∈ K.

(8.24) Aufgabe: Quadratische Ringe.
Für n ∈ Z \ {0, 1} quadratfrei sei R := Z[

√
n] := {x+ y

√
n ∈ C;x, y ∈ Z}.

a) Man bestimme R∗ für n < 0, und zeige, daß Z[
√

3]∗ unendlich ist.
b) Man faktorisiere 2, 3 und 5 in Z[

√
−1].

c) Man bestimme alle Teiler von 21 in Z[
√
−5].

d) Man zeige: 〈3, 2+
√
−5〉EZ[

√
−5] und 〈3, 2−

√
−5〉EZ[

√
−5] sind Primideale,

und es gilt 〈3, 2 +
√
−5〉〈3, 2−

√
−5〉 = 〈3〉E Z[

√
−5].

(8.25) Aufgabe: Größte gemeinsame Teiler.
a) Man bestimme jeweils einen größten gemeinsamen Teiler von a, b ∈ R und
zugehörige Bézout-Koeffizienten:
i) R := Z, a := 1256, b := 14372.
ii) R := Z[

√
−1], a := 2 +

√
−1, b := 2−

√
−1.

iii) R := Z[
√
−1], a := 5 + 3 ·

√
−1, b := 13 + 8 ·

√
−1.

iv) R := Q[X ], a := X5+X4−X3−3X2−3X−1, b := X4−2X3−X2−2X−1.
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v) R := Q[X ], a := X3 − 6X2 +X + 4, b := X5 − 6X + 1.

b) Für a, b ∈ N0 sei ggT+(a, b) ∈ N0 der nichtnegative größte gemeinsame

Teiler. Für k,m, n ∈ N zeige man: Es gilt ggT+(km−1, kn−1) = kggT+(m,n)−1.

(8.26) Aufgabe: Polynomringe.
a) Man zeige: Das Ideal 〈2, X〉E Z[X ] ist kein Hauptideal.
b) Man zeige: Für einen kommutativen Ring R sind äquivalent:
i) Der Polynomring R[X ] ist ein Euklidischer Ring.
ii) Der Polynomring R[X ] ist ein Hauptidealring.
iii) Der Ring R ist ein Körper.

(8.27) Aufgabe: Multivariate Polynome.
Es seien R ein kommutativer Ring und n ∈ N. Man zeige:
a) Für π ∈ Sn gilt R[X1π, . . . , Xnπ] ∼= R[X1, . . . , Xn], und für n ≥ 2 gilt
R[X1, . . . , Xn] ∼= R[X1, . . . , Xn−1][Xn].
b) Ist R faktoriell, so ist R[X1, . . . , Xn] ebenfalls faktoriell.
c) Für n ≥ 2 ist X2

1 +X2
2 + · · ·+X2

n − 1 ∈ Z[X1, . . . , Xn] irreduzibel.

(8.28) Aufgabe: Lagrange-Interpolation.
Es seien K ein unendlicher Körper, n ∈ N, sowie a1, . . . , an ∈ K paarweise
verschieden, b1, . . . , bn ∈ K und f :=

∑n
i=1(bi ·

∏
j 6=i

X−aj
ai−aj ) ∈ K[X ]. Man

zeige: Es ist f ∈ K[X ] das eindeutig bestimmte Interpolationspolynom mit
f(ai) = bi für i ∈ {1, . . . , n}, wobei f = 0 oder Grad(f) < n.

(8.29) Aufgabe: Irreduzibilität.
Man zeige: Das Polynom X4 − 10X2 + 1 ∈ Z[X ] ist irreduzibel in Q[X ], aber
reduzibel in Fp[X ] für alle p ∈ N prim.

Hinweis. Für p 6= 2 ist F∗2
p := {x2 ∈ F∗

p;x ∈ F∗
p} ≤ F∗

p eine Untergruppe vom
Index 2. Daraus folgere man für p > 3, daß {2, 3, 6} ∩ F∗2

p 6= ∅ gilt.

(8.30) Aufgabe: Kronecker-Faktorisierung in Z[X ].
Es sei f =

∑n
i=0 aiX

i ∈ Z[X ] primitiv mit Grad(f) = n ∈ N.
a) Es sei g =

∑m
i=0 biX

i ∈ Z[X ] primitiv mit Grad(g) = m ∈ N. Man zeige:
Es gilt g | f ∈ Z[X ] genau dann, wenn g | f ∈ Q[X ] gilt. In diesem Falle ist
bm | an ∈ Z und b0 | a0 ∈ Z, sowie g(a) | f(a) ∈ Z für alle a ∈ Z.
b) Wie kann man alle linearen Teiler von f bestimmen? Wie kann man mit-
tels Lagrange-Interpolation, siehe (8.28), alle Teiler des Grades m bestimmen?
Wieso reicht es aus, m ∈ {2, . . . , ⌊n2 ⌋} zu betrachten?
c) Man faktorisiere X5 + 2X4 + 5X3 + 6X2 + 5X + 6 ∈ Z[X ].

(8.31) Aufgabe: Faktorisierung in Z[X ].
Man faktorisiere die folgenden Polynome in Z[X ]:
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a) X3+39X2−4X+8 b) X4+11X3+34X2+46X+232 c) X4+1
d) X4−10X2+1 e) 12X4−4X3+6X2+X−1 f) X4−X2+1
g) X5−2X4+6X+10 h) X7+21X5+35X2+34X−8 i) X9−1
j) 18X9+3X8−15X7+66X6+12X5−60X4+48X3+12X2−60X−24

(8.32) Aufgabe: Körpererweiterungen.
Es seien L/K eine Körpererweiterung und a, b ∈ L. Man zeige:
a) Ist [L : K] ∈ N prim, so ist a ∈ L genau dann primitiv, wenn a 6∈ K ist.
b) Sind die Grade [K(a) : K] und [K(b) : K] endlich und teilerfremd, so gilt
[K(a, b) : K] = [K(a) : K] · [K(b) : K].
c) Ist b transzendent über K und algebraisch über K(a), so ist a transzendent
über K und algebraisch über K(b).
d) Ist a 6= 0, so ist a genau dann algebraisch über K, wenn a−1 ∈ K[a] ⊆ L
ist. Die Körpererweiterung L/K ist genau dann algebraisch, wenn jeder Teilring
K ⊆ R ⊆ L ein Körper ist.

(8.33) Aufgabe: Transzendente Körpererweiterungen.
Es sei K ein Körper. Man zeige:
a) Ist f ∈ K(X) algebraisch über K, so ist f ∈ K.
b) Für n ≥ 2 ist K(Xn) ⊂ K(X) und K(Xn) ∼= K(X).
c) Die Körpererweiterung K(X)/K besitzt unendlich viele Zwischenkörper.

(8.34) Aufgabe: Algebraische Körpererweiterungen.
Es sei K := Q({ n

√
2;n ∈ N}) ⊆ C. Man zeige: Es ist K/Q eine unendliche

algebraische Körpererweiterung.

(8.35) Aufgabe: Kubische Zahlkörper.
Es sei a ∈ C eine Nullstelle von f := X3 − 6X2 + 9X + 3 ∈ Q[X ]. Man
zeige: Es ist {1, a, a2} ⊆ Q(a) eine Q-Basis. Man schreibe die Elemente a5 und
3a4 − 2a3 + 1 und (a+ 2)−1 von Q(a) als Q-Linearkombinationen in {1, a, a2}.

(8.36) Aufgabe: Biquadratische Zahlkörper.
Es sei K := Q(

√
2,
√

3) ⊆ C. Man zeige:
a) Es ist {1,

√
2,
√

3,
√

6} ⊆ K ist eine Q-Basis. Für 0 6= a = a1+a2

√
2+a3

√
3+

a4

√
6 ∈ K, wobei a1, . . . , a4 ∈ Q, gebe man a−1 ∈ K als Q-Linearkombination

in {1,
√

2,
√

3,
√

6} an.
b) Es ist

√
2 +
√

3 ∈ K ein primitives Element von K/Q. Man gebe das
zugehörige Minimalpolynom an.

(8.37) Aufgabe: Algebraische Zahlkörper.
Es seien p 6= q ∈ N prim und K := Q(

√
p, 3
√
q) ⊆ C. Man zeige: Es ist

[K : Q] = 6. Man bestimme die Minimalpolynome von
√
p und 3

√
q sowie von√

p · 3
√
q und

√
p+ 3
√
q über Q. Welche dieser Elemente sind primitiv für K/Q?
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(8.38) Aufgabe: Grad von Zerfällungskörpern.
Es seien K ein Körper, f ∈ K[X ] \ K und L/K ein Zerfällungskörper für f .
Man zeige: Es gilt [L : K] | Grad(f)!.

(8.39) Aufgabe: Zerfällungskörper.
Man bestimme die jeweiligen Zerfällungskörper K ⊆ C für die folgenden Poly-
nome in Q[X ] und die Körpergrade [K : Q]:
a) X4 + 1 b) X4 − 2 c) X4 − 2X2 + 2 d) X5 − 1 e) X6 + 1

(8.40) Aufgabe: Nullstellenvielfachheiten.
Es seien K ein Körper, f ∈ K[X ] \K und L/K ein Zerfällungskörper für f .

a) Es seien char(K) = 0 und f̃ ∈ ggT(f, ∂f∂X ) ∈ K[X ]. Man zeige: Das Polynom
f
ef ∈ K[X ] hat als Nullstellen in L genau die Nullstellen von f , und diese sind

alle einfach. Welche Bedeutung hat dies für das Faktorisierungsproblem?
b) Es seien char(K) = p > 0 und f ∈ K[X ] irreduzibel. Man zeige: Alle
Nullstellen von f in L haben die gleiche Vielfachheit.
c) Es seien n ∈ N und f := Xn − 1 ∈ K[X ]. Man gebe ein hinreichendes und
notwendiges Kriterium an n dafür an, daß f in L nur einfache Nullstellen hat.

(8.41) Aufgabe: Separabilität.
Es seien L/K eine algebraische Körpererweiterung mit char(K) = p > 0, und
a ∈ L. Man zeige:
a) Es ist genau dann a ∈ L separabel über K, wenn K(a) = K(ap) gilt.
b) Es gibt n ∈ N0, so daß ap

n ∈ L separabel über K ist.
c) Ist L/K endlich mit p 6 | [L : K], so ist L/K separabel.

(8.42) Aufgabe: Perfekte Körper.
Es sei L/K eine algebraische Körpererweiterung. Man zeige:
a) Ist K perfekt, so ist auch L perfekt.
b) Ist L perfekt und L/K separabel, so ist auch K perfekt.

(8.43) Aufgabe: Existenz primitiver Elemente.
Es seien L/K eine Körpererweiterung mit char(K) = p > 0, sowie a, b ∈ L mit
ap, bp ∈ K und [K(a, b) : K] = p2. Man gebe ein Beispiel für diese Situation an,
und zeige, daß K(a, b)/K kein primitives Element besitzt.

(8.44) Aufgabe: Endliche Körper.
Es seien p ∈ N prim und n ∈ N.
a) Es sei ̂: Fpn [X ]→ Abb(Fpn ,Fpn) der Homomorphismus, der jedes Polynom
auf die zugehörige Polynomabbildung abbildet. Man bestimme Kern(̂).
b) Für f ∈ Fp[X ] irreduzibel zeige man: Es gilt genau dann f | Xpn−X , wenn
Grad(f) | n gilt.
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(8.45) Aufgabe: Positive Charakteristik.
Es sei K ein Körper mit char(K) = p > 0 und Frobenius-Abbildung ϕp.
a) Man zeige: Das Polynom f := Xp −X − a ∈ K[X ] ist separabel, und f ist
genau dann irreduzibel, wenn f keine Nullstelle in K hat. Hat f eine Nullstelle
in K, so zerfällt f bereits. Für welche a ∈ Fp ist f ∈ Fp[X ] irreduzibel?
b) Man zeige: Das Polynom g := Xp − a ∈ K[X ] ist genau dann irreduzibel,
wenn g keine Nullstelle in K hat. Sind L/K eine Körpererweiterung und b ∈ L
eine Nullstelle von g, so ist genau dann K(b) 6= K(bp), wenn [K(b) : K(bp)] = p.
c) Es sei a ∈ K\Bild(ϕp). Für n ∈ N zeige man: Xpn−a ∈ K[X ] ist irreduzibel.

(8.46) Aufgabe: Charakteristik 2.
Man zeige: X2n +X + 1 ∈ F2[X ] ist genau dann irreduzibel, wenn n ≤ 2 ist.

(8.47) Aufgabe: Spurabbildung.
Es seien L/K eine endliche Galois-Erweiterung mit char(K) = 0, sowie H ≤
Aut(L/K) und M := FixL(H). Man zeige:
a) Die Spurabbildung TrH : L→M ist M -linear und surjektiv.
b) Ist {a1, . . . , an} ⊆ L eine K-Basis, so gilt M = K(TrH(a1), . . . ,TrH(an)).

(8.48) Aufgabe: Galois-Korrespondenz.
Für die folgenden KörperK ⊆ C untersuche man, zu welcher bekannten Gruppe
Aut(K/Q) isomorph ist, bestimme alle Zwischenkörper vonK/Q und jeweils ein
primitives Element, und gebe die Galois-Korrespondenz explizit an:
a) K Zerfällungskörper von X4 − 2 ∈ Q[X ]
b) K := Q(

√
2,
√

3)

(8.49) Aufgabe: Galois-Gruppen von Polynomen.
Es seien K ein Körper, f ∈ K[X ] \K und L/K ein Zerfällungskörper für f .
a) Man zeige: Aut(L/K) operiert auf der Menge Z der Nullstellen von f in L,
und via dieser Operation ist Aut(L/K) isomorph zu einer Untergruppe von SZ .
Ist f irreduzibel, so operiert Aut(L/K) transitiv auf Z.
b) Es seien K ein perfekter Körper, f irreduzibel und Aut(L/K) abelsch. Man
zeige: Es gilt |Aut(L/K)| = Grad(f).
c) Es sei f ∈ Q[X ] irreduzibel mit Grad(f) ∈ N prim, und f besitze genau zwei
Nullstellen in C \ R. Man zeige: Es ist Aut(L/Q) ∼= SGrad(f).
d) Es sei f := X5−kX+1 ∈ Q[X ] mit 3 ≤ k ∈ N. Man zeige: Aut(L/Q) ∼= S5.

(8.50) Aufgabe: Kreisteilungspolynome.
a) Für n,m ∈ N zeige man XggT+(n,m) − 1 ∈ gcd(Xn − 1, Xm − 1) ⊆ Z[X ].
b) Man zeige: Es gilt Xϕ(n)Φn(

1
X ) = Φn(X) ∈ Q(X).

c) Es sei p ∈ N prim. Man zeige: Ist n 6= 1 ungerade, so gilt Φ2n(X) = Φn(−X);
ist p | n, so gilt Φpn(X) = Φn(Xp); ist p 6 | n, so gilt Φpn(X)Φn(X) = Φn(X

p).
Man gebe Φpn ∈ Z[X ] explizit an.
d) Man berechne Φn ∈ Z[X ] für n ∈ {1, . . . , 30}.
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(8.51) Aufgabe: Gaußsche Summen.

Es seien p ∈ N prim und ζp := exp(2π
√−1
p ) ∈ C.

a) Man zeige: Es ist Aut(Q(ζp)/Q) ∼= Cp−1 zyklisch.
b) Es seien p ≥ 5 prim und ϕ ∈ Aut(Q(ζp)/Q) ein Erzeuger, sowie ap :=∑
i∈Z/ p−1

2
Z
ζϕ

2i

p ∈ Q(ζp) und ãp := aϕp ∈ Q(ζp). Für die zugehörigen Mini-

malpolynome zeige man: Es gilt µap = µeap = X2+X+ 1
4 (1+(−1)

p+1

2 p) ∈ Q[X ].

c) Man zeige: Es ist Q(

√
(−1)

p−1

2 · p) ⊆ Q(ζp).

(8.52) Aufgabe: Kreisteilungskörper.

Für n ∈ N seien ζn := exp(2π
√−1
n ) ∈ C und ρn := ζn + ζ−1

n ∈ C.
a) Man zeige: Es gilt Q(ζn) ∩ R = Q(ρn). Man bestimme [Q(ρn) : Q].
b) Man bestimme die Minimalpolynome von ρ5 und ρ7 über Q. Wie kann man
damit das reguläre 5-Eck konstruieren?

(8.53) Aufgabe: Winkeldreiteilung.
Für n ∈ N sei der Winkel α := 2π

n gegeben. Man zeige: Ist 3 6 | n, so kann α mit
Zirkel und Lineal in drei gleiche Teile geteilt werden.

(8.54) Aufgabe: Konstruktion mit Zirkel und Lineal.
In der Euklidischen Ebene R2 sei die Parabel T mit der Gleichung Y = X2 +X
gegeben. Zulässige Konstruktionen seien die üblichen Konstruktionen mit Zirkel
und Lineal und das Schneiden von konstruierbaren Geraden und Kreisen mit
T . Man zeige: Ist n

√
2 ∈ R mit diesen Mitteln konstruierbar, so ist n = 2a3b,

wobei a, b ∈ N. Man gebe eine Konstruktion für 3
√

2 ∈ R explizit an.

(8.55) Aufgabe: Algebraischer Abschluß.
Es seien L/K eine Körpererweiterung mit L algebraisch abgeschlossen, und
K ⊆ L der algebraische Abschluß von K in L. Man zeige: L ist unendlich, und
ist K endlich, so sind alle Elemente von (K)∗ Einheitswurzeln.

(8.56) Aufgabe: Kummer-Erweiterungen.
a) Es sei L ⊆ C der Zerfällungskörper für das Polynom X3 − 10 ∈ Q[X ]. Für
K ∈ {Q,Q(

√
−3)} zeige man K ⊆ L und bestimme Aut(L/K).

b) Es sei L ⊆ C der Zerfällungskörper für das Polynom X4 − 5 ∈ Q[X ]. Für
K ∈ {Q,Q(

√
5,Q(

√
−5),Q(

√
−1)} zeige man K ⊆ L und bestimme Aut(L/K).

c) Es seien Y eine Unbestimmte über C und M/C(Y ) ein Zerfällungskörper für
Xn − Y ∈ C(Y )[X ], wobei n ∈ N. Man bestimme Aut(M/C(Y )).
d) Es seien Y eine Unbestimmte über F2 undM/F2(Y ) ein Zerfällungskörper für
X2 + Y ∈ F2(Y )[X ]. Man bestimme Aut(M/F2(Y )). Ist M/F2(Y ) Galoissch?

(8.57) Aufgabe: Radikalerweiterungen.

Für n ≤ 10 seien ζn := exp(2π
√−1
n ) ∈ C und Kn := Q(ζn). Man unter-

suche, zu welcher bekannten Gruppe Aut(Kn/Q) isomorph ist, bestimme alle
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Zwischenkörper und jeweils ein primitives Element, und gebe die Galois-Korres-
pondenz explizit an. Welche Zwischenkörper sind Radikalerweiterungen von Q?

(8.58) Aufgabe: Auflösbarkeit durch Radikale.
Es seien Y eine Unbestimmte über F2, und L/F2(Y ) ein Zerfällungskörper für
f := X2 + X + Y ∈ F2(Y )[X ]. Man zeige: f ist separabel, Aut(L/F2(Y )) ist
auflösbar, aber f ist über F2(Y ) nicht durch Radikale lösbar.
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