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0 What is combinatorics?

• ‘Combinatorial theory’ is the name now given to the subject formerly called
‘combinatorial analysis’ or ‘combinatorics’, though these terms are still used
by many people. Like many branches of mathematics, its boundaries are not
clearly defined, but the central problem may be considered that of arranging
objects according to specified rules and finding out in how many ways this may
be done.

If the specified rules are very simple, then the chief emphasis is on the enumera-
tion of the number of ways in which the arrangement may be made. If the rules
are subtle or complicated, the chief problem is whether or not such arrangements
exist, and to find methods for constructing the arrangements. An intermediate
area is the relationship between related choices, and a typical theorem will assert
that the maximum for one kind of choice is equal to the minimum for another
kind. [6, p.ix]

• The basic problem of enumerative combinatorics is that of counting the number
of elements of a finite set S. This definition, as it stands, tells us little about
the subject since virtually any mathematical problem can be cast in these terms.
In a genuine enumerative problem, the elements of S will usually have a rather
simple combinatorial definition and very little additional structure. It will be
clear that S has many elements, and to main issue will be to count or estimate
them all. ...

There has been an explosive growth in combinatorics in recent years. ... One
important reason for this growth has been the fundamental role that combina-
torics plays as a tool in computer science and related areas. A further reason
has been the prodigious effort ... to bring coherence and unity to the discipline
of combinatorics. ... Enumerative combinatorics has been greatly elucidated by
this effort, as has its role in such areas of mathematics as finite group theory,
representation theory, commutative algebra, algebraic geometry, and algebraic
topology. [11, p.1]

(0.1) Example: Fibonacci numbers. a) The following problem was posed
in the medieval book ‘Liber abbaci’ [Leonardo da Pisa ‘Fibonacci’, 1202]:
Any female rabbit gives birth to a couple of rabbits monthly, from its second
month of life on. If there is a single couple in the first month, how many are
there in month n ∈ N?

Hence let [Fn ∈ N0;n ∈ N0] be the linear recurrent sequence of degree 2
given by F0 := 0 and F1 := 1, and Fn+2 := Fn + Fn+1 for n ∈ N0. Thus we
obtain the sequence of Fibonacci numbers, see also Table 1:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

To find a closed formula for Fn, and to determine the growth behavior of Fn,
we proceed as follows; see also (13.1) for a different treatment:
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Table 1: Fibonacci numbers.

n Fn

1 1
2 1
4 3
8 21
16 987
32 2178309
64 10610209857723
128 251728825683549488150424261
256 141693817714056513234709965875411919657707794958199867

Letting A :=

[
. 1
1 1

]
∈ R2×2 we have A · [Fn, Fn+1]tr = [Fn+1, Fn+2]tr, thus

[Fn, Fn+1]tr = An · [F0, F1]tr for n ∈ N0. We have χA = det(XE2 −A) = X2 −
X − 1 = (X − ρ+)(X − ρ−) ∈ R[X], where ρ± := 1

2 (1±
√

5) ∈ R. From ker(A−

ρ±E2) = 〈[1, ρ±]tr〉R we get the diagonalising matrix P :=

[
1 1
ρ+ ρ−

]
∈ GL2(R),

where P−1 := 1
ρ−−ρ+ ·

[
ρ− −1
−ρ+ 1

]
. Thus we have P−1AnP = (P−1AP )n =

(diag[ρ+, ρ−])n = diag[ρn+, ρ
n
−], implying

An = P · diag[ρn+, ρ
n
−] · P−1 =

1

ρ− − ρ+
·
[

ρn+ρ− − ρ+ρ
n
− ρn− − ρn+

ρn+1
+ ρ− − ρ+ρ

n+1
− ρn+1

− − ρn+1
+

]
.

Hence we have the Moivre-Binet Formula [1718, 1843] ([Bernoulli, 1728])

Fn =
ρn−−ρ

n
+

ρ−−ρ+ = 1√
5
(ρn+ − ρn−). Since |ρ+| > 1 and |ρ−| < 1 this yields

limn→∞
Fn·
√

5
ρn+

= 1, in particular the Fn grow exponentially.

b) The number ρ+ := 1
2 (1+

√
5) ∈ R is called the golden ratio, featuring in the

following classical problem: How has a line segment to be cut into two pieces,
such that length ratio between the full segment and the longer piece coincides
with the length ratio between the longer and the shorter piece? Assume that
the line segment has length 1, and letting 1

2 < x < 1 be the length of the longer
piece, we thus have 1

x = x
1−x , or equivalently x2 + x − 1 = 0, which yields

x = 1
2 (−1 +

√
5) ∈ R as the unique positive solution. Thus the above ratio

indeed equals x
1−x = 1

x = 2
−1+

√
5

= 1
2 (1 +

√
5) = ρ+ ∼ 1.61803.

From the above we infer limn→∞
Fn+1

Fn
= ρ+, saying that the Fibonacci numbers

yield (good) rational approximations of the golden ratio: For example, we have
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Table 2: Paths in a square grid.

1 2 3 4 5 6

2

1

3

4

5

252126

1 1 1 1 1

1

1

1

1

2

3

5

6

4

3 4 5 6

1

2115106

21

15

10 563520

35

56

70 126

F8

F7
= 21

13 ∼ 1.61538, F9

F8
= 34

21 ∼ 1.61905, F10

F9
= 55

34 ∼ 1.61765, F11

F10
= 89

55 ∼
1.61818, F12

F11
= 144

89 ∼ 1.61798, F13

F12
= 233

144 ∼ 1.61806, F14

F13
= 377

233 ∼ 1.61803.

(0.2) Example: Shortest paths. Given an (m×n)-square grid, where m,n ∈
N0, we want to determine the number of shortest paths from the bottom leftmost
vertex to the upper rightmost vertex, see Table 2 for the case m = 6 and n = 5.
Hence any of these paths is of length m + n, consisting of a series of m right
moves and n up moves, which is uniquely determined by the m-subset indicating
the right moves, or alternatively by the n-subset indicating the up moves.

Using coordinates, we count the number f(i, j) ∈ N, where i ∈ {0, . . . ,m} and
j ∈ {0, . . . , n}, of ways of getting from the bottom leftmost vertex [0, 0] to vertex
[i, j]. Hence we have f(0, j) = f(i, 0) = 1, and f(i, j) = f(i− 1, j) + f(i, j − 1)
for i, j ≥ 1, yielding the pattern as shown in Table 2 for m = n = 5. We now
derive a concise description of f(m,n); see also (2.6):

The paths in question have lengthm+n, and are uniquely described by them-set
of positions where the right moves are made, or equivalently are uniquely de-
scribed by the (complementary) n-set of positions where the up moves are made.
Hence we infer that f(m,n) =

(
m+n
m

)
=
(
m+n
n

)
is a binomial coefficient, see

(2.1). The above recursion translates into
(
m+n
m

)
=
(
m+n−1
m−1

)
+
(
m+n−1
n−1

)
=(

m+n−1
m−1

)
+
(
m+n−1

m

)
, for m,n ≥ 1.

(0.3) Example: Parity of binomial coefficients. From the above consider-
ations we derive palindromicity

(
n
k

)
=
(
n

n−k
)
, for n ∈ N0 and k ∈ {0, . . . , n},

and the triangle identity
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
, for n ∈ N and k ∈ {1, . . . , n}.

This shows by way of example how the ‘path model’ can be used to prove
identities for binomial coefficients.

The triangle identity gives rise to the Pascal triangle shown in Table 3, al-
lowing to compute binomial coefficients by using additions alone, but no mul-
tiplications. The Pascal triangle has a rich structure, and actually binomial
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Table 3: The Pascal triangle.

n\k 0 1 2 3 4 5 6 7 8 9 10

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

coefficients fulfill lots of (miraculous) identities. For example, we may ask for
the parity of

(
n
k

)
, and in particular how many of the entries in row n of the

Pascal triangle are odd; see also (2.7) for a more general treatment:

i) The positions of the odd entries in the Pascal triangle yield the following
repeating pattern, see Table 4: If the 2i rows 0, . . . , 2i − 1 are given, where
i ∈ N0, then the next rows 2i, . . . , 2i+1 − 1 are obtained by copying down the
given rows by 2i rows, and then copying the new part to the right by 2i columns:

By the binomial formula we have (X + 1)n =
∑n
k=0

(
n
k

)
Xk ∈ Z[X], so that row

n of the Pascal triangle can be interpreted as the polynomial (X + 1)n ∈ Z[X].
Hence by reducing modulo 2, the parity pattern of the binomial coefficients in
row n can be interpreted as the polynomial (X + 1)n ∈ F2[X]. Recall that we
have (X + 1)2 = X2 + 1 ∈ F2[X].

Now let n =
∑l
i=0 ai · 2i be the 2-adic representation of n, where l = l(n) =

blog2(n)c ∈ N0 and ai = ai(n) ∈ {0, 1}; thus al = 1. Letting n′ := n−2l we have

n′ ∈ {0, . . . , 2l−1}, and we get (X+1)n = (X+1)2l+n′ = (X+1)2l(X+1)n
′

=

(X2l + 1)(X + 1)n
′
. Hence the positions of the odd entries in row n are found

as those in row n′, occupying positions {0, . . . , 2l − 1} (this is the piece copied
down), as well as those in row n′ shifted by 2l steps to the right, occupying
positions {2l, . . . , 2l+1 − 1} (this is the piece copied to the right). ]

In particular, we observe that the Pascal triangle with 2i rows, where i ∈ N0,
has a total of 3i odd entries.

ii) For the number of odd entries in row n of the Pascal triangle we observe:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
odd 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16 2 4
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Table 4: Parity in the Pascal triangle.
•••• •••••• ••• ••• • • •••••••••• ••• ••• • • ••••• ••••• • • ••• •• •• ••• • • • • • • •••••••••••••••••• ••• ••• • • ••••• ••••• • • ••• •• •• ••• • • • • • • ••••••••• ••••••••• • • ••• •• •• ••• • • • • • • ••••• •••• •••• ••••• • • • • • • ••• •• •• •• •• •• •• ••• • • • • • • • • • • • • • • •••••••••••••••••••••••••••••••••• ••• ••• • • ••••• ••••• • • ••• •• •• ••• • • • • • • ••••••••• ••••••••• • • ••• •• •• ••• • • • • • • ••••• •••• •••• ••••• • • • • • • ••• •• •• •• •• •• •• ••• • • • • • • • • • • • • • • ••••••••••••••••• ••••••••••••••••• • • ••• •• •• ••• • • • • • • ••••• •••• •••• ••••• • • • • • • ••• •• •• •• •• •• •• ••• • • • • • • • • • • • • • • ••••••••• •••••••• •••••••• ••••••••• • • • • • • ••• •• •• •• •• •• •• ••• • • • • • • • • • • • • • • ••••• •••• •••• •••• •••• •••• •••• ••••• • • • • • • • • • • • • • • ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Letting again n =
∑l
i=0 ai · 2i be the 2-adic representation of n, the number of

odd entries in row n is given as 2w, where w = w(n) :=
∑l
i=0 ai ∈ N0 is the

number of binary digits 1 in the 2-adic representation of n:

We proceed by induction, the assertion being clear for n = 0. By the repeating
pattern described above, the number of odd entries in row n ≥ 1 is twice the
number of odd entries in row n′ := n− 2l =

∑l−1
i=0 ai · 2i. The latter is given as

2w(n′), where w(n′) = w(n)− 1, so that for row n we get 2 · 2w(n′) = 2w. ]

(0.4) The Sierpinski Sieve [1915]. Considering the Pascal triangles with 2i

rows, for i ∈ N0, and the repeating pattern of odd entries reveals a remarkable
relationship to the following construction in fractal geometry. Actually, the
construction of the sets Ti below shows that there is a natural bijection between
the set of triangles in Ti and the odd entries in the Pascal triangle with 2i rows:

We consider the open rectangular triangle T0 in the Euclidean plane with vertices
[0, 0], [1, 0] and [0, 1]. We cut out the closed triangle with vertices [ 1

2 ,
1
2 ], [1

2 , 0]
and [0, 1

2 ], leaving a union T1 of three open triangles of halved edge lengths, each
being a rescaled copy of T0; thus T1 covers 3

4 of the area of T0. For each of the
smaller triangles obtained we iterate this process, yielding an infinite descending
chain T0 ⊃ T1 ⊃ T2 ⊃ · · · , where Ti consists of a total of 3i triangles covering

an area of 3i

22i+1 , for i ∈ N0. The limit T∞ :=
⋂
i≥0 Ti approached is called the

fractal Sierpinski Sieve.

By construction, T∞ is a measurable set of zero area, and we have [y, x] ∈ T∞
whenever [x, y] ∈ T∞. Moreover, letting T ′ ⊆ [0, 1]2 be the set of points [x, y]
such that either of x, y, x + y equals z · 2−i, for some i ∈ N0 and z ∈ N0, we
have T∞ ∩T ′ = ∅. (Starting with a closed triangle and removing open triangles
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instead, yields a larger, but less interesting fractal set next to T∞ encompassing
the points [x, y] ∈ T ′ such that x + y ≤ 1.) We derive a numerical description
of the elements of T∞, in particular showing that T∞ is an infinite set:

Letting T ′i := Ti ∩T ′ for i ∈ N0, we consider the map τ : T ′0 → [0, 1]2 defined by

τ : [x, y] 7→

 [2x, 2y], if x < 1
2 and y < 1

2 ,
[2x− 1, 2y], if x > 1

2 ,
[2x, 2y − 1], if y > 1

2 .

Note that τ(T ′0 ) ∩ T ′ = ∅; and recall that [x, y] ∈ T0 if and only if x > 0,
y > 0 and x + y < 1. Then, for [x, y] ∈ T ′0 , we have [x, y] ∈ T ′1 if and only if
τ([x, y]) ∈ T ′0 , and similarly [x, y] ∈ T ′i if and only if τ([x, y]) ∈ T ′i−1, for i ∈ N,
so that [x, y] ∈ T ′i if and only if τ i([x, y]) ∈ T ′0 . This implies that [x, y] ∈ T∞ if
and only if τ i([x, y]) ∈ T ′0 for all i ∈ N0.

Now, for [x, y] ∈ T ′0 , the coordinates x and y have infinite 2-adic representation
x =

∑
i>0 ai · 2−i and y =

∑
i>0 bi · 2−i, respectively, where ai, bi ∈ {0, 1};

note that the coordinates having finite 2-adic representations are captured in
T ′. Then in terms of 2-adic representations τ is given by shifting each of the
given representations by one step and ignoring the first binary digit, that is
[x′, y′] := τ([x, y]) is given as x′ =

∑
i>0 ai+1 · 2−i and y′ =

∑
i>0 bi+1 · 2−i.

Hence if [x, y] ∈ T ′∞ then, applying all powers of τ in turn, the condition x+y < 1
implies that the case ai = bi = 1 is excluded for all i ∈ N, so that we have
ai + bi ≤ 1 for all i ∈ N. Moreover, assume that ai + bi = 1 for almost all
i ∈ N, then after applying a suitable power of τ we may assume that ai + bi = 1
for all i ∈ N, so that x + y = 1, a contradiction. Hence we conclude that we
additionally have ai = bi = 0 for infinitely many i ∈ N.

Conversely, let [x, y] ∈ [0, 1]2 \ T ′ be such that ai + bi ≤ 1 for all i ∈ N, and
ai = bi = 0 for infinitely many i ∈ N. Then, after applying any power of τ ,
there is k ∈ N such that ai + bi = 1 for i ∈ {1, . . . , k − 1}, and ak = bk = 0.
This indeed implies that x+ y < 1; note that in view of the conditions imposed
it is not necessary to require that x+ y has an infinite 2-adic representation. ]

I Counting

1 Sets

(1.1) Sets. a) A set is a collection of well-defined distinct objects forming a
new entity [Cantor 1895]: Eine Menge ist eine gedankliche Zusammenfas-
sung von bestimmten, wohlunterschiedenen Objekten der Anschauung oder des
Denkens zu einem Ganzen. Hence we stick to naive set theory, but Russell’s
antinomy below shows that this generality leads to a contradiction.

The objects collected are called the elements of the set. For any set M and any
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object x either x ∈M or x 6∈M holds. Moreover, any set is uniquely determined
by its elements, hence contains a particular element only once, and we disregard
the order of the elements. The empty set ∅ = {} is the set without elements.

For example, there are the positive integers N := {1, 2, 3, . . .}, the non-
negative integers N0 := {0, 1, 2, . . .}, the integers Z := {0, 1,−1, 2,−2, . . .},
the rational numbers Q, the real numbers R, the complex numbers C.

Sets can be given by explicit enumeration or by description. The latter means
that from a given set M a new set N is formed by giving a logical formula saying
which of the elements of M are elements of N and which are not; for example,
we have {x ∈ Z;x2 = 1} = {1,−1}.
b) Russell’s antinomy [1901]. By the generality of naive set theory, there
is the set of all sets. Hence let M := {M set;M 6∈ M} be the set of all sets,
which do not contain themselves as one of their elements, thus either M ∈M
orM 6∈ M. Assume we haveM∈M, thenM does not containM as one of its
elements, hence M 6∈ M, a contradiction. Assume we have M 6∈ M, then M
does contain M as one of its elements, hence M∈M, again a contradiction.

Hence the set of all sets cannot possibly exist. Thus we indeed have to impose
restrictions on which objects we may collect to form a set.

(1.2) Elementary constructions. a) Let M and N be sets. If for all x ∈M
we have x ∈ N then M is called a subset of N , and N is called a superset of
M ; we write M ⊆ N . If M ⊆ N and M 6= N then M is called a proper subset
of N ; we write M ⊂ N . We have M = N if and only if M ⊆ N and N ⊆M , and
we have ∅ ⊆M and M ⊆M . For example, we have N ⊂ N0 ⊂ Z ⊂ Q ⊂ R ⊂ C.

b) The sets M ∩N := {x;x ∈M and x ∈ N} = {x ∈M ;x ∈ N} = {x ∈ N ;x ∈
M} and M \N := {x ∈M ;x 6∈ N} are called intersection and difference of
M and N , respectively. If M ∩ N = ∅ then M and N are called disjoint. If
I 6= ∅ is a set, and Mi is a set for i ∈ I, then their intersection is defined as⋂
i∈IMi := {x;x ∈Mi for all i ∈ I}.

Moreover, M ∪N := {x;x ∈ M or x ∈ N} is called the union of M and N ; if
additionally M ∩N = ∅ then the union of M and N is called disjoint, written
as M

.
∪ N . If I is a set, and Mi is a set for i ∈ I, then their union is defined as⋃

i∈IMi := {x;x ∈Mi for some i ∈ I}.
c) Let P(M) := {L;L ⊆M} be the power set of M ; we have P(∅) = {∅}.
d) For x ∈ M and y ∈ N let [x, y] := {x, {x, y}} be the associated ordered
pair with first and second components x and y, respectively; hence for x 6= y
we have [x, y] 6= [y, x]. Let M ×N := {[x, y];x ∈M,y ∈ N} be the Cartesian
product of M and N ; hence M ×N 6= ∅ if and only if both M 6= ∅ and N 6= ∅.

(1.3) Maps. Let M and N be sets. A relation between M and N is a subset
R ⊆M ×N , and x ∈M and y ∈ N such that [x, y] ∈ R are said to be related
by R; we also write xRy. A relation f ⊆M ×N such that for all x ∈M there
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is a unique y ∈ N satisfying [x, y] ∈ f is called a map from M to N ; we write
f : M → N : x 7→ y = f(x), and also [f(x) ∈ N ;x ∈M ], where the element y is
called the image of x, while x is called a preimage of y.

The sets M and N are called the source and the domain of f , respectively.
The set im(f) := {y ∈ N ; y = f(x) for some x ∈ M} is called the image of
f . For a subset N ′ ⊆ N , the set f−1(N ′) := {x ∈ M ; f(x) ∈ N ′} is called the
preimage of N ′, with respect to f . For a subset M ′ ⊆ M , the restriction of
f to M ′ is defined as f |M ′ : M ′ → N : x 7→ f(x).

The map f : M → N is called surjective if im(f) = N , that is for all y ∈ N
there is some x ∈M such that y = f(x). Moreover, f is called injective if for
all y ∈ N the preimage f−1(y) has at most one element, that is for all y ∈ N
there is at most one element x ∈M such that y = f(x), or equivalently we have
f(x) 6= f(x′) ∈ N whenever x 6= x′ ∈ M . Finally, f is called bijective if it is
both surjective and injective, that is f−1(y) is a singleton set for all y ∈ N , or
equivalently for all y ∈ N there is a unique x ∈M such that y = f(x).

The map idM : M →M : x 7→ x is called the identity map. The composition
of maps f : M → N and g : N → U , where U is a set, is defined as gf = g · f =
g ◦ f : M → U : x 7→ g(f(x)). We have f · idM = f and idN · f = f ; moreover
gf is surjective whenever f and g are surjective, and gf is injective whenever f
and g are injective.

If f : M → N is bijective, the relation f−1 := {[y, x] ∈ N ×M ; [x, y] ∈ f} is
a map as well, f−1 : N → M is called the inverse map of f . Hence we have
f(f−1(y)) = y for all y ∈ N , thus ff−1 = idN , and f−1(f(x)) = x for all
x ∈M , thus f−1f = idM . Moreover, f−1 is bijective such that (f−1)−1 = f .

Let Maps(M,N) := {f ⊆ M × N ; f map}. Moreover, let Inj(M,N) := {f ∈
Maps(M,N); f injective} and Surj(M,N) := {f ∈ Maps(M,N); f surjective},
as well as Bij(M,N) := Inj(M,N) ∩ Surj(M,N).

(1.4) Dedekind-Peano axioms. a) A set N fulfilling the following conditions
is called a set of positive integers: There is an element 1 ∈ N and an injective
successor map N → N \ {1} : n 7→ n′, such that the principle of induction
holds: For any subset M ⊆ N such that 1 ∈ M , and such that for any n ∈ M
we also have n′ ∈M , we already have M = N .

The successor map is surjective as well, hence is bijective: Let M := {1}
.
∪ im(′),

then by induction we have M = N .

b) The set N := {1, 2, . . .} of positive integers together with the successor
map N→ N \ {1} : n 7→ n+ 1 fulfills the above conditions; we take the existence
of N and its arithmetic properties for granted. The set N is the unique model of
a set of positive integers N , that is there is a unique map f : N → N fulfilling
f(1) = 1 and f(n+ 1) = f(n)′ for all n ∈ N, and f is bijective:

LetM ⊆ N be the set of all n ∈ N such that there is a unique fn : {1, . . . , n} → N
fulfilling fn(1) = 1 and fn(m + 1) = fn(m)′ for all m < n; hence we have
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1 ∈ M , and for 1 6= n ∈ M we have fn|{1,...,n−1} = fn−1. The surjectivity of
the successor map of N implies that fn is uniquely extendible to an admissible
map fn+1 : {1, . . . , n+ 1} → N , thus by induction for N we have M = N.

We have 1 ∈ im(f), and for f(n) ∈ im(f) we have f(n)′ = f(n + 1) ∈ im(f),
thus induction for N yields im(f) = N , that is f is surjective. Let M ⊆ N be the
set of all n ∈ N such that f−1(f(n)) = {n}, then f(N \ {1}) ⊆ N \ {1} implies
f−1(1) = {1}, and we have f−1(f(n + 1)) = f−1(f(n)′) = f−1(f(n)) + 1 =
{n+ 1} for n ∈ N, thus induction for N yields M = N, that is f is injective. ]

(1.5) Cardinality. a) Let N be a set. If there is n ∈ N0 such that there is
a bijection f : {1, . . . , n} → N , where we let {1, . . . , 0} := ∅, then N is called
finite of cardinality |N | := n; otherwise N is called infinite, and we write
|N | =∞. For a finite set N the cardinality is uniquely determined:

We may assume that N = {1, . . . , n}, for some n ∈ N, and there is a bijection
f : {1, . . . ,m} → {1, . . . , n} for some m ∈ N such that m ≤ n. We proceed
by induction on n ∈ N: If n = 1, then m = 1 as well. If n ≥ 2, then letting
k := f(m) we get a bijection f : {1, . . . ,m − 1} → {1, . . . , k − 1, k + 1, . . . , n}.
Using the bijection {1, . . . , n−1} → {1, . . . , k−1, k+ 1, . . . , n} defined by i 7→ i
for i ≤ k− 1, and i 7→ i+ 1 for i ≥ k, we may assume that f : {1, . . . ,m− 1} →
{1, . . . , n− 1} is a bijection as well, and by induction we have n− 1 = m− 1. ]

If N is a finite set and M ⊆ N , then we may assume that M = {1, . . . ,m} ⊆
{1, . . . , n} = N , where n = |N |, hence M is finite as well and we have |M | ≤ |N |,
where |M | = |N | if and only if M = N .

Moreover, a map f : N → N is injective if and only if f is surjective: There is
a subset N ′ ⊆ N such that f |N ′ : N ′ → im(f) is a bijection; we have N ′ = N
if and only if f is injective, and from |N ′| = |im(f)| ≤ |N | we conclude that
|N ′| = |N | if and only if f is surjective. In particular, since N possesses an
injective but not surjective successor map, we conclude that N is infinite.

b) Any set N is infinite if and only if there is an injective map N→ N : If there
is such a map, then we may assume that N ⊆ N , and since N is infinite we infer
that N is infinite as well. Conversely, let now N be infinite. Then naively we
might want to proceed as follows: We choose x1 ∈ N , and then successively
xn+1 ∈ N \ {x1, . . . , xn}, since by assumption we have N \ {x1, . . . , xn} 6= ∅
for all n ∈ N, yielding the injective map f : N → N : n 7→ xn. But this is not
justified, neither by the induction principle nor directly by the choice principle!
Instead, we have to argue by transfinite induction as follows:

Assume to the contrary that there is no injective map N→ N . We consider the
set F :=

⋃
n∈N0

Inj({1, . . . , n}, N); note that F 6= ∅ since Inj(∅, N) 6= ∅. Denot-
ing the upper bound of the source of f ∈ F by n(f) ∈ N0, the set F is partially
ordered by letting f ≤ f ′ whenever n(f) ≤ n(f ′) and f ′|{1,...,n(f)} = f . If f1 ≤
f2 ≤ · · · ≤ fk ≤ · · · is a chain in F , then f∞ : M∞ :=

⋃
k∈N{1, . . . , n(fk)} →

N : i 7→ fk(i), whenever i ≤ n(fk), is a well-defined map, and since for any
i, j ∈M∞ there is k ∈ N such that i, j ≤ n(fk) we infer that f∞ is injective. By
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induction we have M∞ = N or M∞ = {1, . . . , n(f∞)} is finite. By assumption,
the former case cannot occur, thus f∞ ∈ F is an upper bound of the given
chain. Thus by Zorn’s Lemma, see (5.2), there is a maximal element f0 ∈ F .
Since f0 : {1, . . . , n(f0)} → N is not surjective, choosing x0 ∈ N \ im(f0), we

may extend f0 to a map f̃0 ∈ F by letting f̃0(n(f0) + 1) := x0, contradicting
the maximality of f0 ∈ F . ]

c) Sets M and N are called equicardinal if there is a bijection M → N . A set
N is called Dedekind infinite [1888] if there is a proper subset M ⊂ N such
that M and N are equicardinal, that is there is an injective map f : N → N
which is not surjective. Hence any Dedekind infinite set is infinite; conversely,
any infinite set N is Dedekind infinite: We may assume N ⊆ N , then f : N → N
defined by f(x) = x for x ∈ N \N, and f(n) := n+1 for n ∈ N ⊆ N , is injective
but not surjective.

(1.6) Basic counting principles. Let M and N be finite sets. Then we have
the sum principle, saying that if M ∩ N = ∅ then |M

.
∪ N | = |M | + |N |:

Let f : {1, . . . ,m} → M = {x1, . . . , xm} : i 7→ xi and g : {1, . . . , n} → N =
{y1, . . . , yn} : j 7→ yj be bijective, where m := |M | ∈ N0 and n := |N | ∈ N0.

Then the map h : {1, . . . ,m + n} → M
.
∪ N defined by h(k) = xk for k ≤ m,

and h(k) = yk−m for k ≥ m+ 1, is a bijection.

Moreover, we have the product principle |M × N | = |M | · |N |: The map
{1, . . . ,mn} →M ×N : (i− 1)n+ j 7→ [xi, yj ] is a bijection; in other words we
have m and n possibilities for the first and second components, respectively.

We have |Maps(M,N)| = |N ||M |: For m ∈ N let Nm := N × · · · × N be the
m-fold Cartesian power of N , where N1 can be identified with N ; we let
N0 := {[]}, a singleton set. Then Maps(M,N)→ Nm : α 7→ [α(x1), . . . , α(xm)]
is a bijection, hence by induction on m we get |Maps(M,N)| = nm.

In particular, we have |P(N)| = 2|N |: The map Maps(N, {0, 1})→ P(N) : f 7→
f−1(1), is a bijection, implying |P(N)| = |Maps(N, {0, 1})| = 2|N |; the elements
of Maps(N, {0, 1}) are called the indicator maps of N .

2 Selections

(2.1) Selections without repetitions. Let N be a finite set of cardinality
n := |N | ∈ N0, hence we may assume that N = {1, . . . , n}, and let k ∈ N0. We
discuss various ways of selecting from N , see Table 5:

a) A k-arrangement or k-permutation of N is an ordered selection with-
out repetitions, that is an injective map f : K := {1, . . . , k} → N . Let
Sk(n) := Inj(K,N); hence we have Sk(n) = ∅ for k > n. For k = n we get
Sn := Sn(n) = Bij(N,N), being called the permutations of N .

We show that for k ≤ n we have |Sk(n)| = n(k) :=
∏k−1
i=0 (n − i) ∈ N, called a

falling factorial, where we define the empty product as n(0) := 1: We proceed
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by induction on k ∈ N0, the case k = 0 being trivial. For k ≥ 1 we have
n possibilities to choose f(k) ∈ N , for any of these there are |Inj({1, . . . , k −
1}, N \ {f(k)})| = |Sk−1(n − 1)| possibilities for f left, hence we get |Sk(n)| =
n · |Sk−1(n− 1)| = n ·

∏k−2
i=0 (n− 1− i) = n ·

∏k−1
i=1 (n− i) =

∏k−1
i=0 (n− i).

Since n(k) = 0 for k > n, we have |Sk(n)| = n(k) ∈ N0 for all k ∈ N0. Moreover,
we have |Sn| = n! := n(n) ∈ N, called n-factorial; in particular we have 0! := 1.

Using this, for k ≤ n we get |Sk(n)| = n(k) = n!
(n−k)! ∈ N.

For example, if any of k = 4 men marries one of n = 6 women, then this can be
done in 6!

2! = 6 · 5 · 4 · 3 = 360 ways.

b) A k-subset or k-combination of N is an unordered selection without
repetitions, that is a subset M ⊆ N such that |M | = k, which hence can be
identified with the associated indicator map N → {0, 1}. Let Pk(n) := {M ⊆
N ; |M | = k}; hence we have Pk(n) = ∅ for k > n.

We determine |Pk(n)| ∈ N for k ≤ n: Any k-subset M ⊆ N gives rise to |Sk|
arrangements, that is injective maps f : {1, . . . , k} → N such that im(f) = M ,
hence we have |Sk(n)| = |Sk| · |Pk(n)|, yielding |Pk(n)| = n(k)

k! =:
(
n
k

)
∈ N, being

called a binomial coefficient; note that it is not obvious at all that this is an
integer, here it follows from its interpretation as a cardinality. Since

n(k)

k! = 0
for k > n, we have |Pk(n)| =

(
n
k

)
∈ N0 for all k ∈ N0. Moreover, for k ≤ n we

have
(
n
k

)
= n!

k!(n−k)! =
(
n

n−k
)
∈ N.

For example, in the lottery ‘6-from-49’, there are k = 6 balls drawn from an
urn containing n = 49 distinguishable balls, hence there are

(
49
6

)
= 49

6·43 =
13 983 816 ∼ 1.4 · 107 distinct draws.

(2.2) Selections with repetitions. We discuss further ways of selecting from
N = {1, . . . , n}, where n ∈ N0, and let k ∈ N0, see Table 5:

a) A k-tuple of N is an ordered selection with repetitions, that is a map
K := {1, . . . , k} → N , which hence can be identified with an element of the
k-fold Cartesian power Nk of N ; we have |Maps(K,N)| = |N ||K| = nk ∈ N.

For example, in the football pool ‘13er-Wette’, the outcome of k = 13 soccer
matches is encoded into a map {1, . . . , 13} → {0, 1, 2}, by identifying ‘home
team wins’ with 1, ‘guest team wins’ with 2, and ‘draw’ with 0; hence we have
n = 3 and there are 313 = 1 594 323 ∼ 1.6 · 106 distinct outcomes.

b) A k-multiset on N is an unordered selection with repetitions, that is
a map µ : N → N0 : i 7→ µi, or equivalently an n-tuple µ = [µ1, . . . , µn] ∈ Nn0 ,
such that

∑n
i=1 µi = k, where µi ∈ N0 is called the associated multiplicity, and

|µ| := k is called the cardinality of µ; we also write the multiset associated
with µ as 1µ1 · · ·nµn . In particular, the multiplicity-free multisets, that is
we have µi ≤ 1 for all i ∈ N , can be identified with the k-subsets of N . Let
Mk(n) := {[µ1, . . . , µn] ∈ Nn0 ;

∑n
i=1 µi = k}; hence we have M0(0) = {[]} and

Mk(0) = ∅ for k ≥ 1.
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Table 5: Selections of an n-set.

k-selections without repetitions with repetitions of k-multisets

ordered n(k) arrangements nk tuples
(

k
µ1,...,µn

)
unordered

(
n
k

)
subsets

(
n+k−1

k

)
multisets 1

We determine |Mk(n)| ∈ N for n ≥ 1: Given µ = [µ1, . . . , µn] ∈Mk(n), writing
the associated multiset as [• · · · • | • · · · • | . . . | • · · · •], with µj entries ‘•’ in
the j-th slot, for j ∈ {1, . . . , n}, and counting the entries ‘ | ’, we get a tuple of
length (n−1)+

∑n
j=1 µj = n+k−1, uniquely determining µ by the (n−1)-subset

of the positions of the ‘ | ’.

Formally, letting σ(µ) := {
∑i
j=1(µj + 1) ∈ N; i ∈ {1, . . . , n − 1}}, an (n − 1)-

subset of {1, . . . , n+k−1}, yields an injective map σ : Mk(n)→ Pn−1(n+k−1).
Conversely, given a subset {s1, . . . , sn−1} ⊆ {1, . . . , n + k − 1}, letting µ1 :=
s1 − 1 ∈ N0 as well as µi := si − si−1 − 1 ∈ N0 for i ∈ {2, . . . , n − 1}, and

µn := k−
∑n−1
i=1 µi = k− sn−1 + (n−1) ≥ (n+k−1)− (n+k−1) = 0, we have

µ := [µ1, . . . , µn] ∈Mk(n), and from
∑i
j=1(µj + 1) = si, for i ∈ {1, . . . , n− 1},

we get σ(µ) = {s1, . . . , sn−1}. Hence σ is surjective, thus is a bijection.

Either picture yields |Mk(n)| = |Pn−1(n+ k − 1)| =
(
n+k−1
n−1

)
=
(
n+k−1

k

)
. ]

Note that the former formula is not defined for n = 0, but the latter does hold
for n = 0 as well. For example, I4MP2S4 is a multiset on the Latin alphabet
{A, . . . ,Z}, hence we have n = 26, and [4I, 1M, 2P, 4S] has cardinality k = 4 +
1 + 2 + 4 = 11; the number of 11-multisets on the Latin alphabet is given as(

36
11

)
= 600 805 296 ∼ 6 · 108.

(2.3) Selections from multisets. We generalize the notion of selection with-
out repetition to multisets. To this end, let N := {1, . . . , n}, where n ∈ N0, let
µ = [µ1, . . . , µn] ∈Mk(n), where k ∈ N0, and let l ∈ N0, see Table 5:

a) An l-arrangement or l-permutation of µ is an ordered selection of µ,
that is a map f : L := {1, . . . , l} → N such that |f−1(i)| ≤ µi, for all i ∈ N ;
in particular, if µ is multiplicity-free describing the subset M := {i ∈ N ;µi =
1} ⊆ N , we recover Inj(L,M). Hence we have l ≤ k, and for k = l we have
|f−1(i)| = µi, for all i ∈ N ; in the latter case f is called a permutation of µ.

We show that the number of permutations of µ is given by the multinomial
coefficient

(
k

µ1,...,µn

)
:= k!∏n

i=1 µi!
∈ N: We proceed by induction on n ∈ N0. For

n = 0 we have k = 0 as well, thus there is a unique map f : ∅ → ∅, where 0!
1 = 1.

For n ≥ 1 we have
(
k
µn

)
possibilities to choose f−1(n) ⊆ K := {1, . . . , k}, for

any of these there are
(

k−µn
µ1,...,µn−1

)
possibilities for f : K \f−1(n)→ N \{n} left,

hence there are k!
µn!(k−µn)! ·

(k−µn)!∏n−1
i=1 µi!

= k!∏n
i=1 µi!

possibilities for f .
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b) An l-submultiset of µ is an unordered selection of µ, that is a map λ =
[λ1, . . . , λn] ∈Ml(n) such that λi ≤ µi, for all i ∈ N . Hence we have l ≤ k, and
in the case k = l we have λ = µ. Moreover, summing over l ∈ {0, . . . , k} there
are

∏n
i=1(µi + 1) ∈ N submultisets of µ.

For example, the multiset I4MP2S4 has
(

11
4,1,2,4

)
= 11!

4!·1!·2!·4! = 34 650 permu-

tations, for example IIIIMPPSSSS and MISSISSIPPI; moreover, IMS2 is the 4-
submultiset [1I, 1M, 2S] of [4I, 1M, 2P, 4S], allowing for the permutation MISS.

(2.4) Binomial coefficients. a) We generalize the notion of falling factorials
and binomial coefficients. To this end, let k ∈ N0 and let X be an indeterminate.
Then the polynomials X(k) :=

∏k−1
i=0 (X − i) ∈ Z[X] and X(k) :=

∏k−1
i=0 (X +

i) ∈ Z[X] are called falling and rising factorials, respectively, where again
X(0) = X(0) := 1 ∈ Z[X]. Hence both X(k) and X(k) are monic of degree

k, and we have X(k) = (X + k − 1)(k) as well as the reciprocity (−X)(k) =∏k−1
i=0 (−X − i) = (−1)k ·

∏k−1
i=0 (X + i) = (−1)kX(k). Moreover, for any z ∈ C

by evaluating we get the complex numbers z(k) ∈ C and z(k) ∈ C.

Still having k! = k(k) ∈ N, we let
(
X
k

)
:=

X(k)

k! ∈ Q[X], being called the associ-

ated binomial coefficient, thus
(
X
k

)
has leading coefficient 1

k! and degree k, and

we have the negation
(−X
k

)
=

(−X)(k)
k! = (−1)k · (X+k−1)(k)

k! = (−1)k ·
(
X+k−1

k

)
.

For k 6= 0 we let
(
X
−k
)

:= 0 ∈ Z[X]; note that (−k)! is not defined.

For any z ∈ C we get
(
z
k

)
=

z(k)
k! ∈ C, while for k 6= 0 we have

(
z
−k
)

= 0 ∈ C.

In particular we have the combinatorial reciprocity |Mk(n)| =
(
n+k−1
n−1

)
=(

n+k−1
k

)
= (−1)k ·

(−n
k

)
, for all n ∈ N0, relating the number of k-multisets of

N := {1, . . . , n} to the number of k-subsets of N ; this is elucidated in (12.3).

b) To explain the name ‘binomial coefficient’, let X and Y be indeterminates.
Then (X + Y )n =

∑
µ∈Mn(2)

(
n

µ1,µ2

)
Xµ1Y µ2 =

∑n
k=0

(
n
k

)
XkY n−k ∈ Z[X,Y ]

holds in the bivariate polynomial ring Z[X,Y ], where
(

n
µ1,µ2

)
is the number of

permutations of the multiset µ ∈ Mn(2). Hence
(
n
k

)
appears in the expansion

of the n-th power, where n ∈ N0, of the binomial X + Y ∈ Z[X,Y ].

Hence evaluating at y := 1 yields (X + 1)n =
∑n
k=0

(
n
k

)
Xk ∈ Z[X], thus evalu-

ating further at x := 1 yields
∑n
k=0

(
n
k

)
= 2n ∈ C, while evaluating further at

x := −1 for n 6= 0 yields
∑n
k=0(−1)k

(
n
k

)
= 0 ∈ C.

To explain the name ‘multinomial coefficient’, let X1, . . . , Xn be indeterminates,
using the multinomial

∑n
i=1Xi ∈ Z[X1, . . . , Xn] in the multivariate polyno-

mial ring Z[X1, . . . , Xn], we get (
∑n
i=1Xi)

k =
∑
µ∈Mk(n)(

(
k

µ1,...,µn

)
·
∏n
i=1X

µi
i ).

(2.5) Identities for binomial coefficients. a) We show that for all k ∈ Z we
have the triangle identity

(
X
k

)
=
(
X−1
k−1

)
+
(
X−1
k

)
∈ Q[X]: If k < 0 then both

sides vanish, if k = 0 then both sides are equal to the constant polynomial 1.
Hence we may assume that k ≥ 1. Then both sides have degree k, hence their
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difference either vanishes or has at most k complex zeroes. Thus it suffices to
show that the above identity holds for all x := n ∈ N:

Let N := {1, . . . , n}. Then we have Pk(n) = {M ⊆ N ; |M | = k} = {M ⊆
N ; |M | = k, n ∈ M}

.
∪ {M ⊆ N ; |M | = k, n 6∈ M}, where {M ⊆ N ; |M | =

k, n ∈ M} → Pk−1(n− 1) : M 7→ (M \ {n}) and {M ⊆ N ; |M | = k, n 6∈ M} →
Pk(n− 1) : M 7→M are bijections, thus we get

(
n
k

)
= |Pk(n)| = |Pk−1(n− 1)|+

|Pk(n− 1)| =
(
n−1
k−1

)
+
(
n
k−1

)
. ]

b) We show that for all k ∈ Z we have the Vandermonde identity
(
X+Y
k

)
=∑k

i=0

(
X
i

)(
Y
k−i
)
∈ Q[X,Y ]: If k < 0 then the left hand side vanishes, while the

right hand side is the empty sum. Hence we may assume that k ≥ 0, then both
sides have total degree k. If their difference does not vanish, then viewing it as
an element of Q[X][Y ], there are at most k(k + 1) complex roots of any of its
at most k + 1 non-vanishing coefficient polynomials in Q[X], which each have
degree at most k, and evaluating at a complex number not in this set there
are at most k complex roots of the resulting non-vanishing polynomial in Q[Y ].
Thus it suffices to show that the above identity holds for all [x, y] := [m,n] ∈ N2

0:

Let M and N be disjoint sets such that |M | = m and |N | = n, then we have(
m+n
k

)
= |{L ⊆ M

.
∪ N ; |L| = k}| =

∐k
i=0{L ⊆ M

.
∪ N ; |L| = k, |L ∩M | = i},

where the condition |L ∩ M | = i is equivalent to saying |L ∩ N | = k − i.
Thus we get |{L ⊆ M

.
∪ N ; |L| = k, |L ∩ M | = i}| =

(
m
i

)(
n
k−i
)
, implying

|{L ⊆M
.
∪ N ; |L| = k}| =

∑k
i=0

(
m
i

)(
n
k−i
)
. ]

(2.6) The Pascal triangle. Letting k ∈ N0, evaluating at n ∈ N0 the recur-
sion

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
gives rise to the Pascal triangle shown in Table

3, allowing to compute binomial coefficients by using additions alone, but no
multiplications. The Pascal triangle has a rich structure, where we point out
only a few of its properties; note that these typically do not generalize to the
polynomial case

(
X
k

)
:

i) We have palindromicity
(
n
k

)
=
(
n

n−k
)
: Since

(
n
k

)
= 0 for k > n, and

(
n
−k
)

= 0

for k 6= 0, we may assume k ≤ n, where we observe
(
n
k

)
= n!

k!(n−k)! =
(
n

n−k
)
.

Alternatively, for k ≤ n there is the bijection Pk(n)→ Pn−k(n) : M 7→ (N \M).

ii) From P(n) =
∐n
k=0 Pk(n) we recover the row sum formula

∑n
k=0

(
n
k

)
= 2n.

iii) For n ≥ 1, the alternating row sum formula
∑n
k=0(−1)k

(
n
k

)
= 0 is equiv-

alent to |Peven(n)| =
∑

0≤k≤n even

(
n
k

)
=
∑

0≤k≤n odd

(
n
k

)
= |Podd(n)|, where

Peven(n) :=
∐

0≤k≤n even Pk(n) and Podd(n) :=
∐

0≤k≤n odd Pk(n). This in turn

in view of |P(n)| = 2n is equivalent to |Peven(n)| = 2n−1 = |Podd(n)|.
Alternatively, the latter can be shown by induction on n ∈ N as follows: For
n = 1 we have Peven(1) = {∅} and Podd(1) = {{1}}, and for n ≥ 2 letting
N := {1, . . . , n} we have Peven(n) = {M ⊆ N ; |M | even, n ∈ M}

.
∪ {M ⊆

N ; |M | even, n 6∈M}, where {M ⊆ N ; |M | even, n ∈M} → Podd(n− 1) : M 7→
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(M \ {n}) and {M ⊆ N ; |M | even, n 6∈ M} → Peven(n − 1) : M 7→ M are
bijections. Hence we have |Peven(n)| = |Podd(n− 1)|+ |Peven(n− 1)| = 2n.

iv) We have the partial column sums
∑n
i=0

(
i
k

)
=
(
n+1
k+1

)
: We proceed by

induction on n ∈ N0, where for n = 0 we have
(

0
k

)
=
(

1
k+1

)
, and for n ≥ 1 we

have
∑n
i=0

(
i
k

)
=
(
n
k

)
+
∑n−1
i=0

(
i
k

)
=
(
n
k

)
+
(
n
k+1

)
=
(
n+1
k+1

)
.

Alternatively, we have Pk+1(n + 1) =
∐n+1
i=1 {M ⊆ {1, . . . , n + 1}; |M | = k +

1,max(M) = i}, where {M ⊆ {1, . . . , n + 1}; |M | = k + 1,max(M) = i} →
Pk(i−1) : M 7→ (M \{i}) is a bijection, hence

(
n+1
k+1

)
=
∑n+1
i=1

(
i−1
k

)
=
∑n
i=0

(
i
k

)
.

v) For partial diagonal sums we have
∑k
i=0

(
X+i
i

)
=
(
X+k+1

k

)
∈ Q[X]: We

proceed by induction on k ∈ N0, where for k = 0 we have
(
X+0

0

)
= 1 =(

X+1
0

)
∈ Z[X], while for k ≥ 1 we get

∑k
i=0

(
X+i
i

)
=
(
X+k
k

)
+ (
∑k−1
i=0

(
X+i
i

)
) =(

X+k
k

)
+
(
X+k
k−1

)
=
(
X+k+1

k

)
∈ Q[X].

For partial alternating row sums using negation this yields
∑k
i=0(−1)i

(
X
i

)
=∑k

i=0

(−X+i−1
i

)
=
(

(−X−1)+k+1
k

)
=
(−(X−1)+k−1

k

)
= (−1)k

(
X−1
k

)
∈ Q[X]. Eval-

uating at x := n we get
∑k
i=0(−1)k−i

(
n
i

)
=
(
n−1
k

)
; for n = k we recover∑n

i=0(−1)n−i
(
n
i

)
=
(
n−1
n

)
= δ0,n, using the Kronecker symbol δ ∈ {0, 1}.

(2.7) Congruences for binomial coefficients. a) Let k, n ∈ N0, and let
p ∈ Z be a prime. We consider the question of when p |

(
n
k

)
: To this end,

let n =
∑
i≥0 aip

i and k =
∑
i≥0 bip

i be the p-adic representations of n and k,
respectively, where ai, bi ∈ {0, . . . , p−1}. Then we have the Lucas congruence
[1878] saying that

(
n
k

)
≡
∏
i≥0

(
ai
bi

)
(mod p):

Since for i ∈ {0, . . . , p} we have p 6 |
(
p
i

)
= p!

i!(p−i)! if and only if i ∈ {0, p}, we

have (X + Y )p =
∑p
i=0

(
p
i

)
XiY p−i = Xp + Y p ∈ Fp[X,Y ], where Fp ∼= Z/pZ

is the finite field of order p, and where we identify an integer in Z with its
natural image in Fp. This yields

∑n
l=0

(
n
l

)
X l = (X + 1)n =

∏
i≥0(X + 1)aip

i

=∏
i≥0(Xpi + 1)ai =

∏
i≥0(

∑p−1
j=0

(
ai
j

)
Xjpi) ∈ Fp[X]. The coefficient of Xk =∏

i≥0X
bip

i

in the latter polynomial equals
∏
i≥0

(
ai
bi

)
. ]

Hence we have p 6 |
(
n
k

)
if and only if p 6 |

(
ai
bi

)
for all i ≥ 0. Since ai ≤ p− 1 we

have p 6 |
(
ai
bi

)
=

(ai)(bi)
bi!

if and only if bi ≤ ai. This implies that p 6 |
(
n
k

)
if and

only if bi ≤ ai for all i ≥ 0, that is the p-adic expansion of k is contained in
the p-adic expansion of n.

In particular, for p = 2, letting again w(n) :=
∑
i≥0 ai ∈ N0 be the number of

binary digits 1 in the 2-adic representation of n, then there are 2w(n) possible
2-adic representations contained in the 2-adic representation of n. Thus we
recover the number of odd entries in row n of the Pascal triangle as given in
(0.3). Moreover, we have obtained a number theoretic description of where the
odd entries are actually located.
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b) It follows from the Lucas congruence, that
(
pn
pk

)
≡
(
n
k

)
(mod p). We show

combinatorially that actually
(
pn
pk

)
≡
(
n
k

)
(mod p2):

To this end, we consider a (p × n)-square grid, in which pk squares out of the
pn ones are chosen; this yields

(
pn
pk

)
possibilities. We let the group Cnp act on

these grids by cyclically permuting the rows independently, and we consider the
associated orbits. Considering a fixed row of a choice, since p is a prime, it
is either fixed or yields an orbit of length p, where the former case occurs if
and only if it is fully chosen or consists of unchosen squares only. Thus the
orbit length of a choice is given as pi, where i is the number of mixed rows in
the above sense. Now, there are

(
n
k

)
choices entirely consisting of fully chosen

rows, while for the other ones there are at least 2 mixed rows. Hence there are(
pn
pk

)
−
(
n
k

)
of the latter, all of which have orbit length divisible by p2. ]

In the same vein, we show algebraically that
(
pn
pk

)
≡
(
n
k

)
(mod p3) for p ≥ 5:

We proceed keeping the above picture. If a choice contains at least 3 mixed
rows, then its orbit has length divisible by p3. Hence we only have to consider
choices with precisely 2 mixed rows. Since in this case we have k−1 fully chosen
rows, keeping the mixed rows fixed, this amounts to

(
2p
p

)
− 2 possibilities (all

choices excluding the cases where either of the rows considered is fully chosen),
so that we have to show that

(
2p
p

)
≡ 2 (mod p3); note that this is just the case

n = 2 and k = 1 of the claim:

The Vandermode identity yields
(

2p
p

)
− 2 = −2 +

∑p
i=0

(
p
i

)(
p
p−i
)

=
∑p−1
i=1

(
p
i

)2
=

p2 ·
∑p−1
i=1 (

(p−1)(i−1)

i! )2. Hence we show that
∑p−1
i=1 (

(p−1)(i−1)

i! )2 ≡ 0 (mod p):

We have
∑p−1
i=1 (

(p−1)(i−1)

i! )2 ≡
∑p−1
i=1 ( (i−1)!

i! )2 ≡
∑p−1
i=1 ( 1

i )
2 ≡

∑p−1
i=1 i

2 (mod p);
recall that Z∗p = {1, . . . , p − 1}, so that this is well-defined indeed. Finally, we

use the well-known identity
∑n
i=1 i

2 = 1
6n(n+ 1)(2n+ 1), which is immediately

proved by induction; see also (4.3). From this, for p ≥ 5 we indeed get
∑p−1
i=1 i

2 ≡
1
6p(p− 1)(2p− 1) ≡ 0 (mod p). ]

The statement does not hold for p ≤ 3: For p = 2 we get
(

4
2

)
≡ 6 6≡ 2 (mod 8)

and for p = 3 we get
(

6
3

)
≡ 20 6≡ 2 (mod 27).

3 Partitions and permutations

(3.1) Partitions of sets. a) We discuss ways of forming partitions of N :=
{1, . . . , n}, where n ∈ N0; hence let k ∈ N0: A k-composition of N is an

ordered decomposition [N1, . . . , Nk] of N =
∐k
i=1Ni into k pairwise disjoint

blocks Ni 6= ∅. A k-partition of N is an unordered decomposition of N =∐k
i=1Ni into k pairwise disjoint blocks Ni 6= ∅. For example, for n = 3 the

2-partitions of N are given as N = {1, 2}
.
∪ {3} = {1, 3}

.
∪ {2} = {2, 3}

.
∪ {1},

hence the 2-compositions of N are given as

[{1, 2}, {3}], [{3}, {1, 2}], [{1, 3}, {2}], [{2}, {1, 3}], [{2, 3}, {1}], [{1}, {2, 3}].
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Table 6: The Stirling triangle of the second kind.

n\k 0 1 2 3 4 5 6 7

0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1
7 0 1 63 301 350 140 21 1

b) The number Sn,k ∈ N0 of k-partitions of N is called the associated Stirling
number of the second kind. Since any k-partition of N gives rise to k!
compositions of N , the number of k-compositions of N is given as k! · Sn,k.

We have Sn,k = 0 for k > n, and S0,0 = 1. For n ≥ 1 we have Sn,0 = 0 and
Sn,1 = Sn,n = 1; since any 2-partition consists of a non-empty subset and its
non-empty complement, we have Sn,2 = 2n−2

2 = 2n−1−1; and since any (n−1)-
partition consists of a 2-block and n−1 singleton blocks, we have Sn,n−1 =

(
n
2

)
.

The number Bn :=
∑n
k=0 Sn,k ∈ N, that is the number of all partitions of N , is

called the associated Bell number.

For n, k ≥ 1 we have the recursion Sn,k = Sn−1,k−1 + k · Sn−1,k, giving rise to
the Stirling triangle of the second kind shown in Table 6: Considering the
k-partitions of N , we distinguish the cases whether or not the block containing
n is a singleton set; hence any k-partition of N is obtained from either a (k−1)-
partition of N \ {n} by adding the k-th block {n}, or from a k-partition of
N \ {n} by adding n to either of the k blocks.

c) Letting K := {1, . . . , k}, we have already shown that |Maps(K,N)| = nk

and |Inj(K,N)| = n(k). To determine the cardinality |Surj(K,N)| we argue as
follows: Any map f ∈ Maps(K,N) is uniquely determined by the preimages
f−1(1), . . . , f−1(n) ⊆ K, where f−1(i) 6= ∅ if and only if i ∈ im(f). Hence
letting f 7→ [f−1(1), . . . , f−1(n)] yields a bijection from Surj(K,N) to the set
of n-compositions of K. Thus we have |Surj(K,N)| = n! · Sk,n.

Moreover, from Maps(K,N) =
∐
M⊆N Surj(K,M) we get nk = |Maps(K,N)| =∑n

m=0

∑
M⊆N,|M |=m |Surj(K,M)| =

∑n
m=0

(
n
m

)
·m! · Sk,m =

∑n
m=0 Sk,mn(m).

Since Sk,m = 0 for m > k this yields nk =
∑k
m=0 Sk,mn(m) for all n ∈ N0,

implying that Xk =
∑k
m=0 Sk,mX(m) ∈ Z[X], relating powers, falling factorials

and Stirling numbers of the second kind.

(3.2) Partitions of numbers. a) A k-composition of n ∈ N0, where k ∈ N0,

is an ordered sum n =
∑k
i=1 λi with k parts λ := [λ1, . . . , λk] ∈ Nk; we write
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|λ| := n, and only n = 0 has a 0-composition, namely [].

For n ≥ 1 and k ≥ 1 we may write a k-composition of n as a tuple [• · · · • |
• · · · • | . . . | • · · · •], with λi entries ‘•’ in the i-th slot, for i ∈ {1, . . . , k},
that is with n entries ‘•’ and k − 1 entries ‘ | ’ such that precisely k − 1 of
the n − 1 spaces between adjacent ‘•’ are filled with a ‘ | ’. Formally, letting
λ = [λ1, . . . , λk] 7→ [λ1 − 1, . . . , λk − 1] yields a bijection from the set of k-
compositions of n to the set Mn−k(k), hence the number of k-compositions of
n equals |Mn−k(k)| =

(
n−1
k−1

)
. For example, for n = 3 the 2-compositions are

given as [• | ••] and [•• | •], that is 3 = 1 + 2 = 2 + 1.

Hence for n ≥ 1 summation over k shows that in total there are
∑n
k=1

(
n−1
k−1

)
=

2n−1 compositions of n; combinatorially, starting from the n-tuple [• . . . •] there
are n− 1 spaces to be filled, yielding 2n−1 possibilities.

b) A k-partition of n is an unordered sum n =
∑k
i=1 λi with k parts λi ∈ N.

Hence we may assume that the parts are in non-increasing order λ1 ≥ · · ·λk ≥ 1,
and we write λ := [λ1, . . . , λk] ` n =: |λ| and l(λ) := k, where in turn |λ| and
l(λ) are called the size and the length of λ, respectively. The partition λ can
be identified with the set {[i, j] ∈ N2; i ∈ {1, . . . , k}, j ∈ {1, . . . , λi}}, which
is typically depicted by a Young diagram, that is rectangular array of boxes
consisting of l(λ) rows, where row i contains λi boxes. Letting ai(λ) := |{j ∈
{1, . . . , k};λj = i}| ∈ N0 be the multiplicity of i as a part of λ, we also write
λ = [nan(λ), . . . , 1a1(λ)]; we have

∑n
i=1 iai(λ) = n and

∑n
i=1 ai(λ) = k, hence

in particular [a1(λ), . . . , an(λ)] ∈ Mk(n). For example, all partitions of n = 3,
ordered reversed lexicographically, are given as {[3], [2, 1], [13]}.
Let Pk(n) := {λ ∈ Nk;λ ` n} be the set of all k-partitions of n, let P≤k(n) :=∐k
i=0 Pi(n) be the set of all partitions of n with at most k parts, and let P (n) =∐
k≥0 Pk(n) be the set of all partitions of n. Hence we have Pk(n) = ∅ for

k > n, implying P (n) = P≤n(n) =
∐n
k=0 Pk(n). We have P0(0) = {[]}, and

P0(n) = ∅ and P1(n) = {[n]} and P2(n) = {[n − j, j]; j ∈ {1, . . . , bn2 c}} and
Pn−1(n) = {[2, 1n−2]} and Pn(n) = {[1n]} for n ≥ 1.

Let pn,k := |Pk(n)| ∈ N0 and pn,≤k :=
∑k
i=0 pn,i = |P≤k(n)| ∈ N0 and pn :=

pn,≤n =
∑
k≥0 pn,k = |P (n)| ∈ N, where pn,k = 0 for k > n. For n ≥ k ≥ 1 we

have the recursion pn,k = pn−1,k−1 +pn−k,k: Considering the k-partitions λ ` n,
we distinguish the cases λk = 1 and λk ≥ 2; hence any such λ is obtained either
from a (k − 1)-partition [λ1, . . . , λk−1] ` n − 1 as λ = [µ1, . . . , µk−1, 1] ` n, or
from a k-partition [λ1, . . . , λk] ` n− k as λ = [λ1 + 1, . . . , λk + 1] ` n.

This yields pn,k = pn−k,≤k for n ≥ k ≥ 0: Proceeding by induction on n ∈ N0,
where the case n = 0 as well as the case k = 0 are trivial, for n ≥ k ≥ 1
we get pn,k = pn−1,k−1 + pn−k,k = (

∑k−1
i=0 pn−k,i) + pn−k,k =

∑k
i=0 pn−k,i =

pn−k,≤k. Alternatively, the map [λ1, . . . , λi] 7→ [λ1 +1, . . . , λi+1, 1, . . . , 1] yields
a bijection P≤k(n− k)→ Pk(n).

Fixing n, summation yields pn =
∑n
k=0 pn,k, which hence can be computed using

the above recursion. The asymptotic behavior of pn is given by the Hardy-
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Ramanujan formula [1918] as pn ∼
exp(π

√
2n
3 )

4n
√

3
. The asymptotic behavior of

pn,k will be discussed in (4.4). For example we have:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pn 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176

pn,2 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
pn,3 0 0 0 1 1 2 3 4 5 7 8 10 12 14 16 19

(3.3) Permutations. a) Let n ∈ N0. We consider the set of permutations
Sn := Bij(N,N) of N := {1, . . . , n}, which with respect to concatenation of
maps becomes a group, with identity element idN and inverses given by inverses
of maps, called the symmetric group on N . Writing permutations as tuples,
we have S0 = {[]} and S1 = {[1]}, and using lexicographic ordering we get
S2 = {[1, 2], [2, 1]} and S3 = {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}.
Any permutation π ∈ Sn can be written as a product of disjoint cycles: We
consider the directed graph with vertex set {1, . . . , n} having an edge i→ j
if π(i) = j. Since π is a map, from any vertex precisely one edge emanates; since
π is surjective, at any vertex at least one edge ends, since π is injective, at any
vertex at most one edge ends, thus at any vertex precisely one edge ends. Hence
the connected components of this graph are directed circles, showing that
the cycle decomposition of π is unique up to reordering; the number of vertices
in a cycle is called its length; for a more formal description see (15.2).

Hence a permutation is described by its cycle decomposition, which is unique
up to ordering and rotating the cycles; typically fixed points, that is cy-
cles of length 1, are left out. Note that inverses are given by reading cy-
cles backwardly. In the standard cycle representation cycles are ordered
from right to left with increasing smallest elements, the latter being chosen
as starting points. For example, we have π := [11, 10, 1, 7, 9, 2, 5, 3, 4, 6, 8] =
(4, 7, 5, 9)(2, 10, 6)(1, 11, 8, 3) ∈ S11 and π−1 = (4, 9, 5, 7)(2, 6, 10)(1, 3, 8, 11).

b) Proceeding even further, given π ∈ Sn in standard cycle representation,
leaving out the pairs of parentheses ‘)(’ yields a sequence of numbers ((π)), which
can be considered as an element of Sn again. Conversely, given such a sequence
of numbers, inserting a pair of parentheses ‘)(’ right to any successive absolute
left-to-right minimum yields a permutation in standard cycle representation.

Moreover, by this insertion algorithm we recover π ∈ Sn from ((π)), showing
that the map Sn → Sn : π → ((π)) is injective, hence bijective, with inverse
given by the insertion algorithm; note that hence π ∈ Sn has k ∈ N0 cycles if
and only if ((π)) has precisely k successive minima. For example, π as above
yields ((π)) = ((4, 7, 5, 9, 2, 10, 6, 1, 11, 8, 3)), having the successive minima as
indicated, hence the insertion algorithm recovers (4, 7, 5, 9)(2, 10, 6)(1, 11, 8, 3).

c) Given π ∈ Sn, for i ∈ N let ai(π) ∈ N0 be the number of cycles of π of length
i. Hence k(π) =

∑n
i=1 ai(π) ∈ N0 is the number of cycles of π, and we have∑n

i=1 iai(π) = n. Hence λ(π) := [nan(π), . . . , 1a1(π)] ∈ Pk(π)(n) is a partition of
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Table 7: Cycle types in S5.

λ

[5] 5!
5 = 24

[4, 1] 5!
4 = 30

[3, 2] 5!
3·2 = 20

λ

[3, 12] 5!
2!·3 = 20

[22, 1] 5!
2!·22 = 15

[2, 13] 5!
3!·2 = 10

[15] 5!
5! = 1

n with k(π) ∈ N0 parts, being called the cycle type of π. Note that if α ∈ Sn
then the cycle types of π and απα−1 coincide: If (i, π(i), . . . , πl−1(i)) is a cycle
of π, for some i ∈ {1, . . . , n} and l ∈ N, then (α(i), απ(i), . . . , απl−1(i)) is a
cycle of απα−1.

Given λ = [nan , . . . , 1a1 ] ∈ P (n), there are n!∏n
i=1 ai!·iai

permutations in Sn with

cycle type λ: Consider the pattern (· · · )(· · · ) · · · (· · · ) consisting of ai ∈ N0 cycles
of length i, for i ∈ {1, . . . , n}, written in order of non-increasing lengths. There
are n! possibilities to fill in pairwise distinct entries from {1, . . . , n}. Permuting
the cycles of the same lengths amongst themselves, and rotating any of the
cycles, we thus get any permutation (

∏n
i=1 ai!) · (

∏n
i=1 i

ai) times.

(3.4) Permutations with a fixed number of cycles. a) Let n ∈ N0 and
k ∈ N0. Then the number sn,k := |{π ∈ Sn; k(π) = k}| ∈ N0 of permutations
in Sn having k cycles is called the associated (signless) Stirling number of
the first kind. Hence we have sn,k =

∑
λ∈Pk(n)

n!∏n
i=1 ai(λ)!·iai(λ) ; for example,

for n = 5 we get the figures shown in Table 7. Thus we have sn,k = 0 for k > n,
and s0,0 = 1. For n ≥ 1 we have sn,0 = 0 and sn,n = 1, as well as sn,1 = (n−1)!
and sn,n−1 =

(
n
2

)
; summing over k yields

∑n
k=0 sn,k = |Sn| = n!.

For n, k ≥ 1 we have the recursion sn,k = sn−1,k−1 + (n− 1) · sn−1,k, giving rise
to the Stirling triangle of the first kind shown in Table 8: Considering the
permutations of N having k cycles, we distinguish the cases whether or not n is
a fixed point; hence any such permutation is obtained from either a permutation
of N \{n} having k−1 cycles by adding the cycle (n), or from a permutation of
N \ {n} having k cycles by inserting n into any of the n− 1 positions in there.

This yields
sn,k

(n−1)! =
∑n−1
m=0

sm,k−1

m! , for n, k ≥ 1: We proceed by induction on n ∈
N; the assertion being true for n = 1, for n ≥ 2 the recursion sn,k = sn−1,k−1 +

(n − 1) · sn−1,k yields
sn,k

(n−1)! =
sn−1,k−1

(n−1)! +
sn−1,k

(n−2)! =
sn−1,k−1

(n−1)! +
∑n−2
m=0

sm,k−1

m! =∑n−1
m=0

sm,k−1

m! . In particular, for k = 2 and n ≥ 1 we get sn,2 = (n− 1)! · hn−1,
where hn :=

∑n
i=1

1
i ∈ Q is the n-th harmonic number.

b) We have X(n) =
∑n
k=0 sn,kX

k ∈ Z[X]: By induction on n ∈ N0, where for
n ≤ 1 both sides are equal to 1 ∈ Z[X], respectively X ∈ Z[X], we for n ≥ 2 get
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Table 8: The Stirling triangle of the first kind.

n\k 0 1 2 3 4 5 6 7

0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 10 1
6 0 120 274 225 85 15 1
7 0 720 1764 1624 735 175 21 1

X(n) = (X+n−1)X(n−1) = (X+n−1)·
∑n−1
k=1 sn−1,kX

k =
∑n
k=2 sn−1,k−1X

k+∑n−1
k=1(n− 1)sn−1,kX

k =
∑n
k=1(sn−1,k−1 + (n− 1)sn−1,k)Xk =

∑n
k=1 sn,kX

k.

The reciprocity X(n) = (−1)n(−X)(n) yields X(n) = (−1)n ·
∑n
k=0 sn,k(−X)k =∑n

k=0(−1)n−ksn,kX
k ∈ Z[X]. This yields the following relationship between

both kinds of Stirling numbers: Letting Z[X]≤n := {f ∈ Z[X] \ {0}; deg(f) ≤
n}

.
∪ {0}, then both {Xk; k ∈ {0, . . . , n}} and {X(k); k ∈ {0, . . . , n}} are Z-bases

of Z[X]≤n, and thus from Xn =
∑n
k=0 Sn,kX(k) ∈ Z[X] we infer [Sn,k]−1

n,k =

[(−1)n−ksn,k]n,k ∈ GLn+1(Z).

(3.5) Permutations without fixed points. A permutation π ∈ Sn, where
n ∈ N0, having no fixed points, that is π(i) 6= i for all i ∈ {1, . . . , n}, is
called a derangement. Let D(n) ⊆ Sn be the set of all derangements, and let
Dn := |D(n)| ∈ N0; we have D0 = 1 and D1 = 0 and D2 = 1 and D3 = 2.

For n ≥ 2 we have the recursion Dn = (n− 1)(Dn−2 +Dn−1): For π ∈ D(n) we
consider the cycle (1, i, . . .) of π containing the letter 1, where i ∈ {2, . . . , n},
and we distinguish the cases whether this cycle has length 2 or ≥ 3. In the first
case, deleting the cycle (1, i) from π, and leaving the other cycles unchanged,
yields a derangement permuting the n− 2 letters {2, . . . , n} \ {i}; in the second
case replacing the cycle (1, i, j, . . .) of π, where j ∈ {2, . . . , n} \ {i}, by (1, j, . . .)
yields a derangement permuting the n− 1 letters {1, . . . , n} \ {i}.
We derive a closed formula for Dn, also called the problème des rencontres:
The above recursion can be rewritten as Dn−nDn−1 = −(Dn−1−(n−1)Dn−2),
for n ≥ 2. Hence by induction we get Dn − nDn−1 = (−1)n−1 · (D1 − D0) =

(−1)n, for n ≥ 1. Considering the proportion |D(n)|
|Sn| = Dn

n! this yields Dn
n! −

Dn−1

(n−1)! = (−1)n

n! , thus Dn
n! − 1 =

∑n
k=1(Dkk! −

Dk−1

(k−1)! ) =
∑n
k=1

(−1)k

k! . Hence we get

Dn
n! =

∑n
k=0

(−1)k

k! , for n ∈ N0; for more conceptual proofs see (4.5) and (10.1).

We have
∑
k≥0

(−1)k

k! := limn→∞(
∑n
k=0

(−1)k

k! ) = 1
e ∼ 0.367879, hence the pro-
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portion of derangements amongst all permutations is approximated by D3

3! =
1
3 <

Dn
n! <

3
8 = D4

4! , for n ≥ 5; recall that D0

0! = 1 and D1

1! = 0 and D2

2! = 1
2 .

4 Difference calculus

(4.1) Discrete differentiation. a) We consider the set of all infinite sequences
[a0, a1, . . .] ⊆ Q, that is the Q-vector space F := Maps(N0,Q). Since N0 is
infinite, the polynomial ring Q[X] can be identified with the Q-subspace {N0 →
Q : n 7→ f(n); f ∈ Q[X]} ≤ F of polynomial maps. Similarly, Q(X)◦ :=
{ fg ∈ Q(X); g(n) 6= 0 for all n ∈ N0} can be identified with the Q-subspace of

F of rational maps. Let Q[X]≤k := {f ∈ Q[X] \ {0}; deg(f) ≤ k}
.
∪ {0} for

k ≥ 0, and Q[X]≤−k := {0} for k ≥ 1; in particular, Q[X]≤0 = Q consists of
the constant maps.

We consider various maps on F : Let τ ∈ EndQ(F) be the shift operator
defined by τf : N0 → Q : n 7→ f(n + 1). Let δ := τ − id ∈ EndQ(F) be the
difference operator, that is δf : N0 → Q : n 7→ f(n + 1) − f(n), being called
the discrete derivative of f , which is the discrete analogue of differentiation;
note that ker(δ) = Q ≤ F .

Hence τ and δ restrict to Q-linear maps on Q[X] given by (τf)(X) := f(X + 1)
and (δf)(X) := f(X+1)−f(X), respectively. Moreover, by letting τ( fg ) := τf

τg ,

for f, g ∈ Q[X] such that g 6= 0, we obtain Q-linear extensions of τ and δ to
Q(X), which in turn restrict to Q(X)◦.

We get a discrete analogue of the product rule as follows: For f, g ∈ F we have
δ(fg) : n 7→ f(n + 1)g(n + 1) − f(n)g(n) = f(n + 1)g(n + 1) − f(n)g(n + 1) +
f(n)g(n+ 1)− f(n)g(n) = (δf)(n) · g(n+ 1) + f(n) · (δg)(n), for n ∈ N0, hence
δ(fg) = δf · τg + f · δg ∈ F .

b) Let f ∈ F . Then for i ≥ 0 we have δif = (τ−id)if =
∑i
j=0(−1)i−j

(
i
j

)
·τ jf ∈

F . Thus (δif)(0) is given in terms of values of f as (δif)(0) =
∑i
j=0(−1)i−j

(
i
j

)
·

f(j); in particular, we have (δif)(0) ∈ Z whenever f({0, . . . , i}) ⊆ Z.

Conversely, we get a discrete analogue of Taylor expansions: For n ≥ 0 we
have τn = (δ + id)n, thus we get the Newton expansion f(n) = (τnf)(0) =
((δ + id)nf)(0) =

∑n
i=0

(
n
i

)
· (δif)(0), expressing the values of f in terms of the

derivatives (δif)(0), and thus inverting the above formula.

For example, for the number of derangements in Sn, where n ∈ N0, we already
know that Dn =

∑n
k=0(−1)k · n!

k! =
∑n
k=0(−1)k

(
n
k

)
·(n−k)! =

∑n
k=0(−1)n−k

(
n
k

)
·

k!, which in present terms says that Dn = (δn(k 7→ k!))(0). Thus Newton
expansion yields n! =

∑n
i=0

(
n
i

)
·Di; for a combinatorial proof see (4.5).

(4.2) Polynomial functions. a) We look for polynomials providing the dis-
crete analogue of the differentiation behavior of the power maps: To this end,
we generalize the falling factorial X(k) ∈ Q[X]≤k, which so far is defined for
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k ≥ 0, by letting X(−k) := 1∏k
i=1(X+i)

∈ Q(X)◦, for k ≥ 1.

Then we have X(k) = X(k−1) · (X − k + 1) ∈ Q(X)◦ and (X + 1)(k) = (X +
1) ·X(k−1) ∈ Q(X)◦, for all k ∈ Z: This is immediate for k ≥ 1, for k = 0 we
have X(0) = 1 = X(−1) · (X + 1) and (X + 1)(0) = 1 = (X + 1) · X(−1), while

for k ≥ 1 we have X(−k) = 1∏k
i=1(X+i)

= X+k+1∏k+1
i=1 (X+i)

= X(−k−1) · (X − (−k) + 1)

and (X + 1)(−k) = 1∏k
i=1(X+i+1)

= X+1∏k+1
i=1 (X+i)

= (X + 1) ·X(−k−1).

Thus we indeed have δ(X(k)) = (X + 1)(k) −X(k) = (X + 1) ·X(k−1) −X(k−1) ·
(X − k + 1) = kX(k−1) ∈ Q(X)◦, for all k ∈ Z. Hence for polynomial binomial

coefficients we get δ
(
X
k

)
= 1

k! · δ(X(k)) = 1
(k−1)! · δ(X(k−1)) =

(
X
k−1

)
∈ Q[X], for

k ≥ 1; we have δ
(
X
0

)
= δ(1) = 0 ∈ Q[X]. Moreover, for k ≥ 0 we have δ(X(k)) ∈

Q[X]≤k−1 \Q[X]≤k−2, hence δ induces a surjection Q[X]≤k → Q[X]≤k−1, and
we have δ−1(Q[X]≤k−1) = Q[X]≤k ⊆ F . In particular, given f ∈ F and k ≥ 0,
we have f ∈ Q[X]≤k if and only if δk+1(f) = 0.

b) For f ∈ Q[X]≤k, where k ≥ 0, Newton expansion becomes f =
∑k
i=0(δif)(0)·(

X
i

)
=
∑k
i=0

(δif)(0)
i! ·X(i) ∈ Q[X]≤k: Since both sides are polynomials of degree

at most k, it suffices to show that the identity holds for all x := n ∈ {0, . . . , k};
since

(
n
i

)
= 0 whenever n < i, we get f(n) =

∑k
i=0(δif)(0)·

(
n
i

)
=
∑n
i=0(δif)(0)·(

n
i

)
, which holds by Newton expansion.

Hence we have proved Newton’s Theorem: Given a polynomial f ∈ Q[X]≤k,
we have f(N0) ⊆ Z if and only if (δif)(0) ∈ Z for all i ∈ {0, . . . , k}; thus the Z-
submodule {f ∈ Q[X]≤k; f(N0) ⊆ Z} ≤ F is Z-free with Z-basis {

(
X
0

)
, . . . ,

(
X
k

)
}.

For example, forXn ∈ Q[X] this yields a sum formula for the Stirling numbers of
the second kind: From Xn =

∑n
k=0 Sn,kX(k) ∈ Z[X], for n ∈ N0, we for k ∈ N0

get k! ·Sn,k = (δkXn)(0) = (
∑k
i=0(−1)k−i

(
k
i

)
(X+ i)n)(0) =

∑k
i=0(−1)k−i

(
k
i

)
in;

other proofs are given in (10.1) and (13.4).

(4.3) Discrete integration. a) Let F := Maps(N0,Q), and let σ ∈ EndQ(F)

be the sum operator given by σf : N0 → Q : n 7→
∑n−1
i=0 f(i), where (σf)(0) =

0, which is the discrete analogue of integration with lower bound 0.

Thus for f ∈ F and n ∈ N0 we have (δσf)(n) =
∑n
i=0 f(i) −

∑n−1
i=0 f(i) =

f(n), showing that δσ = id, which is the discrete analogue of the theorem on
integration-differentiation. Hence δ−1(f) = σf +Q ⊆ F are the discrete stem
functions of f , where σf is the unique one such that (σf)(0) = 0.

The other way around we get (σδf)(n) =
∑n−1
i=0 (δf)(i) =

∑n−1
i=0 (f(i + 1) −

f(i)) = f(n) − f(0), that is σδf = f − f(0) ∈ F , which is the discrete ana-
logue of the theorem on differentiation-integration; hence to determine the sum∑b
i=a g(i), for g ∈ F and a, b ∈ N0, we may just evaluate any stem function

f ∈ F of g, yielding
∑b
i=a g(i) = (σg)(b+ 1)− (σg)(a) = f(b+ 1)− f(a).

b) For example, from δ(X(k)) = kX(k−1) ∈ Q(X), for k ∈ Z, we get the
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stem functions σ(X(k)) = 1
k+1 · X(k+1) ∈ Q[X] for k ≥ 0, and σ(X(k)) =

1
k+1 · (X(k+1) − 1

(−k−1)! ) ∈ Q(X)◦ for k ≤ −2. But for k = −1 we get the

discrete analogue of the logarithm σ(X(−1)) : N0 → Q : n 7→
∑n−1
i=0

1
i+1 = hn,

where hn is the n-th harmonic number, and h0 := 0.

In order to find the discrete analogue of the exponential map, we observe that
f ∈ F fulfills δf = f if and only if f(n) = f(n+1)−f(n), that is f(n+1) = 2f(n)
for all n ∈ N0, which is equivalent to f : N0 → Q : n 7→ c · 2n, for some c ∈ Q.

For example, we determine the power sums sk : N0 → N0 : n 7→
∑n−1
i=0 i

k, where

k ∈ N0: We have sk = σ(Xk) =
∑k
i=0 Sk,iσ(X(i)) =

∑k
i=0

Sk,i
i+1 ·X(i+1) ∈ Q[X],

being a polynomial map of degree k+1 with leading coefficient 1
k+1 and constant

coefficient 0; in particular, we have s0 = X ∈ Q[X] and s1 = 1
2X(X−1) ∈ Q[X].

c) The discrete analogue of partial integration follows from the product rule: For
f, g ∈ F we have σ(f ·δg) = σδ(fg)−σ(δf ·τg) = fg− (fg)(0)−σ(δf ·τg) ∈ F .

For example, we determine N0 → N0 : n 7→
∑n−1
i=0 i · 2i: Letting f := X ∈ Q[X]

and g : N0 → N0 : n 7→ 2n, we get δg = g and δf = 1 ∈ Q[X], and thus∑n−1
i=0 i · 2i = (σ(f · δg))(n) = (fg)(n) − (fg)(0) − (σ(δf · τg))(n) = n · 2n −∑n−1
i=0 2i+1 = n · 2n − (2n+1 − 2) = (n− 2) · 2n + 2.

For example, we determine N0 → N0 : n 7→
∑n−1
i=0 hi: Letting f : N0 → N0 : n 7→

hn and g := X ∈ Q[X], we get δf = 1
X+1 ∈ Q(X)◦ and δg = 1 ∈ Q[X],

and thus
∑n−1
i=0 hi = (σ(f · δg))(n) = (fg)(n) − (fg)(0) − (σ(δf · τg))(n) =

nhn −
∑n−1
i=0

i+1
i+1 = n(hn − 1).

(4.4) Example: Growth of partition numbers. The growth behavior of
pn,k, where k ∈ N is fixed while n ∈ N0 varies, is described by a quasi-
polynomial as follows: For k ∈ N and a ∈ {0, . . . , k!− 1} there are pa,k(X) ∈
Q[X] such that pn,k = pa,k(n), for all n ∈ N0 such that n ≡ a (mod k!) and
[n, k] 6= [0, 1]. Moreover, pa,k(X) has degree k−1 and leading coefficient 1

k!(k−1)! ;

for example, we have p0,1(X) = 1, and pa,2(X) = X−a
2 for a ∈ {0, 1}:

We proceed by induction on k ∈ N: We have pn,1 = 1 for n ≥ 1. Moreover,
since p0,0 = 1 we have pn,0 + pn,1 = 1 for all n ∈ N0, hence for completeness
let additionally p0,0 := 0 ∈ Q[X]. Note that pn,2 = pn−2,2 + pn−2,1 + pn−2,0 =
pn−2,2 + 1 yields pn,2 = n

2 if n ∈ N0 is even, and pn,2 = n−1
2 if n ∈ N is odd.

Let k ≥ 2. For n ≥ k the recursion pn,k =
∑k
i=0 pn−k,i yields pn,k − pn−k,k =∑k−1

i=0 p(a−k) (mod i!),i(n−k), which entails pn,k−pn−k!,k =
∑(k−1)!−1
j=0 (pn−jk,k−

pn−(j+1)k,k) =
∑k−1
i=0

∑(k−1)!
j=1 p(a−jk) (mod i!),i(n − jk), for n ≥ k!. We apply

discrete differentiation to the map fa,k : N0 → N0 : m 7→ pa+mk!,k:

We have (δfa,k)(m) =
∑k−1
i=0

∑(k−1)!
j=1 p(a−jk) (mod i!),i((m+1)·k!+a−jk), hence

by induction δfa,k is a polynomial map in m ∈ N0 of degree k − 2 with leading

coefficient (k−1)!· (k!)k−2

(k−1)!(k−2)! = (k!)k−2

(k−2)! . Thus we infer that fa,k is a polynomial
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map in m ∈ N0 of degree k − 1 with leading coefficient (k!)k−2

(k−1)·(k−2)! = (k!)k−2

(k−1)! .

Letting n := a+mk! shows that pn,k is a polynomial map of degree k − 1 with

leading coefficient 1
(k!)k−1 · (k!)k−2

(k−1)! = 1
k!(k−1)! . ]

(4.5) Linear inversion. a) A sequence [f0, f1, . . .] ⊆ Q[X] such that deg(fi) =
i for all i ∈ N0, is called basic. Then, for all n ∈ N0, the truncated sequence
[f0, . . . , fn] ⊆ Q[X] is a Q-basis of Q[X]≤n.

Thus, if [f0, f1, . . .] ⊆ Q[X] and [g0, g1, . . .] ⊆ Q[X] are basic sequences, then
there are lower triangular matrices A = [aij ]ij ∈ QN0×N0 and B = [bij ]ij ∈
QN0×N0 such that gi =

∑i
j=0 aijfj ∈ Q[X]≤i and fi =

∑i
j=0 bijgj ∈ Q[X]≤i, for

all i ∈ N0. Thus we have
∑i
k=j aikbkj = δij ∈ Q and

∑i
k=j bikakj = δij ∈ Q,

for all i, j ∈ {0, . . . , n}. Note that the matrices An := [aij ]i∈{0,...,n},j∈{0,...,n} ∈
Q(n+1)×(n+1) and Bn := [bij ]i∈{0,...,n},j∈{0,...,n} ∈ Q(n+1)×(n+1) are the associ-
ated base change matrices on Q[X]≤n, which hence are inverse to each other.

Hence, if [x0, x1, . . .] ⊆ Q is any sequence, and the sequence [y0, y1, . . .] ⊆ Q
is given by weighted sums as yi :=

∑i
j=0 aijxj ∈ Q, for all i ∈ N0, then we

may recover the original sequence by xi =
∑i
j=0 bijyj ∈ Q, for all i ∈ N0: For

all n ∈ N0 we have [y0, . . . , yn]tr = An · [x0, . . . , xn]tr ∈ Q1×(n+1), which is
equivalent to [x0, . . . , xn]tr = Bn · [y0, . . . , yn]tr ∈ Q1×(n+1).

b) For the basic sequences [Xn;n ∈ N0] ⊆ Q[X] and [(X − 1)n;n ∈ N0] ⊆ Q[X]
we get Xn = (X − 1 + 1)n =

∑n
k=0

(
n
k

)
(X − 1)k ∈ Q[X]≤n and (X − 1)n =∑n

k=0(−1)n−k
(
n
k

)
Xk ∈ Q[X]≤n, with base change matrices [

(
n
k

)
]n,k ∈ ZN0×N0

and [(−1)n−k
(
n
k

)
]n,k ∈ ZN0×N0 , respectively. More symmetrically, replacing the

first basic sequence by [(−X)n;n ∈ N0] ⊆ Q[X] we get the involutory base
change matrix [(−1)n

(
n
k

)
]n,k ∈ ZN0×N0 .

Thus, for sequences [y0, y1, . . .] ⊆ Q and [x0, x1, . . .] ⊆ Q binomial inver-
sion says that we have yn =

∑n
k=0

(
n
k

)
xk ∈ Q, for all n ∈ N0, if and only

if we have xn =
∑n
k=0(−1)n−k

(
n
k

)
yk ∈ Q, for all n ∈ N0. Moreover, if

yn =
∑n
k=0(−1)n

(
n
k

)
xk ∈ Q, for all n ∈ N0, then binomial inversion becomes

involutory, that is xn =
∑n
k=0(−1)n

(
n
k

)
yk ∈ Q, for all n ∈ N0.

In particular, considering the unit sequence [x0, x1, . . .] := [0, . . . , 0, 1, 0, . . .] ⊆
Z, where the non-vanishing entry is in position m ∈ N0, we get yn =

(
n
m

)
∈ Z,

for all n ∈ N0, and thus
∑n
k=m(−1)n−k

(
n
k

)(
k
m

)
= δn,m ∈ Z; note that for m = 0

we recover the identity
∑n
k=0(−1)n−k

(
n
k

)
= δ0,n. Moreover, Newton expansion

just says that any sequence f := [fi; i ∈ N0] ⊆ Q is related to the sequence
[(δif)(0); i ∈ N0] ⊆ Q by binomial inversion.

For example, we reconsider the number Dn of derangements in Sn, for n ∈ N0:
Let Dn,k ∈ N0 be the number of permutations in Sn having precisely k fixed
points, for k ∈ N0; hence we have Dn = Dn,0. Choosing any k-subset of
{1, . . . , n} as set of fixed points, we get n! =

∑n
k=0

(
n
k

)
Dn−k =

∑n
k=0

(
n
k

)
Dk.
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Thus binomial inversion yields Dn =
∑n
k=0(−1)n−k

(
n
k

)
·k! = n!·

∑n
k=0

(−1)n−k

(n−k)! =

n! ·
∑n
k=0

(−1)k

k! , and Newton expansion becomes Dn = (δn(k 7→ k!))(0).

c) For the basic sequences [Xn;n ∈ N0] ⊆ Q[X] and [X(n);n ∈ N0] ⊆ Q[X]

we have Xn =
∑n
k=0 Sn,kX(k) ∈ Q[X]≤n and X(n) =

∑n
k=0(−1)n−ksn,kX

k ∈
Q[X]≤n, with base change matrices [Sn,k]n,k ∈ ZN0×N0 and [(−1)n−ksn,k]n,k ∈
ZN0×N0 , respectively. Again, replacing replacing the first basic sequence by
[(−X)n;n ∈ N0] ⊆ Q[X] we get the base change matrices [(−1)nSn,k]n,k ∈
ZN0×N0 and [(−1)nsn,k]n,k ∈ ZN0×N0 , respectively.

Thus, for sequences [y0, y1, . . .] ⊆ Q and [x0, x1, . . .] ⊆ Q Stirling inver-
sion says that we have yn =

∑n
k=0 Sn,kxk ∈ Q, for all n ∈ N0, if and only

if we have xn =
∑n
k=0(−1)n−ksn,kyk ∈ Q, for all n ∈ N0. Moreover, if

yn =
∑n
k=0(−1)nSn,kxk ∈ Q, for all n ∈ N0, then Stirling inversion becomes

more symmetric inasmuch xn =
∑n
k=0(−1)nsn,kyk ∈ Q, for all n ∈ N0. In

particular, considering the m-th unit sequence again, where m ∈ N0, we for all
n ∈ N0 recover

∑n
k=m(−1)n−ksn,kSk,m = δn,m ∈ Z.

II Posets

5 Partially ordered sets

(5.1) Partially ordered sets. a) A set X 6= ∅, together with a binary relation
≤ on X, is called a partially ordered set or poset if the following properties
are fulfilled for all x, y, z ∈ X: We have reflexivity, that is x ≤ x; antisym-
metry, that is x ≤ y and y ≤ x implies x = y; and transitivity, that is x ≤ y
and y ≤ z implies x ≤ z. Elements x, y ∈ X are called comparable if x ≤ y
or y ≤ x; and we write x < y whenever x ≤ y and x 6= y. Note that we get the
dual partially ordered set by letting x ≤′ y if and only if y ≤ x, for all x, y ∈ X.

Partially ordered sets X and Y , with comparison relations ≤X and ≤Y , are
called isomorphic, if there is a bijection α : X → Y such that x ≤X y if
and only if α(x) ≤Y α(y), for all x, y ∈ X; we write X ∼= Y . In particular,
any subset ∅ 6= Y ⊆ X becomes a partially ordered set again, with respect to
the induced comparison relation, which is defined by saying that the natural
embedding ι : Y → X yields an isomorphism Y ∼= im(ι).

A subset Y ⊆ X, such that whenever y ∈ Y and x ∈ X such that x ≤ y we
already have x ∈ Y , is called an ideal ofX. Similarly, a subset Y ⊆ X, such that
whenever y ∈ Y and x ∈ X such that x ≥ y we already have x ∈ Y , is called a
coideal of X. In particular, for any x ∈ X the sets 〈≤ x〉 := {y ∈ X; y ≤ x} and
〈x ≤〉 := {y ∈ X;x ≤ y} are called the principal ideal and coideal generated
by x, respectively.

b) An element x ∈ X is called minimal, if y ≤ x ∈ X already implies y = x;
dually, x ∈ X is called maximal if x ≤ y ∈ X already implies y = x. In
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particular, if X is finite then for any x ∈ X there is a minimal element y ∈ X
such that y ≤ x, and a maximal element z ∈ X such that x ≤ z. Moreover,
an element 0 ∈ X such that 0 ≤ x for all x ∈ X is called a zero element;
dually, an element 1 ∈ X such that x ≤ 1 for all x ∈ X is called a one element;
note that zero and one elements are the unique minimal and maximal elements,
respectively, if existent.

Given a subset ∅ 6= Y ⊆ X, an element x ∈ X such that y ≤ x for all y ∈ Y is
called an upper bound of Y . If Y has an upper bound, and the set of upper
bounds has a zero element x, with respect to the induced comparison relation,
then x ∈ X is called a least upper bound or join or supremum of Y ; if
existent, the least upper bound is unique, and denoted by

∨
y∈Y y. Dually, an

element x ∈ X such that x ≤ y for all y ∈ Y is called a lower bound of Y .
If Y has a lower bound, and the set of lower bounds has a one element x, with
respect to the induced comparison relation, then x ∈ X is called a greatest
lower bound bound or meet or infimum of Y ; if existent, the greatest lower
bound is unique, and denoted by

∧
y∈Y y.

c) The partially ordered set X is called a lattice, if for all x, y ∈ X there is a
join x ∨ y ∈ X and a meet x ∧ y ∈ X. In this case, for all x, y, z ∈ X we have
idempotency x∧x = x and commutativity x∧y = y∧x, and dually x∨x = x
and x ∨ y = y ∨ x; moreover, (x ∧ y) ∧ z ∈ X is the greatest lower bound of
{x, y, z} ∈ X, hence we infer associativity (x ∧ y) ∧ z = x ∧ (y ∧ z), and dually
(x ∨ y) ∨ z = x ∨ (y ∨ z); finally x ∧ y = x is equivalent to x ≤ y, which in turn
is equivalent to x ∨ y = y.

In particular, if X is finite, then 0 :=
∧
x∈X x ∈ X and 1 :=

∨
x∈X x ∈ X are a

zero and a one element, respectively.

(5.2) Chains. a) Let X be a partially ordered set. Given x ≤ y ∈ X, the
associated (closed) interval is the set [x, y] := {z ∈ X;x ≤ z ≤ y}; in
particular, we have [x, x] = {x}. The partially ordered set X is called locally
finite if all its intervals are finite sets.

Given x < y, we say that y covers x if [x, y] = {x, y}, and we write x l y. In
particular, if 0 ∈ X is a zero element, then an element x ∈ X such that 0 l x
is called an atom; similarly, if 1 ∈ X is a one element, then an element x ∈ X
such that xl 1 is called a co-atom. If X is finite, then it is typically depicted
by its Hasse diagram, which is a quiver, that is a simple oriented graph, with
vertex set X and arrows x← y whenever xl y.

A subset ∅ 6= Y ⊆ X is called a chain or totally ordered if all x, y ∈ Y
are pairwise comparable; in particular any chain is a lattice. Note that Zorn’s
Lemma (being equivalent to the Axiom of Choice) says that, if any chain
Y ⊆ X has an upper bound, then X has a maximal element.

A chain Y ⊆ X is called maximal if for any chain Y ′ ⊆ X such that Y ⊆ Y ′

we already have Y = Y ′. A chain Y ⊆ X is called saturated or unrefinable if
for all x ≤ y ∈ Y the chain Y ∩ [x, y] ⊆ [x, y] is maximal. Hence maximal chains
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are saturated, while the converse does not hold; note that a saturated chain is
maximal if it contains both a minimal and a maximal element of X.

The set of all chains in X is partially ordered by set-theoretic inclusion, and any
chain of chains has its union, which again is a chain, as an upper bound, hence
by Zorn’s Lemma any chain is contained in a maximal chain. Of course, if X
is finite, then any chain can be refined to a maximal chain by induction.

For example, the set N0 is a partially ordered set with respect to the ≤ relation.
It is a locally finite chain, thus in particular a lattice, with meet min{i, j} and
join max{i, j}, for i, j ∈ N0; it has zero element 0, but no maximal element.
The subset [0, n] := {0, . . . , n}, where n ∈ N0, is totally ordered of length n,
with zero element 0 and one element n. Note that for any interval [m,n] in N0,
where m ≤ n, we have [m,n] ∼= [0,m − n] as partially ordered sets; moreover,
any finite totally ordered set X is isomorphic to [0, |X| − 1].

b) Let Y = {x0, . . . , xn} ⊆ X be a finite chain of length l(Y ) := n ∈ N0, where
we may assume that x0 < x1 < · · · < xn; in particular, x0 and xn are its zero
and one elements, respectively, and Y is saturated if and only if xi−1 l xi, for
all i ∈ {1, . . . , n}. The length of a partially ordered set X is defined as l(X) :=
max{l(Y ) ∈ N0;Y ⊆ X finite chain} ∈ N0

.
∪ {∞}. If X is finite, then we have

l(X) ∈ N0, where it of course suffices to consider the maximal chains only; if X
is locally finite, then for x ≤ y we write l(x, y) := l([x, y]) ∈ N0. Moreover, X is
said to be graded of length n ∈ N0, if all its maximal chains have finite length
n; then for x ≤ y the interval [x, y] is graded of length l(x, y) ≤ n.

If X is graded of length n ∈ N0, then there is a well-defined length map
l : X → {0, . . . , n}, for x ∈ X given by l(x) := l(x′, x), where x′ ∈ X is any
minimal element such that x′ ≤ x. Thus, in particular, if x ∈ X is a minimal
element then we have l(x) = 0, for x ≤ y we have l(y)− l(x) = l(x, y), and for
xl y we have l(y) = l(x) + 1. This is seen as follows:

Note first, since any maximal chain has finite length, there is a minimal element
x′ ∈ X as desired, and similarly there is a maximal element y ∈ X such that
x ≤ y. Now, if x′′ ∈ X also is a minimal element such that x′′ ≤ x, then letting
X ′ ⊆ [x′, x] and X ′′ ⊆ [x′′, x] be maximal chains, and choosing a maximal chain
Y ⊆ [x, y], yields maximal chains X ′ ∪ Y and X ′′ ∪ Y in X, hence l(x′, x) =
l(X ′) = l(X ′ ∪ Y )− l(Y ) = l(X ′′ ∪ Y )− l(Y ) = l(X ′′) = l(x′′, x). ]

For example, let X := {∅, {1}, {2}, {2, 3}, {1, 2, 3}}, partially ordered by set-
theoretic inclusion ⊆. By inspection, X is a lattice, having ∅ and {1, 2, 3}
as its zero and one elements, respectively. But while meets are given by set-
theoretic intersections, this is not the case for joins: we have {1}∨{2} = {1, 2, 3}.
Moreover, both ∅ ⊂ {1} ⊂ {1, 2, 3} and ∅ ⊂ {2} ⊂ {2, 3} ⊂ {1, 2, 3} are maximal
chains, of lengths 2 and 3, respectively, thus X is not graded.

(5.3) Example: Subset lattices. Let N be a set. Then the finitary power
set Pfin(N) ⊆ P(N) consisting of the finite subsets of N , and the co-finitary
power set Pco-fin(N) ⊆ P(N) consisting of the subsets of N having finite com-
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plements, are partially ordered by set-theoretic inclusion ⊆. They are locally
finite lattices with meet M ∩M ′ and join M ∪M ′. Moreover, Pfin(N) has ∅
as its zero element, and it has a one element if and only if N is finite, in this
case coinciding with N ; and Pco-fin(N) has N as one element, and it has a zero
element if and only if N is finite, in this case coinciding with ∅.
IfN is finite of cardinality n ∈ N0, that is we have P(N) = Pfin(N) = Pco-fin(N),
all maximal chains are of the form ∅ = M0 ⊂ M1 ⊂ · · · ⊂ Mn = N , where
|Mi| = i for all i ∈ {0, . . . , n}. Hence P(N) is graded of length n, where M ⊆ N
has length |M |. Then P(N) has

(
n
k

)
elements of length k ∈ {0, . . . , n}, that is

k-subsets, and is totally ordered if and only if n ≤ 1. For example, the Hasse
diagram of P({1, 2, 3}) is depicted on the left hand side of Table 9, where the
vertices are labeled as follows: The subsets of {1, 2, 3} are identified with the
indicator functions Maps({1, 2, 3}, {0, 1}), and the latter in turn are identified
with the 2-adic representations of the numbers {0, . . . , 7}.

(5.4) Example: Subspace lattices. Let Fq be the finite field of order q, and
for n ∈ N0 let Pn(q) be the set of Fq-subspaces of Fnq , partially ordered by set-
theoretic inclusion ⊆. Then Pn(q) is a lattice with meet V ∩V ′ and join V +V ′,
for V, V ′ ≤ Fnq , and has {0} and Fnq as its zero and one elements, respectively.
Note that Pn(q) is totally ordered if and only if n ≤ 1. All maximal chains
are of the form ∅ = V0 < V1 < · · · < Vn = Fnq , where dimFq (Vi) = i for
all i ∈ {0, . . . , n}. Hence Pn(q) is graded of length n, where V ≤ Fnq has
length dimFq (V ). Counting sequences of Fq-linearly independent sequences we

conclude that Pn(q) has
(
n
k

)
q

:=
∏k−1
i=0

qn−qi
qk−qi =

∏k−1
i=0

qn−i−1
qk−i−1

=
∏k−1
i=0

qn−i−1
qi+1−1

Fq-subspaces of Fq-dimension k ∈ {0, . . . , n}, that is of length k.

Counting differently, using a fixed embedding Fn−1
q ≤ Fnq , for n ≥ 1, for any k-

dimensional Fq-subspace V ≤ Fnq , for k ∈ {1, . . . , n}, we have either V ≤ Fn−1
q or

dimFq (V ∩ Fn−1
q ) = k− 1. Fixing a (k− 1)-dimensional Fq-subspace V ′ ≤ Fn−1

q

and going over to Fnq /V ′, shows that there are qn−k+1−1
q−1 − qn−k−1

q−1 = qn−k

subspaces V as above such that V ∩ Fn−1
q = V ′. Thus we get the triangle

identity
(
n
k

)
q

=
(
n−1
k

)
q

+ qn−k ·
(
n−1
k−1

)
q
, for all n ∈ N and k ∈ {1, . . . , n}. Since(

n
0

)
q

= 1, for all n ∈ N0, we see that
(
n
k

)
q

can be considered as an element of the

polynomial ring Z[q] in the indeterminate q, called a Gaussian polynomial.

Since for i ∈ N we have qi − 1 = (q − 1) ·
∑i−1
j=0 q

j ∈ Z[q], we may specialize(
n
k

)
q

=
∏k−1
i=0

qn−i−1
qi+1−1 =

∏k−1
i=0

∑n−i−1
j=0 qj∑i
j=0 q

j ∈ Q(q) at q 7→ 1, yielding
(
n
k

)
q
|q 7→1 =∏k−1

i=0
n−i
i+1 =

(
n
k

)
. Thus

(
n
k

)
q

is called the q-analogue of the binomial coefficient(
n
k

)
; since the latter coincides with the number of elements of length k in the

partially ordered set P(N) where N has cardinality n, in this sense P(N) is
called ‘the n-dimensional vector space over the field with one element’.

For example, P2(2) is isomorphic to {∅, {1}, {2}, {3}, {1, 2, 3}}, partially ordered
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Table 9: The cube and the Fano plane.

0 1

2 3

4 5

6 7

[1,0,0] [1,1,0] [0,1,0]

[0,0,1]

x+z=0

x+y+z=0

y=0 x=0

[0,1,1]

z=0

y+z=0

[1,1,1]

x+y=0

tr tr tr

tr
[1,0,1]

tr

tr

tr

by set-theoretic inclusion ⊆, and P3(2) is isomorphic to

{∅, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {1, . . . , 7},
{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {1, 6, 7}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}.

The subset P3(2)\{{0},F3
2} is called the Fano plane or the projective plane

of order 2; it is depicted in Table 9, where 1-dimensional F2-subspaces are given
as vertices, labeled by generating vectors, and 2-dimensional F2-subspaces are
given as lines, labeled by defining linear equations, and where the numbers
{1, . . . , 7} are identified with vectors by going over to 2-adic representations.

(5.5) Example: Divisibility lattices. We consider the basic example from
number theory: the set N, partially ordered by divisibility | . Then N is a locally
finite lattice, with meet gcd(c, d) and join lcm(c, d), for c, d ∈ N; it has 1 as its
zero element, but does not have a one element. Indeed, for n ∈ N, the interval
in N between 1 and n is given as Xn := {d ∈ N; d | n}, that is the set of divisors
of n ∈ N, and the interval between d | n ∈ N is isomorphic to Xn

d
.

All maximal chains in Xn are of the form 1 = d0 | d1 | · · · | dk = n, where
di
di−1

∈ N is a prime, for all i ∈ {1, . . . , k}, and where k ∈ N0 is the length of the

prime factorization of n, counting multiplicities. Hence Xn is graded of length
k, where the length of d ∈ Xn is given by the length of its prime factorization;
note that Xn is totally ordered if and only if n is a prime power.

(5.6) Example: Dominance partial order. a) We consider the set P (n) of
partitions of n ∈ N0, where for λ := [λ1, . . . , λk] ` n with k ∈ {0, . . . , n} parts
we let λi := 0 for all i > k, thus we may write λ = [λ1, . . . , λn]. Then P (n)
is partially ordered by dominance E, where λ = [λ1, . . . , λn] ` n is said to

dominate µ = [µ1, . . . , µn] ` n if
∑k
i=1 µi ≤

∑k
i=1 λi, for all k ∈ {1, . . . , n}:
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It is immediate that reflexivity and transitivity hold. Moreover, from µ ≤ λ
and λ ≤ µ we get

∑k
i=1 µi =

∑k
i=1 λi, for all k ∈ {1, . . . , n}, which successively

entails µi = λi, for all k ∈ {1, . . . , n}. Hence we have antisymmetry as well,
showing that dominance E indeed is a partial order. Actually, P (n) is a lattice
with respect to the partial order E. ]

We describe the associated covering relation: Given µ ` n, we have µ l λ if
and only if λ = [µ1, . . . , µr−1, µr+1, µr+1, . . . , µs−1, µs−1, µs+1, . . . , µn], where
1 ≤ r < s ≤ n such that µs > µs+1 and µr−1 > µr, if r > 1, and such that
either s = r + 1, or s > r + 1 and µr = µs:

If µ l λ, then let r := min{i ∈ {1, . . . , n};µi 6= λi} and s := min{k ∈ {r +

1, . . . , n};
∑k
i=1 µi =

∑k
i=1 λi}, thus 1 ≤ r < s ≤ n. Hence we have µr < λr,

and λr ≤ λr−1 = µr−1 if r > 1, as well as µs > λs ≥ λs+1 ≥ µs+1. This yields
µ C ν := [µ1, . . . , µr−1, µr + 1, µr+1, . . . , µs−1, µs − 1, µs+1, . . . , µn] E λ, hence
ν = λ. It remains to show µr = µs whenever s > r+ 1: Assume to the contrary
that µr > µs, and let r < t := min{i ∈ {r + 1, . . . , s};µi−1 > µi} ≤ s. If t = s
then µC[µ1, . . . , µr−1, µr+1, µr+1, . . . , µs−2, µs−1−1, µs, . . . , µn]Cν = λ, while if
t < s then µC [µ1, . . . , µr, . . . , µt−1, µt+1, µt+1, . . . , µs−1, µs−1, µs+1, . . . , µn]C
ν = λ, a contradiction.

Let conversely λ be as asserted, and let ν = [ν1, . . . , νn] ` n such that µCνEλ.
Hence for i 6∈ {r, . . . , s} we have νi = µi. Thus if s = r+1 we conclude νr = µr+1
and νr+1 = µr+1 − 1, thus ν = λ. If s > r + 1 and hence µr = µs, then there
are r ≤ r′ < s′ ≤ s such that νi = µi for i 6∈ {r′, s′} as well as νr′ = µr′ + 1 and
νs′ = µs′ − 1. Since µr′ = νr′ − 1 ≤ νr′−1 − 1 = µr′−1 − 1 < µr′−1, whenever
r′ > 1, and µs′ = νs′ + 1 ≥ νs′+1 + 1 = µs′+1 + 1 > µs′+1, this implies r′ = r
and s′ = s, hence ν = λ in this case as well. ]

For example, we have λ E [n] and [1n] E λ for all λ ` n and n ∈ N0, and
[n− 1, 1]l [n] for n ≥ 2, and [13]l [2, 1]l [3] and [14]l [2, 12]l [22]l [3, 1]l [4]
and [14] l [2, 13] l [22, 1] l [3, 2] l [4, 1] l [5], and

[16]l [2, 14]l [22, 12]l{[3, 13], [23]}l [3, 2, 1]l{[4, 12], [32]}l [4, 2]l [5, 1]l [6],

where {[3, 13], [23]} and {[4, 12], [32]} are non-comparable.

b) Depicting λ ` n by a Young diagram, the conjugate partition λ′ ` n is
obtained by reflecting the diagram along its main diagonal. Formally, if λ =
[λ1, . . . , λn] ` n then letting λ′i := |{j ∈ N;λj ≥ i}| ∈ N0 for all i ∈ N, we have
λ′1 ≥ · · · ≥ λ′n ≥ 0 and

∑n
i=1 λ

′
i =

∑n
j=1 |{i ∈ {1, . . . , n}; i ≤ λj}| =

∑n
j=1 λj =

n, hence we indeed may let λ′ := [λ′1, . . . , λ
′
n] ` n. Moreover, conjugating twice

yields λ′′ ` n, where λ′′i = |{j ∈ N;λ′j ≥ i}| = |{j ∈ N; |{k ∈ N;λk ≥ j}| ≥ i}| =
|{j ∈ N; {1, . . . , i} ⊆ {k ∈ N;λk ≥ j}| = |{j ∈ N;λi ≥ j}| = |{1, . . . , λi}| = λi,
that is we indeed have λ′′ = λ.

Alternatively, writing λ′ = [na
′
n , . . . , 1a

′
1 ] ` n in terms of multiplicities, we have

a′i = |{j ∈ N;λ′j = i}| = |{j ∈ N; |{k ∈ N;λk ≥ j}| = i}| = |{j ∈ N; {k ∈
N;λk ≥ j} = {1, . . . , i}}| = |{j ∈ N;λi ≥ j, λi+1 < j}| = |{λi+1 + 1, . . . , λi}| =
λi−λi+1, for all i ∈ {1, . . . , n}, providing the fastest way to compute conjugate
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partitions. For example, we have [n]′ = [1n] for all n ∈ N0, and [n − 1, 1]′ =
[2, 1n−2] for n ≥ 2, as well as [22]′ = [22] and [3, 2]′ = [22, 1] and [3, 12]′ = [3, 12].

Then we have µE λ if and only if λ′ E µ′: To show this, it suffices to assume to
the contrary that µ E λ but λ′ 6E µ′. Then for some k ∈ N we have

∑j
i=1 λ

′
i ≤∑j

i=1 µ
′
i for all j ∈ {1, . . . , k − 1}, and

∑k
i=1 λ

′
i >

∑k
i=1 µ

′
i. Hence we have

λ′k > µ′k and
∑n
i=k+1 λ

′
i <

∑n
i=k+1 µ

′
i. Now we have

∑n
i=k+1 λ

′
i =

∑n
i=k+1 |{j ∈

N; i ≤ λj}| =
∑λ′k
j=1(λj − k) and similarly

∑n
i=k+1 µ

′
i =

∑µ′k
j=1(µj − k); note

that λj ≥ k for j ∈ {1, . . . , λ′k}. This implies
∑µ′k
j=1(µj − k) >

∑λ′k
j=1(λj − k) ≥∑µ′k

j=1(λj − k), thus µ 6E λ, a contradiction.

(5.7) Stratification of the nilpotent variety. Recall that C is equipped with
the usual metric topology, that subsets of topological spaces are equipped with
induced topologies, and that direct products of topological spaces are equipped
with product topologies. We consider the matrix algebra Cn×n as a topological
space. Then matrix addition and multiplication are continuous maps Cn×n ×
Cn×n → Cn×n, as well as is scalar multiplication C× Cn×n → Cn×n.

Recall that, for M ∈ Cn×n, the rank rk(M) ∈ N0 equals the smallest integer
k ∈ N0 such that all (i× i)-minors of M vanish, for all i ∈ {k + 1, . . . , n}. This
shows that R≤k := {M ∈ Cn×n; rk(M) ≤ k} ⊆ Cn×n is a closed subset, for all
k ∈ N0. In particular, G := GLn(C) = Cn×n \ R≤n−1 = {A ∈ Cn×n; det(A) 6=
0} ⊆ Cn×n is an open subset, and since group multiplication G × G → G and
inversion G → G : A 7→ A−1 = det(A)−1 ·adj(A) are continuous maps, G becomes
a topological group. Finally, G acts continuously on Cn×n by conjugation G ×
Cn×n → Cn×n : [A,M ]→ AMA−1.

Let N := {M ∈ Cn×n;Mn = 0} be the nilpotent variety; hence N ⊆ Cn×n
is a closed subset. The group G acts continuously on N by conjugation, whose
orbits are parametrised by the Jordan normal forms of matrices with respect to
the eigenvalue 0, that is block diagonal matrices

⊕k
i=1 Jλi ∈ N , where Jλi ∈

Cλi×λi is a Jordan block of size λi ∈ N. Permuting the Jordan blocks such that
λ1 ≥ · · · ≥ λk, from

∑k
i=1 λi = n we infer that λ := [λ1, . . . , λk] is a partition of

n with k ∈ {0, . . . , n} parts, hence yielding the stratification N =
∐
λ`nNλ,

where Nλ ⊆ N is the set of nilpotent matrices having Jordan normal form
parametrised by λ ` n.

Since G acts continuously on N we conclude that, for any λ ` n, the closure
N λ ⊆ N of the G-orbit Nλ is G-invariant as well, thus is a union of G-orbits.
Hence we get an induced closure relation on the set P (n) of all partitions of
n, where for µ ` n we let µ � λ if Nµ ⊆ N λ. Hence � is reflexive, and since
Nµ ⊆ N λ implies N µ ⊆ N λ, it is transitive as well. Antisymmetry, saying
that Nµ ⊆ N λ and Nλ ⊆ N µ already imply Nλ = Nµ, is ensured as follows:
By assumption both Nλ and Nµ are dense in N λ = N µ, hence the topological
property that any G-orbit is open in its closure entails that Nλ ∩Nµ 6= ∅.
Actually, we are going to show that the closure relation � coincides with the
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dominance partial order E on P (n), by only using reflexivity and transitivity of
�, so that this will also imply that � indeed is a partial order:

For a Jordan block Ji ∈ Ci×i, for some i ∈ N, we have rk(Jki ) = i − k for
all k ∈ {0, . . . , i}. Thus for M ∈ Nλ, where λ = [nan , . . . , 1a1 ] ` n, we have
rk(Mk) =

∑n
i=k+1(i − k)ai =

∑n
i=k+1

∑n
j=i aj =

∑n
i=k+1

∑n
j=i(λ

′
i − λ′i+1) =∑n

i=k+1 λ
′
i, for all k ∈ {0, . . . , n}, implying n− rk(Mk) =

∑k
i=1 λ

′
i. Hence Nλ is

uniquely determined by the rank sequence [n −
∑k
i=1 λ

′
i ∈ N0; k ∈ {0, . . . , n}];

note that we have rk(M0) = n and rk(Mn) = 0 anyway.

Moreover, for µ ` n and N ∈ Nµ we have µ E λ if and only if λ′ E µ′, which
holds if and only if rk(Mk) ≥ rk(Nk), for all k ∈ {0, . . . , n}. Thus we have

N ∈ NEλ :=
∐
µEλNµ ⊆ N if and only if rk(Nk) ≤ n −

∑k
i=1 λ

′
i, that is

Nk ∈ Rn−∑k
i=1 λ

′
i
, for all k ∈ {0, . . . , n}. This implies that NEλ ⊆ N is a closed

subset, containing Nλ, thus we have N λ ⊆ NEλ.

For the converse NEλ ⊆ N λ, we have to show that µ E λ implies Nµ ⊆ N λ.
In order to do so, by the transitivity of the closure relation we may assume
that µ := [λ1, . . . , λr−1, λr−1, λr+1, . . . , λs−1, λs+1, λs+1, . . . , λn]lλ, for some
1 ≤ r < s ≤ n. Letting a := λr and b := λs, hence a > b ≥ 0, we have
Ja ⊕ Jb ⊕ N ∈ Nλ and Ja−1 ⊕ Jb+1 ⊕ N ∈ Nµ, where N ∈ C(n−a−b)×(n−a−b).
Hence we may assume that λ = [a, b] ` n and µ = [a− 1, b+ 1] ` n, and let

Mε =



.
ε .

1 .
1 .

. . .
. . .

1 .
1 .

1 .
. . .

. . .

1 .


∈ Cn×n,

where the upper left and lower right hand corners have size a × a and b × b,
respectively. We show that Mε ∈ Nλ if ε 6= 0, while limε→0Mε = M0 ∈ Nµ:

If ε 6= 0 then, since a > b, the unit vector e1 ∈ Cn×1 has minimum polynomial
Xa ∈ C[X] with respect to Mε. Moreover, the unit vector ea+1 ∈ Cn×1 has
minimum polynomial Xb ∈ C[X]; here for b = 0 we let ea+1 := 0 ∈ Cn×1. From
〈ea+1〉Mε = 〈ea+1, . . . , en〉C and 〈e1〉Mε ∩ 〈ea+1, . . . , en〉C = {0} we conclude
Cn×1 = 〈e1〉Mε ⊕ 〈ea+1〉Mε , hence Mε has Jordan normal form Ja ⊕ Jb.
If ε = 0 then e2 ∈ Cn×1 and e1 ∈ Cn×1 have minimum polynomials Xa−1 ∈
C[X] and Xb+1 ∈ C[X], respectively, with respect to M0. From 〈e2〉M0

=
〈e2, . . . , ea〉C and 〈e1〉M0 = 〈e1, ea+1, . . . , en〉C we conclude Cn×1 = 〈e2〉M0 ⊕
〈e1〉M0 , hence M0 has Jordan normal form Ja−1 ⊕ Jb+1. ]
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6 Modular lattices

(6.1) Modular lattices. The exposition is taken from on [19]. Let X be a
lattice, having a zero element 0 ∈ X, which is locally chain-finite, that is
all chains in any interval [0, x] ⊆ X are finite; in particular, in any interval
[x, y] ⊆ X there are saturated chains.

Then X is called modular if for all x, y, z ∈ X such that z ≤ x we have
the modular law x ∧ (y ∨ z) = (x ∧ y) ∨ z. Then, for x, y ∈ X the map
[x ∧ y, x] → [y, x ∨ y] : z 7→ z ∨ y is an isomorphism of lattices, with inverse
[y, x∨ y]→ [x∧ y, x] : z 7→ z ∧ x: Indeed, for z ∈ [x∧ y, x] we have (z ∨ y)∧ x =
z ∨ (y ∧ x) = z, and for z ∈ [y, x ∨ y] we have (z ∧ x) ∨ y = z ∧ (x ∨ y) = z.

An element z ∈ X \ {0} is called join-irreducible or local, if whenever there
are x, y ∈ X such that x ∨ y = z then we already have x = z or y = z. Hence
z ∈ X \ {0} is join-irreducible if and only if |{y ∈ X; yl z}| = 1. Let L ⊆ X be
the set of join-irreducible elements of X; note that L contains all atoms of X.

Similarly, if 1 ∈ X is a one element, an element z ∈ X \ {1} is called meet-
irreducible or co-local, if whenever there are x, y ∈ X such that x ∧ y = z
then we already have x = z or y = z. Hence z ∈ X \ {1} is meet-irreducible
if and only if |{y ∈ X; y l z}| = 1. Let L∗ ⊆ X be the set of meet-irreducible
elements of X; note that L∗ contains all co-atoms of X.

(6.2) Length and rank. a) Let X be a modular lattice. Given an interval
[x, y] ⊆ X, all saturated chains in [x, y] have one and the same length; in
particular, if X has a one element, then X is graded:

Let x = x0 l x1 l · · ·l xs−1 l xs = y and x = x′0 l x′1 l · · ·l x′t−1 l x′t = y be
saturated chains, where s, t ∈ N0. Since s = 0 if and only if x = y if and only if
t = 0, and s = 1 if and only if x l y if and only if t = 1, we may assume that
s ≥ t ≥ 2, and proceed by induction on s. If xs−1 = x′t−1 then we have s = t by
induction. If xs−1 6= x′t−1 then we have xs−1∨x′t−1 = y, thus for z := xs−1∧x′t−1

we get [z, xs−1] ∼= [x′t−1, y] and [z, x′t−1] ∼= [xs−1, y], hence zlxs−1 and zlx′t−1.
Now extending a saturated chain x = x′′0 < x′′1 < · · · < x′′r−1 < x′′r = z to xs−1

and x′t−1, respectively, by induction we get s− 1 = r + 1 = t− 1. ]

Hence there is a well-defined Jordan-Dedekind length map l : X → N0 de-
fined by l(x) := l(0, x) for x ∈ X. As in the case of graded posets, we have
l(0) = 0, and l(y) = l(x) + 1 whenever xly ∈ X; in particular we have l(x) = 0
if and only if x = 0. Moreover, for x ≤ y ∈ X we have l(x, y) = l(y)− l(x), and
for x, y ∈ X we have the modular equality l(x ∨ y)− l(y) = l(x)− l(x ∧ y).

b) Each element x ∈ X is the join of finitely many join-irreducible elements.

For these representations of x we have the following exchange property: Let
x =

∨r
i=1 xi =

∨s
j=1 x

′
j , where r, s ∈ N0 and xi, x

′
j ∈ L. Then for any k ∈

{1, . . . , r} there is j = jk ∈ {1, . . . , s} such that x = x′j ∨
∨
i6=k xi:

Let y :=
∨
i6=k xi ∈ X, where we may assume that y < x. Hence we have [y, x] =
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[y, y∨xk] ∼= [y∧xk, xk]. Since xk ∈ L[y∧xk,xk], we infer that x = y∨xk ∈ L[y,x].
Now, for all j ∈ {1, . . . , s} we have y ≤ y∨x′j ≤ x, hence from x =

∨s
j=1(y∨x′j)

we infer that there is j ∈ {1, . . . , s} such that x = y ∨ x′j . ]

Hence we conclude that, if x =
∨r
i=1 xi ∈ X is irredundant, where xi ∈ L for all

i ∈ {1, . . . , r}, then the number r ∈ N0 is independent of the particular choice
of the irredundant representation, giving rise to the rank map r : X → N0:

Let x =
∨r
i=1 xi =

∨s
j=1 x

′
j be irredundant, where r, s ∈ N0 and xi, x

′
j ∈ L.

Then iterating the above exchange procedure yields x =
∨r
i=1 x

′
ji

, hence the

irredundancy of
∨s
j=1 x

′
j entails {j1, . . . , jr} = {1, . . . , s}, hence s ≤ r. Similarly

we conclude r ≤ s, hence equality holds. ]

Note that since 0 < x1 < x1 ∨ x2 < · · · <
∨r
i=1 xi = x we have r(x) = r ≤ l(x),

and that r(x) = 0 if and only if x = 0.

(6.3) Complemented lattices. Let X be a modular lattice having a one
element 1. Then X is called complemented, if for all x ∈ X there is a com-
plement y ∈ X, that is we have x ∨ y = 1 and x ∧ y = 0. Note that hence X
is complemented if and only if the dual of X is.

a) The following assertions are equivalent: i) The lattice X is complemented.
ii) The one element 1 ∈ X is a join of atoms, that is X is semi-simple. iii)
Any element x ∈ X is a join of atoms. iv) The set L ⊆ X of join-irreducible
elements consists of (all) atoms.

This is seen as follows: In order to show i)⇒ii), assume that x :=
∨

0lz z 6= 1,
and let 0 6= y ∈ X be a complement of x. Hence there is an atom 0 l z ∈ X
such that z ≤ y, thus x ∧ y 6= 0, a contradiction.

Conversely, to show ii)⇒i), let x ∈ X and let y ∈ X be maximal such that
x ∧ y = 0. Assume that x ∨ y 6= 1, thus there is an atom 0 l z ∈ X such that
z 6≤ (x ∨ y), hence z ∧ (x ∨ y) = 0. By the choice of y we have x ∧ (y ∨ z) 6= 0,
and thus there is an atom 0lw ∈ X such that w ≤ x∧ (y ∨ z). From x∧ y = 0
we infer that w 6≤ y, hence since [y, y ∨ z] ∼= [y ∧ z, z] = [0, z] we conclude that
y ∨ w = y ∨ z, entailing x ∨ y ∨ z = x ∨ y ∨ w = x ∨ y, a contradiction.

Next, as for the implication i)⇒iii), in view of the implication i)⇒ii) applied
to the interval [0, x] ⊆ X, it suffices to show that all intervals [x, y] ⊆ X are
complemented: Indeed, let x ≤ z ≤ y, let v ∈ X be a complement of z, and let
w := (x ∨ v) ∧ y = x ∨ (v ∧ y) ∈ X; hence we have x ≤ w ≤ y. This entails
z ∧w = z ∧ (v ∨ x) = (z ∧ v) ∨ x = x and z ∨w = z ∨ (v ∧ y) = (z ∨ v) ∧ y = y,
showing that w is a complement of z in [x, y].

The implication iii)⇒ii) is trivial. The implication iii)⇒iv) follows from observ-
ing that only the atoms are join-irreducible. The implication iv)⇒iii) follows
from observing that any element of X is a join of join-irreducible elements. ]

b) We give another characterisation, in terms of the length and rank functions:
The lattice X is complemented if and only if r(1) = l(1) ∈ N0, which holds if



II Posets 36

and only if the rank and length functions of X coincide:

The second assertion follows from the first one by recalling that if X is com-
plemented then all intervals of X are as well. To show the first assertion, we
proceed by induction on r := r(1) ∈ N0, the cases r = 0 and r = 1 being
trivial, let r ≥ 2. Let 1 =

∨r
i=1 xi ∈ X be irredundant, where xi ∈ L for all

i ∈ {1, . . . , r}, and let x :=
∨
i 6=j xi ∈ X, for some j ∈ {1, . . . , r}.

Now, if X is complemented, then the interval [0, x] ⊆ X is as well, hence by
induction we have l(x) = r(x) = r − 1; since 0 l xj ∈ X is an atom we have
x∧xj = 0, and hence l(xj) = 1 implies r = l(x) + l(xj) = l(x∨xj) + l(x∧xj) =
l(1) + l(0) = l(1). If conversely r = l(1), then we have r − 1 = r(x) ≤ l(x) <
l(1) = r, thus r(x) = l(x) = r−1, and hence by induction the interval [0, x] ⊆ X
is complemented, thus all the xi ∈ X, for i 6= j, are atoms; since j ∈ {1, . . . , r}
was arbitrary and r ≥ 2, we conclude that 1 ∈ X is a join of atoms. ]

(6.4) The center. a) Let X be a modular lattice. Then the center Z(X) of
X is defined as the set of all x ∈ X such that there is x′ ∈ X such that X can be
written is an inner direct product X ∼= [0, x]× [0, x′], that is the isomorphism
is induced by the natural embeddings of the intervals [0, x] and [0, x′] into X.

Then an element z ∈ X decomposes into z = z′ ∨ z′′ for uniquely defined
elements 0 ≤ z′ ≤ x and 0 ≤ z′′ ≤ x′. In particular, for w ∈ L we conclude
that either w = w′ ≤ x and w′′ = 0, or w = w′′ ≤ x′ and w′ = 0. Hence we
have z =

∨
{w ∈ L;w ≤ z} =

∨
{w ∈ L;w ≤ z ∧ x} ∨

∨
{w ∈ L;w ≤ z ∧ x′} =

(z ∧ x) ∨ (z ∧ x′), thus z′ = z ∧ x and z′′ = z ∧ x′. In other words, the inner
decomposition is given by the isomorphism X → [0, x]×[0, x′] : z 7→ [z∧x, z∧x′].
In particular, given x ∈ Z(X), then x′ ∈ X as above is uniquely defined: If
similarly X ∼= [0, x] × [0, x′′] is an inner decomposition for some x′′ ∈ X, then
since x′ ∧ x = 0 = x′′ ∧ x we have x′′ = x′ ∧ x′′ = x′.

We have Z(X) 6= ∅ if and only if X has a one element 1. In this case, we
have {0, 1} ⊆ Z(X); and if Z(X) = {0, 1}, then X is called indecomposable,
otherwise X is called decomposable.

b) Let X have a one element 1. Then Z(X) gives rise to a canonical decom-
position of X. In order to derive this, we show next that Z(X) is closed with
respect to taking meets, that is if x, y ∈ Z(X) then we also have x∧ y ∈ Z(X):

Let [0, x] × [0, x′] ∼= X ∼= [0, y] × [0, y′], where x′, y′ ∈ X, and let x11 := x ∧ y,
x12 := x∧ y′, x21 := x′ ∧ y and x22 := x′ ∧ y′. We consider the order-preserving
maps σ : X̂ :=

∏
i,j∈{1,2}[0, xij ] → X : [zij ; i, j ∈ {1, 2}] 7→

∨
i,j∈{1,2} zij and

τ : X → X̂ : z 7→ [z ∧ xij ; i, j ∈ {1, 2}].
For z ∈ X we have

∨
i,j∈{1,2}(z ∧ xij) = ((z ∧ x) ∧ y) ∨ ((z ∧ x) ∧ y′) ∨ ((z ∧

x′) ∧ y) ∨ ((z ∧ x′) ∧ y′) = (z ∧ x) ∨ (z ∧ x′) = z, hence στ = idX . Conversely,

for [zij ; i, j ∈ {1, 2}] ∈ X̂ we have (z12 ∨ z21 ∨ z22) ∧ x11 ≤ (x12 ∨ x21 ∨ x22) ∧
x11 = (x12 ∨ x′) ∧ (x ∧ y) = (x12 ∨ (x′ ∧ x)) ∧ y = (x ∧ y′) ∧ y = 0, implying
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(
∨
i,j∈{1,2} zij) ∧ x11 = z11 ∨ ((z12 ∨ z21 ∨ z22) ∧ x11) = z11; similarly we argue

for x12, x21 and x22. Hence we have τσ = idX̂ .

Thus σ and τ are a pair of mutually inverse isomorphisms of lattices, showing
that we have a decomposition X ∼= [0, x∧ y]× [0, x∧ y′]× [0, x′ ∧ y]× [0, x′ ∧ y],
in particular we have x ∧ y = x11 ∈ Z(X). ]

Now, if {z1, . . . , zd}, for some d ∈ N0, are the minimal elements of Z(X) \ {0},
then X ∼=

∏d
i=1[0, zi] is the unique decomposition into non-trivial indecompos-

able intervals:

By the above, for y ≤ x ∈ Z(X) we have the inner decomposition [0, x] ∼=
[0, y] × [0, x ∧ y′], hence y ∈ Z([0, x]) ⊆ Z(X). Thus for x ∈ Z(X) \ {0} the
interval [0, x] is indecomposable if and only if x is minimal in Z(X)\{0}. Since
for x ∈ Z(X) we have l(1) = l(x) + l(x′), by induction on l(x) we conclude

that X ∼=
∏d
i=1[0, zi], for some d ∈ N0 and certain minimal zi ∈ Z(X) \ {0}.

Moreover, for any x ∈ X we have x =
∨d
i=1(x ∧ zi), hence if x ∈ Z(X) \ {0} is

minimal then we have x = x∧ zi = zi for a unique i ∈ {1, . . . , d}, implying that
{z1, . . . , zd} indeed encompasses all minimal elements of Z(X) \ {0}. ]

In particular we conclude that Z(X) is a finite complemented lattice: For any

x ∈ Z(X) we have [0, x] ∼=
∏d
i=1[0, x ∧ zi] ∼=

∏
i;zi≤x[0, zi], thus x =

∨
{zi; zi ≤

x}, showing that x is the join of certain of the finitely many atoms in Z(X). ]

(6.5) Radicals. a) Let X be a modular lattice. For 0 6= x ∈ X the element
x∗ :=

∧
{y ∈ X; y l x} ∈ X is called the radical of x; we let 0∗ := 0. In

particular, we have L = {x ∈ X;x∗ l x}. We collect a few properties:

i) For x ∈ X, the radical x∗ is small in x, that is for y ≤ x ∈ X such that
y ∨ x∗ = x we already have y = x: Indeed, assuming that y < x, there is
y ≤ z l x, hence y ∨ x∗ ≤ z, a contradiction.

ii) We have x∗ =
∧
{y ∈ X; [y, x] complemented}: We may assume that x 6= 0.

From x∗ =
∧
{z ∈ X; z l x}, considering the dual of the interval [x∗, x], we

infer that [x∗, x] is complemented, hence x∗ ⊆
∧
{y ∈ X; [y, x] complemented}.

Conversely, if for y ≤ x ∈ X the interval [y, x] is complemented, then again
considering duals, we have x∗ =

∧
{z ∈ X; z l x} ≤

∧
{z ∈ X; y ≤ z l x} = y.

iii) We have r(x) = r[x∗,x](x): Let x =
∨r
i=1 xi be irredundant, where r =

r(x) ∈ N0 and xi ∈ L. Hence xi 6≤ x∗, and since [x∗, xi ∨ x∗] ∼= [xi ∧ x∗, xi]
is complemented, we have x∗ l xi ∨ x∗, that is xi ∨ x∗ ∈ L[x∗,x]. Assume that
x =

∨
i∈I(xi∨x∗), for some I ⊂ {1, . . . , r}, then we also have x =

∨
i∈I xi, a con-

tradiction. Thus x =
∨r
i=1(xi∨x∗) is irredundant in [x∗, x], hence r[x∗,x](x) = r.

iv) Finally, for x, y ∈ X we have (x ∨ y)∗ = x∗ ∨ y∗: Let x =
∨r
i=1 xi and

y =
∨s
j=1 yj be irredundant, where r, s ∈ N0 and xi, yj ∈ L. Since [x∗ ∨ y∗, xi ∨

(x∗ ∨ y∗)] ∼= [xi ∧ (x∗ ∨ y∗), xi] is complemented, we have either xi ≤ x∗ ∨ y∗ or
x∗ ∨ y∗ l xi ∨ (x∗ ∨ y∗). A similar statement holds for the yj , and hence x ∨ y
is a join of atoms of [x∗ ∨ y∗, x ∨ y]. Thus we have (x ∨ y)∗ ≤ x∗ ∨ y∗.
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Conversely, assume that x∗ 6≤ (x ∨ y)∗. Then [(x ∨ y)∗ ∧ x, x] ∼= [(x ∨ y)∗, x ∨
(x ∨ y)∗] is not complemented. Since (x ∨ y)∗ ≤ x ∨ (x ∨ y)∗ ≤ x ∨ y, this a
contradiction. Hence we have x∗ ≤ (x ∨ y)∗, and similarly y∗ ≤ (x ∨ y)∗. ]

b) The above considerations lead to the following subsets of X: For r ∈ N0

let Xr := {x ∈ X; r(x) = r} = {x ∈ X; r[x∗,x](x) = r} ⊆ X and Lr := {x ∈
Xr; [x∗, x] indecomposable} ⊆ Xr. Hence in particular we have X0 = L0 = {0}
and X1 = L1 = L.

7 Benson–Conway Theorem

We have now presented the general theory of modular lattices needed to proceed
towards the main result of this section, given in (7.3). We need a few more
specially tailored notions, inspired by [14]:

(7.1) Dotted-lines. a) Let X be a modular lattice. For an element z ∈ X
we have z ∈ X2, that is r(z) = 2, if and only if there are x1, x2 ∈ L such that
x1 6≤ x2 6≤ x1 and z = x1 ∨ x2.

In this case, we have l[z∗,z](z) = r[z∗,z](z) = 2. Hence the elements of [z∗, z] are
its zero element z∗, its one element z, and its atoms z∗lzilz, for i ∈ Iz, where
Iz is a suitable index set. In particular, since z∗ < z is small, for zi := xi∨z∗ ∈ X
we have z∗ l zi l z and z1 6= z2, hence |Iz| ≥ 2.

If |Iz| = 2, then we have [z∗, z] ∼= [z∗, z1] × [z∗, z2], where z1 6= z∗ 6= z2,
hence [z∗, z] is decomposable. Conversely, let [z∗, z] ∼= [z∗, z

′] × [z∗, z
′′], where

z′ 6= z∗ 6= z′′. Since l[z∗,z](z) = 2, we have l[z∗,z](z
′) = l[z∗,z](z

′′) = 1, hence
both z∗lz′lz and z∗lz′′lz, and thus |Iz| = 2. Hence we conclude that [z∗, z]
is indecomposable if and only if |Iz| ≥ 3, and we have L2 = {z ∈ X2; |Iz| ≥ 3}.
Now, given z ∈ L2, a set D = {xi ∈ L; i ∈ Iz}, such that xi ∨ z∗ = zi ∈ X for
all i ∈ Iz, is called a dotted-line for z; in particular, the xi ∈ D are pairwise
distinct and thus |D| = |Iz| ≥ 3. Actually, dotted-lines always exist: Since each
zi is the join of the join-irreducible elements it contains, and since z∗ l zi, we
may choose xi ∈ L such that xi ≤ zi and xi 6≤ z∗, entailing xi ∨ z∗ = zi.

b) We collect a few properties of dotted-lines: Let D = {xi ∈ L; i ∈ Iz} be a
dotted-line for z ∈ L2. Then we have xi 6≤ xj ; moreover, we have xi ∨ xj = z,
for all i 6= j ∈ Iz, and D ⊆ L is maximal having this property. In particular,∨
D = z is well-defined, even if D is infinite.

For all i ∈ Iz let zi = xi ∨ z∗ l z. As zi 6≤ zj , for all i 6= j ∈ Iz, we also have
xi 6≤ xj . Moreover, since z = zi ∨ zj = xi ∨ xj ∨ z∗ we have xi ∨ xj = z.

Assume that there is x0 ∈ L \ D such that x0 ∨ xi = z for all i ∈ Iz, and let
z0 := x0 ∨ z∗. Assuming z0 = z∗ yields z = x0 ∨xi = xi ∨ z∗ = xi, for all i ∈ Iz,
a contradiction; and assuming z0 = z yields z = x0 ∨ z∗ = x0, a contradiction.
Hence we conclude that z∗lz0lz. Thus there is i ∈ Iz such that z0 = zi, hence
x0∨ z∗ = xi∨ z∗. This entails z = x0∨xi∨ z∗ = x0∨ z∗ = x0, a contradiction. ]
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c) We proceed to give a characterisation of dotted-lines, which actually is the
original definition given in [14]: Let D = {xi ∈ L; i ∈ I} ⊆ L, where I is an
index set such that |I| ≥ 3, the xi ∈ L are pairwise distinct such that xi∨xj ∈ X
is independent of the choice of i 6= j ∈ I, and D ⊆ L is maximal having this
property. Then z :=

∨
D ∈ L2 ⊆ X is well-defined and D is a dotted-line for z:

Assume that we have xi < xj , for some i 6= j ∈ I, and let k ∈ I such that
i 6= k 6= j. Hence we have xi ∨ xk = xi ∨ xj = xj ∈ L, implying that xi = xj
or xk = xj , a contradiction. Thus we have xi 6≤ xj for all i 6= j ∈ I. Hence for
z := xi ∨ xj =

∨
D we have r(z) = l[z∗,z](z) = 2, that is z ∈ X2.

Let zi := xi∨z∗ for all i ∈ I. Assuming zi = z∗ yields z = xi∨xj = xj∨z∗ = xj ,
for all i 6= j ∈ I, a contradiction; and assuming zi = z yields z = xi ∨ z∗ = xi,
a contradiction. Hence we conclude that z∗ l zi l z. Assume that zi = zj for
some i 6= j ∈ I, then we have z = xi ∨ xj ∨ z∗ = zi ∨ zj = zi, a contradiction.
Thus we have I ⊆ Iz, and hence z ∈ L2.

Assume that there is k ∈ Iz \ I, and choose xk ∈ L such that zk = xk ∨ z∗.
Hence for all i ∈ I we have xk 6= xi, and xi ∨ xk ∨ z∗ = zi ∨ zk = z and thus
xi ∨ xk = z, contradicting the maximality property. Hence we have I = Iz. ]

(7.2) Completeness. a) Let X be a modular lattice, and let X ⊆ L be an
ideal. Then X is called complete, if X has an upper bound in X, and for each
dotted-line D ⊆ L, for any z ∈ L2, fulfilling |D∩X | ≥ 2 we already have D ⊆ X .

Let X(L) be the partially ordered set of complete ideals of L, where the partial
order is given by set-theoretic inclusion. Hence X(L) is closed under taking set-
theoretic intersections, and thus becomes a lattice by letting X ∧X ′ := X ∩X ′
and X ∨ X ′ :=

∧
{Y ∈ X(L);X ∪ X ′ ⊆ Y} ∈ X(L). Moreover, by the local

chain-finiteness of X, an ideal of L having a bound in X has only finite chains,
hence X(L) is locally chain-finite as well.

b) For each z ∈ L2 choose a dotted-line Dz ⊆ L for z. Then an ideal X ⊆ L is
called weakly complete with respect to {Dz; z ∈ L2}, if X has an upper bound
in X, and for each z ∈ L2 such that |Dz ∩ X | ≥ 2 we already have Dz ⊆ X .

The notion of weak completeness is due to the observation that in general there
is more than one dotted-line for a given element of L2; typically there are many,
for example in the applications in [18]. We will show in (7.4) that in order
to decide whether a given ideal of L is complete, it suffices to check for weak
completeness, reducing considerably the necessary amount of checking.

c) If X is finite, then the complete ideals of L are found as follows: The prin-
cipal ideals of L, being in bijection with L, are complete. Taking these as
initialisation, we iterate the following procedure: Picking in turn any of the
complete ideals already found, we add a further ideal generator from L, and
then determine the smallest complete overideal of L, by iteratively completing
with respect to dotted-lines and the ideal property.

For example, let X be the modular lattice whose Hasse diagram is depicted in
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Table 10: A strange modular lattice.

y

1

0

c d e f

hg
z

ba

x

Table 10: We have L = {a, b, c, d, e, f, g, h} and L2 = {x, y, z} and X2\L2 = {1},
where |Ix| = 3 = |Iy| and |Iz| = 4. The unique dotted-line for z is {c, d, e, f},
while x has three dotted-lines {{a, b, d}, {a, b, e}, {a, b, f}}, and y also has three
dotted-lines {{c, g, h}, {d, g, h}, {e, g, h}}. Apart from the principal ideals of L,
there are precisely the complete ideals

∅, 〈≤ c, d, e, f〉, 〈≤ a, b, d, e, f〉, 〈≤ c, d, e, g, h〉, 〈≤ a, b, g, h〉,

where 〈≤ S〉 denotes the ideal generated by S ⊆ L; here, it suffices to consider
the ideals generated by two elements.

(7.3) Theorem: Benson–Conway [1985]. Let X be a modular lattice. Then
the following maps are a pair of mutually inverse isomorphisms of lattices:

β : X → X(L) : x 7→ {y ∈ L; y ≤ x} and β−1 : X(L)→ X : X 7→
∨
X .

Proof. The maps β and β−1 are well-defined and order-preserving, and we have
β−1 ◦ β = idX . Hence we have to show that β ◦ β−1 = idX(L) also holds:

Assume to the contrary that there are X ∈ X(L) and y ∈ L \ X such that
y ≤

∨
X . Let n := min{|Y| ∈ N;Y ⊆ X finite, y ≤

∨
Y}; note that n ∈ N is

well-defined. Assume that n = 1, then we have y ≤ x for some x ∈ X , and since
X ⊆ L is an ideal we infer y ∈ X , a contradiction. Hence we have n ≥ 2, and
we may choose y such that n is minimal. Let Y = {y1, . . . , yn} ⊆ X , where we
may choose Y such that y ∨ y1 ∈ X is minimal.

By modularity we have y ∨ y1 = (y ∨ y1)∧
∨n
i=1 yi = (y ∨ y1)∧ (y1 ∨

∨n
i=2 yi) =

y1∨
(
(y∨y1)∧

∨n
i=2 yi

)
∈ X. Let z := (y∨y1)∧

∨n
i=2 yi ∈ X, and let z1, . . . , zr ∈ L

such that z =
∨r
j=1 zj ∈ X, for some r ∈ N0. Assume that zj 6∈ X for some

j ∈ {1, . . . , r}, then we have zj ≤ y ∨ y1 ≤
∨
X and zj ≤

∨n
i=2 yi, contradicting

the minimality of n. Hence we have zj ∈ X for all j ∈ {1, . . . , r}.
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By definition we have y ∨ y1 = y1 ∨ z = y1 ∨
∨r
j=1 zj , hence since y 6≤ y1 the

exchange property entails y∨y1 = y1∨zj , for some j ∈ {1, . . . , r}. In particular
we have y ≤ y1 ∨ zj , and thus n = 2 and y1 6= zj . Moreover, since zj ≤ y ∨ y1

we have y ∨ zj ≤ y ∨ y1, and by the minimality of y ∨ y1 we conclude that
y ∨ zj = y ∨ y1. Hence, by the maximality property of dotted-lines, there is a
dotted-line D such that {y, y1, zj} ⊆ D. Since both y1, zj ∈ X , completeness
implies that y ∈ X , the final contradiction. ]

(7.4) Theorem. Let X be a modular lattice, and for each z ∈ L2 we pick a
dotted-line Dz ⊆ L for z. Then an ideal X ⊆ L is complete if and only if it is
weakly complete with respect to {Dz; z ∈ L2}.

Proof. We only have to show that a weakly complete ideal X ⊆ L with respect
to {Dz; z ∈ L2} is already complete with respect to all dotted-lines D ⊆ L.
To do so, we proceed by induction on l(

∨
X ). If l(

∨
X ) ≤ 1, then |X | ≤ 1,

thus X is complete. Hence let l(
∨
X ) ≥ 2, and let x1, x2 ∈ X ∩ D such that

z := x1 ∨ x2 ∈ L2. We show that for all x ∈ L such that x ≤ z we have x ∈ X :

For i ∈ {1, 2} let zi := xi ∨ z∗. Assuming zi ≤ z∗ yields z = x1 ∨ x2 ∨ z∗ =
z1 ∨ z2 = x3−i ∨ z∗ = x3−i, a contradiction; and assuming zi = z yields z =
xi ∨ z∗ = xi, a contradiction. Hence we have z∗l zil z. We consider the ideals
Z∗ := {y ∈ X ; y ≤ z∗} and Zi := {y ∈ X ; y ≤ zi}. Since X is an ideal and
z∗ = (x1)∗∨ (x2)∗, we have

∨
Z∗ = z∗, and hence we have

∨
Zi = zilz ≤

∨
X .

For any distinguished dotted-line Dw ⊆ L, for w ∈ L2, such that |Dw ∩ Zi| ≥ 2
we have w =

∨
Dw ≤ zi, and by weak completeness we have Dw ⊆ X , hence we

conclude that Dw ⊆ Zi. Thus Zi is weakly complete, and since l(
∨
Zi) < l(

∨
X )

it is complete by induction.

Let yi ∈ Dz such that zi = yi∨z∗. Since the Zi are complete such that
∨
Zi = zi,

by (7.3) we have yi ∈ Zi ⊆ X , and as X is weakly complete we have Dz ⊆ X .
Now we consider k ∈ Iz such that x ≤ zk l z, and let Zk := {y ∈ X ; y ≤ zk}.
Since we have Dz ⊆ X and

∨
Z∗ = z∗, we obtain

∨
Zk = zk l z ≤

∨
X .

Moreover, Zk is weakly complete, and since l(
∨
Zk) < l(

∨
X ) it is complete by

induction. As
∨
Zk = zk, by (7.3) we finally have x ∈ Zk ⊆ X . ]

(7.5) Distributive lattices. a) Let X be a locally chain-finite lattice, having
a zero element 0 ∈ X. Then X is called distributive if the distributive law
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) holds for all x, y, z ∈ X. In this case any interval
in X is distributive as well. Note that for z ≤ x from the distributive law we
get x ∧ (y ∨ z) = (x ∧ y) ∨ z, that is the modular law is fulfilled automatically,
hence X is modular.

Here is the natural example for a lattice fulfilling the distributive law: Let N be
a set. Then P(N), partially ordered by set-theoretic inclusion ⊆ and having the
zero element ∅, becomes a lattice with meet M ∩M ′ and join M ∪M ′, where
for M0,M1,M2 ⊆ N we have M0 ∩ (M1 ∪M2) = (M0 ∩M1) ∪ (M0 ∩M2). But
note that P(N) is locally chain-finite if and only if N is finite.



II Posets 42

b) The basic structure theorem for distributive lattices is Birkhoff’s Repre-
sentation Theorem, which is a special case of (7.3), shedding some further
light on the significance of the set L2:

Let X be a modular lattice. Then X is distributive if and only if L2 = ∅. In
this case, we have X(L) = {X ⊆ L;X finite ideal}, and the following maps are
a pair of mutually inverse isomorphisms of lattices:

β : X → X(L) : x 7→ {y ∈ L; y ≤ x} and β−1 : X(L)→ X : X 7→
∨
X .

Moreover, the length function on X(L) is given by l(X ) := |X |, and any interval
[0, x], for x ∈ X, is finite. In particular, if X has a one element, then X is finite.

This is seen as follows: If z ∈ L2 6= ∅, then let z∗ l zi l z, for i ∈ {0, 1, 2}.
Then we have z0 ∧ (z1 ∨ z2) = z0 6= z∗ = (z0 ∧ z1) ∨ (z0 ∧ z2), hence [z∗, z] is
not distributive, hence neither X is. Conversely, if L2 = ∅ then X(L) is the set
of ideals of L having a bound in X, and whose join and meet operations are
given by taking set theoretic unions and intersections, respectively, hence X(L)
is distributive, and thus X also is.

Now, letting X be distributive, in order to determine the length function on
X(L), we show that |β(x)| = l(x), for x ∈ X. We proceed by induction on
l := l(x) ∈ N0; the case l = 0 being trivial, we assume that l ≥ 1, and let X :=
β(x) ∈ X(L). Then there are y ∈ X and z ∈ L, such that y l x and x = y ∨ z.
Letting Y := β(y) ∈ X(L), and Z := β(z) = 〈≤ z〉 ∈ X(L) be the principal
ideal generated by z, we get X = Y ∪ Z. We have l(y) = l(x)− 1, and thus by
induction we get |Y| = l(y). Moreover, we have [y ∧ z, z] ∼= [y, y ∨ z] = [y, x],
implying that y∧z = z∗lz, in other words Z \{z} = β(z∗) = β(y∧z) = Y ∩Z.
This yields Z = (Y ∩ Z)

.
∪ {z}, and thus X = Y ∪ Z = Y

.
∪ {z}, saying that

|X | = |Y|+ 1 = l(y) + 1 = l(x).

In particular this shows that X(L) consists of the finite ideals of L. Finally,
since for any x ∈ X the ideal β(x) ⊆ L is finite, there are only finitely many
subideals of β(x), in other words there are only finitely many y ∈ X such that
y ≤ x, that is the interval [0, x] is finite. ]

(7.6) The block graph. Let X be a modular lattice having a one element 1,
and let β be as in (7.3). We proceed to derive a description of the centre of X:

a) For x ∈ X let X := β(x) ∈ X(L). Then we have x ∈ Z(X) if and only
if X ′ := L \ X ∈ X(L). In this case, letting x′ := β−1(X ′) ∈ X, we have
X ∼= [0, x]× [0, x′] as inner direct product:

Let x ∈ Z(X), let X ∼= [0, x]×[0, x′], where x′ ∈ X, and let X ′ := β(x′) ∈ X(L).
Hence for z ∈ L we have either z ≤ x or z ≤ x′, and thus L = {z ∈ L; z ≤ x}

.
∪

{z ∈ L; z ≤ x′} = X
.
∪ X ′, hence X ′ = L \ X .

Let conversely X ′ := L \ X ∈ X(L) and x′ := β−1(X ′) ∈ X. Now let Y,Y ′ ∈
X(L) such that Y ⊆ X and Y ′ ⊆ X ′. Then Y

.
∪ Y ′ ⊆ L is an ideal which is

bounded in X. Let D ⊆ L be a dotted-line such that |D ∩ (Y
.
∪ Y ′)| ≥ 2. Since
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|D| ≥ 3 we have |D∩X | ≥ 2 or |D∩X ′| ≥ 2, and hence either D ⊆ X or D ⊆ X ′.
Thus we have either |D ∩ Y| ≥ 2 or |D ∩ Y ′| ≥ 2, and hence either D ⊆ Y or
D ⊆ Y ′. Thus Y

.
∪ Y ′ ∈ X(L), coinciding with the join of Y and Y ′ in X(L).

We consider the order-preserving maps σ : [0, x] × [0, x′] → X : [y, y′] 7→ y ∨ y′
and τ : X → [0, x]× [0, x′] : z 7→ [z∧x, z∧x′]. By the above we have β(y∨ y′) =
β(y) ∪ β(y′), while for z ∈ X we have β(z ∧ x) = β(z) ∩ X ∈ X(L) and
β(z ∧ x′) = β(z) ∩ X ′ ∈ X(L) anyway. Thus we have β(στ(z)) = β((z ∧ x) ∨
(z ∧ x′)) = β(z ∧ x) ∪ β(z ∧ x′) = (β(z) ∩ X ) ∪ (β(z) ∩ X ′) = β(z), by (7.3)
entailing στ(z) = z. Moreover, for τσ([y, y′]) = [(y∨ y′)∧x, (y∨ y′)∧x′] we get
β((y∨y′)∧x) = β(y∨y′)∩X = (β(y)∪β(y′))∩X = (β(y)∩X )∪(β(y′)∩X ) = β(y)
and similarly β((y ∨ y′) ∧ x′) = β(y ∨ y′) ∩ X ′ = (β(y) ∪ β(y′)) ∩ X ′ = (β(y) ∩
X ′) ∪ (β(y′) ∩ X ′) = β(y′), which by (7.3) entails τσ([y, y′]) = [y, y′]. Hence σ
and τ are a pair of mutually inverse isomorphisms of lattices. ]

b) Let the block graph of X be defined as the undirected simple graph having
vertex set L, where vertices x, y ∈ L are adjacent if and only if x < y or y < x or
x∨ y ∈ L2. Vertices being in the same connected component of the block graph
are called to be in the same block, giving rise to the disjoint union L =

∐d
i=1Zi,

where d ∈ N0 is the number of blocks occurring.

Then Zi ⊆ L is an ideal, for i ∈ {1, . . . , d}, and for any dotted-line D ⊆ L we
have either D ∩Zi = ∅ or D ⊆ Zi. Since X has a one element, Zi has an upper
bound in X, hence Zi ∈ X(L), and we let zi := β−1(Zi) ∈ X.

c) Given x ∈ X, we have x ∈ Z(X) if and only if x =
∨
{zi ∈ X; i ∈

{1, . . . , d}, zi ≤ x}. In particular, X ∼=
∏d
i=1[0, zi] is the unique decomposi-

tion of X into non-trivial indecomposable intervals:

Let x ∈ Z(X) and X := β(x) ∈ X(L), and X ′ := L \ X ∈ X(L) and x′ :=
β−1(X ′) ∈ X. We consider Zi such that X ∩ Zi 6= ∅, and show that Zi ⊆ X :

To this end let y ∈ X ∩ Zi, and y′ ∈ Zi be connected to y in the block graph.
If y′ < y, then by completeness we have y′ ∈ X as well. If y′ > y, assume that
y′ 6∈ X , hence we have y′ ∈ X ′, thus by completeness y ∈ X ′, a contradiction;
this shows y′ ∈ X . If y ∨ y′ ∈ L2, assume that y′ 6∈ X , hence y′ ∈ X ′; now
there is a dotted-line D ⊆ L such that {y, y′} ⊆ D, entailing D ∩ X 6= ∅ and
D ∩ X ′ 6= ∅; since |D| ≥ 3 we have |D ∩ X | ≥ 2 or |D ∩ X ′| ≥ 2, and hence by
completeness either D ⊆ X or D ⊆ X ′, a contradiction; this shows y′ ∈ X .

Thus we have
∨
{zi ∈ X; i ∈ {1, . . . , d}, X ∩ Zi 6= ∅} ≤ x and similarly we get∨

{zj ∈ X; j ∈ {1, . . . , d}, X ∩ Zj 6= ∅} ≤ x′. Since X ∼= [0, x] × [0, x′] and∨d
i=1 zi = 1 = x ∨ x′ we conclude x =

∨
{zi ∈ X; i ∈ {1, . . . , d}, X ∩ Zi 6= ∅}..

Let conversely {1, . . . , d} = I
.
∪ J , and x :=

∨
i∈I zi and x′ :=

∨
j∈J zj . Since

for any dotted-line D ⊆ L we have D∩Zi = ∅ or D ⊆ Zi, for any i ∈ {1, . . . , d},
we conclude that β(x) =

⋃
i∈I Zi =

∐
i∈I Zi ∈ X(L) and β(x′) =

⋃
j∈J Zj =∐

j∈J Zj ∈ X(L). Since L = (
∐
i∈I Zi)

.
∪ (
∐
j∈J Zj) we have x ∈ Z(X), where

X ∼= [0, x]× [0, x′]. ]
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(7.7) Maeda’s Theorem. a) Let X be a modular lattice. Then we have
the followung transitivity property for atoms belonging to the same connected
component of the block graph: Let x, y, z ∈ L be atoms such that x 6= y and
x ∨ z ∈ L2 as well as y ∨ z ∈ L2. Then we also have x ∨ y ∈ L2:

We may assume that x ∨ z 6= y ∨ z holds. Hence (x ∨ z) ∧ (y ∨ z) = z, and thus
l(x∨y∨z) = l(x∨z)+l(y∨z)−l((x∨z)∧(y∨z)) = 2+2−1 = 3. Since x∨z ∈ L2

and y ∨ z ∈ L2 there are atoms v, w ∈ X \ {x, y, z} such that 0 l v l x ∨ z and
0lwl y ∨ z. Assume that v = w, hence 0l v = w ≤ (x∨ z)∧ (y ∨ z) = z, thus
v = w = z, a contradiction. Thus we have v 6= w.

Let u := (v ∨ w) ∧ (x ∨ y) ∈ X. Since (v ∨ w) ∨ (x ∨ y) = x ∨ y ∨ z, we get
l(u) = l(v ∨ w) + l(x ∨ y) − l(x ∨ y ∨ z) = 2 + 2 − 3 = 1. Hence 0 l u l x ∨ y.
Assume that u = x, then we have x ≤ v ∨ w, hence v ∨ w = x ∨ v = x ∨ z =
w ∨ z = y ∨ z, a contradiction. Similarly, assuming u = y implies y ≤ v ∨ w,
thus v ∨ w = y ∨ w = y ∨ z = v ∨ z = x ∨ z, a contradiction. Hence we have
x 6= u 6= y, showing x ∨ y ∈ L2. ]

Note that the above transitivity property does not hold for local elements in
general: For the example depicted in Table 10, see (7.2), we have b ∨ d ∈ L2

and c ∨ d ∈ L2, but b ∨ c 6∈ L2, actually even c < d.

b) We now consider complemented lattices. In this case the local elements
coincide with the atoms, thus the block graph just encodes the L2 property; in
view of the above observation the connected components of the block graph are
complete graphs: Let X be complemented; recall that X has a one element 1.
Then for atoms x 6= y ∈ X we have x ∨ y ∈ L2 if and only if x and y have a
common complement in X:

Let z ∈ X be a common complement for x and y. From [(x ∨ y) ∧ z, x ∨ y] ∼=
[z, x∨ y∨ z] = [z, 1] = [z, x∨ z] ∼= [z ∧x, x] = [0, x] we get 0l (x∨ y)∧ zlx∨ y.
Since x 6= (x ∨ y) ∧ z 6= y we have x ∨ y ∈ L2.

Let conversely x∨y ∈ L2, let z ∈ X \{x, y} such that 0lzlx∨y, and let w ∈ X
be a complement for x∨y. Hence we have x∨(w∨z) = w∨(x∨y) = 1. Moreover,
we get [x ∧ (w ∨ z), x] ∼= [w ∨ z, x ∨ (w ∨ z)] = [w ∨ z, w ∨ (x ∨ y)] ∼= [z, x ∨ y],
thus x∧ (w∨ z)lx and hence x∧ (w∨ z) = 0. Thus w∨ z ∈ X is a complement
for x. A similar argument shows that w ∨ z also is a complement for y. ]

c) Let still X be complemented, and let X ∼=
∏d
i=1[0, zi], where d ∈ N0, be the

decomposition of X into non-trivial indecomposable intervals. Then we have
Maeda’s Theorem, saying that for atoms x 6= y ∈ X we have x ∨ y ∈ L2 if
and only if there is i ∈ {1, . . . , d} such that both x ≤ zi and y ≤ zi:
There are unique i, j ∈ {1, . . . , d} such that x ≤ zi and y ≤ zj . If i 6= j, then
since [0, zi∨zj ] ∼= [0, zi]× [0, zj ] we have [0, x∨y] = [0, x]× [0, y], thus x∨y 6∈ L2.
If i = j, then let Zi := β(zi) ⊆ L be the associated block. As Zi is a connected
component of the block graph, there is a chain x = x0, x1, . . . , xs = y in L such
that xi−1 ∨ xi ∈ L2, for all i ∈ {1, . . . , s}. Hence we have x ∨ y ∈ L2 as well. ]
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(7.8) Submodule lattices. Although these have been the original motivation
for the developments in [19], we only briefly consider submodule lattices, in
order to collect the facts needed later on, see (11.3):

a) Let K be a field, let A be a finite-dimensional K-algebra A, and let V be a
finitely generated A-module; hence V is finite-dimensional as well. Then the set
M(V ) of all A-submodules of V becomes a partially ordered set with respect to
set-theoretic inclusion ⊆, and thus a lattice with meet U ∩ U ′ and join U + U ′.

If X,Y, Z ≤ V are A-submodules such that Z ≤ X, then we have X∩(Y +Z) =
(X ∩ Y ) + Z, which holds algebraically already for K-vector spaces, that is
M(V ) fulfills the modular law; note that the natural isomorphism of the lattice
intervals X ∩ Y ≤ X and Y ≤ X + Y is induced by the isomorphism of A-
modules X/(X ∩ Y )→ (X + Y )/Y : x+ (X ∩ Y ) 7→ x+ Y . Moreover,M(V ) is
locally chain-finite, hence becomes a modular lattice with zero element {0} and
one element V ; note that M(V ) is not necessarily locally finite.

In particular,M(V ) is graded, the length function on A-submodules being given
by composition length. Note that, by the Jordan-Hölder Theorem, when-
ever {0} = V0lV1l· · ·lVl = V is a saturated chain of A-submodules, where l =
l(V ) ∈ N0, then the multiplicity [V : S] ∈ N0 with which a simple A-module
S occurs, up to isomorphism, as a subquoient Xi/Xi−1, for i ∈ {1, . . . , l}, is
independent of the particular saturated chain chosen; if [V : S] ≥ 1 then S is
called a constituent of V .

b) The lattice theoretic radical of an A-submodule U ≤ V coincides with its
Jacobson radical rad(U), hence U/rad(U) being complemented just says that
it is a semi-simple A-module. Given a simple A-module S, then U is called
S-local if U/rad(U) ∼= S. Letting LS(V ) ⊆ M(V ) be the set of all S-local
A-submodules of V , then L(V ) :=

∐
S simple LS(V ) ⊆M(V ), the disjoint union

running over the finitely many isomorphism types of simple A-modules, is the
set of all local A-submodules of V ; we have L(V ) 6= ∅ whenever V 6= {0}.
We have LS(V ) 6= ∅ if and only if S is a constituent of V : If L ∈ LS(V ) then
L/rad(L) ∼= S shows that S is a constituent of V . Conversely, if U ′ < U ≤ V are
A-submodules such that U/U ′ ∼= S, then letting L1, . . . , Lr ∈ L such that U =∑r
i=1 Li is irredundant, where r = r(U) = r(U/rad(U)) = l(U/rad(U)) ∈ N,

then rad(U) =
∑r
i=1 rad(Li) shows that U/rad(U) ∼=

⊕r
i=1 Li/rad(Li), hence

rad(U) ≤ U ′ implies that Li/rad(Li) ∼= S for some i ∈ {1, . . . , r}.
In particular, we have |LS(V )| = 1 if and only if [V : S] = 1: Assume that
there are L′, L ∈ LS(V ) such that L′ 6= L; if L′ < L then from rad(L′) l
L′ ≤ rad(L) l L we conclude that [V : S] ≥ 2; if L′ 6≤ L 6≤ L′ then we have
(L + L′)/rad(L + L′) ∼= L/rad(L) ⊕ L′/rad(L′) ∼= S ⊕ S, which again entails
[V : S] ≥ 2. Conversely, let LS(V ) = {L}, and assume that [V : S] ≥ 2; then
there are A-submodules U ′1 l U1 ≤ U ′2 l U2 ≤ V such that Ui/U

′
i
∼= S, for

i ∈ {1, 2}; letting U2 =
∑r
i=1 Li, where L1, . . . , Lr ∈ L for some r ∈ N, then

there is i ∈ {1, . . . , r} such that Li 6≤ U ′2, hence Li/(Li ∩U ′2) ∼= (Li +U ′2)/U ′2
∼=

U2/U
′
2
∼= S shows that Li = L, thus we have L ≤ U2 but L 6≤ U ′2; similarly we
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infer that L ≤ U1, a contradiction.

c) We proceed to describe L2(V ) ⊆ M(V ). In order to do so, we first we
first describe the A-submodules of V := S ⊕ T , where S and T are simple A-
modules: To this end, let {0} l U l V be an A-submodule, where we assume
that U 6= {0} ⊕ T , hence there is [u, u′] ∈ U such that u 6= 0.

If S 6∼= T , then by Wedderburn’s Theorem there is a ∈ A such that a|S = idS
and a|T = 0. Thus we have 0 6= [u, 0] ∈ U , hence from S being simple we
conclude that S ⊕ {0} ≤ U . Thus we infer that S ⊕ {0} and {0} ⊕ T are the
only non-trivial proper A-submodules of V .

If S ∼= T , then we may assume that S = T , and let E = ES := EndA(S)
be the ring of A-endomorphisms of S, where by Schur’s Lemma E is a
skew field over K. Hence S can be considered as an E-vector space, and by

Wedderburn’s Theorem again A|S ∼= En×n, where n := dimE(S) = dimK(S)
dimK(E) .

If {u, u′} is E-linearly independent, then there is a ∈ A such that ua = u and
u′a = 0, hence we conclude that 0 6= [u, 0] ∈ U and thus U = S ⊕ {0}. If
{u, u′} is E-linearly dependent, then [u, u′] = [u, uα] for some α ∈ E, and thus
projecting onto the first component shows that U = [u, uα] · A ∼= S. Moreover,
if U = [u, uα] ·A = [u, uβ] ·A, for some α 6= β ∈ E, then [0, u(α−β)] ∈ U , where
since α − β ∈ E∗ we have u(α − β) 6= 0, hence U = {0} ⊕ T , a contradiction.
Hence the A-submodules of V different from {0}⊕S are in bijection with E via
α 7→ [u, uα] · A, for some fixed 0 6= u ∈ S.

We conclude that the submodule lattice of V ∼= S ⊕ T is indecomposable if
and only if S ∼= T . In this case, if moreover K = Fq is the finite field with
q elements, then E is the field with qdimK(E) elements, and there are precisely
|E|+ 1 = qdimK(E) + 1 non-trivial proper A-submodules of V = S ⊕ S. ]

We are now prepared to describe L2(V ), where V is arbitrary again: If L,L′ ∈
L(V ) such that L 6≤ L′ 6≤ L, then letting Z := L+L′ ≤ V we have Z/rad(Z) ∼=
L/rad(L) ⊕ L′/rad(L′), hence we have Z ∈ L2(V ) if and only if L/rad(L) ∼=
L′/rad(L′), that is there is a simple A-module S such that both L,L′ ∈ LS(V );
in this case we may let IZ := ES

.
∪ {∞}. In conclusion, accompanying

the disjoint decomposition of L(V ), we have a finite disjoint union L2(V ) :=∐
S simple L2,S(V ) ⊆ M(V ), where in turn we have L2,S(V ) = {L + L′ ∈
M(V );L,L′ ≤ LS(V ), L 6≤ L′ 6≤ L}.
In particular, we have L2,S(V ) = ∅ if and only if LS(V ) = ∅ or LS(V ) is a chain.
Moreover, dotted-lines can be computed by considering each simple A-module in
turn, and all dotted-lines belonging to one and the same simple A-module have
the same cardinality. Finally, letting S(V ) be the set of simple A-modules, up to

isomorphism, which occur as constituents of V , and letting L(V ) =
∐d
i=1Zi be

the block decomposition, where d ∈ N0, from the definition of the block graph
we infer that there is a corresponding partition S(V ) =

∐d
i=1 Si.

d) In particular, by Birkhoff’s Representation Theorem,M(V ) is a distributive
lattice if and only if L2(V ) = ∅, that is L2,S(V ) = ∅ for all simple A-modules
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S, which in turn holds if and only if LS(V ) is a chain for all constituents S of
V . In particular, this is the case if [V : S] ≤ 1 for all simple A-modules S, that
is V is multiplicity-free. Recall that if M(V ) is distributive then it is finite,
being in natural bijection with the partially ordered set of ideals of L(V ).

If M(V ) is distributive, then the indecomposable direct summands of the A-
module V are precisely given by the block graph; note that since L2(V ) =
∅, the latter just encodes the mutual inclusion of local A-submodules: Let
L(V ) =

∐d
i=1Zi be the block decomposition, where d ∈ N0. Then letting

Zi := β−1(Zi) = Zi ·A ≤ V be the A-submodule generated by Zi, where β is as

in (7.3), we have the lattice block decomposition V =
⊕d

i=1 Zi as A-modules.
Hence it remains to be shown that the Zi are indecomposable:

Assume that Zi = Z ′i ⊕Z ′′i as A-modules, where Z ′i 6= {0} 6= Z ′′i . Then, assume
there is a S ∈ Si being a constituent of both Z ′i and Z ′′i ; then there are S-
local submodules L′ ≤ Z ′i and L′′ ≤ Z ′′i , which hence fulfill L′ 6≤ L′′ 6≤ L′,
implying that L2,S(V ) 6= ∅, a contradiction. Thus we have a corresponding

partition Si = S ′i
.
∪ S ′′i , where S ′i 6= ∅ 6= S ′′i , entailing a non-trivial partition∐

S∈Si LS(V ) =
∐
S∈S′i

LS(V )
.
∪
∐
S∈S′′i

LS(V ), where there are no inclusions

between the local A-submodules in the left hand and right hand parts. From
this we conclude that the latter are contained in distinct connected components
of the block graph, a contradiction. ]

III Incidence algebras

8 Incidence algebras

(8.1) The incidence algebra. a) Let X be a locally finite partially ordered
set, let R 6= {0} be a commutative ring, and let AR(X) := {f ∈ Maps(X ×
X,R); f(x, y) = 0 if x 6≤ y}. Then AR(X) is an R-module respect to pointwise
addition (f + g)(x, y) := f(x, y) + g(x, y) and pointwise scalar multiplication
(cf)(x, y) := c · f(x, y), for all f, g ∈ AR(X) and x, y ∈ X and c ∈ R.

Convolutional multiplication on AR(X) is well-defined by letting (fg)(x, y) :=∑
z∈X f(x, z)g(z, y), for all f, g ∈ AR(X) and x, y ∈ X: If x 6≤ y then all

summands vanish, hence (fg)(x, y) = 0, while if x ≤ y we get (fg)(x, y) =∑
x≤z≤y f(x, z)g(z, y), which by local finiteness is a finite sum. Then we have

(fg)h = f(gh) : [x, y] 7→
∑
z,z′∈X f(x, z)g(z, z′)h(z′, y), for all f, g, h ∈ AR(X),

that is associativity holds. Moreover, for the map δ : X×X → R : [x, y] 7→ δx,y,
where δx,y is the Kronecker symbol, we have (fδ)(x, y) =

∑
z∈X f(x, z)δ(z, y) =

f(x, y) and (δf)(x, y) =
∑
z∈X δ(x, z)f(z, y) = f(x, y), for all x, y ∈ X, hence

δ ∈ AR(X) is a neutral element with respect to convolutional multiplication.
Since we have distributivity, and c(fg) = (cf)g = f(cg) ∈ AR(X), for all c ∈ R,
we conclude that AR(X) is a non-commutative R-algebra, called the incidence
algebra associated with the partially ordered set X.
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b) Let f ∈ AR(X). We show that f is right invertible, if and only if f is left
invertible, which holds if and only if f(x, x) ∈ R∗ for all x ∈ X:

The map g ∈ AR(X) is a right inverse of f if and only if δx,y = (fg)(x, y) =∑
z∈X f(x, z)g(z, y), for all x, y ∈ X. Hence, for x = y, from the existence of

g we infer f(x, x) ∈ R∗. Conversely, if f(x, x) ∈ R∗ for all x ∈ X, we define
g ∈ AR(X) using local finiteness as follows: We let g(x, x) := f(x, x)−1 ∈ R
for all x ∈ X, and for x < y ∈ X, by induction on l(x, y) ∈ N0 assuming
that g(z, y) has already been found for all x < z ≤ y ∈ X, we let g(x, y) =
−f(x, x)−1 ·

∑
x<z≤y f(x, z)g(z, y) ∈ R. Then we have

∑
x≤z≤y f(x, z)g(z, y) =

f(x, x)g(x, y) +
∑
x<z≤y f(x, z)g(z, y) = 0.

Similarly, the map g ∈ AR(X) is a left inverse of f if and only if δx,y =
(gf)(x, y) =

∑
z∈X g(x, z)f(z, y), for all x, y ∈ X. Hence, for x = y, from

the existence of g we infer f(x, x) ∈ R∗. Conversely, if f(x, x) ∈ R∗ for
all x ∈ X, we define g ∈ AR(X) using local finiteness as follows: We let
g(x, x) := f(x, x)−1 ∈ R for all x ∈ X, and for x < y ∈ X, by induc-
tion on l(x, y) ∈ N0 assuming that g(x, z) has already been found for all
x ≤ z < y ∈ X, we let g(x, y) = −f(y, y)−1 ·

∑
x≤z<y g(x, z)f(z, y) ∈ R. Then

we have
∑
x≤z≤y g(x, z)f(z, y) = g(x, y)f(y, y) +

∑
x≤z<y g(x, z)f(z, y) = 0. ]

Note that, in this case, right and left inverses coincide and are uniquely defined,
giving rise to the unit group A∗R(X) of AR(X). Note that for f ∈ A∗R(X) the
value f−1(x, y) ∈ R, for x ≤ y ∈ X, only depends on the interval [x, y] ⊆ X.

c) Let rad(R) denote the Jacobson radical of R. We show that rad(AR(X)) =
JR(X) := {f ∈ AR(X); f(x, x) ∈ rad(R) for all x ∈ X}:
Let f ∈ JR(X). Then for any x ∈ X and any a ∈ R we have 1+a ·f(x, x) ∈ R∗.
Hence for any g ∈ AR(X) we have (δ + fg)(x, x) = 1 + f(x, x)g(x, x) ∈ R∗, for
all x ∈ X, thus δ + fg ∈ A∗R(X), implying that f ∈ rad(AR(X)). Conversely,
if f ∈ AR(X) such that f(x, x) 6∈ rad(R) for some x ∈ X, then there is a ∈ R
such that 1 + a · f(x, x) 6∈ R∗. Hence picking g ∈ AR(X) such that g(x, x) = a,
we infer (δ + fg)(x, x) 6∈ R∗, thus δ + fg 6∈ A∗R(X), hence f 6∈ rad(AR(X)). ]

Hence we have AR(X)/JR(X) ∼=
∏
x∈X R/rad(R). Moreover, letting UR(X) :=

{f ∈ AR(X); f(x, x) = 0 for all x ∈ X} ⊆ Jn(R), then from (fg)(x, x) =
f(x, x)g(x, x), for all f, g ∈ AR(X) and x ∈ X, we infer that UR(X) EAR(X)
is an ideal, and we have AR(X)/UR(X) ∼=

∏
x∈X R.

(8.2) Zeta and Möbius functions. a) Let X be a locally finite partially
ordered set, and let ζ ∈ A(X) = AZ(X) be the zeta function of X, that is the
indicator function of the partial order, given by ζ(x, y) = 1 whenever x ≤ y ∈ X,
and ζ(x, y) = 0 whenever x 6≤ y ∈ X; in particular, we have ζ ∈ A∗(X). Note
that restricting ζ to an interval in X just yields the zeta function of the interval.
The zeta function is related to chains:

i) Induction on k ∈ N yields ζk(x, y) =
∑
x=z0≤z1≤···≤zk=y

∏k
i=1 ζ(zi−1, zi) =∑

x=z0≤z1≤···≤zk=y 1, for x ≤ y ∈ X. Thus for k ∈ N0 we infer that ζk(x, y) ∈ N0
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is the number of multichains of length k, that is chains with repeated entries,
between x and y; in particular, ζ2(x, y) = |[x, y]| for all x ≤ y ∈ X.

ii) We have (ζ − δ)(x, x) = 0, and (ζ − δ)(x, y) = 1 for all x < y ∈ X; in
particular, we have ζ − δ ∈ J (X) = JZ(X). For this function, induction

on k ∈ N yields (ζ − δ)k(x, y) =
∑
x=z0≤z1≤···≤zk=y

∏k
i=1(ζ − δ)(zi−1, zi) =∑

x=z0<z1<···<zk=y 1 ∈ N0, for all x ≤ y ∈ X, saying that for k ∈ N0 there are

precisely (ζ − δ)k(x, y) ∈ N0 chains of length k between x and y. In particular,
we have (ζ−δ)k(x, y) = 0 if and only if k ≥ l+1, where l := l(x, y) ∈ N0, saying
that ζ − δ is locally nilpotent, that is nilpotent on any interval [x, y].

iii) We have (2δ−ζ)(x, x) = 1, and (2δ−ζ)(x, y) = −1 for all x < y ∈ X, hence
again 2δ−ζ ∈ A∗(X). Then we have (2δ−ζ)−1 =

∑
i≥0(ζ−δ)i ∈ A(X), which is

indeed well-defined inasmuch it says that (2δ−ζ)−1(x, y) ∈ N0 coincides with the
number of all chains between x, y ∈ X: We may assume that x ≤ y, and letting
l := l(x, y) ∈ N0 we have (ζ − δ)l+1|[x,y] = 0, hence upon restriction to [x, y] we

have (2δ − ζ) ·
∑l
i=0(ζ − δ)i = (δ − (ζ − δ)) ·

∑l
i=0(ζ − δ)i = δ − (ζ − δ)l+1 = δ,

and thus (2δ − ζ)−1(x, y) =
∑l
i=0(ζ − δ)i(x, y).

b) The zeta function ζ ∈ A(X) being invertible, we let µ := ζ−1 ∈ A(X)
be the Möbius function of X. More precisely, we have µ(x, x) = 1 for all
x ∈ X, and for x < y ∈ X using the right inversion formula we get µ(x, y) =
−
∑
x<z≤y µ(z, y), or equivalently

∑
x≤z≤y µ(z, y) = 0, while the left inversion

formula yields µ(x, y) = −
∑
x≤z<y µ(x, z), or equivalently

∑
x≤z≤y µ(x, z) = 0;

in particular, µ(x, y) ∈ Z can be computed by induction on l(x, y) ∈ N0.

Letting x ≤ y ∈ X and l := l(x, y) ∈ N0 we have (ζ−δ)l+1|[x,y] = 0, hence upon

restriction to [x, y] we have ζ ·
∑l
i=0(δ − ζ)i = (δ − (δ − ζ)) ·

∑l
i=0(δ − ζ)i =

δ−(δ−ζ)l+1 = δ. Hence we have Hall’s Theorem [1939] µ(x, y) = ζ−1(x, y) =∑l
i=0(δ − ζ)i(x, y) =

∑l
i=0(−1)i · (ζ − δ)i(x, y) =

∑
i≥0(−1)i · (ζ − δ)i(x, y),

expressing µ(x, y) as the alternating sum over the number of chains of lengths
i ≥ 0 between x, y ∈ X, in other words µ =

∑
i≥0(−1)i · (ζ − δ)i ∈ A(X).

c) Given f ∈ A(X), multiplication with ζ yields f+ := fζ ∈ A(X) and f+ :=
ζf ∈ A(X) given by (f+)(x, y) =

∑
x≤z≤y f(x, z)ζ(z, y) =

∑
x≤z≤y f(x, z) and

(f+)(x, y) =
∑
x≤z≤y ζ(x, z)f(z, y) =

∑
x≤z≤y f(z, y), for all x ≤ y ∈ X. Then

we have the Möbius inversion formulae [Rota, 1964] f+µ = f ∈ A(X), that
is f(x, y) =

∑
x≤z≤y f

+(x, z)µ(z, y) for all x ≤ y ∈ X, and µf+ = f ∈ A(X),
that is f(x, y) =

∑
x≤z≤y µ(x, z)f+(z, y) for all x ≤ y ∈ X.

(8.3) Modules for the incidence algebra. Let X be a locally finite par-
tially ordered set, let R 6= {0} be a commutative ring. We are looking for
AR(X)-modules, apart from those coming from the quotients AR(X)/JR(X)
and AR(X)/UR(X) considered earlier. We mainly restrict ourselves to right
AR(X)-modules, which we usually just call AR(X)-modules, and where for left
AR(X)-modules we typically have the ‘dual’ picture. The first natural choice is
to look for right and left ideals in AR(X):
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a) For a subset Y ⊆ X let IR(Y,X) := {f ∈ AR(X); f(x, ?) 6= 0 only if x ∈ Y }.
Then IR(Y,X) ≤ AR(X) is a right ideal: For f ∈ IR(Y,X) and g ∈ AR(X),
from (fg)(x, y) =

∑
x≤z≤y f(x, z)g(z, y), for all x ≤ y ∈ X, we get (fg)(x, y) =

0 if x 6∈ Y , thus fg ∈ IR(Y,X). We have AR(X) ∼= IR(Y,X) ⊕ IR(X \
Y,X), thus IR(Y,X) is a projective AR(X)-module. Its Jacobson radical is
rad(IR(Y,X)) = IR(Y,X) ∩ JR(X) = {f ∈ IR(Y,X); f(x, x) ∈ rad(R) for x ∈
Y }, hence we have IR(Y,X)/rad(IR(Y,X)) ∼=

∏
x∈Y R/rad(R). Moreover, we

have IR(Y,X) ∼=
∏
x∈Y IR({y}, X) as AR(X)-modules.

Similarly, let IR(X,Y ) := {f ∈ AR(X); f(?, y) 6= 0 only if y ∈ Y }. Then
IR(X,Y ) ≤ AR(X) is a left ideal: For f ∈ IR(X,Y ) and g ∈ AR(X), from
(gf)(x, y) =

∑
x≤z≤y g(x, z)f(z, y), for all x ≤ y ∈ X, we get (gf)(x, y) = 0

if y 6∈ Y , thus gf ∈ IR(X,Y ). We have AR(X) ∼= IR(X,Y ) ⊕ IR(X,X \
Y ), thus IR(X,Y ) is a projective left AR(X)-module. Its Jacobson radical is
rad(IR(X,Y )) = IR(X,Y )∩JR(X) = {f ∈ IR(X,Y ); f(x, x) ∈ rad(R) for x ∈
Y }, hence we have IR(X,Y )/rad(IR(X,Y )) ∼=

∏
x∈Y R/rad(R). Moreover, we

have IR(X,Y ) ∼=
∏
x∈Y IR(X, {x}) as left AR(X)-modules.

b) For a coideal Y ⊆ X the left ideal IR(X,Y ) also is a right ideal: For
f ∈ IR(X,Y ) and g ∈ AR(X), we have (fg)(x, y) =

∑
x≤z≤y f(x, z)g(z, y), for

all x ≤ y ∈ X, hence, since for y 6∈ Y we also have z 6∈ Y for all z ≤ y, we
conclude (fg)(x, y) = 0 if y 6∈ Y , thus fg ∈ IR(X,Y ).

Combining these constructions, for any subset Z ⊆ X and any coideal Y ⊆ X
we get the right ideal IR(Z, Y ) := IR(Z,X) ∩ IR(X,Y ) ≤ AR(X). More-
over, we have IR(Z, Y ) ∼=

∏
x∈Z IR({x}, Y ) as well as IR(Z,X)/IR(Z, Y ) ∼=∏

x∈Z IR({x}, X)/IR({x}, Y ) as AR(X)-modules. In this sense, coideals nat-
urally provide submodules and quotient modules of the projective AR(X)-
modules IR(Z,X). Note that for any ideal Y ⊆ X the complement X \ Y ⊆ X
is a coideal, so that this essentially also applies to ideals.

(8.4) The Möbius space. Let X be a locally finite partially ordered set, let
R 6= {0} be a commutative ring, and let FR(X) := Maps(X,R) be the associated
Möbius space, which is an R-module with respect to pointwise addition and
scalar multiplication.

a) Let X additionally have a zero element 0. Then we get an injective R-linear
map FR(X)→ AR(X) : f 7→ f◦, where f◦(x, y) := δ(0, x)f(y), for all x, y ∈ X.
Its image F◦R(X) := {f ∈ AR(X); f(x, ?) 6= 0 only if x = 0} = IR({0}, X) ≤
AR(X) is a right ideal and a projective AR(X)-module, whose Jacobson radical
is given as rad(F◦R(X)) = {f ∈ F◦R(X); f(0, 0) ∈ rad(R)}.
We have (f◦g)(0, y) =

∑
z≤y f(z)g(z, y), for f ∈ FR(X) and g ∈ AR(X), and

all y ∈ X. This shows that FR(X) becomes an AR(X)-module by letting
f ∗ g ∈ FR(X) be defined as (f ∗ g)(x) :=

∑
z≤x f(z)g(z, x), for x ∈ X. Then

FR(X)→ AR(X) : f 7→ f◦ is an AR(X)-module isomorphism, that is (f ∗g)◦ =
f◦g ∈ AR(X). In particular, FR(X) is a projective AR(X)-module, such that
rad(FR(X)) = {f ∈ FR(X); f(0) ∈ rad(R)}.
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b) If X instead has a one element 1, we get an injective R-linear map FR(X)→
AR(X) : f 7→ f•, where now f•(x, y) := δ(y, 1)f(x), for all x, y ∈ X. Its image
F•R(X) = {f ∈ AR(X); f(?, y) 6= 0 only if y = 1} = IR(X, {1}) ≤ AR(X) is a
left ideal and a projective left AR(X)-module, whose Jacobson radical is given
as rad(F•R(X)) = F•R(X) ∩ JR(X) = {f ∈ F•R(X); f(1, 1) ∈ rad(R)}.
We have (gf•)(x, 1) =

∑
z≥x g(x, z)f(z), for f ∈ FR(X) and g ∈ AR(X), and

all x ∈ X. This shows that FR(X) also becomes a left AR(X)-module by
letting g ∗ f ∈ FR(X) be defined as (g ∗ f)(x) :=

∑
z≥x g(x, z)f(z), for x ∈ X.

Then FR(X) → AR(X) : f 7→ f• is an AR(X)-module isomorphism, that is
(g ∗ f)• = gf• ∈ AR(X). In particular, FR(X) is a projective left AR(X)-
module, such that rad(FR(X)) = {f ∈ FR(X); f(1) ∈ rad(R)}.
But note that FR(X) in general does not become an AR(X)-AR(X)-bimodule.

c) In terms of F(X) = FZ(X) Möbius inversion reads as follows:

If X has a zero element, using the A(X)-module structure on F(X), we let
f+ := f ∗ ζ ∈ F(X), hence f+(x) =

∑
z≤x f(z), for all x ∈ X; note that

(f+)◦ = (f◦)+ ∈ A(X). Thus Möbius inversion yields f+ ∗ µ = (f ∗ ζ) ∗ µ =
f ∗ (ζµ) = f ∗ δ = f ∈ F(X), hence f(x) =

∑
z≤x f

+(z)µ(z, x), for all x ∈ X.

If X has a one element, using the left A(X)-module structure on F(X), we
let f+ := ζ ∗ f ∈ F(X), hence f+(x) =

∑
z≥x f(z), for all x ∈ X; note that

(f+)• = (f•)+ ∈ A(X). Thus Möbius inversion yields µ ∗ f+ = µ ∗ (ζ ∗ f) =
(µζ) ∗ f = δ ∗ f = f ∈ F(X), hence f(x) =

∑
z≥x µ(x, z)f+(z), for all x ∈ X.

(8.5) Finite partially ordered sets. a) We consider the case of X being
finite. In order to do so, let X = {x1, . . . , xn}, where n := |X| ∈ N, where
we assume that xi ≤ xj only if i ≤ j ∈ {1, . . . , n}; note that this amounts
to refining the given partial order on X to a total order. This lends to the
following description of AR(X), where R 6= {0} is a commutative ring:

For n ∈ N let Tn(R) := {A = [aij ]ij ∈ Rn×n; aij = 0 for all 1 ≤ j < i ≤ n} be
the set of all upper triangular (n× n)-matrices over R, and let Un(R) := {A ∈
Tn(R); aii = 0 for all i} E Tn(R) be the ideal consisting of all strictly upper
triangular matrices. Then the injective R-linear map AR(X) → Tn(R) : f 7→
[f(xi, xj)]ij translates convolutional multiplication into matrix multiplication,
hence is a homomorphism of R-algebras. Thus we may and will view AR(X) as
an R-subalgebra of Tn(R).

b) In particular, we have AR(X) = Tn(R) if and only if X is totally ordered.
Thus Tn(R) can be considered as an incidence algebra, too. Doing so, we infer
that T ∗n (R) = {A ∈ Tn(R); aii ∈ R∗ for all i}, and that rad(Tn(R)) = Jn(R) :=
{A ∈ Tn(R); aii ∈ rad(R) for all i}. Moreover, we have A∗R(X) = AR(X) ∩
T ∗n (R), and JR(X) = AR(X) ∩ Jn(R), and UR(X) := AR(X) ∩ Un(R).

We show that UR(X) EAR(X) actually is a nilpotent ideal:

For i, j ∈ {1, . . . , n} let Eij ∈ Rn×n be the associated matrix unit, that is
having [k, l]-entry δikδjl ∈ R; recall the multiplication rule EijEkl = δjk · Eil.
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Then we have AR(X) = 〈Exy;x, y ∈ X,x ≤ y〉R and UR(X) = 〈Exy;x, y ∈
X,x < y〉R, where the given generating sets are even R-bases. For k ∈ N0 we
have UR(X)k ≤ 〈Eij ; 1 ≤ i ≤ j − k ≤ n〉R = {A ∈ Tn(R); aij = 0 for all i >
j − k}, and we have Exy ∈ UR(X)k, where x ≤ y, if and only if there is a chain
of length k between x and y, that is l(x, y) ≥ k. Thus we have UR(X)k = {0}
if and only if k ≥ l(X) + 1. ]

As for the Möbius space, writing f ∈ FR(X) as [f(x1), . . . , f(xn)] ∈ Rn, the
embedding F◦R(X) ⊆ AR(X) ⊆ Tn(R) is given by associating f ∈ FR(X) with
the matrix

∑n
i=1 f(xi)E1i ∈ Tn(R), which has [f(x1), . . . , f(xn)] as its first row

and zero entries otherwise. Similarly, the embedding F•R(X) ⊆ AR(X) ⊆ Tn(R)
is given by associating f ∈ FR(X) with the matrix

∑n
i=1 f(xi)Ein ∈ Tn(R),

which has [f(x1), . . . , f(xn)]tr as its last column and zero entries otherwise.

c) Now the Möbius function µ = ζ−1 ∈ A(X) ⊆ Tn = Tn(Z) can be computed
in matrix terms, by inverting the matrix associated with ζ. In particular, if
0 ∈ X is a zero element, then the values µ(0, ?) are given in the first row of the
matrix of µ, and if 1 ∈ X is a one element, then the values µ(?, 1) are given in
the last column of the matrix of µ.

For example, the partially ordered set X := [∅, {1}, {2}, {2, 3}, {1, 2, 3}], see
(5.2), yields

AR(X) ∼=


∗ ∗ ∗ ∗ ∗
∗ . . ∗
∗ ∗ ∗
∗ ∗
∗

 ⊆ T5(R).

The matrices of ζ and µ are given as

ζ 7→


1 1 1 1 1

1 . . 1
1 1 1

1 1
1

 , µ 7→


1 −1 −1 . 1

1 . . −1
1 −1 .

1 −1
1

 .

(8.6) The Möbius algebra. To compute Möbius functions of lattices, the
conventional recursive procedure can be adjusted to involve much fewer terms
than for partially ordered sets in general. To this end, it suffices to assume only
that X is a locally finite partially ordered set having meets and a one element.
If X additionally has a zero element, then by local finiteness X is finite, and
conversely if X is finite then it has a zero element, thus in this case by the
existence of meets X has joins as well, hence is a lattice; see Exercise (20.3).

a) Let R 6= {0} be a commutative ring. Then we define Möbius multi-
plication on FR(X) as follows: For f, g ∈ FR(X) let f ∧ g : X → R : y 7→∑
x,x′∈X,x∧x′=y f(x)g(x′). From local finiteness and the existence of a one ele-

ment we infer that this is indeed well-defined. Moreover, we have f ∧ g = g ∧ f ,
and (f ∧ g) ∧ h = f ∧ (g ∧ h) : y 7→

∑
x,x′,x′′∈X,x∧x′∧x′′=y f(x)g(x′)h(x′′),
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for all f, g, h ∈ FR(X), that is commutativity and associativity hold. For
the map δ1 : X → R : x 7→ δ(x, 1), where δ ∈ AR(X) is as above, we have
(f∧δ1)(y) =

∑
x,x′∈X,x∧x′=y f(x)δ(x′, 1) = f(y), for all y ∈ X, hence δ1 ∈ A(X)

is a neutral element with respect to Möbius multiplication. Since we have dis-
tributivity, and c(f ∧ g) = (cf) ∧ g ∈ FR(X), for all c ∈ R, we conclude that
FR(X) is a commutative R-algebra, called the associated Möbius algebra.

More generally, for y ∈ X let δy : X → R : x 7→ δ(x, y) and µy : X → R : x 7→
µ(x, y), where µ ∈ AR(X) is the Möbius function of X as above; recall that
µ(x, y) ∈ Z for all x, y ∈ X, hence we may consider µ as a function with
values in R. Then for any fixed z ∈ X we have

∑
y≤z µy(x) =

∑
y≤z µ(x, y) =∑

x≤y≤z µ(x, y) = δ(x, z) = δz(x), for all x ∈ X, saying that
∑
y≤z µy = δz; in

particular we have
∑
y∈X µy = δ1.

We have (µy ∧ µy′)(w) =
∑
x≤y,x′≤y′,x∧x′=w µ(x, y)µ(x′, y′), for w, y, y′ ∈ X,

hence (µy ∧ µy′)(w) 6= 0 only if w ≤ y ∧ y′. In this case, for all v ≤ y ∧ y′ we
have

∑
v≤w≤y∧y′(µy ∧µy′)(w) =

∑
v≤w≤y∧y′

∑
x≤y,x′≤y′,x∧x′=w µ(x, y)µ(x′, y′),

hence changing the order of summation the right hand side can be written
as
∑
v≤x≤y,v≤x′≤y′ µ(x, y)µ(x′, y′) =

∑
v≤x≤y µ(x, y) ·

∑
v≤x′≤y′ µ(x′, y′) = δv,y ·

δv,y′ . Thus, if y 6= y′ then by induction on l(v, y∧y′) ∈ N0 we infer (µy∧µy′)(v) =
0, and hence µy ∧ µy′ = 0 ∈ FR(X).

Similarly, for y = y′ we get
∑
v≤w≤y(µy ∧ µy)(w) = δv,y =

∑
v≤w≤y µ(w, y) =∑

v≤w≤y µy(w), which by induction on l(v, y) ∈ N0 entails (µy∧µy)(v) = µy(v),
hence µy ∧µy = µy ∈ FR(X). Thus, in conclusion we have µy ∧µy′ = δy,y′µy ∈
FR(X), saying that the {µy ∈ FR(X); y ∈ X} form a decomposition of δ1 into
pairwise orthogonal idempotents.

In particular, if K is a field and X is finite, then from dimK(FK(X)) = |X| we
infer that {µy ∈ FK(X); y ∈ X} are the (centrally) primitive idempotents, thus
FK(X) is a split semisimple K-algebra of shape FK(X) ∼=

⊕
x∈X K.

b) For 1 6= z ∈ X we have δz ∧ µ1 =
∑
y≤z µy ∧ µ1 = 0 ∈ FR(X); note that for

z = 1 we just get the trivial formula δ1 ∧ µ1 =
∑
y∈X µy ∧ µ1 = µ1. Thus, we

have Weisner’s Theorem [1935], saying that for 1 6= z ∈ X and all y ∈ X we
have 0 = (δz ∧ µ1)(y) =

∑
w,x∈X,w∧x=y δ(w, z)µ(x, 1) =

∑
x∈X,x∧z=y µ(x, 1).

In particular, if X is finite such that 0 6= 1, letting y = 0, for z = 0 we recover∑
x∈X µ(x, 1) = 0, and whenever 0 6 l1 for 0 l z we get

∑
z 6≤x µ(x, 1) = 0.

Note that, similarly, if X has joins and a zero element, for 0 6= z ∈ X and all
y ∈ X we have

∑
x∈X,x∨z=y µ(0, x) = 0. In particular, again, if X is finite such

that 0 6= 1, letting y = 1, for z = 0 we recover
∑
x∈X µ(0, x) = 0, and whenever

0 6 l1 for z l 1 we get
∑
x 6≤z µ(0, x) = 0.

(8.7) Möbius functions of lattices. We now proceed to the promised simpli-
fication to compute Möbius functions of lattices, where it still suffices to assume
that X is a locally finite partially ordered set having meets and a one element.

Let M ⊆ X \ {1} such that for all 1 6= x ∈ X there is y ∈ M such that x ≤ y;
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in particular M contains all x ∈ X such that x l 1. Then for y ∈ X we have
δ1 − δy =

∑
x∈X µx −

∑
x≤y µx =

∑
x6≤y µx. Hence, using the fact that the µx

are pairwise orthogonal idempotents and the special choice of M , this yields∧
y∈M (δ1 − δy) =

∧
y∈M (

∑
x 6≤y µx) =

∑
x6≤y for all y∈M µx = µ1 ∈ FR(X). Thus

from
∧
y∈M (δ1 − δy) =

∑
L⊆M (−1)|L| ·

∧
y∈L δy ∈ FR(X), where as usual we

define the empty product to be the identity δ1, by evaluating at x ∈ X, we get

µ(x, 1) =
∑
L⊆M (−1)|L| · (

∧
y∈L δy)(x) =

∑
L⊆M,

∧
L=x(−1)|L|. In particular,

for any x ∈ X such that
∧
{y ∈ X; y l 1} 6≤ x we have µ(x, 1) = 0.

If X is finite, then for the zero element we get the cross-cut theorem µ(0, 1) =∑
L⊆M,

∧
L=0(−1)|L|; if

∧
{x ∈ X;xl 1} 6= 0 then we have µ(0, 1) = 0.

Note that, similarly, if X has joins and a zero element, and if M ⊆ X \ {0}
is such that for all 0 6= x ∈ X there is y ∈ M such that y ≤ x, then for all
x ∈ X we have µ(0, x) =

∑
L⊆M,

∨
L=x(−1)|L|. In particular, for any x ∈ X

such that x 6≤
∨
{y ∈ X; 0 l y} we have µ(0, x) = 0; if X is finite, then

µ(0, 1) =
∑
L⊆M,

∨
L=1(−1)|L|, and if

∨
{x ∈ X; 0 l x} 6= 1 then µ(0, 1) = 0.

9 Möbius functions

(9.1) Möbius functions of products. a) Let X ′ and X ′′ be partially ordered
sets. Then the Cartesian product X := X ′ × X ′′ becomes a partially ordered
set, called the direct product of X ′ and X ′′, with respect to componentwise
comparison, that is we let x := [x′, x′′] ≤ [y′, y′′] =: y ∈ X if and only if
x′ ≤ y′ ∈ X ′ and x′′ ≤ y′′ ∈ X ′′.
Then intervals in X are direct products again, namely [x, y] = [x′, y′]× [x′′, y′′]
whenever x ≤ y ∈ X. Moreover, X is a lattice if X ′ and X ′′ are; X is graded
if X ′ and X ′′ are; X is locally finite if X ′ and X ′′ are; and if X ′ and X ′′ are
finite then we have l(X) = l(X ′) + l(X ′′).

Let X ′ and X ′′ be locally finite. We aim at finding the Möbius function of
X = X ′ × X ′′: Given the Möbius functions µ′ and µ′′ of X ′ and X ′′, respec-
tively, we get

∑
x≤z≤y µ

′(x′, z′) · µ′′(x′′, z′′) =
∑
x′≤z′≤y′

∑
x′′≤z′′≤y′′ µ

′(x′, z′) ·
µ′′(x′′, z′′) =

∑
x′≤z′≤y′ µ

′(x′, z′) ·
∑
x′′≤z′′≤y′′ µ

′′(x′′, z′′) = δx′,y′ · δx′′,y′′ = δx,y,
for x, y ∈ X, hence the Möbius function of X is given as the product µ(x, y) =
µ′(x′, y′) · µ′′(x′′, y′′) of the component Möbius functions, for all x, y ∈ X.

b) We consider the direct product X :=
∏k
i=1[0, ni] of the totally ordered inter-

vals [0, ni], where n1, . . . , nk ∈ N and k ∈ N. We provide to ways to determine
its Möbius function µ, in particular showing that the cross-cut theorem indeed
helps to avoid too many explicit computations:

i) Firstly, since µ is determined locally, it suffices to find µ(0, [n1, . . . , nk]) =∏k
i=1 µ(0, nk). We show that µ(0, [n1, . . . , nk]) 6= 0 if and only if ni ≤ 1 for all

i ∈ {1, . . . , k}, in which case µ(0, [n1, . . . , nk]) = (−1)ε, where ε :=
∑k
i=1 ni:
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For the totally ordered set [0, n], where n ∈ N0, the matrices of ζ and µ are

ζ 7→


1 1 1 . . . 1

1 1 . . . 1
. . .

. . .
...

1 1
1

 , µ 7→


1 −1

1 −1
. . .

. . .

1 −1
1

 .

Hence we have µ(0, 0) = 1 and µ(0, 1) = −1, as well as µ(0, n) = 0 for n ≥ 2. ]

Note that this also describes the Möbius function of the totally ordered set N0.

ii) Secondly, we apply the cross-cut theorem: We have M := {[m1, . . . ,mk] ∈
X; 0 l [m1, . . . ,mk]} = {e1, . . . , ek}, where ei ∈ Zk denotes the i-th unit vec-
tor, and hence

∨
M = [1, . . . , 1] ∈ X. Thus we have µ(0, [m1, . . . ,mk]) = 0

whenever {m1, . . . ,mk} 6⊆ {0, 1}. while if mi ≤ 1 for all i ∈ {1, . . . , k} then
we recover µ(0, [m1, . . . ,mk]) =

∑
L⊆M,

∨
L=[m1,...,mk](−1)|L| = (−1)ε, where

ε = |{ei;mi = 1}| = |
∑k
i=1mi|.

(9.2) Example: Divisibility lattices. a) To determine the Möbius function
of N, partially ordered by divisibility | , using the fact that Möbius functions
are determined locally, and since for c | d ∈ N we have [c, d] ∼= [ cc ,

d
c ] ∼= [1, dc ]

as partially ordered sets, hence µ(c, d) = µ(1, dc ), it suffices to compute the
number-theoretic Möbius function µ(n) := µ(1, n) for n ∈ N:

If n =
∏k
i=1 p

ni
i is the prime factorization of n, where p1, . . . , pk ∈ N are pairwise

distinct primes and n1, . . . , nk ∈ N, for some k ∈ N0, then we have c =
∏k
i=1 p

ci
i |

d =
∏k
i=1 p

di
i | n if and only if 0 ≤ ci ≤ di ≤ ni for all i ∈ {1, . . . , k}, showing

that, by going over to the multiplicities of the various primes in the prime
factorization of n, the interval between 1 and n is isomorphic to the direct
product

∏k
i=1[0, ni] of the totally ordered intervals [0, ni] as partially ordered

sets. Hence we have µ(n) = 0 if ni ≥ 2 for some i ∈ {1, . . . , k}, that is if n is

not squarefree; and if n =
∏k
i=1 pi is squarefree then we have µ(n) = (−1)k,

where k is the number of distinct prime divisors of n. Another related lattice is
discussed in Exercise (19.36).

b) We present a few applications of Möbius inversion in number theory: Let
f ∈ F(N) be a number-theoretic function. Since N has a zero element, F(N)
becomes a right A(N)-module, hence we get f+ := f ∗ζ ∈ F(N), where f+(n) =∑
d |n f(d) =

∑
d |n f(nd ), for all n ∈ N, and thus f = f+ ∗ µ ∈ F(N), where

(f+ ∗ µ)(n) =
∑
d |n f

+(d)µ(d, n) =
∑
d |n f

+(d)µ(nd ) =
∑
d |n µ(d)f+(nd ).

For the constant map ε ∈ F(N), given by ε(n) = 1 for all n ∈ N, we get
τ := ε+ ∈ F(N), where τ(n) =

∑
d |n 1 is the number of divisors of n; this

yields τ ∗ µ = ε ∈ F(N), that is
∑
d |n τ(d)µ(nd ) =

∑
d |n µ(d)τ(nd ) = 1. For

the identity map idN ∈ F(N) we get σ := id+
N ∈ F(N), where σ(n) =

∑
d |n d
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is the sum of the divisors of n; this yields σ ∗ µ = idN ∈ F(N), that is∑
d |n σ(d)µ(nd ) =

∑
d |n µ(d)σ(nd ) = n.

The other way around, for n ∈ N we get (ε∗µ)(n) =
∑
d |n µ(nd ) =

∑
d |n µ(d) =

δ(1, n) = δ1(n), that is ε ∗ µ = δ1 ∈ F(N); this yields (δ1)+ = ε ∈ F(N), that
is
∑
d |n δ1(d) =

∑
d |n δ1(nd ) = 1. More interestingly, let ϕ := idN ∗ µ ∈ F(N)

be the Euler totient function, where ϕ(n) =
∑
d |n d · µ(nd ) =

∑
d |n µ(d) · nd ;

this yields ϕ+ = idN ∈ F(N), that is
∑
d |n ϕ(d) =

∑
d |n ϕ(nd ) = n.

We show that ϕ(n) can be interpreted as a cardinality, and in particular has
positive values: Let ϕ̃ ∈ F(N) be given as ϕ̃(n) := |{k ∈ {1, . . . , n}; gcd(k, n) =
1}|. Then we have

∑
d |n ϕ̃(nd ) =

∑
d |n |{k ∈ {1, . . . ,

n
d }; gcd(k, nd ) = 1}| =∑

d |n |{k ∈ {1, . . . , n}; gcd(k, n) = d}| = |
∐
d |n{k ∈ {1, . . . , n}; gcd(k, n) =

d}| = n, implying that ϕ̃ ∗ ζ = idN, and thus ϕ̃ = idN ∗ µ = ϕ ∈ F(N).

We determine ϕ explicitly, using prime factorizations: For n =
∏k
i=1 p

ni
i ∈

N, where p1, . . . , pk ∈ N are pairwise distinct primes, n1, . . . , nk ∈ N and

k ∈ N0, we get ϕ(n) =
∑

[a1,...,ak]∈
∏k
i=1[0,...,ni]

(
µ(
∏k
i=1 p

ai
i ) ·

∏k
i=1 p

ni−ai
i

)
=∑

[ε1,...,εk]∈{0,1}k

(
(−1)

∑k
i=1 εi ·

∏k
i=1 p

ni−εi
i

)
, which thus implies ϕ(n) = n ·∑

[ε1,...,εk]∈{0,1}k
∏k
i=1(−1

pi
)εi = n ·

∏k
i=1(1− 1

pi
) =

∏k
i=1 p

ni−1
i (pi − 1).

c) We present a q-analogue of the formula (δ1)+ = ε ∈ F(N): Let Fq be the
finite field of order q, and let In(q) ∈ N0 be the number of monic irreducible
polynomials over Fq of degree n ∈ N. Then since Fqd is the separable splitting
field of any irreducible polynomial over Fq of degree d ∈ N, for d ∈ {1, . . . , n},
and Fqd ⊆ Fqn if and only if d | n, we get qn =

∑
d |n d · Id(q)

Thus letting fq ∈ F(N) be defined by fq(n) := n·In(q), for n ∈ N, for f+
q ∈ F(N)

we have (f+
q )(n) =

∑
d |n d·Id(q) = qn, and thus n·In(q) = fq(n) = (f+

q ∗µ)(n) =∑
d |n q

d · µ(nd ), which is a combinatorial formula to compute In(q).

Indeed, for all n ∈ N we may view fq(n) and f+
q (n) as a polynomial in Z[q], hence

specializing at q 7→ 1 yields f+
q (n)|q 7→1 = qd|q 7→1 = 1, saying that f+

q |q 7→1 = ε ∈
F(N). Moreover, we get fq(n)|q 7→1 =

∑
d |n µ(nd ) =

∑
d |n µ(d, n) = δ(1, n),

saying that fq|q 7→1 = δ1 ∈ F(N).

(9.3) Example: Subspace lattices. To compute the Möbius function of
Pn(q), where q is a prime power and n ∈ N0, we observe that for V ≤W ≤ Fnq we

have [V,W ] ∼= [V/V,W/V ] ∼= [{0},FdimFq (W )−dimFq (V )
q ] as partially ordered sets,

hence, since µ is determined locally, it suffices to determine µn(q) := µ({0},Fnq ).
By induction on n ∈ N we show µn(q) = −qn−1µn−1(q):

Letting L ≤ Fnq be a 1-dimensional Fq-subspace, by Weisner’s Theorem we have∑
U≤Fnq ,U+L=Fnq

µ({0}, U) = 0. The condition U + L = Fnq is equivalent to

either U = Fnq , or U lFnq such that L 6≤ U . Hence we get µn(q) = µ({0},Fnq ) =

−
∑
L6≤U<· Fnq

µ({0}, U) = −µn−1(q) · |{U l Fnq ;L 6≤ U}|. Since there are qn−1
q−1
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maximal proper subspaces of Fnq , of which qn−1−1
q−1 contain L, we infer µn(q) =

−µn−1(q) · ( q
n−1
q−1 −

qn−1−1
q−1 ) = −qn−1µn−1(q). ]

This entails µn(q) = (−1)nq(
n
2) for n ∈ N0: We have µ0(q) = 1, and by induction

on n ∈ N we get µn(q) = −qn−1µn−1(q) = −(−1)n−1q(
n−1
1 )q(

n−1
2 ) = (−1)nq(

n
2).

For example, we have µ1(q) = −1 and µ2(q) = q and µ3(q) = −q3.

Moreover, we observe the following: Considering µn(q) as a polynomial in Z[q],
we may specialize at q 7→ 1, yielding µn(q)|q 7→1 = (−1)n, for all n ∈ N0. This
coincides with the Möbius function µn for the partially ordered set P(N), where
N has cardinality n, to be discussed below. Hence µn(q) is a q-analogue of µn.
Indeed, since we have already noted that Pn(q) can be seen as a q-analogue of
P(N), this is not too surprising: Both Pn(q) and P(N) are graded of rank n,
and for the respective number of elements of rank k, for k ∈ {0, . . . , n}, we have(
n
k

)
q
|q 7→1 =

(
n
k

)
. Since Möbius functions in general are determined locally by

the recursion
∑
x≤z≤y µ(x, y) = 0 for x < y, where µ(x, x) = 1, in the present

cases it follows that µn(q)|q 7→1 = µ({0},Fnq )|q 7→1 = µ(∅, N) = µn.

(9.4) Example: Subset lattices. a) Let N be a set. To compute the Möbius
function of the finitary power sets Pfin(N) and Pco-fin(N), since Möbius func-
tions are determined locally, we infer that is suffices to consider the case of
a finite set N , where we have P(N) = Pfin(N) = Pco-fin(N). Hence let now
N := {1, . . . , n} be a finite set of cardinality n ∈ N0. Since for L ⊆M ⊆ N we
have [L,M ] ∼= [L \L,M \L] ∼= [{}, {1, . . . , |M | − |L|}] as partially ordered sets,
we conclude that it suffices to compute µn := µ(∅, N):

We may identify P(N) with {0, 1}n by using indicator functions, that is M ⊆ N
is associated with [a1, . . . , an], where ai = 1 if i ∈ M , and ai = 0 if i ∈
N \M . Moreover, {0, 1}n becomes a partially ordered set with respect to the
n-fold direct product of the totally ordered set {0, 1} with itself. Then the
chosen identification actually is an isomorphism P(N) ∼= {0, 1}n of partially
ordered sets; for the example of n = 3 see Table 9. Hence we conclude that
µn = µ(∅, N) = µ([0, . . . , 0], [1, . . . , 1]) = (−1)n. Alternatively, we may proceed
by induction on n ∈ N0: For n = 0 we have µ0 = 1; and for n ≥ 1 the
set N has

(
n
k

)
subsets of cardinality k, for all k ∈ {0, . . . , n}, hence we get

µn = −
∑n−1
k=0(−1)k

(
n
k

)
= (−1)n.

b) Let N be an arbitrary set again, and let R 6= {0} be a commutative ring.
Then Möbius inversion on Pfin(N) and Pco-fin(N) reads as follows:

Since Pfin(N) has the zero element ∅, for f ∈ FR(Pfin(N)) we get f+(M) =
(f ∗ ζ)(M) =

∑
L⊆M f(L), for all finite M ⊆ N . Similarly, (f ∗ µ)(M) =∑

L⊆M f(L)µ(L,M) =
∑
L⊆M (−1)|M\L|f(L), for all finite M ⊆ N . Thus

Möbius inversion yields f+ ∗ µ = f = (f ∗ µ)+ for all f ∈ FR(Pfin(N)).

Since, Pco-fin(N) has the one element N , for f ∈ FR(Pco-fin(N)) we get f+(M) =
(ζ ∗ f)(M) =

∑
M⊆L⊆N f(L), for all co-finite M ⊆ N , and (µ ∗ f)(M) =
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∑
M⊆L⊆N µ(M,L)f(L) =

∑
M⊆L⊆N (−1)|L\M |f(L), for all co-finite M ⊆ N .

Thus Möbius inversion yields µ ∗ f+ = f = (µ ∗ f)+ for all f ∈ FR(Pco-fin(N)).

10 Inclusion-exclusion

(10.1) Binomial inversion. a) Keeping the notation of (9.4), for finite N and
functions f ∈ FR(P(N)) only depending on the cardinality of the subsets of N ,
but not on the particular subsets considered, we obtain binomial inversion:

Let a := [a0, . . . , an] ∈ Rn+1, where n := |N | ∈ N0, and let f ∈ FR(P(N)) be
defined by f(M) = am, whenever M ⊆ N such that |M | = m ∈ {0, . . . , n}.
Then we have f+(M) =

∑
L⊆M f(L) =

∑m
i=0

(
m
i

)
ai =: bm, saying that f+ ∈

FR(P(N)) only depends on cardinalities, and is described by b := [b0, . . . , bn] ∈
Rn+1. This yields am = f(M) = (f+ ∗ µ)(M) =

∑
L⊆M (−1)|M\L| · (f+)(L) =∑

L⊆M (−1)|M\L|b|L| =
∑m
j=0(−1)m−j

(
m
j

)
bj .

For example, the i-th unit vector a := ei ∈ Rn+1, where i ∈ {0, . . . , n}, is
mapped to b = [b0, . . . , bn], where bj =

(
j
i

)
, hence binomial inversion yields

δi,k =
∑k
j=0(−1)k−j

(
k
j

)(
j
i

)
, for k ∈ {0, . . . , n}; in particular, i = 0 yields∑k

j=0(−1)k−j
(
k
j

)
= δ0,k. Moreover, for a := [1, . . . , 1] we get bj =

∑j
i=0

(
j
i

)
=

(1 + 1)j = 2j , for j ∈ {0, . . . , n}, thus b = [20, 21, . . . , 2n]; hence binomial inver-

sion yields 1 =
∑k
j=0(−1)k−j

(
k
j

)
· 2j , for k ∈ {0, . . . , n}, where the right hand

side indeed coincides with the expansion of (2− 1)k.

b) We present a couple of more interesting examples: Firstly, we reconsider the
number Dn of derangements in Sn, for n ∈ N0. Letting still Dn,k ∈ N0 be the
number of permutations in Sn having precisely k ∈ N0 fixed points, choosing
any k-subset of {1, . . . , n} as set of fixed points, we get n! =

∑n
k=0

(
n
k

)
Dn−k =∑n

k=0

(
n
k

)
Dk. Thus by binomial inversion we recover Dn =

∑n
k=0(−1)n−k

(
n
k

)
·

k! = n! ·
∑n
k=0

(−1)n−k

(n−k)! = n! ·
∑n
k=0

(−1)k

k! .

Secondly, we reconsider the Stirling numbers of the second kind; recall that
we have n! · Sk,n = |Surj(K,N)|, where K := {1, . . . , k} and k ∈ N0. From
Maps(K,N) =

∐
I⊆N Surj(K, I) we get nk =

∑n
i=0

(
n
i

)
· i! · Sk,i. Thus by

binomial inversion we get |Surj(K,N)| = n! · Sk,n =
∑n
j=0(−1)n−j

(
n
j

)
· jk.

(10.2) Inclusion-exclusion. a) As a further application, we obtain the prin-
ciple of inclusion-exclusion: Let X be a finite set, and let X1, . . . , Xn ⊆ X,
where n ∈ N0. Letting N := {1, . . . , n} we aim at computing the cardinality
|X \

⋃
i∈N Xi| = |

⋂
i∈N (X \Xi)| ∈ N0; note that intersections over empty index

sets are set equal to X throughout.

For I ⊆ J ⊆ N let XI :=
⋂
i∈I Xi, and XI⊆J := XI ∩

⋂
j∈J\I(X \ Xj); in

particular we have X∅⊆N =
⋂
j∈N (X \Xj). Hence for x ∈ X we have x ∈ XI⊆N

if and only if I = {i ∈ N ;x ∈ Xi}, and thus X =
∐
I⊆N XI⊆N . We have XI =
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XI ∩ X = (
⋂
i∈I Xi) ∩ (

∐
J⊆N\I XJ⊆N\I) =

∐
J⊆N\I((

⋂
i∈I Xi) ∩ XJ⊆N\I) =∐

J⊆N\I((
⋂
i∈I

.
∪J Xi) ∩ (

⋂
j∈N\(I

.
∪J)(X \Xj))) =

∐
I⊆J⊆N XJ⊆N .

Let f : P(N) → Z : I 7→ |XI⊆N |. Then we get (f+)(I) =
∑
I⊆J⊆N |XJ⊆N | =

|
∐
I⊆J⊆N XJ⊆N | = |XI |, implying that |XI⊆N | = f(I) = (µ ∗ f+)(I) =∑
I⊆J⊆N (−1)|J\I| · f+(J) =

∑
I⊆J⊆N (−1)|J\I| · |XJ |, for all I ⊆ N . In particu-

lar, I = ∅ yields the set-theoretical inclusion-exclusion formula |
⋂
i∈N (X\Xi)| =∑

J⊆N (−1)|J| · |XJ | =
∑
J⊆N (−1)|J| · |

⋂
j∈J Xj |.

b) If the cardinality |XI | only depends on the cardinality of I, for all I ⊆ N ,
or equivalently if this holds for all the |XI⊆N |, then the principle of inclusion-
exclusion boils down to binomial inversion. Hence the cases of interest here are
those where |XI |, and hence XI , genuinely depend on I. Indeed, the couple of
examples in (10.1) is not too interesting in the present context:

Firstly, we reconsider the number Dn of derangements in X := Sn. Letting
Xi := {π ∈ Sn;π(i) = i}, for i ∈ N , for any I ⊆ N we have |XI | = |{π ∈
Sn;π(i) = i for all i ∈ I}| = (n−|I|)!, and |XI⊆N | = |{π ∈ Sn; FixN (π) = I}| =
Dn−|I|. The principle of inclusion-exclusion says Dn−|I| =

∑
I⊆J⊆N (−1)|J\I| ·

(n − |J |)!. Although this entails Dn,k =
(
n
k

)
·Dn−k =

(
n
k

)
·
∑n−k
j=0 (−1)j

(
n−k
j

)
·

(n − k − j)! = n!
k! ·

∑n−k
j=0

(−1)j

j! , for k ∈ {0, . . . , n}, it is just equivalent to

the case I = ∅, which is the set-theoretic inclusion-exclusion formula, saying

Dn =
∑
J⊆N (−1)|J| · (n− |J |)! =

∑n
j=0(−1)j

(
n
j

)
· (n− j)! = n! ·

∑n
j=0

(−1)j

j! .

Secondly, we reconsider the Stirling numbers of the second kind, or equivalently
|Surj(K,N)|, where K := {1, . . . , k} and k ∈ N0. Let X := Maps(K,N) and
Xi := {f ∈ X; f−1(i) = ∅}, for i ∈ N . Then for any I ⊆ N we have |XI | = |{f ∈
X; f−1(I) = ∅}| = |Maps(K,N \ I)| = (n−|I|)k and |XI⊆N | = |Surj(K,N \ I)|.
The principle of inclusion-exclusion says |Surj(K,N \ I)| =

∑
I⊆J⊆N (−1)|J\I| ·

(n−|J |)k, which again is equivalent to the case I = ∅, in which the set-theoretic
inclusion-exclusion formula says |Surj(K,N)| =

∑
J⊆N (−1)|J| · (n − |J |)k =∑n

j=0(−1)j
(
n
j

)
· (n− j)k =

∑n
j=0(−1)n−j

(
n
j

)
· jk.

c) Here is a more interesting example: For r ≥ 2 let Pr′(n) ⊆ P (n) be the set of
partitions consisting of parts not divisible by r, and let Pr-reg(n) ⊆ P (n) be the
set of r-regular partitions, that is those all of whose parts have multiplicity
less than r; for r = 2 we get the sets O(n) and D(n) of partitions consisting
of odd parts and of pairwise distinct parts, respectively, see Table 11. Then we
have |Pr′(n)| = |Pr-reg(n)| ∈ N0:

For i ∈ N let Xi ⊆ P (n) =: X be the set of partitions having ri as a part, and let
Yi ⊆ P (n) be the set of partitions containing the part i at least r times. Then for
any subset I ⊆ N we have |

⋂
i∈I Xi| = |P (n−

∑
i∈I ri)| = |P (n− r ·

∑
i∈I i)| =

|
⋂
i∈I Yi|. Hence applying the set-theoretic inclusion-exclusion formula to both

Pr′(n) = P (n) \
⋃n
i=1Xi and Pr-reg(n) = P (n) \

⋃n
i=1 Yi yields the assertion. ]
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Table 11: Odd-part and distinct-part partitions.

n O(n) D(n)

0 [] []
1 [1] [1]
2 [12] [2]
3 [3], [13] [3], [2, 1]
4 [3, 1], [14] [4], [3, 1]
5 [5], [3, 12], [15] [5], [4, 1], [3, 2]
6 [5, 1], [32], [3, 13], [16] [6], [5, 1], [4, 2], [3, 2, 1]
7 [7], [5, 12], [32, 1], [3, 14], [17] [7], [6, 1], [5, 2], [4, 3], [4, 2, 1]

(10.3) Grouping index sets. a) We keep the notation of (10.2), and let
sk :=

∑
J⊆N,|J|=k |XJ | ∈ N0, for k ∈ {0, . . . , n}; in particular, we have s0 = |X|

and s1 =
∑n
i=1 |Xi|. Summing over the subsets of cardinality k, the principle of

inclusion-exclusion translates as
∑
I⊆N,|I|=k |XI⊆N | =

∑
I⊆J⊆N,|I|=k(−1)|J|−k ·

|XJ | =
∑n
l=k(−1)l−k

(
l
k

)
· (
∑
J⊆N,|J|=l |XJ |) =

∑n
l=k(−1)l−k

(
l
k

)
sl. In particu-

lar, the case k = 0 allows to reformulate the set-theoretical inclusion-exclusion
formula as |

⋂
i∈N (X \Xi)| =

∑n
l=0(−1)lsl.

Summing over all subsets of cardinality at least k yields
∑
I⊆N,|I|≥k |XI⊆N | =∑n

m=k

∑n
l=m(−1)l−m

(
l
m

)
sl =

∑n
l=k sl · (

∑l
m=k(−1)l−m

(
l
m

)
). For k = 0 from∑l

m=0(−1)l−m
(
l
m

)
= δ0,l we recover

∑
I⊆N,|I|≥0 |XI⊆N | =

∑n
l=0 δ0,lsl = s0 =

|X|. Moreover, for k ≥ 1 the partial alternating row sum formula yields∑l
m=k(−1)l−m

(
l
m

)
=
∑l−k
m=0(−1)m

(
l
m

)
= (−1)l−k

(
l−1
l−k
)

= (−1)l−k
(
l−1
k−1

)
, from

which we get
∑
I⊆N,|I|≥k |XI⊆N | =

∑n
l=k(−1)l−k

(
l−1
k−1

)
sl.

b) We show Bonferoni’s Theorem [1936], for k ∈ {0, . . . , n} saying that
(−1)k ·

∑n
l=k(−1)lsl ≥ 0:

The set-theoretical inclusion-exclusion formula implying the case k = 0, we may
assume k ≥ 1. Then we have

∑n
l=k(−1)k−lsl =

∑
J⊆N,|J|≥k(−1)|J|−k · |XJ | =∑

J⊆N,|J|≥k
∑
J⊆I⊆N (−1)|J|−k · |XI⊆N |. Next, changing the order of sum-

mation yields
∑n
l=k(−1)k−lsl =

∑
I⊆N,|I|≥k |XI⊆N | · (

∑
J⊆I,|J|≥k(−1)|J|−k) =∑

I⊆N,|I|≥k |XI⊆N | · (
∑|I|
j=k(−1)j−k

(|I|
j

)
). The partial alternating row sum for-

mula yields
∑|I|
j=k(−1)j−k

(|I|
j

)
=
∑|I|−k
j=0 (−1)|I|−k−j

(|I|
j

)
=
(|I|−1
|I|−k

)
=
(|I|−1
k−1

)
,

from which we finally get
∑n
l=k(−1)k−lsl =

∑
I⊆N,|I|≥k |XI⊆N | ·

(|I|−1
k−1

)
≥ 0. ]

Hence, letting s := |
⋂
i∈N (X \Xi)| =

∑n
l=0(−1)lsl, we have s ≤

∑k
l=0(−1)lsl if

k is even, and s ≥
∑k
l=0(−1)lsl if k is odd. Thus, the partial sums

∑k
l=0(−1)lsl

successively are lower and upper estimates of s; note that the inequalities s ≤
s0 = |X| and s ≥ s0 − s1 = |X| −

∑n
i=1 |Xi| are obvious anyway.
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(10.4) Improving inclusion-exclusion. We get an improvement of the prin-
ciple of inclusion-exclusion by taking the intersection configuration into account.
To do so, keeping the notation of (10.2), we consider the set X := {XI ∈
P(N); I ⊆ N}, partially ordered by set-theoretic inclusion ⊆, and having zeta
and Möbius functions ζ ∈ A(X ) and µ ∈ A(X ), respectively.

For M ∈ X let M̂ := M \
⋃
{L ∈ X ;L ⊂M} =

⋂
{M \ L;L ∈ X , L ⊂M} ⊆ X

be the set of all elements of M which are not contained in a strictly smaller set
in X ; hence we have M =

∐
L⊆M∈X L̂. In particular, we have X = X∅ ∈ X and

X̂ = X \
⋃
i∈N Xi =

⋂
i∈N (X \Xi), where our aim hence is to compute |X̂|.

Let now f : X → Z : M 7→ |M̂ |. Then for f+ = f ∗ ζ ∈ F(X ) we have f+(M) =∑
L⊆M∈X f(L) =

∑
L⊆M∈X |L̂| = |

∐
L⊆M∈X L̂| = |M |, for all M ∈ X . Thus we

indeed get a shorter inclusion-exclusion formula |X̂| = f(X) = (f+ ∗ µ)(X) =∑
L∈X f

+(L) ·µ(L,X) =
∑
L∈X µ(L,X) · |L|, of course at the expense of having

to compute the Möbius function µ of X .

For example, for n = 3, let A,B,C ⊆ X such that A ∩ B = A ∩ C = B ∩ C;
hence A ∩ B ∩ C = A ∩ B as well. Then the set-theoretic inclusion-exclusion
formula yields |X \ (A ∪B ∪ C)| = |X| − |A| − |B| − |C|+ |A ∩B|+ |A ∩ C|+
+|B ∩C| − |A ∩B ∩C| = |X| − |A| − |B| − |C|+ 2 · |A ∩B ∩C|. Now we have
X = {A ∩ B ∩ C,A,B,C,X} ∼= {∅, {1}, {2}, {3}, {1, 2, 3}} ∼= P2(2) as partially
ordered sets; hence the matrices of ζ and µ are

ζ 7→


1 1 1 1 1

1 . . 1
1 . 1

1 1
1

 , µ 7→


1 −1 −1 −1 2

1 . . −1
1 . −1

1 −1
1

 .
Reading off the last column of the matrix of µ yields again |X \ (A∪B ∪C)| =
|X| − |A| − |B| − |C|+ 2 · |A ∩B ∩ C|.

(10.5) Example: Problème des ménages. How many ways are there to
place n ≥ 2 couples at a circular table, such that men and women are in alternate
places, but such that no husband sits at either side of his wife? Allowing for
arbitrary renumbering of the couples, and for exchanging the roles of men and
women, up to a factor of 2 · n! the number sought is given as follows: We may
assume that women 1 to n are seated in clockwise order. Numbering the places
for the men in clockwise order as well, where seat 1 is the one left to woman 1,
we have to determine the number mn ∈ N0 of all discordant permutations
π ∈ Sn such that π(i) 6≡ i, i+ 1 (mod n) for all i ∈ N := {1, . . . , n}.
To this end, we apply the principle of inclusion-exclusion to the sets Xi := {π ∈
Sn;π(i) = i or π(i) ≡ i+ 1 (mod n)}, for i ∈ N . Since in this case |XI | indeed
depends on the particular choice of I ⊆ N , not just on |I| alone, we are going
to determine

∑
I⊆N,|I|=k |XI |, for k ∈ {0, . . . , n}, in a single step:
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To do so, we consider the permutation matrices associated with Sn, that is
the (n × n)-matrices with entries in {0, 1}, such that any row and any column
contains precisely one entry 1. Then, given π ∈ Sn, we have π ∈ XI , for some
I ⊆ N , if and only if the entries 1 in the columns indexed by I are amongst
the positions marked by ‘∗’ in the following (n × n)-matrix, while after fixing
the entries in the columns indexed by I for the columns indexed by N \ I all
(n− |I|)! possible choices left are allowed:

∗ . . . . . ∗
∗ ∗ . .
. ∗ ∗ .
...

. . .
. . .

...
. . . . . ∗ ∗


Allowing for all subsets I ⊆ N of a fixed cardinality k, the fact that any row
and column of the above matrix contains at most one entry 1 translates into
the task to determine the number of ways to choose k pairwise non-adjacent
positions on a circle of length 2n.

To do so, we consider a circular array with positions {1, . . . ,m}, where m ∈ N,
which has to be filled with k ≤ bm2 c entries ‘ | ’ and m− k entries ‘•’, such that
the entries ‘ | ’ are pairwise non-adjacent. Thinking of the m−k entries ‘•’ to be
arranged already, the valid configurations are described by the k-subset of the
m − k spaces between the entries ‘•’ hosting the entries ‘ | ’. In order to count
these configurations, we distinguish the cases which entry occupies position 1:

If this is an entry ‘•’, we may choose any k-subset of the m− k spaces; if k ≥ 1
and this is an entry ‘ | ’, then there are only m − k − 1 spaces left, from which
we may choose any (k − 1)-subset. Thus we get a total of

(
m−k
k

)
+
(
m−k−1
k−1

)
=(

m−k
k

)
+ k

m−k ·
(
m−k
k

)
= m

m−k ·
(
m−k
k

)
possibilities; this also holds for k = 0.

Thus we get
∑
I⊆N,|I|=k |XI | = (n− k)! · 2n

2n−k ·
(

2n−k
k

)
. Hence the set-theoretic

inclusion-exclusion formula says that mn =
∑
I⊆N (−1)|I| · |XI | =

∑n
k=0(−1)k ·

(
∑
I⊆N,|I|=k |XI |) =

∑n
k=0

(−1)k·(n−k)!·2n
2n−k ·

(
2n−k
k

)
[Touchard, 1934]. Singling

out the case k = n, index shifting, and simplifying the summands yields mn =
(−1)n · 2 + n ·

∑n
k=1(−1)k−1 · (n − k)! ·

(
2n−k
k−1

)
. For example, we have m2 = 0,

m3 = 1, m4 = 2, m5 = 13, m6 = 80, m7 = 579, m8 = 4738, m9 = 439792.

11 Finite incidence algebras

We consider finite dimensional incidence algebras from the perspective of rep-
resentation theory; for more on the background needed see [3, Ch.I–III].

(11.1) Finite dimensional incidence algebras. Keeping the notation of
(8.5), let X be a finite partially ordered set, and let A := AK(X) = 〈Eij ;xi ≤
xj〉K ⊆ Tn(K), where K is a field.
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Then we have J := JK(X) = UK(X) = 〈Eij ;xi < xj〉K . Hence we haveA/J ∼=⊕n
i=1K, thus A is split and has precisely n simple modules {S1, . . . , Sn}, up

to isomorphism. We have dimK(Si) = 1, for i ∈ {1, . . . , n}, hence A is a basic
algebra. Moreover, we get J 2 = 〈Eik;xi < xj < xk for some j〉K , and thus
J /J 2 ∼= 〈Eij ;xi l xj〉K . The radical length of A equals l(X) + 1, that is
J k = {0} if and only if k ≥ l(X) + 1; note that l(X) ≤ n− 1.

Next, En =
∑n
i=1Eii ∈ A is a decomposition into pairwise orthogonal prim-

itive idempotents. We assume notation chosen such that Eii acts as the
identity on Si; hence SjEii = {0} whenever i 6= j ∈ {1, . . . , n}. Then the pro-
jective cover of Si is given as Pi = EiiA, and we have A ∼=

⊕n
i=1 Pi. Using

the notation of (8.3), we have Pi = EiiA = IK({xi}, X) = 〈Eij ;xi ≤ xj〉K , for
i ∈ {1, . . . , n}, thus dimK(Pi) = |{j ∈ {1, . . . , n};xi ≤ xj}| = |〈xi ≤〉|, where
〈xi ≤〉 ⊆ X denotes the principal coideal generated by xi.

Given j ∈ {1, . . . , n} such that xi ≤ xj , the K-linear map αij : Pj → Pi : Ejk →
Eik, for all k ∈ {1, . . . , n} such that xj ≤ xk, is an embedding of A-modules,
where αij(Pj) = 〈Eik;xj ≤ xk〉K = IK({xi}, 〈xj ≤〉). Indeed, a consideration
of matrices shows that applying αij amounts to left multiplication with Eij ,
hence αij(Pj) = Eij ·EjjA = EijA, and αij ◦αjk = αik whenever xi ≤ xj ≤ xk.

Hence Sj is a constituent of Pi whenever xi ≤ xj , and a comparison with
dimK(Pi) shows that it occurs with multiplicity [Pi : Sj ] = 1 if xi ≤ xj , and
[Pi : Sj ] = 0 otherwise; thus Pi is multiplicity-free. Thus in turn we have
HomA(Pj , Pi) = 〈αij〉K whenever xi ≤ xj , and HomA(Pj , Pi) = {0} otherwise;
in particular, Pi is simple if and only if xi ∈ X is maximal.

Thus the Cartan matrix
[
[Pi : Sj ]

]
ij
∈ Zn×n of A is coincides with the matrix

of the zeta function in A. In particular, we conclude that the partially ordered
setX can be recovered from its incidence algebraA, in other words two incidence
algebras are isomorphic if and only if the underlying partially ordered sets are.

(11.2) Path algebra description. We proceed to describeA as a path algebra
quotient. To do so, we first determine the Ext quiver of A, which has the
simpleA-modules {S1, . . . , Sn} as its vertices, and [rad(Pi)/rad2(Pi) : Sj ] arrows

Sj ← Si. Actually, the latter coincides with the Hasse diagram X̂ of X; note

that X̂ only has simple arrows and is acyclic, that is without oriented loops:

We have rad(Pi) = EiiA·J = EiiJ = 〈Eij ;xi < xj〉K and rad2(Pi) = EiiJ 2 =
〈Eik;xi < xj < xk for some j〉K , thus rad(Pi)/rad2(Pi) ∼= 〈Eij ;xi l xj〉K .
Now we have αij(Pj) ≤ rad(Pi) whenever xi < xj , which entails αik(Pk) =
αijαjk(Pk) ≤ rad2(Pi) whenever xi < xj < xk, saying that in this case Sk
is not a constituent of rad(Pi)/rad2(Pi). Comparing with the K-dimension of
rad(Pi)/rad2(Pi) we thus infer that indeed rad(Pi)/rad2(Pi) ∼=

⊕
j;xilxj Sj . ]

Let Â be the path algebra associated with X̂: A K-basis of Â is given by the
set of all oriented paths ρ = (xik ← xik−1

← · · · ← xi1 ← xi0) of length

k ∈ N0 in X̂; in particular, this encompasses the empty paths ρi at each vertex



III Incidence algebras 64

xi, and the paths ρij := (xi ← xj) whenever xi l xj . Here, s(ρ) = i0 and
t(ρ) = ik are called the source and target vertices of ρ, respectively. For

paths σ, ρ ∈ Â, the product of σρ is defined as the concatenation (to the left)
of σ and ρ whenever s(σ) = t(ρ), otherwise let σ · ρ := 0; we have ρρi = ρ if

s(ρ) = i, and ρjρ = ρ if t(ρ) = j. Hence Â is generated as a K-algebra by

{ρ1, . . . , ρn}
.
∪ {ρij ;xi l xj}, and since X̂ is acyclic Â is finite dimensional.

Now, the concatenation rule for paths and the multiplication rule for the matri-
ces Eij entail that π : Â → A : ρi 7→ Eii, ρij 7→ Eij , whenever xi l xj , extends
to an epimorphism of K-algebras. We determine a finite set of defining relations
for A as a quotient of Â, that is an ideal generating set of ker(π) E Â:

If ρ = (xik ← xik−1
← · · · ← xi1 ← xi0) ∈ Â is a path, then we have π(ρ) =

Eikik−1
Eik−1ik−2

· · ·Ei1i0 = Eiki0 = Et(α),s(α) ∈ A. Hence, if σ, ρ ∈ Â are paths
such that s(σ) = s(ρ) and t(σ) = t(ρ), then we have π(σ) = π(ρ). Thus, letting

KEÂ be the ideal generated by all differences σ−ρ of paths such that s(σ) = s(ρ)
and t(σ) = t(ρ), we have K ⊆ ker(π). Conversely, choosing a path xi ← · · · ←
xj , for any pair [i, j] such that xi ≤ xj , yields a K-generating set of Â/K of
cardinality |{[i, j];xi ≤ xj}| = dimK(〈Eij ;xi ≤ xj〉K) = dimK(A). Hence we

conclude that dimK(Â/ ker(π)) ≤ dimK(Â/K) ≤ dimK(A) = dimK(Â/ ker(π)),
implying equality throughout, and thus ker(π) = K. ]

Note that since for any i there is only one empty path at xi, namely ρi, and for
any xi l xj there only one path from xj to xi, namely ρij , all paths involved
in elements of ker(π) have length at least 2, saying that ker(π) indeed is an

admissible ideal, that is ker(π) ⊆ rad2(Â); note that radk(Â) has the set of
all paths of length at least k as a K-basis, for k ∈ N0.

(11.3) Projective modules. a) We proceed to examine the submodule lattice
M(Pi) of Pi, using the terminology introduced in (7.8): Since Pi is multiplicity-
free, its submodule lattice M(Pi) is distributive, in particular finite, being de-
scribed by the set of ideals of L(Pi), where for any j such that xi ≤ xj there
is a unique Sj-local submodule. In this case, since Pj is Sj-local and αij is an
embedding, we conclude that Pj ∼= αij(Pj) = EijA ≤ EiiA = Pi is the Sj-local
submodule of Pi. In particular, any local submodule of Pi is projective.

Hence the submodules of Pi = IK({xi}, X) are precisely given as IK({xi}, Y ),
where Y runs through the coideals of X contained in the principal coideal 〈xi ≤〉.
Thus the submodule lattice of Pi is naturally isomorphic to the lattice of coideals
mentioned, where the latter is partially ordered by set-theoretic inclusion. In
particular, for the socle of Pi we have soc(Pi) ∼=

⊕
j;xi≤xj∈X maximal Sj .

Moreover, the blocks of A, that is the smallest direct summands of A as a K-
algebra, are given by the connected components of X, that is the connected
components of the unoriented graph underlying the Hasse diagram X̂ of X; in
particular, A is a block if and only if X is connected.

b) We show that all submodules of Pi are projective, not just the local ones,
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if and only if for all xj ≥ xi there is a unique path in the Hasse diagram X̂
between xj and xi, that is a unique saturated chain in X between xi and xj :

Assume that there are distinct paths bewtween xj and xi. Then there are xk
and xl such that xi ≤ xk ≤ xj and xi ≤ xl ≤ xj , but xk 6≤ xl 6≤ xk. Thus we
have αik(Pk) ≤ Pi and αil(Pl) ≤ Pi, such that αik(Pk) 6≤ αil(Pl) 6≤ αik(Pk) and
αij(Pj) ≤ αik(Pk) ∩ αil(Pl), thus U := αik(Pk) + αil(Pl) fulfills U/rad(U) ∼=
Sk ⊕ Sl, but its constituent Sj has multiplicity 1, hence U is not projective.

Conversely, assume that the above uniqueness property holds, let U ≤ Pi be a
submodule, and let Y = {xj ∈ X;αij(Pj) ≤ U} ⊆ 〈xi ≤〉 ⊆ X be the associated
coideal of X. Then letting xj1 , . . . , xjr ∈ Y be the minimal elements of Y , we
have U =

∑r
k=1 αi,jk(Pjk), where r = r(U) ∈ N0 coincides with the rank of

U ∈ M(Pi). Thus, by the uniqueness property assumed, for any xj ∈ Y there
is a unique k = k(j) ∈ {1, . . . , r} such that xjk ≤ xj , implying that for any
constituent Sj of U there is a unique k = k(j) such that Sj is a constituent
of αi,jk(Pjk). Hence we infer that αi,jk(Pjk) ∩

∑
l 6=k αi,jl(Pjl) = {0} for all

k ∈ {1, . . . , r}, that is U =
⊕r

k=1 αi,jk(Pjk) ∼=
⊕r

k=1 Pjk is projective. ]

In particular, in this case rad(Pi) =
∑
xilxj αi,j(Pj) =

⊕
xilxj αi,j(Pj)

∼=⊕
xilxj Pj is projective. Moreover, running over all i ∈ {1, . . . , n}, we con-

clude that any submodule of any projective-indecomposable module is projec-
tive again, if and only if all connected components of X are trees; in particular,
in this case J =

⊕n
i=1 rad(Pi) ∼=

⊕n
i=1(

⊕
xilxj Pj) is projective.

For example, let X := [∅, {1}, {2}, {2, 3}, {1, 2, 3}] be partially ordered by set-
theoretic inclusion ⊆, whose Cartan matrix is given as the matrix of its zeta
function in (8.5). Then we have rad(P∅) = α∅,{1}(P{1}) + α∅,{2}(P{2}), where
α∅,{1}(P{1}) ∩ α∅,{2}(P{2}) = α∅,{1,2,3}(P{1,2,3}) = soc(P∅) ∼= S{1,2,3}, hence
rad(P∅) is not projective.

(11.4) Injective modules. a) Using the projective cover Pi = EiiA of Si, its
A-dual P∨i := HomA(Pi,A) ∼= HomA(EiiA,A) ∼= AEii = 〈Eji;xj ≤ xi〉K =
IK(X, {xi}) is a projective left A-module; hence we have dimK(P∨i ) = |{j ∈
{1, . . . , n};xj ≤ xi}| = |〈≤ xi〉|, where 〈≤ xi〉 ⊆ X denotes the principal ideal
generated by xi. Letting {T1, . . . , Tn} be the simple left A-modules, where we
assume notation chosen such that Eii acts as the identity on Ti, we conclude
that P∨i is the projective cover of Ti. Analogous to the right module case we
infer that [P∨i : Tj ] = 1 if xj ≤ xi, and [P∨i : Tj ] = 0 otherwise.

The submodules of P∨i = IK(X, {xi}) are precisely given as IK(Y, {xi}), where
Y runs through the ideals of X contained in the principal ideal 〈≤ xi〉. Hence
the submodule lattice of P∨i is naturally isomorphic to the lattice of ideals
mentioned, where the latter is partially ordered by set-theoretic inclusion. In
particular, we have soc(P∨i ) ∼=

⊕
j;xj≤xi∈X minimal Tj and rad(P∨i )/rad2(P∨i ) ∼=⊕

j;xjlxi Tj , where P∨i is simple if and only if xi ∈ X is minimal.

Then the K-dual Ii := (P∨i )∗ := HomK(P∨i ,K) is an injective A-module,
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which since soc(Ii) ∼= (P∨i /rad(P∨i ))∗ ∼= T ∗i
∼= Si is the injective hull of Si.

The properties of P∨i by dualising translate into properties of Ii: We have
dimK(Ii) = dimK(P∨i ) = |〈≤ xi〉|, where more precisely [Ii : Sj ] = 1 if xj ≤ xi,
and [Ii : Sj ] = 0 otherwise; in particular, Ii is simple if and only if xi ∈ X is
minimal. The quotient modules of Ii are given by the ideals ofX contained in the
principal ideal 〈≤ xi〉; in particular, we have Ii/rad(Ii) ∼=

⊕
j;xj≤xi∈X minimal Sj .

b) In general, injective-indecomposable modules are rather intractable. But
this changes for connected components of X having a unique minimal element:

Let xi be the unique minimal element of the connected componens of X un-
der consideration. For xi ≤ xj we have soc(P∨j ) ∼= Ti, implying Ij/rad(Ij) ∼=
(soc(P∨j ))∗ ∼= T ∗i

∼= Si. Hence Ij is an epimorphic image of Pi. More pre-
cisely, since Pi ∼= IK({xi}, X) is multiplicity-free, and Ij has precisely the con-
stituents Sk for xk ≤ xj , this determines Ij uniquely as the quotient Ij ∼=
IK({xi}, X)/IK({xi}, X \ 〈≤ xj〉); note that X \ 〈≤ xj〉 ⊆ X is a coideal. ]

In particular, this applies if X is a lattice: In this case X is connected and has
x1 as its unique minimal element. Hence all the modules Ij occur as epimorphic
images of the projective-indecomposable module P1.

c) Similarly we are able to determine the indecomposable projective-injective
modules: If Pi ∼= Ij , then we have soc(Pi) ∼= Sj , where xj is the unique maximal
element such that xi ≤ xj , and we have Ij/rad(Ij) ∼= Si, where xi is the
unique minimal element such that xi ≤ xj . Hence the associated connected
component of X has xi and xj as its unique minimal and maximal elements,
respectively. Conversely, given the latter property, we conclude that Ij fulfills
Ij/rad(Ij) ∼= Si, that is Ij is an epimorphic image of Pi, and from dimK(Ij) =
|{k ∈ {1, . . . , n};xi ≤ xk ≤ xj}| = dimK(Pi) we conclude that Ij ∼= Pi; note
that in this case the constituents Sk occurring encompass the full connected
component of X under consideration.

In particular, if X is a lattice, in which case x1 and xn are the unique minimal
and maximal elements, respectively, then the projective-indecomposable module
P1 is the only projective-injective one, and it coincides with In.

(11.5) The natural module. The natural Tn(K)-module M := Kn gives
rise to a faithful representation of A, that is for the associated annihila-
tor we have annA(M) = {0}. Moreover, we have dimK(HomA(EiiA,M)) =
dimK(MEii) = 1 for all i ∈ {1, . . . , n}, hence we conclude that [M : Si] = 1,
thus M is multiplicity-free.

Hence the submodule lattice M(M) of M is described by the set of ideals of
L(M), where for any i there is a unique Si-local submodule Li ≤ M . Since
MEiiA ≤ M is a non-zero epimorphic image of Pi = EiiA, we conclude that
Li = MEiiA. Moreover, we have Li ≤ Lj if and only if MEii ⊆MEjjA, which
holds if and only if MEjjAEii 6= {0}, which in turn since M is faithful holds
if and only if HomA(Pi, Pj) = HomA(EiiA, EjjA) ∼= EjjAEii 6= {0}, where the
latter is equivalent to xj ≤ xi.
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Thus as partially ordered sets L(M) is the dual of X, and the ideals of L(M)
are in bijection with the coideals of X. The block components of M are in-
decomposable, coinciding with the lattice block components, and are given by
the connected components of X; thus M is indecomposable if and only if X is
connected. To describe when a block components of M is projective or injective,
we may assume that X is connected: Then M is a projective-indecomposable
module if and only if M ∼= P1, which holds if and only if x1 is the unique min-
imal element of X; similarly, M is an injective-indecomposable module if and
only if M ∼= In, which holds if and only if xn is the unique maximal element.

(11.6) Characterizing incidence algebras. We proceed to give a represen-
tation theoretic characterization of finite dimensional incidence algebras; this
is inspired by [16]. The starting point is the above observation that all local
submodules of all the projective-indecomposable A-modules Pi are projective
again, that is to say that A is locally hereditary [Bautista, 1981]. We first
discuss a few general related properties:

a) Any locally hereditary basic finite-dimensional K-algebra A necessarily has
an acyclic Ext quiver: Any arrow T ← S in the Ext quiver, where S and T
are simple A-modules, gives rise to an embedding PT → PS of the associated
projective covers; hence a putative oriented cycle in the Ext quiver through S
would entail a non-surjective embedding PS → PS , a contradiction.

Moreover, acyclicity of the Ext quiver entails [PS : S] = 1 for all simple A-
module S: Assume to the contrary that [PS : S] ≥ 2, then there is a k-fold
extension {0} → S → Vk → · · · → V1 → S → {0}, for some k ∈ N, where the Vl
are indecomposable A-modules of composition length 2; hence there is a cycle
S ← · · · ← S of length k in the Ext quiver, a contradiction.

b) A finite-dimensional K-algebra A is called hereditary if all its right ideals
are projective. Then A is hereditary if and only if its Jacobson radical is a
projective module, which holds if and only if any submodule of any projective-
indecomposable module is projective again. In particular, hereditary algebras
are indeed locally hereditary, but the converse does not hold.

Hence, if A is an incidence algebra, then the discussion in (11.3) shows that it
is hereditary if and only if all connected components of the underlying partially
ordered set X are trees.

(11.7) Theorem: Iovanov–Koffi [2017]. Let A be a basic finite-dimensional
K-algebra. Then the following are are equivalent:
i) A is an incidence algebra.
ii) A has a faithful multiplicity-free representation.
iii) A has a faithful representation with distributive submodule lattice, and we
have [PS : S] = 1 for all simple A-modules S.

Proof. We have already seen that the natural module of an incidence algebra
fulfills the properties of ii), hence the implication ‘i)⇒ii)’ holds.
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a) We show the equivalence ‘ii)⇔iii)’ without reference to incidence algebras.
To this end, let M be a faithful A-module. Since for any primitive idempotent
e ∈ A we have Me 6= {0}, we infer that [M : S] 6= 0 for all simple A-modules S.

Let now M be multiplicity-free, that is [M : S] = 1 for all simple A-modules S,
which implies that M(M) is distributive. In order to show the second state-
ment, let S be any simple A-module, and let e ∈ A be a primitive idempotent
associated with S. Then we have dimK(HomA(eA,M)) = dimK(Me) = 1,
and letting 0 6= ϕ ∈ HomA(eA,M) we have Me = 〈ϕ(e)〉K , and hence M ∼=
M(1− e)⊕ 〈ϕ(e)〉K . For ea ∈ ker(ϕ) we have ϕ(e) · ea = ϕ(ea) = 0, and since
M(1 − e) · ea = {0} anyway, we infer that ea ∈ annA(M) = {0}. Thus ϕ is
injective, implying that eA ∼= ϕ(eA) ≤ M is multiplicity-free, in particular we
have [PS : S] = 1. This shows the implication ‘ii)⇒iii)’.

Conversely, letM(M) be distributive. Letting S be a simple A-module, LS(M)
is non-empty and a chain. Assume that |LS(M)| ≥ 2, then there is an S-local
submodule L ≤ M such that [L : S] ≥ 2, and L being an epimorphic image of
PS , we infer [PS : S] ≥ 2, a contradiction. Hence LS(M) is a singleton set, that
is [M : S] = 1. Thus M is multiplicity-free, showing the implication ‘iii)⇒ii)’.

b) To show the implication ‘ii)⇒i)’, let M be a faithful multiplicity-free A-
module, such that n := dimK(M) ∈ N. Hence let {S1, . . . , Sn} be the simple
A-modules, up to isomorphism, and let 1 =

∑n
i=1 ei ∈ A be a decomposition into

pairwise orthogonal primitive idempotents, where we assume notation chosen
such that ei acts as the identity on Si.

As we have seen in the proof of ‘ii)⇒iii)’ above, eiA is multiplicity-free, hence
we have dimK(eiAej) = dimK(HomA(ejA, eiA)) = [eiA : Sj ] ≤ 1 for all i, j ∈
{1, . . . , n}. Whenever [eiA : Sj ] = 1, we let 0 6= ϕij ∈ HomA(ejA, eiA) and
eij := ϕij(ej) ∈ eiAej ; for i = j we may assume that ϕii = ideiA, that
is eii = ei, while ϕij is not surjective whenever i 6= j. Hence we have the
Pierce decomposition A ∼=

⊕
[eiA : Sj ]=1 eiAej =

⊕
[eiA : Sj ]=1〈eij〉K as K-

vector spaces.

Moreover, any non-zero homomorphism eiA → M is injective. Hence choosing
0 6= ϕi ∈ HomA(eiA,M), from ϕij 6= 0 we infer that ϕiϕij ∈ HomA(ejA,M) is
non-zero, and hence injective, implying that ϕij is injective as well. Hence,
whenever [eiA : Sj ] = 1 = [ejA : Sk], we have ϕijϕjk 6= 0, implying that
[eiA : Sk] = 1 as well, and there is aijk ∈ K∗ such that ϕijϕjk = aijkϕik; in
particular we have aijj = ajjk = aiii = 1. Moreover, for k = i from ϕijϕji 6= 0
we infer that this is only possible for j = i.

Letting X := {x1, . . . , xn}, we may define a relation ≤ on X by xi ≤ xj if and
only if [eiA : Sj ] = 1. By the above considerations this relation is reflexive, anti-
symmetric and transitive, that is a partial order. We show that A ∼= AK(X):
We have already seen that A ∼=

⊕
xi≤xj 〈eij〉K , where multiplication is given by

eijejk = aijkeik, whenever xi ≤ xj ≤ xk. In other words, multiplication in A is
‘twisted’ compared to AK(X), but in a trivial sense as follows:

Recalling that Mei = 〈ϕi(ei)〉K , we get ϕi(ei) · eij = ϕi(eij) = ϕi(eij) · ej =
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bij · ϕj(ej) ∈ M , for suitable bij ∈ K∗; note that bii = 1. This yields ϕi(ei) ·
eij · ejk = bij · ϕj(ej) · ejk = bijbjk · ϕk(ek) ∈ M and ϕi(ei) · eijejk = aijk ·
ϕi(ei) · eik = aijkbik · ϕk(ek) ∈M , hence equating yields aijk =

bijbjk
bik

. Thus let

e′ij := 1
bij
·eij ∈ A, for all i, j ∈ {1, . . . , n} such that xi ≤ xj ; note that e′ii = eii.

Then we get A ∼=
⊕

xi≤xj 〈e
′
ij〉K , such that e′ije

′
jk = 1

bijbjk
·aijk · (bik · e′ik) = e′ik.

This proves A ∼= AK(X), and hence the implication ‘ii)⇒i)’ holds. ]

IV Generating functions

12 Power series

(12.1) Formal power series. a) Let K be a field. We consider the K-vector
space K[[X]] := Maps(N0,K), with pointwise addition and scalar multiplica-
tion. We write the elements of K[[X]], that is sequences [fn ∈ K;n ∈ N0], as
(ordinary) generating series or formal power series f :=

∑
n≥0 fnX

n,
where X is an indeterminate. The principle of comparison of coefficients
holds, saying that f, g ∈ K[[X]] are equal if and only if fn = gn for all n ∈ N0.

Then K[[X]] is a commutative K-algebra with respect to convolutional mul-
tiplication (

∑
i≥0 fiX

i) · (
∑
j≥0 gjX

j) :=
∑
n≥0

∑n
k=0(fkgn−k)Xn ∈ K[[X]],

the neutral element being 1 := X0 ∈ K[[X]]; note that to determine any fixed
coefficient only finitely many arithmetical operations in K are necessary, and
that the polynomial ring K[X] ⊆ K[[X]] is a subring.

Let ν(f) = νX(f) := min{n ∈ N0; fn 6= 0} ∈ N0, for any 0 6= f ∈ K[[X]], be the
order or (discrete) valuation of f at X; for completeness we let ν(0) = ∞.
Then for any 0 6= f, g ∈ K[[X]], letting n := ν(f) ∈ N0 and m := ν(g) ∈ N0,
we have fg = fngmX

n+m +
∑
k≥n+m+1 hkX

k ∈ K[[X]], for suitable hk ∈ K,
implying that ν(fg) = n + m ∈ N0. In particular, we have fg 6= 0 ∈ K[[X]],
implying that K[[X]] is an integral domain.

Moreover, νX : (K[[X]] \ {0}, ·) → (Z,+) is a monoid homomorphism into a
totally ordered abelian group. The set In := {f ∈ K[[X]]; ν(f) ≥ n} =
XnK[[X]]EK[[X]] is an ideal, for all n ∈ N0. We have K[[X]] = I0 ⊃ I1 ⊃ · · · ,
where

⋂
n∈N0

In = {0}, and K[[X]]/I1
∼= K as K-algebras, and In+1/In ∼= K

as K-vector spaces, for all n ∈ N. In particular, we conclude that K[[X]] is a
complete discrete valuation ring.

Let K[[X]]∗ ⊆ K[[X]] be the set of all invertible elements. Then we have
K[[X]]∗ = K[[X]] \XK[[X]] = {f ∈ K[[X]]; f0 6= 0} = {f ∈ K[[X]]; ν(f) = 0}:
If f ∈ K[[X]] has inverse g ∈ K[[X]], then from fg = 1 ∈ K[[X]] we get f0g0 =
1 ∈ K, thus f0 6= 0; conversely, if f ∈ K[[X]] such that f0 6= 0, then letting g0 :=

f−1
0 ∈ K, and for n ∈ N by induction letting gn := −f−1

0 ·
∑n−1
k=0 fn−kgk ∈ K, for

g :=
∑
n≥0 gnX

n ∈ K[[X]] we get fg =
∑
n≥0(

∑n
k=0 fn−kgk)Xn = 1 ∈ K[[X]],

hence g is the inverse of f .
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The field of fractions K((X)) of K[[X]] can be identified with the set of formal
Laurent series f :=

∑
n≥m fnX

n, where m ∈ Z and fn ∈ K, for all n ≥
m: Indeed, convolutional multiplication extends to K((X)), and the valuation
extends to K((X)) by letting ν(f) := min{n ∈ Z; fn 6= 0} ∈ Z, for 0 6= f ∈
K((X)). Then for 0 6= f ∈ K((X)) we have X−ν(f)f ∈ K[[X]]∗, and hence
letting g := (X−ν(f)f)−1 ∈ K[[X]]∗ we get f−1 = X−ν(f)g ∈ K((X)). Note
that the field K(X) of rational functions, that is the field of fractions of K[X],
is a subfield of K((X)).

b) Then for all f ∈ XK[[X]], that is f0 = 0, we have ν(f) ≥ 1, and hence
ν(fn) = nν(f) ≥ n, for all n ∈ N0. Thus for all g ∈ K[[X]] and f ∈ XK[[X]],
the composition g(f) :=

∑
n≥0 gnf(X)n ∈ K[[X]] is well-defined.

Similarly, given a sequence [Fi ∈ K[[X]]; i ∈ N] such that limi→∞ ν(Fi) =
∞, the infinite sum

∑
i≥1 Fi ∈ K[[X]] is well-defined; and given a sequence

[1+Fj ∈ 1+XK[[X]]; j ∈ N] such that limj→∞ ν(Fj) =∞, the infinite product∏
j≥1(1 + Fj) ∈ K[[X]] is well-defined.

The formal derivative defined as ∂
∂X : K[[X]] → K[[X]] :

∑
n≥0 fnX

n 7→∑
n≥1 nfnX

n−1 =
∑
n≥0(n+ 1)fn+1X

n is K-linear, and we have the product

rule ∂
∂X (fg) = ( ∂

∂X f)g + f( ∂
∂X g) ∈ K[[X]], for f, g ∈ K[[X]], and the chain

rule ∂
∂X (g(f)) = ( ∂

∂X g)(f) · ( ∂
∂X f) ∈ K[[X]], for g ∈ K[[X]] and f ∈ XK[[X]]:

By K-linearity, for the product rule it suffices to note that ∂
∂X (XmXn) = (m+

n)Xm+n−1 = mXm−1Xn+nXmXn−1 = ∂
∂X (Xm)·Xn+Xm· ∂∂X (Xn) ∈ K[[X]],

for m,n ∈ N. Similarly, for the chain rule, it suffices to show, by induction on
n ∈ N, that ∂

∂X (fn) = nfn−1 · ∂
∂X (f) ∈ K[[X]], for f ∈ XK[[X]]: The case

n = 1 being trivial, let n ≥ 2. Then by induction and using the product rule we
have ∂

∂X (fn) = ∂
∂X (fn−1f) = ∂

∂X (fn−1) · f + fn−1 · ∂
∂X (f) = nfn−1 · ∂

∂X (f). ]

(12.2) Taylor series. a) For K = C this is related to Taylor series expansions
around x = 0, generalizing the connection between polynomials and polynomial
maps: Let C[[X]]∞ ⊆ C[[X]] be the C-subalgebra of formal power series f =∑
n≥0 fnX

n ∈ C[[X]] such that the associated Taylor series f̂ : O → C : x 7→∑
n≥0 fnx

n converges on an open disc O ⊆ C of positive radius centered at
x = 0. Hence, letting H be the C-algebra of holomorphic function germs
around x = 0, by the principle of comparison of coefficients the map C[[X]]∞ →
H : f 7→ f̂ is an isomorphism of C-algebras. Moreover, for f ∈ C[[X]]∞ the

valuation ν(f) ∈ N0 coincides with the order of x = 0 as a zero of f̂ .

b) For example, let the exponential series be defined as exp :=
∑
n≥0

1
n!X

n ∈
1 +XQ[[X]] ⊆ Q[[X]]. Then for the associated Taylor series we have êxp(x) =
exp(x), for all x ∈ C, hence we have exp ∈ C[[X]]∞. Moreover, we have
∂
∂X exp =

∑
n≥1

1
(n−1)!X

n−1 =
∑
n≥0

1
n!X

n = exp ∈ Q[[X]].

If K is a field of characteristic 0, then for f ∈ XK[[X]] we have exp(f) :=∑
n≥0

1
n!f

n ∈ 1 + XK[[X]] ⊆ K[[X]], fulfilling the identity exp(f + g) =
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∑
n≥0

1
n! (f + g)n =

∑
n≥0

∑n
k=0

1
k!(n−k)!f

kgn−k = (
∑
i≥0

1
i!f

i) · (
∑
j≥0

1
j!g

j) =

exp(f) · exp(g) ∈ K[[X]], for all f, g ∈ XK[[X]], hence exp(f)−1 = exp(−f) ∈
K[[X]]. In particular, we have exp(X) · exp(−X) = 1 ∈ Q[[X]], from which

we recover the formula
∑n
k=0

(−1)n−k

k!(n−k)! = δ0,n, that is
∑n
k=0(−1)n−k

(
n
k

)
= δ0,n,

for n ∈ N0. Note that going over to the associated Taylor series yields the
identity exp(x) · exp(−x) = 1 ∈ C, for all x ∈ C; but conversely the identity
exp(x+ 1) = e · exp(x) ∈ C, yielding

∑
n≥0

1
n! (x+ 1)n = e ·

∑
m≥0

1
m!x

m for all
x ∈ C, cannot be translated to the formal setting.

Let log :=
∑
n≥1

(−1)n−1

n Xn ∈ XQ[[X]] C Q[[X]] be the logarithm series.

Then for the associated Taylor series we have l̂og(x) =
∑
n≥1

(−1)n−1

n xn =
ln(x+1), for all x ∈ C such that |x| < 1, hence log ∈ C[[X]]∞. Moreover, we have
∂
∂X log =

∑
n≥1(−1)n−1Xn−1 = 1

1+X ∈ Q[[X]], and going over to the associated
Taylor series we get exp(log) = 1 +X ∈ Q[[X]] and log(exp−1) = X ∈ Q[[X]].

If K is a field of characteristic 0, then for f ∈ XK[[X]] we have log(f) :=∑
n≥0

(−1)n−1

n fn ∈ 1 +XK[[X]] ⊆ K[[X]], fulfilling the identity log((f + 1)(g+
1)−1) = log(f)+log(g) ∈ K[[X]], for all f, g ∈ XK[[X]]: We have exp(log((f+
1)(g+1)−1)) = (f+1)(g+1) = exp(log(f))·exp(log(g)) = exp(log(f)+log(g)) ∈
K[[X]], thus log((f + 1)(g + 1) − 1) = log(exp(log((f + 1)(g + 1) − 1)) − 1) =
log(exp(log(f) + log(g)) − 1) = log(f) + log(g) ∈ K[[X]]. Note that this for
f, g ∈ 1 +XK[[X]] yields log(fg − 1) = log(f − 1) + log(g − 1) ∈ K[[X]].

(12.3) Binomial series. a) The simplest generating series are the polyno-
mials, being associated to finite sequences. For example, for n ∈ N0, for the
sequence of binomial coefficients we have

∑n
k=0

(
n
k

)
Xk = (1 +X)n ∈ Z[X], and

for the Stirling numbers of the first kind we have
∑n
k=0 sn,kX

k = X(n) ∈ Z[X].

For the sequence of Stirling numbers of the second kind we similarly have Xn =∑n
k=0 Sn,kX(k) ∈ Z[X], which does not translate into a simple formula for the

associated generating series; but recalling that both {Xk; k ∈ {0, . . . , n}} and
{X(k); k ∈ {0, . . . , n}} are Z-bases of Z[X]≤n shows that this differs from a
proper generating series only by a base change.

The other way around, fixing k ∈ N0, for the generating series of binomial coef-

ficients we get
∑
n≥0

(
n
k

)
Xn = Xk

k! ·
∑
n≥k n(k)X

n−k = Xk

k! · (
∂
∂X )k(

∑
n≥0X

n) =
Xk

k! · (
∂
∂X )k( 1

1−X ) = Xk

(1−X)k+1 ∈ Q[[X]].

b) We proceed towards a generalization of the generating series of binomial
coefficients: Let K be a field. Then we have 1−X ∈ K[X]∩K[[X]]∗ such that
(1−X)−1 = 1

1−X =
∑
n≥0X

n ∈ K(X)∩K[[X]]. Using the combinatorial reci-

procity |Mk(n)| =
(
k+n−1

k

)
= (−1)k ·

(−n
k

)
, for n ∈ N, this yields the binomial

series 1
(1−X)n =

∑
k≥0 |Mk(n)| · Xk =

∑
k≥0

(−n
k

)
· (−X)k ∈ K[[X]]. Thus

for all n ∈ Z we have (1 + X)n =
∑
k≥0

(
n
k

)
Xk ∈ K[[X]], being a polynomial

if and only if n ≥ 0. In particular, the generating series of binomial coeffi-

cients considered above equals the binomial series
∑
n≥0

(
n
k

)
Xn = Xk

(1−X)k+1 =
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∑
n≥0(−1)n

(−k−1
n

)
Xn+k ∈ Q[[X]], for k ∈ N0.

Let K be a field of characteristic 0. Letting Z be an indeterminate, we let
(1 + X)Z :=

∑
k≥0

(
Z
k

)
Xk ∈ K[Z][[X]]. Thus by evaluating for z ∈ K we let

(1+X)z :=
∑
k≥0

(
z
k

)
Xk ∈ K[[X]]; in particular for n ∈ Z we recover the above

expression for (1 + X)n. Then, letting Y be an indeterminate, the Vander-
monde identity implies (1 +X)Y · (1 +X)Z = (

∑
i≥0

(
Y
i

)
Xi) · (

∑
j≥0

(
Z
j

)
Xj) =∑

n≥0(
∑n
k=0

(
Y
k

)(
Z
n−k
)
)Xn =

∑
n≥0

(
Y+Z
n

)
Xn = (1 + X)Y+Z ∈ K[Y, Z][[X]];

thus for all y, z ∈ K we get (1 + X)y · (1 + X)z = (1 + X)y+z ∈ K[[X]]. Note
that for K := C we have (1 + X)z ∈ C[[X]]∞ with Taylor series (1 + x)z =∑
k≥0

(
z
k

)
xk ∈ C, for all x ∈ C such that |x| < 1.

c) As an application of the above machinery we consider the infinite product

f :=
∏
n≥1(1 − Xn)

−µ(n)
n ∈ Q[[X]], where µ : N → N is the number theoretic

Möbius function; since ν((1−Xn)
−µ(n)
n −1) = ν(

∑
k≥1

(−µ(n)
n
k

)
·(−1)kXkn) = n,

for n ∈ N, the infinite product is well-defined. Then we get log(f − 1) =

−
∑
n≥1

µ(n)
n · log(−Xn) =

∑
n≥1(µ(n)

n ·
∑
k≥1

Xkn

k ) =
∑
n≥1(

∑
d |n µ(d)) · X

n

n =∑
n≥1 δ1,n ·

Xn

n = X ∈ Q[[X]], hence exp = exp(log(f − 1)) = f ∈ Q[[X]].

(12.4) Rational functions. a) Let d ∈ N and q1, . . . , qd ∈ C such that qd 6= 0,

let q = 1+
∑d
i=1 qiX

i =
∏k
j=1(1−ajX)dj ∈ C[X]∩C[[X]]∗, for some k ∈ N and

dj ∈ N, and pairwise distinct 0 6= a1, . . . , ak ∈ C; hence we have
∑k
j=1 dj = d.

Letting f :=
∑
n≥0 fnX

n ∈ C[[X]], the following are equivalent:

i) The series f is rational f = p
q ∈ C(X) ∩ C[[X]], where p ∈ C[X]≤d−1.

ii) We have the partial fraction decomposition f =
∑k
j=1

gj

(1−ajX)dj
∈

C(X) ∩ C[[X]], where gj ∈ C[X]≤dj−1 for all j ∈ {1, . . . , k}.
iii) The sequence [fn ∈ C;n ∈ N0] is a linear recurrent sequence of degree

d, that is fn+d +
∑d
i=1 qifn+d−i = 0 for all n ∈ N0.

iv) We have fn =
∑k
j=1 hj(n)anj , for all n ∈ N0, where hj ∈ C[X]≤dj−1.

In order to see this let V(i), V(ii), V(iii), V(iv) ≤ C[[X]] be the C-subspaces of all
formal power series fulfilling property (i), (ii), (iii) and (iv), respectively. We
show that these C-subspaces actually coincide:

For f ∈ V(ii), letting qj := (1 − ajX)dj ∈ C[X] and rj := q
qj
∈ C[X], for

j ∈ {1, . . . , k}, yields f = 1
q ·
∑k
j=1 gjrj ∈ C[[X]], where gj = 0 or deg(gj) +

deg(rj) < dj + (d− dj) = d, showing that V(ii) ≤ V(i). Moreover, recalling that
C[X] is an Euclidean domain, let sj ∈ C[X] such that rjsj = 1 ∈ C[X]/qjC[X];
note that in particular sj ∈ C[X]/qjC[X] is invertible. Then, since the qj ∈ C[X]
are pairwise coprime, the Chinese remainder theorem shows that the map⊕k

j=1 C[X]/qjC[X] → C[X]/qC[X] : [g1, . . . , gk] →
∑k
j=1 gjsjrj is an isomor-

phism of C-algebras, thus
⊕k

j=1 C[X]/qjC[X] → C[X]/qC[X] : [g1, . . . , gk] →∑k
j=1 gjrj is as well, in particular is injective. Hence choosing the coefficients of
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the gj ∈ C[X]≤dj−1, for j ∈ {1, . . . , k}, shows that dimC(V(ii)) =
∑k
j=1 dj = d.

Similarly, choosing the coefficients of p ∈ C[X]≤d−1 shows that dimC(V(i)) = d,
thus we conclude that V(i) = V(ii). Note that, as an alternative, for f ∈ V(i)∪V(ii)

we may consider the associated Taylor series, which converges for all x ∈ C such
that |x| < 1

|αj | , for all j ∈ {1, . . . , k}, hence V(i) = V(ii) also follows from con-

sidering the partial fraction decomposition of rational maps.

Since f ∈ V(iii) is uniquely determined by the initial sequence [f0, . . . , fd−1], we

have dimC(V(iii)) ≤ d. For f ∈ V(i), from (
∑
n≥0 fnX

n)(1 +
∑d
i=1 qiX

i) =
fq = p ∈ C[[X]], the right hand side being in C[X]≤d−1, we get fn+d +∑d
i=1 qifn+d−i = 0, for n ∈ N0, showing that V(i) ≤ V(iii), hence V(i) = V(iii).

Choosing the coefficients of the hj , for all j ∈ {1, . . . , k}, yields dimC(V(iv)) ≤∑k
j=1 dj = d. Letting f ∈ V(ii), we may assume that f = Xl

(1−aX)d
∈ C[[X]],

where l ∈ {0, . . . , d − 1} and 0 6= a ∈ C, thus f =
∑
n≥0

(
n+d−1
d−1

)
(aX)nX l =

a−l ·
∑
n≥0

(
n−l+d−1
d−1

)
anXn ∈ C[[X]], where the polynomial

(
X−l+d−1

d−1

)
∈ C[X]

has degree d− 1, showing that V(ii) ≤ V(iv), hence V(ii) = V(iv). ]

Note that, if f is given by a linear recursion of degree d, then the coefficients
of q ∈ C[X] can be read off directly, while the coefficients of p ∈ C[X]≤d−1 can

be determined from [f0, . . . , fd−1] using (
∑
n≥0 fnX

n)(1 +
∑d
i=1 qiX

i) = p =∑d−1
j=0 pjX

j ∈ C[[X]] as pj = fj +
∑j
i=1 qifj−i ∈ C, for j ∈ {0, . . . , d− 1}.

b) We have the equivalence of the following assertions, characterizing the degree
of recurrence:

i) We have gcd(p, q) = 1 ∈ C[X].
ii) We have deg(hj) = dj − 1 for all j ∈ {1, . . . , k}.
iii) The number d ∈ N is the smallest degree of recurrence of f .

c) Finally, we have the following characterization of polynomial maps, see (4.1):
Given a map h : N0 → C, then the following assertions are equivalent:

i) The map h is polynomial of degree d− 1.
ii) For the generating series we have

∑
n≥0 h(n)Xn = p

(1−X)d
∈ C(X) ∩C[[X]],

where p ∈ C[X]≤d−1 such that 1−X 6 | p ∈ C[X], that is p(1) 6= 0 ∈ C.

In this case p =
∑d−1
j=0 pjX

j ∈ C[X]≤d−1 is called the Euler polynomial of h,
its coefficients [p0, . . . , pd−1] are called the associated Euler numbers.

13 Generating functions

(13.1) Example: Fibonacci numbers. We consider the number un ∈ N0 of
tilings of a (2 × n)-rectangle by (1 × 2)-rectangles, for n ∈ N0. Hence we have
u0 := 1 and u1 := 1, and the linear recursion un+2 = un+1 + un for n ∈ N0.
Hence we have un = Fn+1 for n ∈ N0, where the Fn ∈ N0 are the Fibonacci
numbers, see (0.1).
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To determine a closed formula for Fn and un, we determine the generating
series F :=

∑
n≥0 FnX

n ∈ Q[[X]] and u :=
∑
n≥0 unX

n ∈ Q[[X]]: In view of

the recursion we consider the polynomial 1−X −X2 = (1− ρ+X)(1− ρ−X) ∈
R[X], where ρ± := 1

2 (1 ±
√

5) ∈ R. We have F = a+bX
1−X−X2 ∈ Q[[X]], where

a = F0 = 0 and b = F1 − F0 = 1, hence F = X
1−X−X2 ∈ Q[[X]]; thus we have

u =
∑
n≥0 Fn+1X

n =
∑
n≥1 FnX

n−1 = 1
1−X−X2 ∈ Q[[X]].

Partial fraction decomposition 1
1−X−X2 = ρ+√

5(1−ρ+X)
− ρ−√

5(1−ρ−X)
∈ R[[X]]

yields F = 1√
5
·
∑
n≥0(ρn+1

+ − ρn+1
− )Xn+1 = 1√

5
·
∑
n≥0(ρn+ − ρn−)Xn ∈ R[[X]],

that is Fn = 1√
5
· (ρn+ − ρn−) ∈ R, for all n ∈ N0; similarly, we get u = 1√

5
·∑

n≥0(ρn+1
+ − ρn+1

− )Xn, thus un = 1√
5
· (ρn+1

+ − ρn+1
− ), coinciding with Fn+1.

(13.2) Example: Catalan numbers. For n ∈ N0 let cn ∈ N be the n-th
Catalan number, which can be defined in numerous ways, for example as the
number of non-associative words which can be formed from a sequence of n+ 1
letters, also called Schröder’s (first) problem. We show that cn = 1

n+1 ·
(

2n
n

)
:

Let bn := cn−1 ∈ N be the number of such words containing n ∈ N letters.
Indicating the sequence of products taken by placing brackets, a word containing
n ≥ 2 letters is of the form (· · · )(· · · ), with factors containing k and n − k
letters, respectively, where k ∈ {1, . . . , n − 1}. This yields the recursion bn =∑n−1
k=1 bkbn−k, for n ≥ 2, where b1 = 1. For example, we have b1 = b2 = 1 and

b3 = 2 and b4 = 5: For n = 1 we have {·}, for n = 2 we have {··}, for n = 3 we
have {·(··), (··)·}, and for n = 4 we have {·(·(··)), ·((··)·), (··)(··), (·(··))·, ((··)·)·}.
Let b :=

∑
n≥0 bnX

n ∈ Q[[X]] be the associated generating series, where we

let b0 := 0. Then the above recursion yields b2 =
∑
n≥0(

∑n
k=0 bkbn−k)Xn =∑

n≥2(
∑n−1
k=1 bkbn−k)Xn =

∑
n≥2 bnX

n = b−X ∈ Q[[X]], that is b2 − b+X =

0 ∈ Q[[X]]. We look for a holomorphic map b̂, on a suitable open disc of positive

radius centered at x = 0, fulfilling the functional equation b̂(x)2 − b̂(x) + x = 0.

Solving the quadratic equation yields b̂(x) = 1
2 (1−

√
1− 4x), where the sign is

chosen so that b̂(0) = 0. Hence b̂ indeed is holomorphic for all x ∈ C such that

|x| < 1
4 , and has the Taylor series expansion b̂(x) =

∑
n≥0 bnx

n around x = 0.

We have (1 − 4x)
1
2 =

∑
n≥0

( 1
2
n

)
(−4x)n for all x ∈ C such that |x| < 1

4 . For

n ∈ N0 we have
(− 1

2
n

)
=

(−1)n·
∏n
i=1(2i−1)

2n·n! = (−1)n·(2n)!
22n·(n!)2 = (−1

4 )n ·
(

2n
n

)
; see also

Exercise (19.12). This for n ≥ 1 yields
( 1

2
n

)
= 1

2n ·
(− 1

2
n−1

)
= (−1)n−1

22n−1n ·
(

2n−2
n−1

)
.

Thus we get b̂(x) = − 1
2 ·
∑
n≥1

(−1)n−1(−4)n

22n−1n ·
(

2n−2
n−1

)
xn =

∑
n≥1

(2n−2)!
n!(n−1)!x

n; note

that it is not at all obvious how to show directly the convergence of the right
hand side on an open disc of positive radius centered at x = 0. Hence we have

b =
∑
n≥1

(2n−2)!
n!(n−1)!X

n =
∑
n≥1

1
n ·
(

2n−2
n−1

)
Xn ∈ Q[[X]].
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(13.3) Exponential generating series. a) Let K be a field of characteristic

0. For a sequence [fn ∈ K;n ∈ N0] let f̃ :=
∑
n≥0

fn
n!X

n ∈ K[[X]] be the
associated exponential generating series. In particular, differentiation yields
∂
∂X f̃ =

∑
n≥1

nfn
n! X

n−1 =
∑
n≥0

fn+1

n! X
n ∈ K[[X]], which amounts to forming

the exponential generating series of a shift of the given sequence.

Given f̃ =
∑
n≥0

fn
n!X

n ∈ K[[X]] and g̃ =
∑
n≥0

gn
n!X

n ∈ K[[X]], and letting

h̃ := f̃ g̃ =
∑
n≥0

hn
n! X

n ∈ K[[X]], convolutional multiplication becomes h̃ =∑
n≥0(

∑n
k=0

n!
k!(n−k)!fkgn−k) · 1

n!X
n, saying that hn =

∑n
k=0

(
n
k

)
fkgn−k ∈ K,

for all n ∈ N0, that is the sequence [hn ∈ K;n ∈ N0] is given as binomial
convolution of the sequences [fn ∈ K;n ∈ N0] and [gn ∈ K;n ∈ N0].

For example, considering the sequence [a(n);n ∈ N0] of falling factorials asso-

ciated with a ∈ K we get
∑
n≥0

a(n)

n! X
n =

∑
n≥0

(
a
n

)
Xn = (1 + X)a ∈ K[[X]];

hence from the identity (1 +X)a+b = (1 +X)a(1 +X)b ∈ K[[X]], for a, b ∈ K,
we recover the formula (a + b)(n) =

∑n
k=0

(
n
k

)
a(k)b(n−k) ∈ K, that is the Van-

dermonde identity
(
a+b
n

)
=
∑n
k=0

(
a
k

)(
b

n−k
)
∈ K, for all n ∈ N0.

b) The exponential generating series of the geometric series associated with
a ∈ K is given as

∑
n≥0

an

n! X
n = exp(aX) ∈ K[[X]]; hence from the identity

exp((a + b)X) = exp(aX) exp(bX) ∈ K[[X]], for a, b ∈ K, we recover the
binomial formula (a+ b)n =

∑n
k=0

(
n
k

)
akbn−k ∈ K, for all n ∈ N0.

In particular, using the constant series associated with a := 1 we get the fol-
lowing: For sequences [fn ∈ K;n ∈ N0] and [gn ∈ K;n ∈ N0] being related by

gn =
∑n
k=0

(
n
k

)
fk ∈ K, for all n ∈ N0, we have g̃ = f̃ · exp ∈ K[[X]], implying

f̃ = g̃ · exp(X)−1 = g̃ · exp(−X) ∈ K[[X]], from which we in turn recover the
binomial inversion formula fn =

∑n
k=0(−1)n−k

(
n
k

)
gk ∈ K, for all n ∈ N0.

For example, to determine the exponential generating series D̃ ∈ Q[[X]] of the
sequence [Dn;n ∈ N0] of derangement numbers we proceed as follows: We have∑n
k=0

(
n
k

)
Dn−k = n!, for all n ∈ N0, hence D̃ ·exp =

∑
n≥0

n!
n!X

n = (1−X)−1 ∈
Q[[X]], thus D̃ = exp(−X)

1−X ∈ Q[[X]]; in particular, from this we recover the

formula Dn =
∑n
k=0

(−1)k

k! ∈ Q, for all n ∈ N0.

(13.4) Example: Stirling numbers of the second kind. a) For n, k ∈ N0

let Sn,k ∈ N0 be the associated Stirling number of the second kind, and let
Sk :=

∑
n≥0 Sn,kX

n ∈ Q[[X]] be the associated generating series, where hence

S0 = 1. We show that Sk =
∏k
l=1

X
1−lX ∈ Q[[X]], for all k ∈ N0:

We proceed by induction on k ∈ N0; the assertion being true for k = 0, let
k ≥ 1. The recursion Sn,k = Sn−1,k−1 + k · Sn−1,k, for n, k ≥ 1, yields Sk =
X ·(

∑
n≥k Sn−1,k−1X

n−1 +k ·
∑
n≥k+1 Sn−1,kX

n−1) = X(Sk−1 +kSk) ∈ Q[[X]],

thus (1 − kX)Sk = XSk−1 ∈ Q[[X]], implying Sk = X
1−kX · Sk−1 = X

1−kX ·∏k−1
l=1

X
1−lX =

∏k
l=1

X
1−lX ∈ Q[[X]]. ]
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b) Let S̃k :=
∑
n≥0

Sn,k
n! X

n ∈ Q[[X]] be the associated exponential generating

series, where S̃0 = 1. We show that S̃k = 1
k! (exp−1)k ∈ Q[[X]], for all k ∈ N0:

The assertion being true for k = 0, let k ≥ 1. The recursion Sn,k = Sn−1,k−1 +

k ·Sn−1,k, for n, k ≥ 1, yields S̃k =
∑
n≥k

Sn−1,k−1

n! Xn + k ·
∑
n≥k+1

Sn−1,k

n! Xn ∈
Q[[X]], leading to the differential equation ∂

∂X S̃k =
∑
n≥k

Sn−1,k−1

(n−1)! X
n−1 +k ·∑

n≥k+1
Sn−1,k

(n−1)!X
n−1 = S̃k−1+kS̃k ∈ Q[[X]]. Since S̃k−1 ∈ Q[[X]] is known, and

the constant term of S̃k is S0,k = 0, by successively comparing coefficients we

conclude that S̃k ∈ Q[[X]] is uniquely determined; note that this is also follows

from the fact that the differential equation ∂
∂X

̂̃
Sk(x) =

̂̃
Sk−1(x)+k

̂̃
Sk(x), given

any initial value
̂̃
Sk(0) ∈ C, has a unique solution in an open disc of positive ra-

dius centered at x = 0. Hence it suffices to show that T̃k := 1
k! (exp−1)k ∈ Q[[X]]

is a solution of the above equation: We have ∂
∂X T̃k = 1

(k−1)! (exp−1)k−1 exp =
1

(k−1)! (exp−1)k−1 + k
k! (exp−1)k = T̃k−1 + kT̃k ∈ Q[[X]]. ]

Note that S̃k =
∑
n≥0

Sn,k
n! X

n = 1
k! (exp−1)k = 1

k! ·
∑k
l=0(−1)k−l

(
k
l

)
exp(lX) =

1
k! ·
∑k
l=0((−1)k−l

(
k
l

)
·
∑
n≥0

ln

n!X
n) = 1

k! ·
∑
n≥0(

∑k
l=0(−1)k−l

(
k
l

)
ln)X

n

n! ∈ Q[[X]]

yields the sum formula Sn,k = 1
k! ·
∑k
l=0(−1)k−l

(
k
l

)
ln ∈ Q again.

c) Let Bn :=
∑n
k=0 Sn,k ∈ N be the n-th Bell number. The associated exponen-

tial generating series is B̃ :=
∑
n≥0

Bn
n! X

n =
∑
k≥0 S̃k =

∑
k≥0

1
k! (exp−1)k =

exp(exp−1) ∈ Q[[X]]. Thus we get
∑
n≥0

Bn+1

n! Xn = ∂
∂X B̃ = exp(exp−1) ·

exp = B̃ · exp =
∑
n≥0(

∑n
k=0

Bk
k!(n−k)! )X

n ∈ Q[[X]], and comparing coefficients

yields Bn+1 =
∑n
k=0

(
n
k

)
Bk, for all n ∈ N0; for a combinatorial proof see (19.23).

The Taylor series
̂̃
B(x) converges for all x ∈ C. This yields

∑
n≥0Bn ·

xn

n! =̂̃
B(x) = exp(exp(x)−1) = 1

e ·exp(exp(x)) = 1
e ·
∑
k≥0

exp(x)k

k! = 1
e ·
∑
k≥0

exp(kx)
k! =

1
e ·
∑
k≥0( 1

k! ·
∑
n≥0

(kx)n

n! ) = 1
e ·
∑
n≥0(

∑
k≥0

kn

k! ) · x
n

n! ∈ C, for all x ∈ C, hence

Bn = 1
e ·
∑
k≥0

kn

k! ∈ C; note that this cannot be translated to the formal setting.

(13.5) Example: Stirling numbers of the first kind. For n, k ∈ N0 let
sn,k ∈ N0 be the associated Stirling number of the first kind, and let s̃k :=∑
n≥0

sn,k
n! X

n ∈ Q[[X]] be the associated exponential generating series, where

hence s̃0 = 1. We show that s̃k = (−1)k

k! log(−X)k ∈ Q[[X]], for all k ∈ N0:

We proceed by induction on k ∈ N0; the assertion being true for k = 0, let k ≥ 1.
The recursion sn,k = sn−1,k−1 + (n− 1) · sn−1,k yields s̃k =

∑
n≥k

sn−1,k−1

n! Xn +∑
n≥k+1

(n−1)sn−1,k

n! Xn ∈ Q[[X]], thus we get ∂
∂X s̃k =

∑
n≥k

sn−1,k−1

(n−1)! X
n−1 +∑

n≥k+1
sn−1,k

(n−2)!X
n−1 ∈ Q[[X]]. Recall that the above recursion entails the iden-

tity
sn,k

(n−1)! =
∑n−1
m=0

sm,k−1

m! , thus we get s̃k−1 · ( 1
1−X − 1) = (

∑
n≥0

sn,k−1

n! Xn) ·
(
∑
l≥1X

l) =
∑
n≥1(

∑n−1
m=0

sm,k−1

m! )Xn =
∑
n≥1

sn,k
(n−1)!X

n ∈ Q[[X]], hence we ar-
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rive at the differential equation ∂
∂X s̃k = s̃k−1 + s̃k−1 · ( 1

1−X − 1) = 1
1−X · s̃k−1 ∈

Q[[X]], which determines s̃k uniquely, since its constant term is known to be

s0,k = 0. Thus it suffices to show that t̃k := (−1)k

k! log(−X)k ∈ Q[[X]] is a

solution: We have ∂
∂X t̃k = (−1)k

(k−1)! log(−X)k−1 · −1
1−X = 1

1−X · t̃k−1 ∈ Q[[X]]. ]

14 Partition identities

(14.1) Partitions. a) Let pn,k := |Pk(n)| ∈ N0 be the number of partitions

of n ∈ N0 into k ∈ N0 parts, let pn,≤k := |P≤k(n)| =
∑k
l=0 pn,l ∈ N0 be

the number of partitions of n into at most k parts, and let pn := |P (n)| =∑n
k=0 pn,k ∈ N0 be the number of all partitions of n; recall that pn,k = 0 for

k > n. These numbers are encoded into the weighted generating series
P :=

∑
n≥0(

∑n
k=0 pn,kY

k)Xn ∈ Q[Y ][[X]], hence the ordinary generating series
p :=

∑
n≥0 pnX

n ∈ Q[[X]] is obtained by evaluating P at y := 1. We let Pk :=∑
n≥k pn,kX

n ∈ XkQ[[X]] and P≤k :=
∑
n≥0 pn,≤kX

n =
∑k
l=0 Pk ∈ Q[[X]],

hence P =
∑
k≥0(

∑
n≥k pn,kX

n)Y k =
∑
k≥0 PkY

k ∈ Q[[X]][[Y ]].

Writing partitions in terms of multiplicities as λ = [nan(λ), . . . , 1a1(λ)] ` n,
the map λ 7→ [a1(λ), a2(λ), . . .] is a bijection from the set

∐
n≥0 P (n) of all

partitions to the setM := {[a1, a2, . . .] ∈ Maps(N,N0); ai = 0 for almost all i ∈
N}; hence a ∈ M corresponds to a partition λ(a) of |λ(a)| =

∑
i≥1 iai with

l(λ(a)) =
∑
i≥1 ai parts. Using this we get P =

∑
n≥0(

∑
λ`n Y

l(λ))Xn =∑
a∈M Y l(λ(a))X |λ(a)| =

∑
a∈M Y

∑
i≥1 aiX

∑
i≥1 iai =

∑
a∈M

∏
i≥1(Y Xi)ai =∏

i≥1(
∑
j≥0(Y Xi)j) =

∏
i≥1

1
1−Y Xi ∈ Q[Y ][[X]]. Hence evaluating at y := 1

yields p =
∏
i≥1

1
1−Xi ∈ Q[[X]].

It turns out that p ∈ Q[[X]] has a close relation to number theory: We have
log(p − 1) = −

∑
n≥1 log(−Xn) ∈ Q[[X]], hence we get X · ∂

∂X (log(p − 1)) =∑
n≥1

nXn

1−Xn =
∑
n≥1(n ·

∑
k≥1X

kn) =
∑
n≥1(

∑
d |n d)Xn =

∑
n≥1 σ(n)Xn =:

σ ∈ Q[[X]], where σ(n) :=
∑
d |n d ∈ N is the sum of the divisors of n ∈ N. Since

X · ∂∂X (log(p−1)) = X
p ·

∂
∂X (p) ∈ Q[[X]] is a shifted logarithmic derivative of p,

we obtain X · ∂
∂X (p) = p · σ ∈ Q[[X]], yielding

∑
n≥1 npnX

n = (
∑
n≥0 pnX

n) ·
(
∑
n≥1 σ(n)Xn) =

∑
n≥1(

∑n
i=1 σ(i)pn−i)X

n ∈ Q[[X]]. Thus we have proved

the recursion n · pn =
∑n
i=1 σ(i) · pn−i for all n ∈ N0.

b) We determine P≤k ∈ Q[[X]] and Pk ∈ Q[[X]]. To this end, we write λ ∈
P≤k(n) as λ = [λ1, . . . , λk] where λ1 ≥ · · · ≥ λk ≥ 0, and let P≥j≤k (n) :=
{λ ∈ P≤k(n);λk ≥ j}, for j ∈ N0. For the associated generating series we

show by induction on k ∈ N0 that P≥j≤k =
∏k
i=1

Xj

1−Xi ∈ Q[[X]]: The case

k = 0 being trivial, let k ≥ 1. Then we have P≥j≤k =
∑
λ1≥···≥λk≥j X

∑k
i=1 λi =∑

λk≥j(X
λk ·
∑
λ1≥···≥λk−1≥λk X

∑k−1
i=1 λi), thus by induction P≥j≤k =

∑
λk≥j(X

λk ·∏k−1
i=1

Xλk
1−Xi ) = (

∏k−1
i=1

1
1−Xi )·

∑
λk≥j X

kλk = (
∏k−1
i=1

1
1−Xi )·

Xjk

1−Xk =
∏k
i=1

Xj

1−Xi .
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Thus in particular we get P≤k = P≥0
≤k =

∏k
i=1

1
1−Xi ∈ Q[[X]] and Pk =

P≥1
≤k =

∏k
i=1

X
1−Xi ∈ Q[[X]]. Note that this implies p = limk→∞ P≤k =∏

i≥1
1

1−Xi ∈ Q[[X]]. Moreover, for k ≥ 1 we get Pk = P≤k − P≤k−1 =

( 1
1−Xk − 1) ·

∏k−1
i=1

1
1−Xi = Xk ·

∏k
i=1

1
1−Xi = Xk · P≤k ∈ Q[[X]], while P0 =

P≤0 = 1 ∈ Q[[X]] anyway, which is reminiscent of the bijection Pk(n) →
P≤k(n − k) : [λ1, . . . , λk] 7→ [λ1 − 1, . . . , λk − 1]. Finally, this implies the par-

tition identity
∏
i≥1

1
1−Y Xi = P =

∑
k≥0 PkY

k =
∑
k≥0(

∏k
i=1

X
1−Xi )Y

k =∑
k≥0

∏k
i=1

XY
1−Xi =

∑
k≥0(

∏k
i=1

1
1−Xi )X

kY k ∈ Q[[X]][[Y ]].

(14.2) Regular partitions. a) Let n ∈ N0 and k ∈ N0. For r ≥ 2 let
Pr′,k(n) ⊆ Pk(n) be the set of partitions of n consisting of k parts none of
which is divisible by r, and let Pr-reg,k(n) ⊆ Pk(n) be the set of r-regular k-part
partitions of n, that is those all of whose parts have multiplicity less than r.
Then we have Pr′(n) =

∐n
k=0 Pr′,k(n) and Pr-reg(n) =

∐n
k=0 Pr-reg,k(n). For

r = 2 we get the sets Ok(n) := P2′,k(n) of partitions of n consisting of k odd
parts, and Dk(n) := P2-reg,k(n) of partitions of n having k pairwise distinct
parts; hence O(n) =

∐n
k=0Ok(n) and D(n) =

∐n
k=0Dk(n).

Then
∐
n≥0 Pr′(n) corresponds to Mr′ := {a ∈ M; ari = 0 for all i ∈ N},

which yields Pr′ :=
∑
n≥0(

∑n
k=0 |Pr′,k(n)|Y k)Xn =

∑
a∈Mr′

∏
i≥1(Y Xi)ai =∏

i≥1,r 6 | i(
∑
j≥0(Y Xi)j) =

∏
i≥1,r 6 | i

1
1−Y Xi =

∏
i≥1

1−Y Xri
1−Y Xi ∈ Q[Y ][[X]] and

thus pr′ :=
∑
n≥0 |Pr′(n)|Xn =

∏
i≥1

1−Xri
1−Xi ∈ Q[[X]] as weighted and ordinary

generating series, respectively; for r = 2 we get p2′ =
∏
i≥1(1 +Xi) ∈ Q[[X]].

Then
∐
n≥0 Pr-reg(n) corresponds to Mr-reg := {a ∈ M; ai < r for all i ∈ N},

thus Pr-reg :=
∑
n≥0(

∑n
k=0 |Pr-reg,k(n)|Y k)Xn =

∑
a∈Mr-reg

∏
i≥1(Y Xi)ai =∏

i≥1(
∑r−1
j=0(Y Xi)j) =

∏
i≥1

1−(Y Xi)r

1−Y Xi ∈ Q[Y ][[X]] and hence we get pr-reg :=∑
n≥0 |Pr-reg(n)|Xn =

∏
i≥1

1−Xir
1−Xi ∈ Q[[X]] as weighted and ordinary generat-

ing series, respectively. Thus we recover |Pr′(n)| = |Pr-reg(n)| for all n ∈ N0.

b) In particular, for r = 2 wet get D := P2-reg =
∏
i≥1

1−(Y Xi)2

1−Y Xi =
∏
i≥1(1 +

Y Xi) ∈ Q[Y ][[X]]. The bijection Dk(n) → P≤k(n −
(
k+1

2

)
) : [λ1, . . . , λk] 7→

[λ1−k, λ1− (k−1), . . . , λk−1] yields Dk :=
∑
n≥0 |Dk(n)|Xn = X(k+1

2 ) ·P≤k =∏k
i=1

Xi

1−Xi ∈ Q[[X]], yielding the identity
∏
i≥1(1+Y Xi) = D =

∑
k≥0DkY

k =∑
k≥0(

∏k
i=1

Xi

1−Xi )Y
k =

∑
k≥0(

∏k
i=1

1
1−Xi )X

(k+1
2 )Y k ∈ Q[[X]][[Y ]].

Moreover, let Ck(n) := Dk(n)∩Ok(n) be the set of partitions of n consisting of
k pairwise distinct odd parts, and let C(n) :=

∐
k≥0 Ck(n). Then

∐
n≥0 C(n)

corresponds to MC := {a ∈ M; a2i = 0, a2i−1 ≤ 1 for all i ∈ N}. Hence
we get C :=

∑
n≥0(

∑n
k=0 |Ck(n)|Y k)Xn =

∑
a∈MC

∏
i≥1(Y Xi)ai =

∏
i≥1(1 +

Y X2i−1) ∈ Q[Y ][[X]], thus c :=
∑
n≥0 |C(n)|Xn =

∏
i≥1(1 + X2i−1) ∈ Q[[X]].

Note that evaluating D ∈ Q[[X]][[Y ]] at X 7→ X2 and Y 7→ Y
X yields C =∏

i≥1(1 + Y X2i−1) =
∑
k≥0(

∏k
i=1

1
1−X2i )X

k2Y k ∈ Q((X))[[Y ]].
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(14.3) Conjugate partitions. a) Let n ∈ N0 and k ∈ N0. Let P k(n) :=
{λ ∈ P (n);λ1 = k} be the set of all partitions of n whose largest part is k, and

P≤k(n) :=
∐k
l=0 P

l(n) be the those whose largest part is at most k, and let

pkn := |P k(n)| ∈ N0 and p≤kn := |P≤k(n)| =
∑k
l=0 p

l
n ∈ N0.

Then
∐
n≥0 P

≤k(n) corresponds toM≤k := Maps({1, . . . , k},N0), thus P≤k :=∑
n≥0 p

≤k
n Xn =

∑
a∈M≤k

∏k
i=1X

iai =
∏k
i=1

1
1−Xi ∈ Q[[X]]. And

∐
n≥0 P

k(n)

corresponds to M=k := {a ∈ M≤k; ak ≥ 1}, thus P=k :=
∑
n≥0 p

k
nX

n =∑
a∈M=k

∏k
i=1X

iai = Xk ·
∏k
i=1

1
1−Xi =

∏k
i=1

X
1−Xi ∈ Q[[X]]; alternatively, we

get P=k = P≤k−P≤(k−1) = ( 1
1−Xk−1)·

∏k−1
i=1

1
1−Xi = Xk ·

∏k
i=1

1
1−Xi ∈ Q[[X]],

for k ≥ 1. Hence for all k ∈ N0 we have P=k = Pk ∈ Q[[X]] and P≤k = P≤k ∈
Q[[X]], for all k ∈ N0, that is pkn = pn,k and p≤kn = pn,≤k, for all n ∈ N0.

This can also be deduced combinatorially from taking conjugate partitions: If
λ ` n has k parts then we get λ′1 = k; and if λ1 = k then we get λ′k = |{j ∈
N;λj ≥ k}| > 0 and λ′k+1 = |{j ∈ N;λj ≥ k+1}| = 0, saying that λ′ has k parts.

Hence conjugation yields bijections Pk(n)→ P k(n) and P≤k(n)→ P≤k(n).

b) Let Psc(n) := {λ ∈ P (n);λ = λ′} be the set of self-conjugate partitions
of n. We proceed to determine their number: To this end, given any λ ` n,
let r(λ) := max{i ∈ N;λi ≥ i} ∈ N for n ≥ 1, and r([]) := 0, be the rank
of λ; note that the largest square fitting into the upper left hand corner of the
Young diagram of λ has edge length r(λ), it is called the Durfee square of λ.
Moreover, let hi(λ) := (λi − i) + (λ′i − i) + 1 ∈ N, for i ∈ {1, . . . , r(λ)}, be the
associated (diagonal) hook lengths; note that hi(λ) is the length of the hook
centered at the i-th box on main diagonal of the Young diagram of λ, where
λi−i ∈ N0 and λ′i−i ∈ N0 are the associated arm and leg lengths, respectively.
Hence we get the partition h(λ) := [h1(λ), . . . , hr(λ)(λ)] of n, consisting of r(λ)
pairwise distinct parts, giving rise to the map P (n)→ D(n) : λ 7→ h(λ).

If λ ∈ Psc(n), then h(λ) = [2(λi − i) + 1 ∈ N; i ∈ {1, . . . , r(λ)}] consists of
odd parts, that is h(λ) ∈ Or(λ)(n) ∩ Dr(λ)(n) = Cr(λ)(n), and thus we get
the restriction Psc(n) → C(n) : λ 7→ h(λ), which moreover is injective. We
show surjectivity: Given µ = [µ1, . . . , µn] ∈ C(n), let λi := µi−1

2 + i for i ∈
{1, . . . , l(µ)}, and λi := |{j ∈ {1, . . . , l(µ)};λj ≥ i}| for i > l(µ). Then, since
µi − µi+1 ≥ 2, for all i ∈ {1, . . . , l(µ) − 1}, we have λ1 ≥ λ2 ≥ · · · ≥ λl(µ) ≥
l(µ) ≥ λl(µ)+1 ≥ λl(µ)+2 ≥ · · · ≥ 0, and from

∑l(µ)
i=1 λi = 1

2 ·
∑l(µ)
i=1 µi −

l(µ)
2 +(

l(µ)+1
2

)
= n

2 + l(µ)2

2 and
∑
i>l(µ) λi =

∑
i>l(µ) |{j ∈ {1, . . . , l(µ)};λj ≥ i}| =∑l(µ)

j=1 |{i > l(µ); i ≤ λj}| =
∑l(µ)
j=1(λj−l(µ)) =

∑l(µ)
j=1 λj−l(µ)2 we get

∑
i≥1 λi =

2 ·
∑l(µ)
i=1 λi − l(µ)2 = n. Hence λ := [λ1, . . . , λn] is a partition of n, such that

r(λ) = l(µ), which by construction is self-conjugate such that h(λ) = µ.

Thus we conclude Psc :=
∑
n≥0 |Psc(n)|Xn = c =

∏
i≥1(1 +X2i−1) ∈ Q[[X]].

(14.4) Euler’s identity. We reconsider the weighted generating series D =∑
n≥0(

∑n
k=0 |Dk(n)|Y k)Xn =

∏
i≥1(1 + Y Xi) ∈ Q[Y ][[X]]. Thus evaluating
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at y := −1 yields the identity
∑
n≥0(|Deven(n)| − |Dodd(n)|)Xn =

∏
i≥1(1 −

Xi) ∈ Q[[X]], where Deven(n) := {λ ∈ D(n); l(λ) even} and Dodd(n) := {λ ∈
D(n); l(λ) odd} are the sets of distinct-part partitions of n ∈ N0 having an even
respectively an odd number of parts; note that

∏
i≥1(1−Xi) = p−1 ∈ Q[[X]].

We proceed to show the pentagonal number theorem, saying that dn :=
|Deven(n)| − |Dodd(n)| 6= 0 only if n ∈ {0}

.
∪ {n±k ∈ N; k ∈ N}, where n±k :=

1
2k(3k ± 1) ∈ N, and that dn±k

= (−1)k; a few examples are given in Table

12. The relevant numbers are n+ = [2, 7, 15, 26, 40, 57, 77, 100, 126, 155, . . .] and
n− = [1, 5, 12, 22, 35, 51, 70, 92, 117, 145, . . .], where the latter sequence explains
the terminology inasmuch this is the number of vertices in a configuration of
nested 5-gons; note that the numbers n±k , for k ∈ N, are pairwise distinct.

We consider the following surgical procedure on partitions, leading to an es-
sentially sign-reversing involution on the distinct-part ones: Given a partition
λ = [λ1, . . . , λk] of n ∈ N having k ∈ N parts, then λk is the number of
boxes in the last row of the Young diagram of λ, and d = d(λ) := max{i ∈
{1, . . . , k};λi = λ1 − i + 1} ∈ N is the length of the maximal anti-diagonal at
its upper right hand corner. Now let λ ∈ D(n), and we distinguish two cases:

Firstly, if d < λk we obtain µ = [λ1−1, . . . , λd−1, λd+1, . . . , λk, d], whose Young
diagram is obtained from that of λ by removing the maximal anti-diagonal and
gluing a row of the same length underneath. Thus, if d < k then by definition of
d we have λd− 1 > λd+1, and if d = k then we have λd− 1 = λk− 1 ≥ d. Hence
µ is a partition of n, having k+1 parts such that d(µ) ≥ d = µk+1. Moreover, µ
has pairwise distinct parts, except we have d = k and λk = k+1, which happens
if and only if λ = λk,+ := [2k, 2k−1, . . . , k+1] ` 1

2k(3k+1) = n+
k . For example,

for λ := [8, 7, 5, 3] ` 23 we get µ := [7, 6, 5, 3, 2] ` 23, but for λ := [8, 7, 6, 5] ` 26
we get µ := [7, 6, 5, 4, 4] ` 26.

Secondly, if c := λk ≤ d we aim at reversing this procedure, by removing
the last row of the Young diagram of λ and gluing an anti-diagonal of the
same length to its upper right hand corner. This works well if c < k, yielding
µ = [λ1 + 1, . . . , λc + 1, λc+1, . . . , λd, . . . , λk−1], which is a partition of n, having
k − 1 pairwise distinct parts such that d(µ) = c = λk < λk−1 = µk−1. But
if c = k the gluing step fails, yielding µ = [λ1 + 1, . . . , λc−1 + 1, 1], which is a
partition of n having k distinct parts. From c = λk ≤ d ≤ k we infer that this
occurs if and only if λ = λk,− := [2k − 1, 2k − 2, . . . , k] ` 1

2k(3k − 1) = n−k .
For example, for λ := [7, 6, 5, 3, 2] ` 23 we get µ := [8, 7, 5, 3] ` 23, but for
λ := [7, 6, 5, 4] ` 22 we get µ := [8, 7, 6, 1] ` 22.

Thus letting Dexc := {λk,± ∈ Dk(n±k ); k ∈ N} this defines an involutory map
on D(n) \ Dexc, where n ∈ N, which changes the length of partitions by ±1.
Hence if n 6∈ {n±k ∈ N; k ∈ N} we get dn = 0, while for n = n±k we get
dn = (−1)k. Hence we have proved the Euler identity

∏
i≥1(1 − Xi) =

1 +
∑
k≥1(−1)k(X

1
2k(3k−1) +X

1
2k(3k+1)) ∈ Q[[X]].

Recalling that
∏
i≥1(1 − Xi) = p−1 ∈ Q[[X]], we get (

∑
n≥0 pnX

n) · (1 +
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Table 12: Distinct-part partitions.

n Deven(n) Dodd(n) dn

0 [] 1
1 [1] −1
2 [2] −1
3 [2, 1] [3] .
4 [3, 1] [4] .
5 [4, 1], [3, 2] [5] 1
6 [5, 1], [4, 2] [6], [3, 2, 1] .
7 [6, 1], [5, 2], [4, 3] [7], [4, 2, 1] 1
8 [7, 1], [6, 2], [5, 3] [8], [5, 2, 1], [4, 3, 1] .

∑
k≥1(−1)k(X

1
2k(3k−1) + X

1
2k(3k+1))) = 1 ∈ Q[[X]], and thus convolutional

multiplication for n ∈ N says pn =
∑
k≥1(−1)k−1(pn−n+

k
+ pn−n−k

), where we

agree on letting pi := 0 for i < 0. Actually, this is the most efficient tool known
to determine all partition numbers p1, . . . , pn at the same time.

V Group actions

15 Actions

(15.1) Actions. a) Let G be a group, and let N be a set. Then G is said to
act on the G-set N , if there is an action map G×N → N : [g, x] 7→ gx such
that 1x = x, and (gh)x = g(hx), for all g, h ∈ G and x ∈ N . If M and N are
G-sets, then a map α : M → N such that α(gx) = g · α(x), for all g ∈ G and
x ∈ M , is called a homomorphism of G-sets; a bijective homomorphism is
called an isomorphism, and isomorphic G-sets are called equivalent.

Given an action of G on N , for g ∈ G let ϕg : N → N : x 7→ gx. Hence from
ϕgϕg−1 = ϕg−1ϕg = ϕ1 = idN we get ϕg ∈ SN := Bij(N,N), for all g ∈ G, and
since ϕgϕh = ϕgh, for all g, h ∈ G, we have an action homomorphism G →
SN : g 7→ ϕg. Conversely, if ϕ : G → SN : g 7→ ϕg is a group homomorphism,
then G × N → N : [g, x] 7→ ϕg(x) is an action of G on N : We have ϕ1 =
idN ∈ SN , and ϕgϕh = ϕgh implies (gh)x = g(hx) for all g, h ∈ G and x ∈ N .
Moreover, if α : N → N is an isomorphism of G-sets, then the action ψg ∈ SN
of g ∈ G on N is given as ψg = αϕgα

−1.

Any group G acts trivially on any set N by letting ϕg = idN for all g ∈ G. If
G acts faithfully on the set N , that is the action homomorphism ϕ : G→ SN
is injective, then G is called a permutation group on N , and can be identified
with a subgroup of SN . In particular, SN acts naturally on N by ϕπ : N →
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N : i 7→ π(i), for all π ∈ SN , the action homomorphism being idSN .

If N is a finite G-set, then for any g ∈ G we get a permutation ϕg ∈ SN , and
thus a cycle type λ(g) = λϕ(g) := λ(ϕg), a partition of |N |. If ψ : G → SN is
an equivalent action induced by α ∈ SN , that is we have ψg = αϕgα

−1 for all
g ∈ G, then we have λψ(g) = λ(ψg) = λ(ϕg) = λϕ(g) for all g ∈ G, that is the
cycle type of g only depends on the equivalence class of G-actions considered.

(15.2) Orbits. Let G be a group, and let N be a G-set. The relation R :=
{[x, y] ∈ N ×N ; y = gx for some g ∈ G} is an equivalence relation on N : From
1x = x we infer that R is reflexive; from y = gx we get g−1y = x, thus R is
symmetric; and from y = gx and z = hy we get z = hgx, thus R is transitive.

Given x ∈ N , its equivalence class Gx := {gx ∈ N ; g ∈ G} again is a G-set,
called the G-orbit of x; its cardinality |Gx| is called its length, and a subset
T ⊆ G such that T → Gx : t 7→ tx is a bijection is called a transversal of Gx
with respect to x. Let G\N := {Gx ⊆ N ;x ∈ N} be the set of G-orbits; a
subset S ⊆ N such that S → G\N : x 7→ Gx is a bijection is called a set of
orbit representatives of N , hence we have N =

∐
x∈S Gx. If N 6= ∅ and

N = Gx for any and thus all x ∈ N , then N is called a transitive G-set. Note
that transversals and orbit representatives always exist by the Axiom of Choice.

For x ∈ N let Gx = StabG(x) := {g ∈ G; gx = x} ≤ G, being called the
stabilizer of x in G: We have 1 ∈ Gx, and for g, h ∈ Gx we have g−1hx = x,
hence g−1h ∈ Gx as well. Moreover, the stabilizers of elements in the same
orbit are conjugate in G, more precisely for g ∈ G we have Ggx = gGxg

−1:
For h ∈ Gx we have ghg−1 · gx = gx, hence gGxg

−1 ≤ Ggx, thus we also have
g−1Ggxg ≤ Gg−1gx = Gx, implying Ggx ≤ gGxg−1.

For example, for the trivial G-set the orbits are the singleton subsets of N , and
we have Gx = G for all x ∈ N . Moreover, the natural action of Sn, where
n ∈ N, is transitive such that StabSn(n) = Sn−1; and for any π ∈ Sn the orbits
of 〈π〉 ≤ Sn in the natural action are just the cycles of π.

(15.3) Dihedral groups. Let R2×1 be the Euclidean plane equipped with
the standard scalar product, and let GO2(R) := {g ∈ GL2(R); ggtr = E2} ≤
GL2(R) be the associated orthogonal group. We have GO2(R) = {g ∈
GO2(R); det(g) = 1}

.
∪ {g ∈ GO2(R); det(g) = −1}, where the elements of the

special orthogonal group SO2(R) := {g ∈ GO2(R); det(g) = 1} ≤ GO2(R)
are called rotations, while those of GO2(R) \ SO2(R) are called reflections.

For n ≥ 3 let Rn ⊆ R2×1 be a regular n-gon centered at the origin, and let G :=
{g ∈ GO2(R); g(Rn) = Rn} be its group of symmetries; then G ∩ SO2(R)
is called its group of rotations. Hence G acts transitively on the n vertices
of Rn, thus numbering them counterclockwise yields an action homomorphism
ϕ : G→ Sn, which since the vertices contain an R-basis of R2×1 is injective; the
image D2n := im(ϕ) ≤ Sn is called the associated dihedral group.

We describe the elements of D2n, showing that |D2n| = 2n; see Table 13 for
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Table 13: Dihedral groups D6 and D8.

π ∈ D6 λ(π) k(π)

() [13] 3
(1, 2) [2, 1] 2
(1, 3) [2, 1] 2
(2, 3) [2, 1] 2
(1, 2, 3) [3] 1
(1, 3, 2) [3] 1

π ∈ D8 λ(π) k(π)

() [14] 4
(1, 3) [2, 12] 3
(2, 4) [2, 12] 3
(1, 2)(3, 4) [22] 2
(1, 3)(2, 4) [22] 2
(1, 4)(2, 3) [22] 2
(1, 2, 3, 4) [4] 1
(1, 4, 3, 2) [4] 1

D6 = S3 and D8: Since rotations in GO2(R) are determined by their rotation
angle, the rotations in D2n are those with angle 2kπ

n , for k ∈ {0, . . . , n−1}. Thus
D2n contains precisely n rotations, given as 〈τn〉 = {τkn ∈ Sn; k ∈ {0, . . . , n−1}},
where τn := (1, 2, . . . , n) ∈ Sn. Since reflections in GO2(R) are determined by
their reflection axis, we distinguish the cases n odd and n even:

For n odd the axis runs through one of the vertices of Rn and the edge opposite;
thus there are precisely n reflections, one of them being σn := (2, n)(3, n −
1) · · · (n+1

2 , n+3
2 ) ∈ Sn. For n even the axis either runs through a pair of opposite

vertices, or runs through a pair of opposite edges; thus again there are precisely
n
2 + n

2 = n reflections, one of the former being σn := (2, n)(3, n−1) · · · (n2 ,
n+4

2 ) ∈
Sn and one of the latter being (1, 2)(3, n)(4, n− 1) · · · (n+2

2 , n+4
2 ) ∈ Sn. In both

cases we have StabD2n
(1) = 〈σn〉.

(15.4) Cosets. a) Let G be a group, and U ≤ G. Then U acts on G by right
multiplication ρu : G→ G : x 7→ xu−1, for all u ∈ U : We have ρ1(x) = x1−1 =
x and ρuv(x) = x(uv)−1 = xv−1u−1 = ρu(ρv(x)), for all x ∈ G and u, v ∈ U .
Hence the U -orbit of x ∈ G is the (left) coset xU := {xu ∈ G;u ∈ U} ⊆ G.

The group G acts transitively on G/U := {xU ⊆ G;x ∈ G} by left multipli-
cation λg : G/U → G/U : xU 7→ gxU , for all g ∈ G: We have 1(xU) = xU and
gh(xU) = g(hxU), for all g, h, x ∈ G, and xU = x(1 · U). Since gu ∈ U if and
only if g ∈ U , for g ∈ G, we have GU = U . A transversal T ⊆ G of the action
on G/U is called a (left) transversal of U in G; then we have G =

∐
t∈T tU ,

and [G : U ] := |G/U | = |T | ∈ N
.
∪ {∞} is called the index of U in G.

b) Let N be a transitive G-set, and x ∈ N . Then α : G/Gx → N : gGx 7→ gx is
an isomorphism of G-sets: For g ∈ G and u ∈ Gx we have gux = gx, hence α
is well-defined. Since N is transitive we infer that α is surjective. For g, h ∈ G
such that gx = hx we have h−1g ∈ Gx, that is g ∈ hGx, thus α is injective.
Finally, we have α(ghGx) = ghx = g(hx) = g · α(hGx), for all g, h ∈ G.

c) Let now G be finite, and let U ≤ G. Then we have [G : U ] = |G|
|U | : Let T ⊆ G
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be a transversal of U in G, hence G =
∐
t∈T tU . For the U -orbit tU we have

Ut = {u ∈ U ; tu−1 = t} = {1}. Hence U → U/{1} → tU : u 7→ u{1} 7→ tu−1 is
a bijection, thus |tU | = |U | and |G| = |T | · |U |.
In particular, we have Lagrange’s Theorem saying that |U | | |G|. Moreover,
for U := Gx ≤ G, where x ∈ N , this implies the orbit theorem saying that

|N | = [G : Gx] = |G|
|Gx| ; in particular we have |N | | |G|.

(15.5) The Cauchy-Frobenius-Burnside Lemma. a) Let G be a finite
group, let N be a finite G-set, and for g ∈ G let FixN (g) := {x ∈ N ; gx = x}
be its set of fixed points. Then we have the Cauchy-Frobenius-Burnside
Lemma |G\N | = 1

|G| ·
∑
g∈G |FixN (g)|; note that |G\N | and |FixN (g)| only

depend on the equivalence class of G-actions considered:

Letting A := {[g, x] ∈ G ×N ; gx = x} we use double counting to determine
|A| in two ways: On the one hand we have |A| =

∑
g∈G |{x ∈ N ; gx = x}| =∑

g∈G |FixN (g)|. On the other hand we have |A| =
∑
x∈N |{g ∈ G; gx = x}| =∑

x∈N |Gx|. For y ∈ Gx, where x ∈ N , we have |Gy| = |Gx|, and thus |Gx| =
|Gy|. Letting S ⊆ N be a set of orbit representatives, we get

∑
x∈N |Gx| =∑

x∈S
∑
y∈Gx |Gy| =

∑
x∈S |Gx| · |Gx| =

∑
x∈S |G| = |G\N | · |G|. ]

Note that enumerating G = {g1, g2, . . .} and N = {x1, x2, . . .}, the set A can be
represented by the indicator matrix A := [aij ]ij ∈ {0, 1}|G|×|N |, where aij := 1
if gixj = xj , and aij := 0 if gixj 6= xj . Hence |A| is the sum of the entries of A,
whose i-th row sum equals |FixN (gi)| and whose j-th column sum equals |Gxj |.
The two ways of counting are then computing the sum of the rows sums, and
computing the sum of the column sums, respectively.

b) The group G acts diagonally on N×N by g : [y, z] 7→ [gy, gz], for all g ∈ G.
Note that the diagonal {[y, y] ∈ N×N ; y ∈ N} is a union of orbits, and consists
of a single orbit if and only if G acts transitively.

If G acts transitively on N , then for all x ∈ N the map Gx\N → G\(N ×
N) : Gxy 7→ G[x, y] is a bijection, and we have |Gx\N | = |G\(N × N)| =

1
|G| ·

∑
g∈G |FixN (g)|2, being called the rank of N :

Let z ∈ Gxy, then there is g ∈ Gx such that z = gy, and hence we have
[x, z] = [x, gy] = [gx, gy] = g[x, y] ∈ G[x, y], implying that the above map is
well-defined. Because of transitivity, for any z ∈ N there is g ∈ G such that
gz = x, and hence we have G[z, y] = G[x, gy], showing that the above map is
surjective. Finally, letting z ∈ N such that G[x, y] = G[x, z], that is there is
g ∈ G such that [x, z] = g[x, y] = [gx, gy], we infer that g ∈ Gx, hence z ∈ Gxy,
implying injectivity. Finally we have FixN×N (g) = FixN (g)× FixN (g). ]

(15.6) Fixed-point-free elements. a) Let G act transitively on N , where
n := |N | ∈ N and r := |G\(N × N)| ∈ N, and let D = D0(G,N) := {g ∈
G; FixN (g) = ∅} ⊆ G be the set fixed-point-free elements. Letting x ∈ N we
have the Cameron-Cohen inequality [1992] saying |D| ≥ (r−1)·|Gx| ≥ n−1:
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We have |G| =
∑
g∈G |FixN (g)| =

∑
g∈G\D |FixN (g)|, as well as (r − 1) · |Gx| =∑

g∈Gx |FixN\{x}(g)|, where Gx∩D = ∅ anyway. This yields |G|−(r−1)·|Gx| =∑
g∈Gx(|FixN (g)| − |FixN\{x}(g)|) +

∑
g∈G\(Gx∪D) |FixN (g)|. Since |FixN (g)| −

|FixN\{x}(g)| = 1 for all g ∈ Gx, and |FixN (g)| ≥ 1 for all g ∈ G \ D, we infer
|G| − (r− 1) · |Gx| ≥ |G \D| = |G| − |D|. Moreover, since any of the r− 1 orbits
of Gx on N \ {x} has length at most |Gx|, we get (r − 1) · |Gx| ≥ n− 1. ]

Thus for n ≥ 2, that is r ≥ 2, we have the Lenstra inequality [1991] saying
|D|
|G| ≥

(r−1)·|Gx|
n·|Gx| = (r−1)

n ≥ 1
n , only depending on n, but being independent of

|G|; In particular, this also implies Jordan’s Theorem [1872] saying that for
n ≥ 2 we have D 6= ∅.
b) Assuming that G acts faithfully, we determine the cases where the Lenstra
inequality actually is an equality; in particular, it will turn out that then n
is a prime power, and that for any such n there actually is a group achieving
equality:

Now |D|
|G| = 1

n implies r = 2, that is G acts transitively on the pairs of distinct

elements of N , in other words G acts 2-fold transitively on N . Moreover, we
have equality |D| = |Gx| = (r−1)·|Gx|, from which the estimates in the proof of
the Cameron-Cohen inequality yield |FixN (g)| = 1 for all g ∈ G\(Gx∪D), that is
any such g is contained in Gy for some unique y ∈ N \{x}. Since any 1 6= g ∈ G
acts non-trivially, we conclude that G = {1}

.
∪ D

.
∪
∐
x∈N (Gx \ {1}). Hence we

have Gx,y = Gx ∩ Gy = {1} for all x 6= y ∈ N , that is G acts sharply 2-fold
transitively on N , and thus |Gx| = |D| = n− 1 and |G| = n · |Gx| = n(n− 1).

Conversely, for any sharply 2-fold transitive group we have |Gx| = n − 1 and
|G| = n(n − 1), as well as a decomposition as above, so that |D| = |G| − 1 −
n · (|Gx| − 1) = n− 1 = |G|

n . The sharply 2-fold transitive permutation groups
have been classified by Zassenhaus [1936], using the notion of near-fields;
we indicate the elementary steps, at least showing that n is a prime power:

Let g ∈ D. Since g acts fixed point freely by conjugation on {Gx;x ∈ N}, we
infer that g cannot possibly centralize any element of

∐
x∈N (Gx \ {1}), which

entails that CG(g) ⊆ {1}
.
∪ D. On the other hand, for any x ∈ N the group Gx

acts on D, where from CGx(g) = CG(g)∩Gx = {1} and |Gx| = |D| we infer that
Gx acts regularly. Thus D ⊆ G is a single conjugacy class, and hence we have

|CG(g)| = |G|
|D| = n = |D|+ 1. In conclusion, we get CG(g) = {1}

.
∪ D =: K.

This shows that K E G is a subgroup, which automatically is normal. (Note
that this elegantly avoids the subtle theory of Frobenius groups.) From |K| = n
we get G ∼= K o Gx, where since K acts regularly on N we may identify K
with N via K → N : g 7→ gx. All elements of D being conjugate, we infer that
these have one and the same order, which hence is a prime, p say. Furthermore,
K is the centralizer of any element of D, hence K is abelian. Thus K is an
elementary abelian p-group, which we may write as K ∼= Zdp, for some d ∈ N;

in particular n = pd. Using the above identification we may describe G as an
affine group G ∼= Zdp oG0, where G0 ≤ GLd(p) is a subgroup of order pd − 1.
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The classification of sharply 2-fold transitive permutation groups now is given
as follows, in particular showing that for any prime power there is such a group;
see [5, Table 7.3]: i) Generically, Zdp can be identified with F+

pd
, where p is a

prime and d ∈ N, and G0 ≤ ΓL1(pd) is a group of semilinear maps; note that
|ΓL1(pd)| = d · (pd− 1), where GL1(pd) can be identified with a cyclic subgroup
TSinger ≤ GLd(p) of order pd − 1 generated by a Singer cycle, and ΓL1(pd)
can be identified with the normalizer of TSinger in GLd(p). ii) Apart from that,
G is one of 7 exceptional cases, where d = 2, and either p ∈ {5, 7, 11, 23} and
SL2(3) ≤ G0, or p ∈ {11, 19, 29, 59} and SL2(5) ≤ G0; indeed, in the former
cases G0 has shape SL2(3), SL2(3) · 2, SL2(3)× 5, (SL2(3) · 2)× 5, while in the
latter cases we get SL2(5), SL2(5)× 3, SL2(5)× 7, SL2(5)× 29, respectively. ]

In particular, the above discussion implies that the estimate |D||G| ≥
1
n is best

possible, at least if the class of all permutation groups is considered. Since none
of the sharply 2-transitive groups is simple, actually apart from finitely many
exceptions they are all solvable, the question arises whether there are stronger
bounds for certain classes of permutation groups, for example for simple groups
acting primitively. Similarly, we might wonder whether there always are fixed-
point-free elements fulfilling further conditions, for example concerning their
order. But all these kinds of questions are under ongoing discussion.

(15.7) The fixed point index. a) Let G be a finite group, acting on N :=
{1, . . . , n}, where n ∈ N0. For k ∈ {0, . . . , n} let Dk = Dk(G,N) := {g ∈
G; |FixN (g)| = k}, and fk = fk(G,N) := |Dk(G,N)| ∈ N0. Then the polyno-
mial fG = fG,N := 1

|G| ·
∑n
k=0 fkX

k ∈ Q[X] is called the fixed point index

of the action of G on N ; note that fG only depends on the equivalence class
of G-actions considered. Hence the fixed point index has degree n and leading
coefficient fn

|G| ≥
1
|G| ; note that fn = 1 if and only if G acts faithfully.

Evaluating yields fG(1) = 1
|G| ·

∑n
k=0 fk = 1 and fG(0) = f0

|G| , where f0 = |D0| is
the number of the elements of G acting fixed point freely. Evaluating the formal
derivative ∂

∂X fG = 1
|G| ·
∑n
k=1 kfkX

k−1 ∈ Q[X], the Cauchy-Frobenius-Burnside

Lemma yields ( ∂
∂X fG)(1) = 1

|G| ·
∑n
k=1 kfk = 1

|G| ·
∑n
k=0 kfk = |G\N |. Moreover,

if G acts transitively, then for any x ∈ N we have ∂
∂X fG,N = fGx,N\{x} ∈ Q[X],

the fixed point index of the action of Gx on N \ {x}:
For k ≥ 1 we have Dk(G,N) =

⋃
y∈N Dk−1(Gy, N \ {y}), where any g ∈

Dk(G,N) belongs to precisely k of the n sets Dk−1(Gy, N \ {y}). Stabiliz-
ers being G-conjugate we infer that fk−1(Gy, N \ {y}) = |Dk−1(Gy, N \ {y})|
does not depend on y ∈ N . Thus we get k · fk(G,N) = n · fk−1(Gx, N \ {x}).
Using |G| = n · |Gx| this yields ∂

∂X fG,N = 1
|G| ·

∑n
k=1 kfk(G,N)Xk−1 = 1

|Gx| ·∑n
k=1 fk−1(Gx, N \ {x})Xk−1 = 1

|Gx| ·
∑n−1
k=0 fk(Gx, N \ {x})Xk = fGx,N\{x}. ]

b) For k ∈ {0, . . . , n}, the group G acts diagonally on Nk by g : [x1, . . . , xk] 7→
[gx1, . . . , gxk], for all g ∈ G. Thus the set Sk(N) := Inj({1, . . . , k}, N) =
{[x1, . . . , xk] ∈ Nk;xi 6= xj for i 6= j} ⊆ Nk of k-arrangements of N is a union
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of orbits, hence also becomes a G-set; note that S0(N) = N0 = {[]}.
Letting tk = tk(G,N) := |G\Sk(N)| ∈ N0, the polynomial tG = tG,N :=∑n
k=0

tk
k!X

k ∈ Q[X] is called the transitivity index of the action of G on
N ; note that tG only depends on the equivalence class of G-actions considered.
Note that we always have t0 = 1, while G acts transitively if and only if t1 = 1.
If tk = 1, for some k ≥ 1, then G is said to act k-fold transitively; note that in
this case we have ti = 1 for all i ∈ {0, . . . , k}.
Then we have Boston’s Theorem [1993] tG(X) = fG(X + 1) ∈ Q[X],
that is tG = τfG ∈ Q[X], in terms of difference calculus: If g ∈ Dj , for
some j ∈ {0, . . . , n}, then g fixes precisely |Inj({1, . . . , k},FixN (g))| = j(k) el-
ements of Sk(N). Hence the Cauchy-Frobenius-Burnside Lemma yields tk =

1
|G| ·

∑n
j=0 fjj(k), and thus tG(X) =

∑n
k=0

tk
k!X

k = 1
|G| ·

∑n
k=0

∑n
j=0

fjj(k)
k! Xk =

1
|G| ·

∑n
j=0 fj(

∑n
k=0

(
j
k

)
Xk) = 1

|G| ·
∑n
j=0 fj(X + 1)j = fG(X + 1) ∈ Q[X].

In particular, we have (( ∂
∂X )kfG)(1) = (( ∂

∂X )ktG)(0), where in turn ( ∂
∂X )ktG =

( ∂
∂X )k(

∑n
j=0

tj
j!X

j) =
∑n
j=k

tj
(j−k)!X

j−k ∈ Q[X] yields (( ∂
∂X )ktG)(0) = tk,

showing that tG can be easily computed from fG.

c) For example, for the trivial group we get f{1} = Xn ∈ Q[X]. Hence, if
G acts regularly, then we have Gx = {1}, and formal integration yields fG =
1
n ·(X

n+(n−1)) ∈ Q[X], reflecting the fact that 1G is the only element G having
a fixed point. By the way, this also shows that the proportion of fixed-point-free
elements of G can indeed be as large as possible, namely n−1

n .

Iterating this, we obtain the fixed point indices of sharply k-transitive groups,
for k ∈ N, that is G acts k-fold transitively such that Gn,n−1,...,n−k+1 = {1};
note that this is independent of the shape of the group considered. For example,
for n = 12 and k = 5 we successively get, writing fi for the fixed point index of
the stabilizer of an i-tuple, for i ∈ {0, . . . , 5}:

f5 = X7,

f4 = 1
8 · (X

8 + 7),

f3 = 1
72 · (X

9 + 63X + 8),

f2 = 1
720 · (X

10 + 315X2 + 80X + 324),

f1 = 1
7920 · (X

11 + 1155X3 + 440X2 + 3564X + 2760),

f0 = 1
95040 · (X

12 + 3465X4 + 1760X3 + 21384X2 + 33120X + 35310)

Prominent examples of the above situation are the sporadic simple Math-
ieu groups M11 and M12, acting sharply 4-transitive on 11 and sharply 5-
transitive on 12 points, respectively; see also (17.3). Hence from fM11

= f1

and fM12
= f0 we get the transitivity indices tM11

= fM11
(X + 1) ∈ Q[X]

and tM12 = fM12(X + 1) ∈ Q[X], and thus for M11 we get [t0, . . . , t11] =
[1, 1, 1, 1, 1, 7, 42, 210, 840, 2520, 5040, 5040] and for M12 we get [t0, . . . , t12] =
[1, 1, 1, 1, 1, 1, 7, 42, 210, 840, 2520, 5040, 5040], reflecting the facts that M11 acts
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4-fold, but not 5-fold transitively, and that M12 acts 5-fold, but not 6-fold tran-
sitively, respectively.

Formal integration might serve as a tool to proof the non-existence of transitive
extensions: For example, for the natural action of the dihedral group D8 on 4
points, by Table 13 we have fD8 = 1

8 · (X
8 + 2X2 + 5) ∈ Q[X], from which

formal integration yields f = 1
40 · (X

5 + 10
3 X

3 + 25X + 32
3 ) ∈ Q[X], showing

that there cannot be a group of order 5 · 8 = 40 acting transitively on 5 points,
having point stabilizer D8.

(15.8) Example: Derangements. For the natural action of the symmetric
group Sn we get the following: Let Dn,k ∈ N0 be the number of permuta-
tions in Sn having precisely k ∈ {0, . . . , n} fixed points. Since Sn acts n-fold
transitively on N , we have tj = 1 for all j ∈ {0, . . . , n}, thus for the asso-
ciated fixed point index we get 1

n! ·
∑n
k=0Dn,kX

k = fSn = tSn(X − 1) =∑n
j=0

1
j! (X − 1)j =

∑n
j=0

∑j
k=0

1
j! · (−1)j−k

(
j
k

)
Xk =

∑n
k=0

∑n
j=k

(−1)j−k

k!(j−k)!X
k =∑n

k=0(
∑n−k
j=0

(−1)j

j! )X
k

k! ∈ Q[X]. From this we recover the formula Dn = Dn,0 =

n! ·
∑n
j=0

(−1)j

j! for derangement numbers, as well as Dn,k = n!
k! ·
∑n−k
j=0

(−1)j

j! =
n!
k! ·

Dn−k
(n−k)! =

(
n
k

)
·Dn−k. Moreover, for n→∞ the proportion of elements having

precisely k fixed points amongst all permutations is given as
Dn,k
n! →

1
e·k! , that

is a Poisson distribution with parameter 1.

(15.9) Example: The structure of benzene. The aromatic hydrocarbon
compound benzene, which was discovered around 1825, and is nowadays known
to have the chemical sum formula C6H6, consists of 6 carbon atoms and 6
hydrogen atoms. Due to its chemical stability it was conjectured that the carbon
atoms form the vertices of a highly symmetric polyhedron, in which the vertices
cannot be distinguished from each other; in particular any vertex is adjacent to
the same number of vertices, all edges have the same length, and at any vertex
the same types of faces meet. There are three geometrically sensible possible
configurations: i) the regular 6-gon, ii) the rectangular prism over an equilateral
triangle, and iii) the regular octahedron; see Table 14.

We try to distinguish these cases by producing compounds where two of the
hydrogen atoms are replaced by other, distinct compounds, yielding molecules
having chemical sum formula C6H4XY , where X 6= Y . We ask ourselves how
many distinct compounds can be formed like this, assuming either of the above
three configurations, where compounds are the same if they can be transformed
into each other by rotations.

Thus we have to consider the group of symmetries induced by the special or-
thogonal group SO3(R). Its action on the vertices N := {1, . . . , 6} yields tran-
sitive subgroups G(i) ≤ S6, for i ∈ {1, . . . , 3}. Hence the new compounds are
given as the orbits of G(i) on the set (N × N) \ {[j, j] ∈ N × N ; j ∈ N} of
pairs of distinct vertices, where the Cauchy-Frobenius-Burnside Lemma yields
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|G(i)\(N ×N)| = 1
|G(i)| ·

∑
π∈G(i) |FixN (π)|2.

To determine G(i) we proceed as follows: We have [G(i) : G
(i)
1 ] = 6, hence we first

find G
(i)
1 , and then find further elements of G(i) until we generate a transitive

subgroup of S6, then the group generated is contained in G(i) and contains G
(i)
1

of index at least 6, hence coincides with G(i). Having found G(i) explicitly, we
determine |FixN (π)| for all π ∈ G(i):

i) For the regular 6-gon we have the dihedral group G(1) = D12 of order 12,

see (15.3). Hence G
(1)
1 = 〈σ6〉 = 〈(2, 6)(3, 5)〉 has order 2, and thus G(1) =

〈σ6, τ6〉 = 〈(2, 6)(3, 5), (1, 2, 3, 4, 5, 6)〉. Moreover, the only non-identity elements
having fixed points are the three reflections with axis running through a pair
of opposite vertices, the latter being the respective fixed points. Hence we find
|G(1)\(N × N)| = 1

12 · (6
2 + 3 · 22) = 4, leading to three distinct compounds;

in terms of the positions at which X and Y are located, since rotations are
distance-preserving, orbit representatives are given by {[1, 2], [1, 3], [1, 4]}.

ii) For the prism we have G
(2)
1 = {1}, hence |G(2)| = 6, and thus G(2) =

〈(1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5)〉. Moreover, since G
(2)
j = {1} for all j ∈ N we

conclude that no non-identity element has a fixed point, implying |G(2)\(N ×
N)| = 62

6 = 6, leading to five distinct compounds; similar to the above argument
we find that orbit representatives are given by {[1, 2], . . . , [1, 6]}.

iii) For the regular octahedron we have G
(3)
1 = 〈(2, 3, 4, 5)〉, having order 4,

hence |G(3)| = 24, and thus G(3) := 〈(2, 3, 4, 5), (1, 3, 6, 5)〉. Moreover, we have

G
(3)
1 = G

(3)
6 and G

(3)
2 = G

(3)
4 and G

(3)
3 = G

(3)
5 , where any of the non-identity

elements of the various stabilizers has precisely two fixed points, showing that
|G(2)\(N ×N)| = 1

24 · (6
2 + 3 · 3 · 22) = 3, leading to two distinct compounds;

similarly we find that orbit representatives are given by {[1, 2], [1, 6]}.
In practice, it is found that there are three distinct compounds arising this way,
thus giving a strong indication that case (i) is correct. Nowadays it is commonly
believed that case (i), the Kekulé structure [1865], describes benzene correctly.
Case (ii) was suggested by Ladenburg as the structure of benzene, and has
been synthesized as Prisman as late as in 1973. Case (iii) does not make sense
chemically; nowadays there are various other compounds with chemical sum
formula C6H6 known which possess less symmetries.

16 Action on maps

(16.1) Maps. a) Let N := {1, . . . , n} and K := {1, . . . , k}, for some n ∈
N0 and k ∈ N0. The symmetric group Sk acts on the set Maps(N,K) by
post-multiplication, that is f 7→ σ(f) : i 7→ σ(f(i)), for all σ ∈ Sk: For
τ ∈ Sk we have (στ)(f) = σ(τ(f)) : i 7→ (στ)(f(i)) = σ(τ(f(i))). Writing
f = [f(1), . . . , f(n)], then σ ∈ Sk acts by renaming the entries.

The symmetric group Sn acts on Maps(N,K) by pre-multiplication, that
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Table 14: Possible structures of benzene.

1

4

35

6 2

1 2

3

4 5

6

45

2 3

6

1

is f 7→ πf : i 7→ f(π−1(i)), for all π ∈ Sn: For µ ∈ Sn we have (πµf)(i) =
f((πµ)−1(i)) = f((µ−1π−1)(i)) = f(µ−1(π−1(i))) = (µf)(π−1(i)) = (π(µf))(i),
for all i ∈ N , that is πµf = π(µf). Writing f = [f(1), . . . , f(n)], then π ∈ Sn
acts by reordering the entries.

The Cartesian product Sn × Sk becomes a group with componentwise multi-
plication and inversion, having neutral element [1, 1]. Hence Sn and Sk can be
considered as subgroups of Sn×Sk via the embeddings Sn → Sn×Sk : π 7→ [π, 1]
and Sk → Sn × Sk : σ 7→ [1, σ], respectively, and as such we have πσ = σπ for
all π ∈ Sn and σ ∈ Sk. Moreover we have π(σ(f)) = σ(πf) : i 7→ σ(f(π−1(i))),
for all f ∈ Maps(N,K), thus defining an action of Sn × Sk on Maps(N,K).

Hence we may consider the orbits of either of the groups {1}×{1} and Sn×{1}
as well as {1} × Sk and Sn × Sk on Maps(N,K). The elements of N are called
indistinguishable if we let Sn act, otherwise they are called distinguishable,
and similarly for K and the action of Sk. Maps being in the same orbit with
respect to either of these groups are called equivalent; if the elements of both
N and K are distinguishable, then all equivalence classes are singleton sets.

b) For example, for n = 3 and k = 4 let a, b, c, d ∈ Maps(N,K) be the pairwise
distinct maps a := [1, 1, 2] and b := [1, 2, 1] and c := [2, 2, 4] and d := [3, 2, 2];
see Table 15. Equivalence with respect to Sn, amounting to arbitrary reorder-
ing, is given by {{a, b}, {c}, {d}}; equivalence with respect to Sk, amounting to
arbitrary renaming, is given by {{a, c}, {b}, {d}}; with respect to Sn ×Sk, that
is up to arbitrary reordering and renaming, {a, b, c, d} are pairwise equivalent.

More intuitively, we may think of N as numbered balls, of K as numbered
boxes, and of f ∈ Maps(N,K) as a recipe to put the balls into the boxes. This
describes the case where both N and K are distinguishable, while if we ignore
the numbers on the balls then N becomes indistinguishable, and if we ignore
the numbers on the boxes then K becomes indistinguishable.
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Table 15: Balls in boxes.

1 2 3

1

1

1

3

3

2

2

2 3

1 2 3 4

1

1

1

2

2

2

3

3

3

4

4

4

a

c

d

b

(16.2) The 16-fold way. We continue to consider the action of Sn × Sk on
Maps(N,K), where N := {1, . . . , n} and K := {1, . . . , k}, for some n ∈ N0

and k ∈ N0. Then a map f ∈ Maps(N,K) is injective if and only if σ(πf)
is, and similarly f is surjective if and only if σ(πf) is, for all π ∈ Sn and
σ ∈ Sk. Hence Inj(N,K) ⊆ Maps(N,K) and Surj(N,K) ⊆ Maps(N,K) as well
as Bij(N,K) ⊆ Maps(N,K) are also acted on by Sn × Sk.

The number of equivalence classes in Maps(N,K) and the subsets mentioned,
with respect to the action of the obvious subgroups of Sn × Sk, are given in
Table 16: The entries for {1} × {1} have already been determined in (2.1) and
(3.1). From this we also get the entries in the column for |Bij(N,K)|.
For Sn × {1} we get: Since the Sn-action amounts to arbitrary reordering of
the entries of n-tuples, the equivalence classes of Maps(N,K) and of Inj(N,K)
are in bijection with the n-multisets Mn(k) and the n-subsets Pn(k) of K,
respectively; see (2.2) and (2.1). If k ≤ n, then a map f ∈ Maps(N,K) is
surjective if and only if it represents an n-multiset µ = [µ1, . . . , µk] ∈Mn(k) of
K such that µi ≥ 1 for all i ∈ {1, . . . , k}, where the latter are in bijection with
Mn−k(k) via µ 7→ [µ1 − 1, . . . , µk − 1].

For {1} × Sk we get: Since the Sk-action amounts to arbitrary renaming of
the entries of tuples over K, the equivalence classes of Maps(N,K) and of

Surj(N,K) are in bijection, via f 7→
∐k
i=1 f

−1(i), with the partitions of N into
at most k blocks and into precisely k blocks, respectively; see (3.1). Moreover,
if n ≤ k, then Inj(N,K) consists of a single equivalence class.

For Sn × Sk we get: Since the (Sn × Sk)-action amounts to arbitrary reorder-
ing and renaming of tuples in Kn, the equivalence classes of Maps(N,K) and
of Surj(N,K) are in bijection, via f 7→ [|f−1(1)|, . . . , |f−1(k)|], with the sets
P≤k(n) and Pk(n) of partitions of n into at most k parts and into precisely k
parts, respectively; see (3.2). Moreover, if n ≤ k, then Inj(N,K) still consists
of a single equivalence class.
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Table 16: The 16-fold way.

|Maps(N,K)| |Inj(N,K)| |Surj(N,K)| |Bij(N,K)|
{1} × {1} kn k(n) k! · Sn,k n!, if n = k

0, if n 6= k

Sn × {1}
(
n+k−1
n

) (
k
n

) (
n−1
n−k
)
, if n ≥ k 1, if n = k

0, if n < k 0, if n 6= k

{1} × Sk
∑k
l=0 Sn,l 1, if n ≤ k Sn,k 1, if n = k

0, if n > k 0, if n 6= k
Sn × Sk pn,≤k 1, if n ≤ k pn,k 1, if n = k

0, if n > k 0, if n 6= k

(16.3) Example: Shuffles. We consider shuffles of a deck of n ∈ N0 of cards.
Usually a deck of cards is viewed as the sequence of cards appearing while
running through it, from top to bottom say. Thus we let a deck be a bijection
δ : N → K from the set of positions N := {1, . . . , n} to a set K of cardinality
n, hence can be identified with the tuple [δ(1), . . . , δ(n)].

a) We consider the perfect Riffle shuffles: For n ∈ N even, divide the deck
into its top and bottom halves of the same size, and then interleave the halves
perfectly. Then the top card of either the top or the bottom half ends up at
the top of the resulting deck, being called the out-shuffle and the in-shuffle,
respectively. In terms of the positions N this yields permutations ωn ∈ Sn and
ιn ∈ Sn, respectively, writing maps from top to bottom, where m ∈ N:

ω2m =

[
1 m+ 1 2 m+ 2 . . . m− 1 2m− 1 m 2m
1 2 3 4 . . . 2m− 3 2m− 2 2m− 1 2m

]
ι2m =

[
m+ 1 1 m+ 2 2 . . . 2m− 1 m− 1 2m m

1 2 3 4 . . . 2m− 3 2m− 2 2m− 1 2m

]
ω2m−1 =

[
1 m+ 1 2 m+ 2 . . . 2m− 2 m− 1 2m− 1 m
1 2 3 4 . . . 2m− 4 2m− 3 2m− 2 2m− 1

]
ι2m−1 =

[
m 1 m+ 1 2 . . . m− 2 2m− 2 m− 1 2m− 1
1 2 3 4 . . . 2m− 4 2m− 3 2m− 2 2m− 1

]
For example, for n = 8 we get:

ω8 =

[
1 5 2 6 3 7 4 8
1 2 3 4 5 6 7 8

]
= (2, 3, 5)(4, 7, 6)

ι8 =

[
5 1 6 2 7 3 8 4
1 2 3 4 5 6 7 8

]
= (1, 2, 4, 8, 7, 5)(3, 6)

Iterating the shuffling corresponds to multiplying the associated permutations:
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For example, for n = 8 performing an in-shuffle followed by an out-shuffle
yields ω8ι8 = (2, 3, 5)(4, 7, 6) · (1, 2, 4, 8, 7, 5)(3, 6) = (1, 3, 4, 8, 6, 5)(2, 7), while
the other way around we get ι8ω8 = (1, 2, 4, 8, 7, 5)(3, 6) · (2, 3, 5)(4, 7, 6) =
(1, 2, 6, 8, 7, 3)(4, 5). This translates back into decks of cards as follows:

ω8ι8 = (1, 3, 4, 8, 6, 5)(2, 7) =

[
5 7 1 3 6 8 2 4
1 2 3 4 5 6 7 8

]
ι8ω8 = (1, 2, 6, 8, 7, 3)(4, 5) =

[
3 1 7 5 4 2 8 6
1 2 3 4 5 6 7 8

]
Considering the Riffle shuffle group Rn := 〈ωn, ιn〉 ≤ Sn, for n ≥ 2, we experi-
mentally find the following pattern: Rn is transitive; Rn is tiny compared to Sn
whenever n is odd, of order at most n(n−1); Rn is small compared to Sn when-
ever n is even, where for m 6∈ {6, 12}

.
∪ {2k; k ≥ 0} we get |R2m| = 2m−1 · m!

2

whenever m ≡ 0 (mod 4), and |R2m| = 2m · m!
2 whenever m ≡ 1 (mod 4), and

|R2m| = 2m ·m! whenever m ≡ 2 (mod 4), and |R2m| = 2m−1 ·m! whenever
m ≡ 3 (mod 4), while for k ≥ 1 we find |R2k | = 2k · k, and |R12| = 26 · 120 and
|R24| = 211 · 95040; note that this indicates a close relationship between R2m

and the Mongean shuffle groups Mm discussed now:

b) The Mongean shuffles are given as follows: Start with the topmost card,
and then put every other card on the top and on the bottom, respectively on
the bottom and on the top. Then if n ∈ N is even the last card ends up at the
top and the bottom, respectively, and the other way around if n ∈ N is odd.
In terms of the positions N this yields permutations µn ∈ Sn and µ′n ∈ Sn,
respectively, where m ∈ N:

µ2m =

[
2m 2m− 2 . . . 4 2 1 3 . . . 2m− 1
1 2 . . . m− 1 m m+ 1 m+ 2 . . . 2m

]
µ′2m =

[
2m− 1 2m− 3 . . . 3 1 2 4 . . . 2m

1 2 . . . m− 1 m m+ 1 m+ 2 . . . 2m

]
µ2m−1 =

[
2m− 2 2m− 4 . . . 2 1 3 . . . 2m− 1

1 2 . . . m− 1 m m+ 1 . . . 2m− 1

]
µ′2m−1 =

[
2m− 1 2m− 3 . . . 3 1 2 . . . 2m− 2

1 2 . . . m− 1 m m+ 1 . . . 2m− 1

]
For example, for n = 8 we get:

µ8 =

[
8 6 4 2 1 3 5 7
1 2 3 4 5 6 7 8

]
= (1, 5, 7, 8)(2, 4, 3, 6)

µ′8 =

[
7 5 3 1 2 4 6 8
1 2 3 4 5 6 7 8

]
= (1, 4, 6, 7)(2, 5)

Considering the Mongean shuffle group Mn := 〈µn, µ′n〉 ≤ Sn, for n ≥ 2, we
experimentally find the following pattern: If n 6∈ {6, 12}

.
∪ {2k; k ≥ 3}, then
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Mn = Sn whenever n ≡ {2, 3} (mod 4), and Mn = An whenever n ≡ {0, 1}
(mod 4), while for k ≥ 3 we find |M2k | = 2k ·(k+1), and we get |M6| = 120 = 6!

6

and |M12| = 95040 = 12!
5040 .

17 Polya’s Theorem

If a counting problem is translated into a question concerning equivalence classes
of maps, where symmetries of the objects considered have to be taken into
account, the groups acting by pre- oder post-multiplication might be smaller
than the full symmetric groups. We are going to consider the action of a group
G ∼= G× {1} ≤ Sn × Sk on the full set Maps(N,K).

(17.1) The cycle index. Let n ∈ N0, and let X1, . . . , Xn be indeterminates.
For π ∈ Sn, letting λ(π) = [nan(π), . . . , 1a1(π)] ∈ Pk(π)(n) be its cycle type, let

cπ :=
∏n
i=1X

ai(π)
i ∈ Z[X1, . . . , Xn] be its cycle monomial. Hence cπ is monic

of degree
∑n
i=1 ai(π) = k(π), thus cπ(X, . . . ,X) = Xk(π) ∈ Z[X]; but if Xi is

given degree i, for all i ∈ {1, . . . , n}, then cπ has weighted degree n.

Let G be a finite group acting faithfully on the set N := {1, . . . , n} via ϕ : G→
Sn, where n ∈ N0. Then letting cg := cϕ(g) ∈ Z[X1, . . . , Xn] be the associated

cycle monomials, the polynomial cG := 1
|G| ·

∑
g∈G cg ∈ Q[X1, . . . , Xn] is called

the cycle index of G; note that cG only depends on the equivalence class of
G-actions considered, and that cG(1, . . . , 1) = 1. The cycle index has degree
n, the only monomial of degree n appearing is Xn

1 , with coefficient 1
|G| , and

evaluating yields cG(1, . . . , 1) = 1; but for the weighted degree we observe that
cG is homogeneous of degree n. For example, for {1} ≤ Sn we get c{1} = Xn

1 ∈
Q[X1, . . . , Xn].

Hence using the Q-algebra homomorphism Q[X1, . . . , Xn] → Q[X] given by
X1 7→ X, and Xi 7→ 1 for i ∈ {2, . . . , n}, we recover the fixed point index fG =
cG(X, 1, . . . , 1) ∈ Q[X]. More interestingly, using the Q-algebra homomorphism
Q[X1, . . . , Xn] → Q[X] : Xi 7→ X, for all i ∈ {1, . . . , n}, the cycle-number
index is given as kG = kG,N := cG(X, . . . ,X) = 1

|G| ·
∑
g∈GX

k(g) ∈ Q[X],

where k(g) := k(ϕ(g)) ∈ N0 is the number of cycles of g.

We show that the cycle index indeed depends on the G-action considered,
not just only on the isomorphism class of G: By way of example, let G :=
〈(1, 2)(3, 4), (1, 4)(2, 3)〉 = {(), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} as well asH :=
〈(1, 3), (2, 4)〉 = {(), (1, 3), (2, 4), (1, 3)(2, 4)}; actually we have G,H ≤ D8 ≤ S4,
see Table 13. Then G ∼= H as groups via (1, 2)(3, 4) 7→ (1, 3) and (1, 4)(2, 3) 7→
(2, 4), hence (1, 3)(2, 4) 7→ (1, 3)(2, 4), but we have cG = 1

4 (X4
1 + 3X2

2 ) 6=
1
4 (X4

1 + 2X2X
2
1 +X2

2 ) = cH ∈ Q[X1, . . . , X4].

Moreover, groups having one and the same cycle index are not necessarily equiv-
alent as permutation groups, and actually are not necessarily isomorphic: By
way of example, let p be an odd prime, let G be the elementary-abelian group
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of order p3, and let H be the extra-special group of order p3 of exponent p,
then with respect to their regular representations both groups have cycle index

cG = cH = 1
p3 (Xp3

1 + (p3 − 1)X3
p) ∈ Q[X1, . . . , Xp3 ].

(17.2) Example: Cycle index of Sn. For n ∈ N0 and a partition λ =
[nan , . . . , 1a1 ] ` n there are n!∏n

i=1(ai!·iai ) permutations in Sn with cycle type λ,

implying cn := cSn =
∑
λ=[nan ,...,1a1 ]`n(

∏n
i=1

1
ai!·iaiX

ai
i ) ∈ Q[X1, . . . , Xn]. We

aim at considering the cycle indices cn for all n ∈ N0 simultaneously:

To this end, let Q[X ] be the polynomial ring in countably infinitely many in-
determinates X := {Xi; i ∈ N}; hence we have Q ⊆ Q[X1] ⊆ Q[X1, X2] ⊆
· · · ⊆ Q[X ]. Let c :=

∑
n≥0 cnX

n ∈ Q[X ][[X]] be the generating series as-
sociated to the sequence [cn;n ∈ N0] ∈ Maps(N0,Q[X ]). Hence we have
c =

∑
n≥0(

∑
λ=[nan ,...,1a1 ]`n

∏n
i=1

1
ai!·iaiX

ai
i )Xn ∈ Q[X ][[X]].

Identifying the set
∐
n≥0 P (n) of all partitions with the setM := {[a1, a2, . . .] ∈

Maps(N,N0); ai = 0 for almost all i ∈ N}, where hence a = [a1, a2, . . .] ∈
M represents a partition of n =

∑
i≥1 iai, see (14.1), the generating series

becomes c =
∑
a∈M(

∏
i≥1

1
ai!·iaiX

ai
i X

iai) =
∏
i≥1(

∑
ai≥0

1
ai!

( 1
iXiX

i)ai) =∏
i≥1 exp( 1

iXiX
i) = exp(

∑
i≥1

1
iXiX

i) ∈ Q[X ][[X]]. ]

(17.3) Cycle index of Galois groups. a) Let f = Xn +
∑n
i=1 an−iX

n−i ∈
Z[X] be an irreducible monic polynomial of degree n = deg(f) ≥ 2, with ze-
roes {x1, . . . , xn} ⊆ C, and let K = Q[x1, . . . , xn] ⊆ C be its splitting field
with Galois group G := Gal(K/Q); then G acts faithfully and transitively
on {x1, . . . , xn}, hence we may view G as a subgroup of Sn. Let disc(f) :=∏

1≤i<j≤n(xi − xj)2 ∈ Z \ {0} denote the discriminant of f . Then, for any
prime p - disc(f) the reduced polynomial fp ∈ Fp[X] is separable of degree n,

and factors as fp =
∏l
i=1 fp,i ∈ Fp[X], where l = l(p) ∈ N and the fp,i ∈ Fp[X]

are pairwise distinct irreducible monic polynomials, of degree dp,i ∈ N say;
assuming the dp,i to be suitably ordered, we get λ(p) := [dp,1, . . . , dp,l] ` n.

For any prime p - disc(f), choose a discrete valuation ring Rp ⊆ K with
(finite) residue field Fq of characteristic p. Then Fq ⊆ Fp is the splitting field
of fp, hence we have [Fq : Fp] = logp(q) = dp = lcm(dp,1, . . . , dp,l) ∈ N, and
thus Gal(Fq/Fp) = 〈ϕp〉 ∼= Cdp , where ϕp : Fq → Fq : x 7→ xp is the associated
Frobenius automorphism. Then, since p - disc(K/Q) | disc(f) implies that
K/Q is unramified at the prime p, we conclude that ϕp lifts to a unique element
σp ∈ G. Taking the choice made into account this determines a unique conjugacy
class Cp ⊆ G; viewing G ≤ Sn the latter consists of elements of cycle type λ(p).
Now, by Chebotarev’s Density Theorem, for any conjugacy class C ⊆ G the

set of primes such that Cp = C has density limx→∞
|{p prime; p≤x, Cp=C}|
|{p prime; p≤x}| = |C|

|G| ;

note that this in particular says that the limit actually exists.

b) Now, the original question behind the Lenstra inequality, see (15.6), was
(in the context of the asymptotically fast Number Field Sieve algorithm
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Table 17: Cycle types for f1 and f2.

λ proportion

[111] ∼ 0.0000

[24, 13] ∼ 0.0538

[33, 12] ∼ 0.1616

[52, 1] ∼ 0.4431

[6, 3, 2] ∼ 0.1616

[11] ∼ 0.1796

λ proportion

[111] ∼ 0.0000

[24, 13] ∼ 0.006

[33, 12] ∼ 0.0363

[42, 13] ∼ 0.0969

[52, 1] ∼ 0.1878

[6, 3, 2] ∼ 0.1878

[8, 2, 1] ∼ 0.2848

[11] ∼ 0.2

for factoring integers), whether there are infinitely many primes p such that
fp ∈ Fp[X] does not have any zeroes in Fp, and to give a lower bound for their
frequency, independent of the particular Galois group of f :

By the above considerations, p - disc(f) is as desired if and only if Cp ⊆
G consists of fixed-point-free elements, that is Cp ⊆ D, where we infer that

limx→∞
|{p prime; p≤x,Cp⊆D}|
|{p prime; p≤x}| = |D|

|G| ≥
1
n = 1

deg(f) .

c) This yields a randomized algorithm to determine the cycle index of G ≤ Sn
with respect to its transitive action on the (unknown) set {x1, . . . , xn}, and
thus to narrow down the conjugacy classes of transitive subgroups of Sn to be
considered as possible candidates for G. We explain this by an example:

We consider the case n = 11 and the (sensibly chosen) polynomials

f1 = X11 − 2X10 + 3X9 + 2X8 − 5X7 + 16X6

−10X5 + 10X4 + 2X3 − 3X2 + 4X − 1 ∈ Z[X],

f2 = X11 − 3X10 + 8X9 − 6X8 − 9X7 + 51X6

−96X5 + 108X4 − 66X3 − 14X2 + 42X − 40 ∈ Z[X];

we have disc(f1) = 472 · 18314 ∼ 2 · 1015 and disc(f2) = 218 · 318 · 974 ∼ 9 · 1021.
Checking the admissible primes not exceeding 1000, that is 167 and 165 primes,
respectively, we find the proportion of cycle types as given in Table 17. In
particular, since in both cases the cycle type [11] occurs, we conclude that f1

and f2 actually are irreducible.

Now there are 8 conjugacy classes of transitive subgroups of S11, namely: C11,
D22, C11 : C5, C11 : C10, PSL2(11), M11, A11, S11. From the cycle types occur-
ring we immediately exclude the first four cases. Moreover, from the discrimi-
nants of f1 and f2 being squares, we conclude the Galois groups are contained
in A11, hence this excludes S11 as well. Next, as far as A11 is concerned, the
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Table 18: Cycle types of L2(11) and M11.

λ(g) |gG| proportion

[111] 1 1
660 ∼ 0.001

[24, 13] 55 1
12 ∼ 0.083

[33, 12] 110 1
6 ∼ 0.166

[52, 1] 264 2
5 ∼ 0.4

[6, 3, 2] 110 1
6 ∼ 0.166

[11] 120 2
11 ∼ 0.181

λ(g) |gG| proportion

[111] 1 1
7920 ∼ 0.0001

[24, 13] 165 1
48 ∼ 0.0208

[33, 12] 440 1
18 ∼ 0.0555

[42, 13] 990 1
8 ∼ 0.125

[52, 1] 1584 1
5 ∼ 0.2

[6, 3, 2] 1320 1
6 ∼ 0.1666

[8, 2, 1] 990 + 990 1
4 ∼ 0.25

[11] 720 + 720 2
11 ∼ 0.1818

proportion of elements containing a 7-cycle is ∼ 0.1429, and of those containing
a 9-cycle is ∼ 0.1111, hence the absence of these elements from the sample taken
is a strong indication that the Galois groups looked for are proper subgroups of
A11. Hence there are only two groups remaining:

The simple projective special linear group PSL2(11), acting 2-transitively
but not 3-transitively, has order |PSL2(11)| = 660 = 11 · 10 · 6, and conjugacy
classes as given in Table 18, which yields the cycle index cPSL2(11) = 1

660 (X11
1 +

55X3
1X

4
2 + 110X2

1X
3
3 + 264X1X

2
5 + 110X2X3X6 + 120X11. The sporadic simple

Mathieu group M11, acting sharply 4-transitively, has order |M11| = 7920 =
11 · 10 · 9 · 8, and conjugacy classes as given in Table 18, which yields the cycle
index cM11 = 1

7920 (X11
1 + 165X3

1X
4
2 + 990X3

1X
2
4 + 440X2

1X
3
3 + 1980X1X2X8 +

1584X1X
2
5 + 1320X2X3X6 + 1440X11; note that thus we may also cross-check

the fixed point index fM11
, which was already determined in (15.7).

For f2, the existence of elements of cycle type [8, 2, 1] and [42, 13] excludes the
former possibility, so that we have a strong indication that its Galois group is
isomorphic to M11. Similarly, for f1, the absence of elements of the cycle types
just mentioned is a strong indication that its Galois group is not isomorphic to
M11, hence that it is isomorphic to PSL2(11).

(17.4) The weight index. Let N := {1, . . . , n} and K := {1, . . . , k}, for
some n ∈ N0 and k ∈ N0. Let G be a finite group acting faithfully on N ,
with cycle index cG ∈ C[X1, . . . , Xn]. The G-orbits G\Maps(N,K) := {Gf ⊆
Maps(N,K); f ∈ Maps(N,K)} are called the patterns with respect to the G-
action, and let S ⊆ Maps(N,K) be a set of orbit representatives. We aim at
determining the number |G\Maps(N,K)| of patterns:

To this end, let R := Q[Y1, . . . , Yk], where Y1, . . . , Yk are indeterminates, being
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called the associated (generic) weight algebra. Let the (generic) weight of

f ∈ Maps(N,K) be defined as w(f) :=
∏n
i=1 Yf(i) =

∏k
j=1 Y

|f−1(j)|
j ∈ R; hence

w(f) is monic of degree n. Then for all π ∈ Sn we have w(πf) =
∏n
i=1 Y(πf)(i) =∏n

i=1 Yf(π−1(i)) =
∏n
i=1 Yf(i) = w(f). Thus weights are constant on Sn-orbits,

hence the weight w(Gf) := w(f) ∈ R of Gf ∈ G\Maps(N,K) is well-defined.

Then
∑
f∈S w(f) ∈ R is called the (generic) weight index of G\Maps(N,K).

For a := [a1, . . . , ak] ∈ Nk0 we let ωa := |{f ∈ S; |f−1(j)| = aj for j ∈
{1, . . . , k}}| ∈ N0 be the number of patterns in which j occurs precisely aj
times for all j ∈ {1, . . . , k}; note that by the above this is independent from the
choice of representatives. Hence we have

∑
f∈S w(f) =

∑
a=[a1,...,ak]∈Nk0

(ωa ·∏k
j=1 Y

aj
j ) ∈ R, that is ωa is the coefficient of the monomial

∏k
j=1 Y

aj
j in the

weight index; note that the weight index is homogeneous of degree n.

The main result now is the following polynomial identity, relating the weight
index of G\Maps(N,K) to the cycle index of the G-action on N :

(17.5) Theorem: Polya [1937]. Keeping the notation of (17.4), we have:

∑
f∈S

w(f) = cG

 k∑
j=1

Yj ,

k∑
j=1

Y 2
j , . . . ,

k∑
j=1

Y nj

 ∈ Q[Y1, . . . , Yk] =: R,

using the Q-algebra homomorphism Q[X1, . . . , Xn]→ R : Xi 7→
∑k
j=1 Y

i
j .

Proof. Given f ∈ S, then G acts transitively on the G-orbit Gf ⊆ Maps(N,K),
and the Cauchy-Frobenius-Burnside Lemma yields 1 = 1

|G| ·
∑
g∈G |Fix(Gf)(g)| =

1
|G| ·

∑
g∈G

∑
e∈Fix(g)∩(Gf) 1 ∈ Q, where we write Fix(g) := FixMaps(N,K)(g).

Since weights are constant on G-orbits, multiplication with w(f) ∈ R yields
w(f) = 1

|G| ·
∑
g∈G

∑
e∈Fix(g)∩(Gf) w(e) ∈ R, and thus summation over all f ∈ S

yields the weight index
∑
f∈S w(f) = 1

|G| ·
∑
g∈G

∑
e∈Fix(g) w(e) ∈ R.

Given g ∈ G, we consider the inner sum
∑
e∈Fix(g) w(e) ∈ R: For any map

e ∈ Maps(N,K) and any π ∈ Sn we have πe = e if and only if e(π−1(i)) =
e(i) for all i ∈ N , which holds if and only if e is constant on the k(π) ∈
N0 disjoint cycles of π. Thus we have e ∈ Fix(g) if and only if e is con-
stant on the l := k(g) ∈ N0 disjoint cycles N1, . . . , Nl ⊆ N of g, where the
values e1, . . . , el ∈ K of e on the various cycles can be chosen arbitrarily.

Thus we get
∑
e∈Fix(g) w(e) =

∑
e∈Fix(g)

∏n
i=1 Yei =

∑
e∈Fix(g)

∏l
s=1 Y

|Ns|
es =∑

[e1,...,el]∈Kl

∏l
s=1 Y

|Ns|
es =

∏l
s=1(

∑k
j=1 Y

|Ns|
j ).

Hence if g has cycle type λ(g) = [nan(g), . . . , 1a1(g)] ∈ Pl(n) where l = k(g) =∑n
i=1 ai(g), using the cycle monomial cg =

∏n
i=1X

ai(g)
i ∈ Z[X1, . . . , Xn] we get∑

e∈Fix(g) w(e) =
∏n
i=1(

∑k
j=1 Y

i
j )ai(g) = cg(

∑k
j=1 Yj , . . . ,

∑k
j=1 Y

n
j ) ∈ R. ]
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(17.6) Specialized weights. Specializations of the generic weight algebra give
rise to further weight maps, and consequently yield specializations of the above
polynomial identity. Keeping the notation of (17.5), the typical specializations
are given by replacing some of the indeterminates Yj by 1, for example:

a) The Q-algebra homomorphism R → Q : Yj 7→ 1 yields the number of pat-
terns as |G\Maps(N,K)| =

∑
f∈S 1 = cG(k, . . . , k) = kG(k) ∈ Q, where

kG = cG(X, . . . ,X) = 1
|G| ·

∑
g∈GX

k(g) ∈ Q[X] is the cycle-number index.

Note that this shows that, varying the cardinality of K, the number kG(k) of
patterns is given by a polynomial map in k ∈ N0. In particular, for G = {1} we
have k{1} = Xn, and thus we recover |Maps(N,K)| = k{1}(k) = kn.

More interestingly, let G = Sn. Then we have kSn = cSn(X, . . . ,X) = 1
n! ·∑

π∈Sn X
k(π) = 1

n! ·
∑n
l=0 sn,lX

l ∈ Q[X]. Recalling that Sn\Maps(N,K)

is in bijection with the n-multisets Mn(k) on K, we get 1
n! ·

∑n
l=0 sn,lk

l =

cSn(k, . . . , k) = |Mn(k)| =
(
k+n−1
n

)
= 1

n! ·
∏n−1
i=0 (k + i), for all k ∈ N0, recover-

ing the polynomial identity
∑n
l=0 sn,lX

l = X(n) ∈ Q[X].

b) For k = 2, letting K = {0, 1}, the generic weight algebra becomes Q[Y0, Y1],
and the Q-algebra homomorphism Q[Y0, Y1] → Q[Y ] given by Y0 7→ 1 and
Y1 7→ Y yields

∑
l∈{0,...,n} ωlY

l = cG(1 + Y, . . . , 1 + Y n) ∈ Q[Y ], where ωl =

|{f ∈ S; |f−1(1)| = l}| ∈ N0, for l ∈ {0, . . . , n}, is the number of patterns with
precisely l occurrences of 1 ∈ K.

This allows for another interpretation: Viewing the elements of Maps(N, {0, 1})
as indicator functions yields a bijection Maps(N, {0, 1})→ P(N) : f 7→ f−1(1).
Moreover, the group G acts on P(N) via g : M 7→ gM := {gx ∈ N ;x ∈ M} =
{x ∈ N ; g−1x ∈M}, for all g ∈ G and M ⊆ N ; note that |M | = |gM |. Then we
have (gf)−1(1) = {x ∈ N ; f(g−1(x)) = 1} = g(f−1(1)) ⊆ N , for all g ∈ G and
f ∈ Maps(N, {0, 1}), showing that the above map Maps(N, {0, 1}) → P(N) is
an isomorphism of G-sets.

Hence ωl = |G\Pl(N)| ∈ N0 is the number of G-orbits on the set of l-subsets
of N , and thus we get

∑
l∈{0,...,n} |G\Pl(N)| · Y l = cG(1 + Y, . . . , 1 + Y n) ∈

Q[Y ]. In particular, the Q-algebra homomorphism Q[Y ] → Q : Y 7→ 1 yields
|G\P(N)| =

∑
l∈{0,...,n} |G\Pl(N)| = cG(2, . . . , 2) = kG(2) = 1

|G| ·
∑
g∈G 2k(g).

Thus for G = {1} we recover
∑
l∈{0,...,n}

(
n
l

)
· Y l =

∑
l∈{0,...,n} |Pl(N)| · Y l =

c{1}(1 + Y, . . . , 1 + Y n) = (1 + Y )n ∈ Q[Y ]; this specializes further yielding∑
l∈{0,...,n}

(
n
l

)
= |P(N)| = 2n. For G = Sn we have |G\Pl(N)| = 1 for all

l ∈ {0, . . . , n}, implying
∑
l∈{0,...,n} Y

l = cSn(1 + Y, . . . , 1 + Y n) ∈ Q[Y ], from

which by specializing further we obtain n + 1 = cSn(2, . . . , 2) = kSn(2) = 1
n! ·∑

π∈Sn 2k(π) = 1
n! ·

∑n
l=0 sn,l2

l, recovering a special case of the polynomial
identity for Stirling numbers of the first kind mentioned above.
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18 Counting patterns

(18.1) Example: Necklaces. A necklace with n ≥ 3 pearls having at most
k ∈ N0 distinct colors is a map f : N := {1, . . . , n} → {1, . . . , k} =: K. The
set N may be considered as the set of vertices of a regular n-gon Rn, and
necklaces are equivalent if they arise from each other by a symmetry of Rn.
Hence we consider the dihedral groupD2n ≤ Sn acting on the set Maps(N,K) by
pre-multiplication, and the equivalence classes are the associated orbits. Thus
their number is ηn(k) := |D2n\Maps(N,K)| = kD2n(k) = cD2n(k, . . . , k) =
1

2n ·
∑
π∈D2n

kk(π) ∈ N.

For example, for n ∈ {3, 4} from Table 13 we get the cycle indexes cD6
=

1
6 (X3

1 + 3X2X1 + 2X3) ∈ Q[X1, . . . , X3] and cD8
= 1

8 (X4
1 + 2X2X

2
1 + 3X2

2 +
2X4) ∈ Q[X1, . . . , X4]. Thus we have the cycle-number indices kD6 = 1

6 (X3 +
3X2 + 2X) ∈ Q[X] and kD8 = 1

8 (X4 + 2X3 + 3X2 + 2X) ∈ Q[X], yielding
η3(k) = kD6

(k) and η4(k) = kD8
(k).

Moreover, letting ηn,a ∈ N0 be the number of equivalence classes of neck-
laces with n ≥ 3 pearls which are either black or white, such that there are
precisely a ∈ {0, . . . , n} black pearls, we get

∑
a∈{0,...,n} ηn,aY

a = cD2n(1 +

Y, 1 + Y 2, . . . , 1 + Y n) ∈ Q[Y ], for n ∈ {3, 4} yielding
∑
a∈{0,...,3} η3,aY

a =
1
6 ((1 + Y )3 + 3(1 + Y 2)(1 + Y ) + 2(1 + Y 3)) = Y 3 + Y 2 + Y + 1 ∈ Q[Y ] and∑
a∈{0,...,4} η4,aY

a = 1
8 ((1+Y )4 +2(1+Y 2)(1+Y )2 +3(1+Y 2)2 +2(1+Y 4)) =

Y 4 + Y 3 + 2Y 2 + Y + 1 ∈ Q[Y ], respectively, where in both cases the numbers
ηn,a are combinatorially obvious.

(18.2) Example: The structure of benzene, revisited. Using the nota-
tion of (15.9), finding the number of orbits of G = G(i), for i ∈ {1, 2, 3}, on
the set of pairs of distinct elements of N := {1, . . . , 6}, can be rephrased in
terms of a pattern counting problem: Letting K := {0, 1, 2}, we have to find
the number of patterns Gf ∈ G\Maps(N,K) such that |f−1(1)| = |f−1(2)| = 1.
Thus, specializing the associated generic weight index using the Q-algebra ho-
momorphism Q[Y0, Y1, Y2] → Q[Y1, Y2] : Y0 7→ 1, Y1 7→ Y1, Y2 7→ Y2, we have to
determine the coefficient ω[1,1] of the monomial Y1Y2 in the specialized weight
index. To do so, we compute the cycle index c(X1, . . . , X6) ∈ Q[X1, . . . , X6],
and by Polya’s Theorem specialize c(1+Y1 +Y2, , . . . , , 1+Y 6

1 +Y 6
2 ) ∈ Q[Y1, Y2]:

i) We have G(1) ∼= D12. It is immediate from the description in (15.3) that
c(1)(X1, . . . , X6) = 1

12 · (2X6 + 2X2
3 + 4X3

2 + 3X2
2X

2
1 + X6

1 ) ∈ Q[X1, . . . , X6].
In order to determine the coefficient ω[1,1] we proceed as follows: Expanding

c(1)(1 + Y1 + Y2, , . . . , , 1 + Y 6
1 + Y 6

2 ) shows that Y1Y2 only occurs in (1 + Y 2
1 +

Y 2
2 )2(1 + Y1 + Y2)2, with coefficient 2, and in (1 + Y1 + Y2)6, with coefficient
6!

4!·1!·1! = 30. Hence we get ω[1,1] = 1
12 · (3 · 2 + 30) = 3.

ii) We have G(2) ∼= S3. Since G(2) acts transitively on 6 points, this action
is equivalent to the regular action of S3. Hence we get c(2)(X1, . . . , X6) =
1
6 · (2X

2
3 + 3X3

2 + X6
1 ) ∈ Q[X1, . . . , X6], where similarly, Y1Y2 only occurs in
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(1 + Y1 + Y2)6, with coefficient 30, yielding ω[1,1] = 30
6 = 5.

iii) We have G(3) ∼= S4. Since G(3) acts transitively and faithfully on 6 points,
this action is equivalent to the action of S4 on the cosets of 〈(1, 2), (3, 4)〉 ∼= V4.
Hence we get c(3)(X1, . . . , X6) = 1

24 · (6X4X
2
1 + 8X2

3 + 6X3
2 + 3X2

2X
2
1 +X6

1 ) ∈
Q[X1, . . . , X6], where similarly Y1Y2 only occurs in (1 +Y 4

1 +Y 4
2 )(1 +Y1 +Y2)2,

with coefficient 2, in (1 + Y 2
1 + Y 2

2 )2(1 + Y1 + Y2)2, with coefficient 2, and in
(1 + Y1 + Y2)6, with coefficient 30, yielding ω[1,1] = 1

24 · (6 · 2 + 3 · 2 + 30) = 2. ]

(18.3) Example: Isomerism of alcohols. An alcohol is a aliphatic hy-
drocarbon compound having the chemical sum formula CnH2n+1(OH), where
n ∈ N, consisting of a connected skeleton without circles of n carbon atoms,
one of which carries a hydroxy group OH, and the 2n+ 1 hydrogen atoms are
attached to the carbon atoms so that any of the latter is adjacent to precisely
4 neighbors. To determine the number tn ∈ N of distinct isomers of alcohols
having n carbon atoms (where here we consider stereo isomers as identical),
we consider the generating series t :=

∑
n≥0 tnY

n ∈ Q[[Y ]], where we let t0 := 1,
corresponding to the degenerate alcohol H(OH), that is water.

The carbon atom skeleton with the distinguished atom carrying the hydroxy
group can be considered as a rooted tree Γ, that is a connected finite simple
graph without circles with an exceptional vertex; the empty graph is a rooted
tree, and we let |Γ| ∈ N0 be the number of vertices of Γ. Note that a tree having
n ≥ 1 vertices has precisely n− 1 edges, showing that there are indeed precisely
4n−2(n−1)−1 = 2n+1 free slots for hydrogen atoms. Hence we are interested
in the set T of rooted trees all of whose vertices have valency at most 4, and
whose exceptional vertex has valency at most 3. Hence we have T =

∐
n∈N0

Tn,
where Tn := {Γ ∈ T ; |Γ| = n}; in particular, T0 is the singleton set containing
the empty graph. Thus we have tn = |Tn|, for n ∈ N0.

Given Γ ∈ Tn, for some n ≥ 1, allowing for the empty graph as a subtree,
there are precisely 3 subtrees Γ1,Γ2,Γ3 ∈ T attached to the exceptional vertex
of Γ, where the vertex of Γi being attached to the exceptional vertex of Γ is
designated as exceptional. Since the order of the Γi is irrelevant, we conclude
that Γ is completely described by the 3-multiset [Γ1,Γ2,Γ3] ⊆ T . Thus T \ T0

can be identified with S3\Maps(N, T ), where N := {1, 2, 3}, by associating
f ∈ Maps(N, T ) with the rooted tree spliced together as described above from
[f(1), f(2), f(3)]. Hence tn coincides with the number of S3-orbits on the set
{f ∈ Maps(N, T ); |f(1)|+ |f(2)|+ |f(3)| = n− 1}, for n ∈ N.

The generic weight algebra for this setting is as follows: Let Y := {YΓ; Γ ∈ T }
be indeterminates. Then for any map f ∈ Maps(N, T ) the associated weight
w(f) is a polynomial of degree 3 in Q[Y], but we will have to allow for infinite
sums like

∑
f∈Maps(N,T ) w(f). Hence the generic weight algebra is defined as

the inverse limit R := lim←−n∈N0

{
Q[Y]/(YΓ; |Γ| ≥ n)

}
, with respect to the

natural quotient maps; note that the proof of Polya’s Theorem still works for
weight maps with values in R. We consider the following specialization: Letting
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Y be an indeterminate, the ring of formal power series in Y can be seen as
the inverse limit Q[[Y ]] = lim←−n∈N0

{
Q[Y ]/(Y n)

}
, with respect to the natural

quotient maps. Now, for any n ∈ N0 there is a Q-algebra homomorphism
Q[Y]/(YΓ; |Γ| ≥ n)→ Q[Y ]/(Y n) : YΓ 7→ Y |Γ|. Since these maps commute with
the respective quotient maps used to define the inverse limits considered, this
induces a Q-algebra homomorphism R→ Q[[Y ]] : YΓ 7→ Y |Γ|.

Hence, with respect to this specialization, any map f ∈ Maps(N, T ) has associ-
ated weight w(f) := Y |f(1)|+|f(2)|+|f(3)| ∈ Q[Y ], we get

∑
f∈S3\Maps(N,T ) w(f) =∑

n≥0 tn+1Y
n = 1

Y (t(Y ) − 1) ∈ Q[[Y ]]. We evaluate the left hand side using

Polya’s Theorem: The cycle index of S3 is given as cS3 = 1
6 (X3

1 + 3X2X1 +
2X3) ∈ Q[X1, X2, X3], see (18.1), and since the sum

∑
Γ∈T YΓ ∈ R specializes

to t =
∑
n≥0 tnY

n ∈ Q[[Y ]], the left hand side equals cS3(t(Y ), t(Y 2), t(Y 3)) =
1
6 (t(Y )3 + 3t(Y 2)t(Y ) + 2t(Y 3)) ∈ Q[[Y ]].

Hence we get the functional equation 1
Y (t(Y )− 1) = 1

6 (t(Y )3 + 3t(Y 2)t(Y ) +

2t(Y 3)), or equivalently t(Y ) = 1 + Y
6 (t(Y )3 + 3t(Y 2)t(Y ) + 2t(Y 3)), allowing

to solve recursively for tn, for n ∈ N, given t0 = 1:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
t 1 1 1 2 4 8 17 39 89 211 507 1238 3057 7639 19241

Hence in particular there are a unique methanol and a unique ethanol, as well
as two propanols, four butanols, eight pentanols, 17 hexanols, and so on.

A closed formula for tn currently is not known. Considering the power series∑
n≥0 tnz

n as a complex function in z ∈ C, it can be shown that it has (an-
alytically defined) convergence radius 0.35 < ρ ∼ 0.355181742 < 0.36, and

that the growth behavior of the tn is described by limn→∞(tn · ρn · n
3
2 ) = γ,

for some (analytically defined) constant γ ∼ 0.5179, that is tn ∼ ( 1
ρ )n · ( 1

n )
3
2 .

Actually, approximations to ρ and γ can be found experimentally as follows:
Varying ρ within the above bounds, the sequence of the numbers tn ·ρn ·n

3
2 , for

n ∈ {1, . . . , 700} say, turns out to be increasing if ρ is chosen too large, while
from a certain turning point on it becomes decreasing if ρ is chosen too small,
hence we may just try to push this turning point to larger and larger n.

b) Similarly, for any d ≥ 2, we may count the set T (d) of d-ary rooted trees,
that is rooted trees all of whose vertices have valency at most d and whose
exceptional vertex has valency at most d− 1, using the action of the symmetric
group Sd on Maps({1, . . . , d}, T (d)).

For example, for d = 2 we get the cycle index cS2 = 1
2 (X2

1 +X2) ∈ Q[X1, X2], and
hence the associated generating series τ :=

∑
n≥0 τnY

n ∈ Q[[Y ]], where τn :=

|{Γ ∈ T (2); |Γ| = n}| for n ∈ N0, fulfills the functional equation 1
Y (τ(Y )− 1) =

1
2 (τ(Y )2 +τ(Y 2)). Using τ0 = 1, the latter recursively yields the Wedderburn-
Etherington numbers as follows:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
τn 1 1 1 2 3 6 11 23 46 98 207 451 983 2179 4850
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A closed formula for the τn currently is not known. Considering the power
series

∑
n≥0 τnz

n as a complex function in z ∈ C, it can be shown that it has
convergence radius ρ ∼ 0.402697504, and that the growth behavior of the τn is
described by limn→∞(τn · ρn−1 · n 3

2 ) = γ ∼ 0.7916.

(18.4) Example: The card game SET. a) The card game SET was invented
by Falco [1974] as a translation of observables used in a study of the genetics of
epilepsy in dogs, German shepherds to be precise. The translation consists of
four attributes, each of which can assume three distinct values, of the symbols
on specially tailored playing cards; this amounts to a total of 34 = 81 cards:

attribute 0 1 2

quantity three one two
color green red purple

shading open striped solid
shape diamond squiggle oval

Given a subset of cards, a ‘set’ in the sense of this game is a subset of three
cards, such that with respect to any of the attributes, independently, the three
cards either all have the same value or are pairwise distinct. ‘Set’-free subsets
of cards are also called caps, where those which are not properly contained in
a larger cap are called maximal caps.

The game then is played as follows: Twelve cards are laid out face-up on the
table. The player first detecting a ‘set’ collects these three cards, and the latter
are replaced by three new ones. If there is no ‘set’ detected, then three more
cards are laid out. This is iterated until the deck is empty, and the remaining
cards laid out form a cap. The player with the most ‘sets’ detected wins.

This leads, at least, to the following questions: Firstly, with respect to all
subsets of cards: When are two subsets of cards equivalent, with respect to
the ‘set’ property? How many inequivalent k-subsets of cards are there? (In
particular, for k = 12?) Secondly, with respect to caps: What is the largest
k = kmax such that there is a k-cap of cards? (In particular, is kmax ≥ 12?)
For k ≤ kmax, how many inequivalent k-caps of cards are there? What is the
proportion of the k-caps amongst all k-subsets of cards? How do maximal caps
look like? (In particular, for k = kmax?)

In order to attack this algebraically, the values of the attributes are associated
with F3 := {0, 1, 2}, as is already indicated above. Hence the cards can be
identified with the vectors in F4

3. Then the condition that, for a fixed attribute,
three values either are all the same or are pairwise distinct translates into saying
that their sum vanishes. Hence a ‘set’ of cards just is a 3-subset {v, v′, v′′} ⊆ F4

3

such that v + v′ + v′′ = 0 ∈ F4
3. Moreover, the admissible symmetries are the

bijections on F4
3 mapping ‘sets’ to ‘sets’.

The condition of being a ‘set’ can be rephrased as follows: If {v, v′, v′′} is a
‘set’, we have v′ = v + (v′ − v) and v′′ = −(v + v′) = v + 2(v′ − v), thus
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{v, v′, v′′} = v + F3 · (v′ − v), where 0 6= (v′ − v) ∈ F4
3. Conversely, for any

0 6= u ∈ F4
3, the 3-subset v+F3 ·u ⊆ F4

3 fulfills v+ (v+u) + (v+ 2u) = 0, hence
is a ‘set’. Thus ‘sets’ are just the ‘lines’ in F4

3 in the following geometrical sense:

b) Letting d ∈ N and Fq be the field with q elements, we consider the affine
space with underlying points V := Fdq , whose lines are the subsets v+ 〈u〉Fq ⊆
V , for some v ∈ V and 0 6= u ∈ V . Then the associated symmetries (in the
sense of affine geometry) are given by the affine general linear group
A := AGLd(q) ∼= T o GLd(q), where GLd(q) ≤ A is the subgroup of affine
maps fixing the origin, that is the subgroup of Fq-linear maps, and T ∼= V is

the normal subgroup of translations; hence we have |A| = qd ·
∏d−1
i=0 (qd − qi).

Then A acts faithfully on V via [t, g] ·v := t+gv, for v ∈ V and g ∈ GLd(q) and

t ∈ T . Embedding A→ GLd+1(q) via [t, g] 7→
[
g t
. 1

]
, and identifying v ∈ V

with the extended vector [vtr|1]tr ∈ Fd+1
q we get

[
g t
. 1

]
·
[
v
1

]
=

[
gv + t

1

]
,

implying that affine maps can be considered as Fq-linear maps.

This paves the way to find the cycle index of A; note that using the structure of A
as a semidirect product it is possible to use the well-understood conjugacy classes
of GLd(q) to obtain a conceptual description of the conjugacy classes of A, but
instead we pursue a purely computational approach: Considering the action of
A on extended vectors, we obtain a faithful permutation representation, which
can be used to determine its conjugacy classes, together with their cardinality,
and the cycle type of its elements. Given the cycle index cA ∈ Q[X1, . . . , Xqd ]
of A, the number of orbits of A on the k-subsets of V , for k ∈ {0, . . . , qd}, is

readily given by the coefficient of Y k in cA(1 + Y, . . . , 1 + Y q
d

) ∈ Q[Y ].

However, it is computationally much more difficult to find a transversal of the
A-orbits on the k-subsets of V . Moreover, the picture changes completely when
it comes to finding the number of A-orbits on the k-caps in V , where Polya’s
Theorem does not at all help: Actually, neither kmax is known, apart from a
very small cases, nor the growth behavior of the number of orbits, for fixed k
and growing d, let alone explicit formulae for them, are known. But since any
subset of a cap again is a cap, it it possible to use recursion with respect to k to
explicitly find a transversal of the A-orbits on k-caps, and hence in particular
their number, and consequently kmax, for a few non-trivial cases.

c) Now let q := 3. For d = 1 we get A ∼= F3 o F∗3 ∼= S3, acting naturally,
which (obviously) yields cA(1 + Y, . . . , 1 + Y 3) = Y 3 + Y 2 + Y + 1 ∈ Q[Y ].
For d ∈ {2, 3, 4}, where |A| = 432 and |A| = 303264 and |A| = 1965150720,
respectively, proceeding as described above yields cA(1 +Y, . . . , 1 +Y 9) = Y 9 +
Y 8 + Y 7 + 2Y 6 + 2Y 5 + 2Y 4 + 2Y 3 + Y 2 + Y + 1 ∈ Q[Y ] for d = 2, and
cA(1 + Y, . . . , 1 + Y 27) = Y 27 + Y 26 + Y 25 + 2Y 24 + 3Y 23 + 5Y 22 + 10Y 21 +
16Y 20 +28Y 19 +47Y 18 +68Y 17 +91Y 16 +114Y 15 +127Y 14 +127Y 13 +114Y 12 +
91Y 11+68Y 10+47Y 9+28Y 8+16Y 7+10Y 6+5Y 5+3Y 4+2Y 3+Y 2+Y +1 ∈ Q[Y ]
for d = 3, and cA(1 + Y, . . . , 1 + Y 81) ∈ Q[Y ] for d = 4 is given in Table 19;
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hence there are 41407 inequivalent 12-subsets of cards. Note that, while for
d ≤ 3 transversals of the A-orbits on the k-subsets of V are easily found for
k ∈ {1, . . . , qd}, for d = 4 this is computationally tractable only up to k ∼ 14.

As for caps and the A-orbits thereon, the knowledge is very poor. The current
state of the art for kmax is as follows:

d 1 2 3 4 5 6
kmax 2 4 9 20 45 {112, 113, 114}

Transversals and the number of A-orbits are known for d ∈ {1, . . . , 4} and all
k ∈ {0, . . . , kmax}, from explicit computations, see Table 20. This verifies the
above results on kmax in this range. In particular, it turns out that there always
is a single A-orbit of caps of cardinality kmax; there is no a-priori-reason known
why this should be the case. Moreover, for d = 4 we indicate the proportion
of k-caps amongst all k-subsets of V ; a cap of cardinality kmax = 20 (actually
the lexicographically smallest one) is reproduced in Table 21, together with its
translation into real cards according to the table given earlier.
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Table 19: Number of AGL4(3)-orbits on subsets of F4
3.

Y 81+
Y 80 + Y 79+

2Y 78 + 3Y 77 + 6Y 76+
15Y 75 + 34Y 74 + 105Y 73+

384Y 72 + 1658Y 71 + 8135Y 70+
41407Y 69 + 205211Y 68 + 963708Y 67+

4231059Y 66 + 17295730Y 65 + 65807588Y 64+
233346408Y 63 + 772518828Y 62 + 2392611091Y 61+

6946116261Y 60 + 18937468347Y 59 + 48568206996Y 58+
117356752981Y 57 + 267548687984Y 56 + 576222904363Y 55+

1173737365919Y 54 + 2263568972663Y 53 + 4136780036942Y 52+
7170309576688Y 51 + 11796184561289Y 50 + 18431386920534Y 49+
27367649303603Y 48 + 38636503940897Y 47 + 51883126670392Y 46+
66294936428615Y 45 + 80628826002618Y 44 + 93359571424793Y 43+

102934827016066Y 42 + 108081525023972Y 41 + 108081525023972Y 40+
102934827016066Y 39 + 93359571424793Y 38 + 80628826002618Y 37+
66294936428615Y 36 + 51883126670392Y 35 + 38636503940897Y 34+
27367649303603Y 33 + 18431386920534Y 32 + 11796184561289Y 31+

7170309576688Y 30 + 4136780036942Y 29 + 2263568972663Y 28+
1173737365919Y 27 + 576222904363Y 26 + 267548687984Y 25+

117356752981Y 24 + 48568206996Y 23 + 18937468347Y 22+
6946116261Y 21 + 2392611091Y 20 + 772518828Y 19+

233346408Y 18 + 65807588Y 17 + 17295730Y 16+
4231059Y 15 + 963708Y 14 + 205211Y 13+

41407Y 12 + 8135Y 11 + 1658Y 10+
384Y 9 + 105Y 8 + 34Y 7+

15Y 6 + 6Y 5 + 3Y 4+
2Y 3 + Y 2+
Y + 1
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Table 20: Number of AGLd(3)-orbits on k-caps.

k 1 2 3 4 prop.

1 1 1 1 1
2 1 1 1
3 1 1 1 0.99
4 1 2 2 0.95
5 2 3 0.88
6 3 7 0.76
7 2 11 0.62
8 3 33 0.45
9 1 91 0.30

10 267 0.17

k 1 2 3 4 prop.

11 670 8 · 10−2

12 1437 3 · 10−2

13 2225 1 · 10−2

14 2489 2 · 10−3

15 1756 4 · 10−4

16 748 3 · 10−5

17 143 1 · 10−6

18 20 1 · 10−8

19 1 9 · 10−12

20 1 1 · 10−13

Table 21: A 20-cap for d = 4.

[0, 0, 0, 0] three-green-open-diamond
[0, 0, 0, 1] three-green-open-squiggle
[0, 0, 1, 0] three-green-striped-diamond
[0, 0, 1, 1] three-green-striped-squiggle
[0, 1, 0, 0] three-red-open-diamond
[0, 1, 0, 1] three-red-open-squiggle
[0, 1, 1, 0] three-red-striped-diamond
[0, 1, 1, 1] three-red-striped-squiggle
[1, 0, 0, 0] one-green-open-diamond
[1, 0, 0, 1] one-green-open-squiggle
[1, 0, 1, 2] one-green-striped-oval
[1, 0, 2, 2] one-green-solid-oval
[1, 1, 0, 2] one-red-open-oval
[1, 2, 0, 2] one-purple-open-oval
[2, 0, 1, 2] two-green-striped-oval
[2, 1, 0, 2] two-red-open-oval
[2, 1, 1, 0] two-red-striped-diamond
[2, 1, 1, 1] two-red-striped-squiggle
[2, 1, 2, 2] two-red-solid-oval
[2, 2, 1, 2] two-purple-striped-oval
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VI Exercises and references

19 Exercises for Part I (in German)

(19.1) Aufgabe: Potenzmenge.
Es seien M eine beliebige Menge und P(M) ihre Potenzmenge. Man zeige: Es
gibt keine Surjektion M → P(M).

Hinweis. Für f : M → P(M) surjektiv betrachte man {x ∈M ;x 6∈ f(x)}.

(19.2) Aufgabe: Potenzmengen endlicher Mengen.
Für n ∈ N0 bestimme man (ohne die Benutzung von Binomialkoeffizienten) die
Anzahl der Teilmengen von {1, . . . , n} mit gerader bzw. ungerader Kardinalität.

(19.3) Aufgabe: Aufzählung von Potenzmengen.
Es sei n ∈ N0. Zur Gray-Aufzählung aller Teilmengen von {1, . . . , n} werden
diese als n-Tupel mit Einträgen in {0, 1} dargestellt. Ist G(n) = [x1, . . . , x2n ] die
Aufzählung für n, so sei G(n+ 1) := [0x1, 0x2, . . . , 0x2n , 1x2n , 1x2n−1, . . . , 1x1],
wobei G(0) := [[]] die Liste mit dem leeren Tupel sei. Man zeige:

a) Je zwei benachbarte Tupel in G(n) unterscheiden sich an genau einer Stelle.

b) Für 0 ≤ k ≤ n sei Gk(n) die Unterfolge von G(n) der Tupel mit genau k
Einträgen 1. Man zeige: Je zwei benachbarte Tupel in Gk(n) unterscheiden sich
an genau zwei Stellen.

(19.4) Aufgabe: Parlamentswahlen.
Das Parlament eines Landes habe n ∈ N Sitze, und es seien die rote, die grüne
und die gelbe Partei vertreten. Wieviele mögliche Sitzverteilungen gibt es, so
daß keine Partei die absolute Mehrheit hat?

(19.5) Aufgabe: Kartenmischen.
Ein Stapel von 52 üblichen Spielkarten wird gemischt. Wieviele Ergebnisse gibt
es, bei denen sowohl die oberste als auch die unterste Karte ein Ass ist?

(19.6) Aufgabe: Fakultäten.
Man zeige: Jede natürliche Zahl n ∈ N0 hat eine eindeutige Darstellung der
Form n =

∑
k≥1 ak · k! mit ak ∈ {0, . . . , k}.

(19.7) Aufgabe: Teilmengen ohne benachbarte Elemente.
a) Für n ∈ N0 und k ∈ N0 seien ak(n) ∈ N0 die Anzahl der k-elementigen
Teilmengen M ⊆ {1, . . . , n} mit |x − y| ≥ 2 für alle x 6= y ∈ M , sowie a(n) =∑n
k=0 ak(n) die Anzahl aller solcher Teilmengen von {1, . . . , n}.

Man zeige kombinatorisch: Es gelten ak(n) =
(
n−k+1

k

)
sowie a(n) = Fn+2,

die (n + 2)-te Fibonacci-Zahl. (Dies ist also ein kombinatorischer Beweis der
Identität

∑n
k=0

(
n−k+1

k

)
= Fn+2.)
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b) Nun sei j ∈ N. Man bestimme die Anzahl der k-elementigen Teilmengen
M ⊆ {1, . . . , n} mit |x− y| ≥ j für alle x 6= y ∈M .

(19.8) Aufgabe: Multimengen.
Es seien n ∈ N0 und k ∈ N0. Man zeige: Es gilt |Mk(n + 1)| = |Mn(k + 1)|;
dazu gebe man einen algebraischen und einen kombinatorischen Beweis an.

(19.9) Aufgabe: Teiler.
Für n ∈ N sei τ(n) := |{d ∈ N; d | n}| ∈ N die Anzahl der Teiler von n. Man
zeige: Die Anzahl τ(n) ist genau dann ungerade, wenn n eine Quadratzahl ist.

(19.10) Aufgabe: Gefangenenbefreiung.
Der Gefängniswärter eines Gefängnisses mit 100 Zellen will einige Gefangenen
freilassen, indem er folgendes Verfahren anwendet: Zunächst schließt er alle
Türen auf, dann der Reihe nach jede zweite wieder zu, danach ändert er den
Zustand jeder dritten Tür von offen nach geschlossen und umgekehrt, und so
fährt er mit jeder vierten, fünften, bis hundertsten Tür fort. Am Ende dürfen
die Gefangenen gehen, deren Tür offen ist. Welche Gefangenen sind das?

(19.11) Aufgabe: Warteschlangen.
Die Personen {1, . . . , n}, für n ∈ N, mögen eine Warteschlage bilden, so daß
sich, mit Ausnahme der vordersten Person, vor jeder Person i die Person i− 1
oder i+ 1 befinde. Wieviele mögliche Warteschlangen gibt es?

(19.12) Aufgabe: Fallende Faktorielle.
a) Es sei n ∈ N0. Man zeige: Es gilt (2X)(2n) = 22nX(n)(X − 1

2 )(n) ∈ Z[X].

b) Daraus folgere man: Es gilt
(− 1

2
n

)
= (− 1

4 )n ·
(

2n
n

)
.

(19.13) Aufgabe: Binomialkoeffizienten.
Es sei n ∈ N0. Man zeige:

a) Es gilt Unimodalität
(
n
0

)
<
(
n
1

)
< · · · <

(
n
bn2 c
)

=
(
n
dn2 e
)
> · · · >

(
n
n−1

)
>
(
n
n

)
.

b) Es gelten
∑n
k=0 k ·

(
n
k

)
= n · 2n−1 und

∑n
k=0 k

2 ·
(
n
k

)
= n(n+ 1) · 2n−2.

c) Es gilt
∑n
k=0

(
n
k

)2
=
(

2n
n

)
.

(19.14) Aufgabe: Identitäten für Binomialkoeffizienten.
Es seien m ≤ n ∈ N0. Man zeige:

a) Es gilt
(
n
m

)(
m
k

)
=
(
n
k

)(
n−k
m−k

)
und

∑m
k=0

(
n
k

)(
n−k
m−k

)
= 2m ·

(
n
m

)
. Welche kombi-

natorische Interpretation hat diese Identität?

b) Es gilt
∑m
k=0(−1)k ·

(
n
k

)(
n−k
m−k

)
=

{
1, falls m = 0,
0, falls m ≥ 1.
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c) Es gilt
∑m
k=0(−1)k ·

(
n
k

)(
n

m−k
)

=

{
0, falls m ungerade,

(−1)
m
2 ·
(
n
m
2

)
, falls m gerade.

Hinweis zu c). Man betrachte (X + 1)n(X − 1)n = (X2 − 1)n ∈ Z[X].

(19.15) Aufgabe: Pascal-Dreieck.
Es seien n ∈ N0 und k ∈ N0. Man zeige: Für partielle Antidiagonalsummen
gilt

∑k
i=0

(
n+i
k−i
)

= Fn+k+1, die (n+ k + 1)-te Fibonacci-Zahl.

(19.16) Aufgabe: Verschobenes Pascal-Dreieck.
Man betrachte das verschobene Pascal-Dreieck, in dem die n+1 nicht-verschwin-
denden Einträge in Zeile n ∈ N0 in den Spalten 2n, . . . , 3n stehen, und die
Einträge eingerahmt werden, die Vielfache von n sind:

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

Man zeige: Es ist k ≥ 2 genau dann eine Primzahl, wenn alle nicht-verschwin-
denden Einträge in Spalte k eingerahmt sind.

(19.17) Aufgabe: Gitterwege.
Für m,n ∈ N0 betrachte man ein Gitter mit den Kantenlängen m und n. Durch
Klassifikation von Wegen gebe man kombinatorische Beweise der folgenden Iden-
titäten an: Für k ∈ N0 gilt

∑k
i=0

(
n+i
i

)
=
(
n+k+1

k

)
und

(
m+n
k

)
=
∑k
i=0

(
m
i

)(
n
k−i
)
.

Hinweis. Man betrachte das erste Eintreffen auf der rechten Vertikalen bzw.
den Schnittpunkt mit einer Antidiagonalen.

(19.18) Aufgabe: Schachbrett.
Für n ∈ N0 betrachte man ein (n× n)-Schachbrett. Man bestimme die Anzahl
der kürzesten Wege, auf denen ein König von der linken unteren zur rechten
oberen Ecke gelangen kann.

(19.19) Aufgabe: Bertrands Problem.
Zwei Kandidaten A und B erhalten bei einer Wahl a > b ∈ N0 Stimmen. Man
zeige, daß die Stimmzettel auf genau a−b

a+b ·
(
a+b
a

)
Weisen geordnet werden können,

so daß bei der sukzessiven Auszählung A stets mehr Stimmen als B hat.

Hinweis. Man betrachte geeignete Gitterwege.
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(19.20) Aufgabe: Kleiner Satz von Fermat.
Es seien n ∈ N und p ∈ N eine Primzahl. Man zeige: Es gilt np ≡ n (mod p);
dazu gebe man einen algebraischen und einen kombinatorischen Beweis an.

(19.21) Aufgabe: Folgen von Teilmengen.
Es seien n ∈ N0 und k ∈ N0. Man bestimme jeweils die Anzahl der Folgen
[N1, . . . , Nk] von Teilmengen Ni ⊆ N := {1, . . . , n} mit:

a) N1 ⊆ N2 ⊆ · · · ⊆ Nk;

b) Ni ∩Nj = ∅ für alle i 6= j ∈ {1, . . . , k};
c) N1 ∪N2 ∪ · · · ∪Nk = N .

(19.22) Aufgabe: Stirling-Zahlen zweiter Art.
a) Für n ∈ N0 zeige man: Es gilt Sn,0 < Sn,1 < · · · < Sn,mn−1 ≤ Sn,mn > · · · >
Sn,n−1 > Sn,n, für ein mn ∈ {0, . . . , n} mit mn = mn−1 + ε, wobei ε ∈ {0, 1}.
b) Für n ≥ 2 zeige man: Es gilt Sn,n−2 =

(
n
3

)
+ 3 ·

(
n
4

)
.

c) Es seien n ∈ N0 und k ∈ N0. Man zeige: Es gilt Sn+1,k+1 =
∑n
i=0

(
n
i

)
Si,k;

dazu gebe man einen algebraischen und einen kombinatorischen Beweis an.

d) Man bestimme die Anzahl der Tupel [a1, . . . , an] ∈ Nn, für n ∈ N0, deren
Einträge genau die Zahlen {1, . . . , k} sind (eventuell mehrfach), so daß der erste
Eintrag i vor dem ersten Eintrag i+ 1 liegt, für alle i ∈ {1, . . . , k − 1}.

(19.23) Aufgabe: Bell-Zahlen.
a) Es sei n ∈ N0. Man zeige: Es gilt Bn+1 =

∑n
k=0

(
n
k

)
Bk.

b) Es sei n ∈ N. Man zeige: Es gibt genau Bn−1 Partitionen von {1, . . . , n},
deren sämtliche Blöcke keine zwei aufeinanderfolgende Zahlen enthalten.

(19.24) Aufgabe: Teile in Kompositionen.
a) Es sei n ∈ N. Man zeige: Die Gesamtanzahl aller Teile in allen Kompositionen
von n ist gleich (n+ 1) · 2n−2.

b) Es sei k ∈ N mit k < n. Man zeige: In allen Kompositionen von n kommt
der Teil k insgesamt genau (n− k + 3) · 2n−k−2 mal vor.

(19.25) Aufgabe: Kompositionen.
a) Es seien n ∈ N0 und k ∈ N0. Man bestimme jeweils die Anzahl der Tupel

[a1, . . . , ak] positiver bzw. nicht-negativer ganzer Zahlen mit
∑k
i=1 ai ≤ n.

b) Unter Benutzung der Fibonacci-Zahlen zeige man:
i) Es gibt genau Fn−1 Kompositionen von n in Teile ≥ 2;
ii) es gibt genau Fn+1 Kompositionen von n in Teile ≤ 2;
iii) es gibt genau Fn Kompositionen von n in ungerade Teile.
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(19.26) Aufgabe: Partitionen.
Es sei pn ∈ N die Anzahl der Partitionen von n ∈ N0. Man zeige: Es gilt
pn+1 − 2pn+1 + pn ≥ 0.

Hinweis. Es ist pn − pn−1 die Anzahl der Partitionen von n ohne den Teil 1.

(19.27) Aufgabe: Partitionen mit mehrfachen Teilen.
Es sei n ∈ N0. Für eine Partition λ = [λ1, . . . , λk] = [nan(λ), . . . , 1a1(λ)] ∈ Pk(n)

mit k ∈ N0 Teilen seien α(λ) :=
∏k
i=1 λi ∈ N und β(λ) :=

∏n
i=1 ai(λ)! ∈ N.

Man zeige: Es gilt
∏
λ∈P (n) α(λ) =

∏
λ∈P (n) β(λ).

Hinweis. Für j ∈ N setze man bj(λ) := |{i ∈ {1, . . . , n}; ai(λ) ≥ j}| ∈ N0 und
zeige

∑
λ∈P (n) aj(λ) =

∑
λ∈P (n) bj(λ).

(19.28) Aufgabe: Partitionen mit vielen Teilen.
Es sei k ∈ N0. Man zeige: Es gibt nk ≥ k und ρk ∈ N mit pn,n−k = ρk für alle
n ≥ nk. Man bestimme ρk, und gebe das kleinstmögliche nk an.

(19.29) Aufgabe: Partitionen mit drei Teilen.
Es sei n ∈ N0. Man zeige: Ist n ≡ a (mod 6), wobei a ∈ {0, . . . , 5}, so ist die
Anzahl der Partitionen von n in drei Teile gegeben als pa,3(n) ∈ N0, wobei

pa,3(X) =


X2

12 , für a = 0,
X2−1

12 , für a ∈ {1, 5},
X2−4

12 , für a ∈ {2, 4},
X2+3

12 , für a = 3.

(19.30) Aufgabe: Aufzählung von Permutationen.
Für n ∈ N0 sei Sn = {[1, 2, . . . , n], . . . , [n, n − 1, . . . , 1]} in lexikographischer
Anordnung gegeben. Für π = [π1, . . . , πn] ∈ Sn sei αn(π) + 1 ∈ {1, . . . , n!} die
Position von π in Sn, etwa αn([1, 2, . . . , n]) = 0 und αn([n, n−1, . . . , 1]) = n!−1.

a) Man gebe einen Algorithmus an, der zu einer Permutation π ∈ Sn den
Nachfolger berechnet, also die Permutation σ ∈ Sn mit αn(σ) = αn(π) + 1.

b) Für n ≥ 1 zeige man: Es gilt αn(π) = (π1 − 1)(n− 1)! + αn−1(π′), wobei π′

aus π entsteht, indem man π1 entfernt und alle πi > π1 durch πi − 1 ersetzt.

c) Für l ∈ {0, . . . , n!−1} bestimme man die Permutation π ∈ Sn mit αn(π) = l.

(19.31) Aufgabe: Bell-Zahlen und Permutationen.
Für n ∈ N seien I+

n ⊆ Sn und I−n ⊆ Sn die Mengen aller Permutationen π =
[π1, . . . , πn] ∈ Sn mit folgender Eigenschaft: Es gibt kein i < j ∈ {1, . . . , n− 1}
mit πi < πj < πj+1. bzw. mit πi < πj+1 < πj .

a) Man zeige: Es gilt |I+
n | = Bn = |I−n |.

b) Man beschreibe die Menge I+
n ∩ I−n ⊆ Sn.
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(19.32) Aufgabe: Inversionen.
Es seien n ∈ N0 und π = [π1, . . . , πn] ∈ Sn. Ein Paar πi > πj , wobei i < j ist,
heißt eine Inversion von π. Es sei l(π) ∈ N0 die Anzahl der Inversionen von π,
und für i ∈ {1, . . . , n} sei ιi ∈ N0 die Anzahl der j ∈ {i+ 1, . . . , n}, sodaß [j, i]
eine Inversion von π ist; die Folge [ι1, . . . , ιn] heißt die Inversionstafel von π.

a) Es sei In,k ∈ N0 die Anzahl der Permutationen in Sn mit k ∈ N0 Inversionen.
Man zeige: Es gilt In,0 = 1, und In,k = In−1,k + In,k−1 für 1 ≤ k < n.

b) Man zeige: Es gilt In,k = 0 für k >
(
n
2

)
, und In,k = In,(n2)−k

für k ≤
(
n
2

)
,

sowie
∑(n2)
k=0(−1)kIn,k = 0 für n ≥ 2. Außerdem gilt l(π) = l(π−1).

c) Man zeige: Für die Einträge von Inversionstafeln gilt ιi ∈ {0, . . . , n− i}, für
alle i ∈ {1, . . . , n}. Umgekehrt ist jede Folge [ι1, . . . , ιn] mit ιi ∈ {0, . . . , n− i},
für alle i ∈ {1, . . . , n}, die Inversionstafel genau einer Permutation in Sn.

(19.33) Aufgabe: Stirling-Zahlen erster Art.
a) Für n ∈ N0 zeige man: Es gilt sn,0 < sn,1 < · · · < sn,mn−1 ≤ sn,mn > · · · >
sn,n−1 > sn,n, für ein mn ∈ {0, . . . , n} mit mn = mn−1 + ε, wobei ε ∈ {0, 1}.
b) Für n ≥ 2 zeige man: Es gilt sn,n−2 = 2 ·

(
n
3

)
+ 3 ·

(
n
4

)
.

c) Es seien n ∈ N0 und k ∈ N0. Man zeige: Es gilt sn+1,k+1 =
∑n
i=0

(
i
k

)
sn,i;

dazu gebe man einen algebraischen und einen kombinatorischen Beweis an.

(19.34) Aufgabe: Fixpunktfreie Permutationen.
Für n ≥ 2 sei D+(n) ∈ N0 die Anzahl der fixpunktfreien Permutationen in der
alternierenden Gruppe An := {π ∈ Sn; sgn(π) = 1} < Sn. Man zeige: Es

gilt D+(n) = (−1)n−1(n− 1) + n!
2 ·
∑n−2
k=0

(−1)k

k! .

(19.35) Aufgabe: Die Theatergarderobe.
Die Garderobenpersonal des ‘Theater 99’ ist unaufmerksam. (Das Theater ist
übrigens nach der Anzahl seiner Sitzplätze benannt.) Nach der Vorstellung
werden die Mäntel zufällig an die Besucher zurückgegeben. Wie groß ist die
Wahrscheinlichkeit (ungefähr), daß dabei keiner den eigenen Mantel erhält?

(19.36) Aufgabe: Derangement-Zahlen.
Für n ∈ N betrachte man die folgenden Zahlen: Man beginne mit 1, subtrahiere
1, multipliziere mit 2, addiere 1, multipliziere mit 3, subtrahiere 1, . . ., multi-
pliziere mit n und addiere (−1)n. Welche bekannte Folge erhält man?

(19.37) Aufgabe: Türme von Hanoi.
Auf drei senkrechten Stäben A, B und C sind n ∈ N0 Scheiben unterschiedlichen
Durchmessers gestapelt, so daß jede nicht zuunterst liegende Scheibe auf einer
mindestens ebenso großen Scheibe liegt. Durch einen Zug kann man die oberste
Scheibe eines Stabes auf einen anderen Stab bewegen, falls dabei diese Bedin-
gung nicht verletzt wird. Zunächst befinden sich alle Scheiben auf Stab A.
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a) Wieviele Züge sind nötig, die Scheiben nach Stab B zu bewegen, wenn die
Scheiben paarweise verschiedenen Durchmesser haben?

b) Wieviele Züge sind nötig, die Scheiben nach Stab B zu bewegen, wenn die
Scheiben paarweise verschiedenen Durchmesser haben, und nur Züge zwischen
den Stäben A und C sowie B und C erlaubt sind?

c) Wieviele Züge sind nötig, die Scheiben nach Stab B zu bewegen, wenn
Scheiben gleichen Durchmessers jeweils paarweise vorkommen?

(19.38) Aufgabe: Summation.
Für n ∈ N0 berechne man

∑n
k=1

2k+1
k(k+1) ∈ Q und

∑n
k=1(−1)k · k ∈ Q sowie∑n

k=1(−1)k · k2 ∈ Q.

(19.39) Aufgabe: Reelle Differentiation.
Für a ∈ R \ {1} und n ∈ N0 seien ga(n) :=

∑n
k=1 a

k und fa(n) :=
∑n
k=1 k · ak.

Man gebe geschlossene Formeln für ga(n) und fa(n) an. Welche bekannte Formel
erhält man für f2(n)? Was passiert für a = 1?

(19.40) Aufgabe: Potenzsummen.

Für k ≥ 1 sei sk ∈ Q[X], so daß sk(n) =
∑n−1
i=0 i

k für alle n ∈ N0.

a) Man zeige: Es gilt sk(1−X) = (−1)k+1sk(X) ∈ Q[X].

b) Man bestimme sk(1) ∈ Q, sowie sk( 1
2 ) ∈ Q für k gerade.

(19.41) Aufgabe: Partielle Summation.
Es sei n ∈ N0, und für k ∈ N0 sei hk ∈ Q die k-te harmonische Zahl.

a) Man berechne
∑n
k=1

hk
k ∈ Q und

∑n
k=1

hk
(k+1)(k+2) ∈ Q.

b) Man berechne
∑n
k=1 h

2
k ∈ Q.

c) Für m ∈ N0 berechne man
∑n
k=1

(
k
m

)
· hk ∈ Q und

∑n
k=1(−1)k

(
m
k

)
· hk ∈ Q.

(19.42) Aufgabe: Diskrete Integration.

Man gebe eine geschlossene Formel für
∑n
k=0

(−1)k

(nk)
, wobei n ∈ N0, an.

(19.43) Aufgabe: Summen fallender Faktorieller.

Für n ∈ N0 sei fn :=
∑n−1
k=0 n(k) ∈ N. Man bestimme eine Rekursionsformel

und daraus eine geschlossene Formel für fn.

(19.44) Aufgabe: Binomialinversion.
Man zeige: Es gibt eine Folge [an ∈ Q;n ∈ N0], so daß n! =

∑
k≥0 akn(k), für

alle n ∈ N0, gilt. Man gebe eine geschlossene Formel für die Zahlen an an.
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(19.45) Aufgabe: Lineare Inversion.
a) Man zeige, daß die Basisfolgen [X(n) ∈ Q[X];n ∈ N0] und [(−1)nX(n) ∈
Q[X];n ∈ N0] durch die Lah-Zahlen Ln,k := (−1)n · n!

k! ·
(
n−1
k−1

)
, für n ∈ N0 und

k ∈ N0, zusammenhängen.

Daraus folgere man die Lah-Inversion: Sind [xn ∈ Q;n ∈ N0] und [yn ∈
Q;n ∈ N0], so gilt genau dann yn =

∑n
k=0 Ln,kxk ∈ Q, für alle n ∈ N0, wenn

xn =
∑n
k=0 Ln,kyk ∈ Q, für alle n ∈ N0, gilt.

b) Unter Benutzung der Basisfolge
∑bn2 c
k=0(−1)k n

n−k
(
n−k
k

)
Xn−2k ∈ Q[X], für

n ∈ N0, beweise man die Tschebyscheff-Inversion: Sind [xn ∈ Q;n ∈ N0]

und [yn ∈ Q;n ∈ N0], so gilt genau dann yn =
∑bn2 c
k=0

(
n
k

)
xn−2k ∈ Q, für alle

n ∈ N0, wenn xn =
∑bn2 c
k=0(−1)k n

n−k
(
n−k
k

)
yn−2k ∈ Q, für alle n ∈ N0, gilt.

20 Exercises for Part II (in German)

(20.1) Aufgabe: Endliche partiell geordnete Mengen.
a) Man bestimme bis auf Isomorphie alle endlichen partiell geordneten Mengen
der Kardinalität ≤ 4.

b) Man bestimme bis auf Isomorphie alle Verbände der Kardinalität ≤ 6.

(20.2) Aufgabe: Partiell geordnete Mengen.
Es sei X eine partiell geordnete Menge.

a) Man zeige: Es gibt eine Menge N und eine Teilmenge X ⊆ P(N), so daß
X ∼= X als partiell geordnete Mengen. Ist zudem X endlich, so kann auch N
endlich gewählt werden.

b) Es seien X endlich und f : X → X eine ordnungserhaltende Bijektion, das
heißt, für x ≤ y ∈ X ist stets auch f(x) ≤ f(y). Man zeige: Die Abbildung f ist
ein Automorphismus. Kann man auf die Endlichkeitsvoraussetzung verzichten?

b) Es sei X ein Verband, und f : X → X eine ordnungserhaltende Bijektion,
die auch kleinste obere Schranken und größte untere Schranken erhält. Man
zeige: Die Abbildung f ist ein Automorphismus.

(20.3) Aufgabe: Endliche Verbände.
a) Es sei X eine endliche partiell geordnete Menge, die ein Eins-Element besitzt,
und für die je zwei Elemente eine größte untere Schranke besitzen. Man zeige:
X ist ein Verband. Man formuliere und beweise die dazu duale Aussage.

b) Es sei X ein endlicher Verband. Man zeige die Äquivalenz der folgenden
Aussagen: i) X ist graduiert, und für die Längen-Funktion gilt d(x) + d(y) ≥
d(x ∨ y) + d(x ∧ y), für alle x, y ∈ X. ii) Für alle x, y ∈ X mit x ∧ y <· x und
x ∧ y <· y gilt stets auch x <· x ∨ y und y <· x ∨ y.
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(20.4) Aufgabe: Maximale Ketten.
Es sei X eine lokal-endliche partiell geordnete Menge, und für x, y ∈ X sei
m(x, y) ∈ N0 die Anzahl der maximalen Ketten zwischen x und y.

a) Es sei η ∈ A(X) definiert durch η(x, y) := 1 für x <· y, und η(x, y) := 0
sonst. Man zeige: Die Funktion δ− η ∈ A(X) ist invertierbar, und für x, y ∈ X
gilt (δ − η)−1(x, y) = m(x, y).

b) Es seien X zudem graduiert, und f ∈ A(X) definiert durch f(x, y) := m(x,y)
l(x,y)!

für x ≤ y, und f(x, y) := 0 sonst. Man zeige: Die Funktion f ∈ A(X) ist
invertierbar, und für x ≤ y gilt f−1(x, y) = (−1)l(x,y) · f(x, y).

(20.5) Aufgabe: Dominanz-Ordnung.
Man betrachte die durch E gegebene partielle Ordnung auf P (n), für n ∈ N0.

a) Man zeige: Die durch E gegebene partielle Ordnung auf P (n) ist ein Verband.
Für welche n ∈ N0 ist E eine Ordnung? Für welche n ∈ N0 ist E graduiert?
Man zeichne die Hasse-Diagramme von E für n ≤ 8.

b) Für λ = [λ1, . . . , λn] ` n und µ = [µ1, . . . , µn] ` n schreibe µ ≤ λ, falls es
k ∈ {1, . . . , n} gibt mit µi = λi für alle i ∈ {1, . . . , k − 1}, und µk < λk. Man
zeige: Dies definiert eine Ordnung, die lexikographische Ordnung, auf P (n),
die die partielle Ordnung E verfeinert.

21 Exercises for Part III (in German)

(21.1) Aufgabe: Möbius-Funktion.
Es sei X eine endliche partiell geordnete Menge mit Null-Element 0 und Eins-
Element 1. Für die Möbius-Funktion µ von X zeige man:

a) Es gilt
∑
x,y∈X,x≤y µ(x, y) = 1.

b) Es gilt
∑
k≥0

∑
0=x0<x1<···<xk=1(−1)k ·

∏k
i=1 µ(xi−1, xi) = 1.

(21.2) Aufgabe: Möbius-Inversion.
Es seien X ein endlicher Verband X mit Null-Element 0, sowie g : X → N0 : x 7→
|{y ∈ X;x ≤ y}| und fk : X → N0 : x 7→ |{|x1, . . . , xk] ∈ Xk;x1 ∧ · · · ∧ xk =
x}|, für k ∈ N0. Man zeige: Es gilt fk(x) =

∑
x∈X µ(0, x) · g(x)k; dazu gebe

man sowohl einen Beweis mittels Möbius-Inversion an, also auch einen, der die
Möbius-Algebra benutzt.

(21.3) Aufgabe: Zahlentheoretische Möbius-Funktion.
Für n ∈ N sei Un := {d ∈ N; d | n, ggT(d, nd ) = 1} partiell geordnet durch Teil-
barkeit. Man zeige: Un ist ein Verband, und bestimme seine Möbius-Funktion.

(21.4) Aufgabe: Inklusion-Exklusion.
Es seien m ≤ k ≤ n. Man zeige: Es gilt

(
n−m
k−m

)
=
∑m
i=0(−1)i ·

(
m
i

)(
n−i
k

)
.
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Hinweis. Es ist
(
n−m
k−m

)
die Anzahl der k-elementigen Teilmengen einer n-

elementigen Menge, die eine feste m-elementige Teilmenge umfassen.

(21.5) Aufgabe: Dezimalzahlen.
Wieviele Zahlen mit genau k ∈ N Dezimalstellen gibt es, in deren Dezimal-
darstellung keine benachbarten Ziffern gleich sind?

(21.6) Aufgabe: Primzahlen.
a) Unter Benutzung von Inklusion-Exklusion gebe man ein Verfahren an, um aus
der Kenntnis aller Primzahlen ≤

√
n, wobei n ∈ N, die Anzahl der Primzahlen

≤ n bestimmen kann, ohne diese zu berechnen. Als Anwendung bestimme man
die Anzahl der Primzahlen ≤ 100 aus der Kenntnis der Primzahlen {2, 3, 5, 7},
und verifiziere das Ergebnis explizit.

b) Für n ∈ N sei ϕ(n) := |{k ∈ {1, . . . , n}; ggT(k, n) = 1}| ∈ N die Euler-
Funktion. Mittels Inklusion-Exklusion zeige man: Sind {p1, . . . , pl} die Prim-

teiler von n, so gilt ϕ(n)
n =

∏l
i=1(1− 1

pi
).

(21.7) Aufgabe: Partitionen in ungerade und verschiedene Teile.
Für n ∈ N0 seien O(n) und D(n) die Mengen aller Partitionen von n in lauter
ungerade bzw. in paarweise verschiedene Teile. Man gebe eine explizite Bijektion
O(n)→ D(n) an.

Hinweis. Man betrachte die folgende Abbildung O(n) → D(n) : λ 7→ µ: Hat
λ den Teil i genau a-mal, so habe µ den Teil i · 2b genau dann, wenn 2b in der
2-adischen Darstellung von a vorkommt.

(21.8) Aufgabe: Menage-Zahlen.

Es sei un :=
∑n
k=0

(−1)k·(n−k)!·2n
2n−k ·

(
2n−k
k

)
∈ N0 die Menage-Zahl, für n ≥ 2.

a) Man zeige: Für n ≥ 4 gilt (n− 2)un = n(n− 2)un−1 + nun−2 + 4 · (−1)n+1.

b) Man zeige: Es gilt limn→∞
un
n! = 1

e2 .

(21.9) Aufgabe: Folgen mit verschiedenen Nachbarn.
Es sei Xn die Menge aller Folgen der Länge 2n über einer Menge X der Kar-
dinalität n ∈ N0, die jedes Element von X genau zweimal enthalten, und so
daß benachbarte Folgenglieder jeweils verschieden sind. Man zeige: Es gilt

|Xn| =
∑n
k=0

(−1)n−k·(n+k)!
2k

·
(
n
k

)
.

(21.10) Aufgabe: Äquivalenzklassen von Permutationen.
Es sei n ∈ N0. Zwei Permutationen der Menge Xn := {a1, . . . , an, b1, . . . , bn},
geschrieben als Listen, heißen äquivalent, falls sie durch Vertauschung zweier
benachbarter Einträge aibi oder biai, für ein i ∈ {1, . . . , n}, auseinander her-
vorgehen. Man zeige: Die davon erzeugte Äquivalenzrelation auf SXn besteht
aus genau

∑n
i=0(−1)i

(
n
i

)
(2n− i)! Äquivalenzklassen.
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(21.11) Aufgabe: Paarungen.
An einem runden Tisch sitzen 2n Personen, wobei n ∈ N0. Auf wieviele Weisen
kann man daraus n Paare bilden, wenn sich darunter keine zwei benachbarte
Personen befinden dürfen?

(21.12) Aufgabe: Zykel mit eingeschränkten Nachbarn.
Für n ∈ N0 sei f(n) ∈ N0 die Anzahl der n-Zykel (a1, . . . , an) ∈ Sn, so daß
ai+1 6≡ ai + 1 (mod n), für alle i ∈ {1, . . . , n}, wobei an+1 := a1.

a) Man zeige: Es gilt f(n) = (−1)n +
∑n−1
i=0 (−1)i

(
n
i

)
(n − 1 − i)!, und folgere

daraus limn→∞
f(n)

(n−1)! = 1
e .

b) Für die n-te Derangement-Zahl zeige man: Es gilt Dn = f(n) + f(n+ 1).

(21.13) Aufgabe: Zykellängen.
a) Für n ∈ N0 und k ∈ N sei fk(n) ∈ N0 die Anzahl der Permutationen in Sn, die

keinen Zykel der Länge k enthalten. Man zeige: Es gilt fk(n) = n! ·
∑bnk c
i=0

(−1)i

i!·ki ,

und folgere daraus limn→∞
fk(n)
n! = e−

1
k .

b) Für n ∈ N0 sei f(n) ∈ N0 die Anzahl der Permutationen in Sn, die einen

Zykel der Länge > bn2 c enthalten. Man zeige: Es gilt limn→∞
f(n)
n! = ln(2).

(21.14) Aufgabe: Numerierte Kisten.
In einem Raum sind 100 verschlossene Kisten fest montiert. Der Boden jeder
Kiste trägt eine Zahl zwischen 1 und 100, wobei jede dieser Zahlen genau einmal
vorkommt. Außerhalb des Raumes sind 100 Personen, numeriert von 1 bis 100.
Ohne miteinander zu sprechen gehen die Personen nun einzeln in den Raum,
öffnen jeweils genau 50 Kisten, schauen hinein, schließen sie und kommen heraus.

Die Wahrscheinlichkeit, daß eine Person zufällig die Kiste mit ihrer Nummer
findet, ist 1

2 . Die Wahrscheinlichkeit, daß alle Personen jeweils ihre Nummer
finden, ist also ( 1

2 )100 ∼ 10−30. Können die Personen eine Strategie vereinbaren,
so daß die Wahrscheinlichkeit, daß alle Personen ihre Nummer finden, > 3

10 ist?

22 Exercises for Part IV (in German)

(22.1) Aufgabe: Erzeugende Funktionen vom Dirichlet-Typ.
Für eine Folge [fn ∈ C;n ∈ N0] heißt die formale Reihe der Form f(s) :=∑
n≥1

fn
ns , wobei s ∈ C, die zugehörige Dirichlet-Reihe. Dann kann D :=

Abb(N,C) als die Menge der Dirichlet-Reihen aufgefaßt werden, und ist ein C-
Vektorraum mit punktweiser Addition und Skalarmultiplikation. Auf D werde
eine Multiplikation wie folgt definiert: Für f =

∑
n≥1

fn
ns und g =

∑
n≥1

gn
ns sei

(fg)(s) ∈ D gegeben durch (fg)(s) :=
∑
n≥1(

∑
d |n

fdgn
d

d ) 1
ns .

a) Man zeige: D ist eine kommutative C-Algebra mit Eins 1
1s +

∑
n≥2

0
ns ∈ D,

und f(s) =
∑
n≥1

fn
ns ∈ D ist genau dann invertierbar, wenn f1 6= 0 ist.
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b) Es sei ζ(s) :=
∑
n≥1

1
ns ∈ D die Riemann-Funktion. Man zeige: Es ist

ζ−1(s) :=
∑
n≥1

µ(n)
ns , wobei µ die zahlentheoretische Möbius-Funktion ist.

(22.2) Aufgabe: Harmonische Zahlen.
Für n ∈ N seien hn :=

∑n
i=1

1
i ∈ Q die n-te harmonische Zahl, und h0 := 0.

a) Man bestimme die erzeugende Funktion
∑
n≥0 hnX

n ∈ Q[[X]].

b) Für n ∈ N0 berechne man
∑n
k=0 hkhn−k ∈ Q.

(22.3) Aufgabe: Erzeugende Funktionen.
Es sei [fn ∈ Z;n ∈ N0] die durch f0 := 1 und

∑n
k=0 fkfn−k = 1, für n ≥ 1,

rekursiv definierte Folge. Man gebe eine geschlossene Formel für fn an.

(22.4) Aufgabe: Linear rekursive Folgen.
Es seien d ∈ N sowie q1, . . . , qd ∈ C mit qd 6= 0, und F := [fn ∈ C;n ∈ N0]

die durch Startwerte f0, . . . , fd−1 ∈ C und fn+d +
∑d
i=1 qifn+d−i = 0, für alle

n ∈ N0, definierte linear rekursive Folge.

a) Man zeige: Die Folge F kann eindeutig zu einer Folge [fn ∈ C;n ∈ Z]
fortgesetzt werden, die die obige Rekursion für alle n ∈ Z erfüllt.

b) Für die erzeugende Funktion f :=
∑
n≥0 fnX

n ∈ Q(X) ∩Q[[X]] zeige man:

Es gilt
∑
n≥1 f−nX

n = −f( 1
X ) ∈ Q(X). Gilt diese Identität auch in Q[[X]]?

(22.5) Aufgabe: Rationale Funktionen.
Man zeige: Für f :=

∑
n≥0 fn+1X

n ∈ C[[X]] sind äquivalent:

i) Es gibt g ∈ C(X) ∩ C[[X]] mit f = ∂
∂X g ·

1
g ∈ C(X).

ii) Es gilt exp(
∑
n≥1

fn
n X

n) ∈ C(X) ∩ C[[X]].

iii) Es gibt nicht notwendig verschiedene a1, . . . , ak, b1, . . . , bl ∈ C, für geeignete

k, l ∈ N0, so daß an =
∑k
i=1 a

n
i −

∑l
j=1 b

n
j , für alle ∈ N, gilt.

(22.6) Aufgabe: Quasipolynome.
Eine Abbildung h : N0 → C heißt ein Quasipolynom vom Grad d ∈ N und
Quasiperiode k ∈ N, falls es für alle a ∈ {0, . . . , k − 1} ein Polynom ha ∈
Q[X]≤d gibt, so daß h(n) = ha(n) für alle n ∈ N0 mit n ≡ a (mod k) gilt; dabei

habe mindestens eines der Polynome ha den Grad d. Man zeige die Äquivalenz
der folgenden Aussagen:

i) Die Abbildung h ist ein Quasipolynom vom Grad d− 1 und Quasiperiode k.

ii) Es ist
∑
n≥0 h(n)Xn = p

q ∈ C(X) ∩ C[[X]], wobei q ∈ C[X] den Grad d und

nur Nullstellen a ∈ C mit ak = 1 hat, und p ∈ C[X]≤d−1 teilerfremd zu q ist.
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(22.7) Aufgabe: Rekursion.
Man gebe geschlossene Formeln für die wie folgt rekursiv definierten an ∈ Z an:

a) Es seien a0 := 2 und a1 := 3 sowie an+2 := 3an+1 − 2an für n ∈ N0.

b) Es seien a0 := 0 und a1 := 2 sowie an+2 := 4an+1 − 4an für n ∈ N0.

c) Es seien a0 := 5 und a1 := 12 sowie an+2 := 4an+1 − 3an − 2n für n ∈ N0.

(22.8) Aufgabe: Lineare Rekursion.
Für n ∈ N0 sei rn := (1 +

√
3)n + (1−

√
3)n ∈ R. Man zeige: Es ist rn ∈ N und

es gilt 2b
n
2 c+1 | rn.

(22.9) Aufgabe: Quadratwurzeln.
Es sei 1 6= d ∈ N quadratfrei.

a) Man zeige: Es gibt eindeutig bestimmte Folgen [an ∈ Z;n ∈ N0] und [bn ∈
Z;n ∈ N0], so daß (1 +

√
d)n = an + bn ·

√
d ∈ R für alle n ∈ N0 gilt.

b) Man zeige: Die zugehörigen erzeugenden Funktionen
∑
n≥0 anX

n ∈ Q[[X]]
und

∑
n≥0 bnX

n ∈ Q[[X]] sind rationale Funktionen, und schreibe sie explizit
als Quotient von Polynomen.

(22.10) Aufgabe: Drohnen und Königinnen.
Die Männchen der Honigbiene werden als Drohnen bezeichnet. Eine Drohne
enwickelt sich aus einem unbefruchteten Ei, das ausschließlich Erbgut einer
Bienenkönigin enhält, während eine Königin sich aus einem befruchteten Ei
entwickelt, das das Erbgut einer Drohne und einer anderen Königin enthält.
Wieviele Vorfahren n-ter Stufe (also Eltern, Großeltern, ...) hat eine Drohne?

(22.11) Aufgabe: Fibonacci-Zahlen.
Für n ∈ N0 sei Fn ∈ N0 die n-te Fibonacci-Zahl. Man zeige:

a) Für n ∈ N0 gelten
∑n
k=0 Fk = Fn+2 − 1 und

∑n
k=1 F2k−1 = F2n, sowie∑n

k=0 F
2
k = FnFn+1 und

∑n
k=0 FkFn−k = 1

5 (2nFn+1 − (n+ 1)Fn).

b) Für n ∈ N gilt Fn+1Fn−1 − F 2
n = (−1)n.

c) Für k ∈ N und n ∈ N0 gelten Fn+k = FkFn+1 + Fk−1Fn und Fn | Fkn.

d) Man zeige: Jede natürliche Zahl 1 6= m ∈ N hat eine eindeutige Darstellung
der Form m =

∑
n≥1 anFn, wobei an ∈ {0, 1} und anan+1 = 0 für alle n ∈ N.

(22.12) Aufgabe: Lucas-Zahlen.
Die Folge [Ln ∈ N0;n ∈ N] der Lucas-Zahlen ist definiert durch Ln+2 :=
Ln + Ln+1, für alle n ∈ N0, wobei L0 := 2 und L1 := 1.

a) Man gebe eine geschlossene Formel für Ln an.

b) Man zeige: Es gilt Ln = Fn−1 + Fn+1, für alle n ∈ N, und F2n = FnLn, für
alle n ∈ N0; dabei ist Fn ∈ N0 die n-te Fibonacci-Zahl.
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c) An einem runden Tisch sitzen n ≥ 2 Personen. Wieviele Teilmengen dieser
Personen gibt es, unter denen sich keine zwei benachbarte Personen befinden?

(22.13) Aufgabe: Erzeugende Funktion der Fibonacci-Zahlen.
a) Für n ∈ N0 sei Fn ∈ N0 die n-te Fibonacci-Zahl. Man zeige: Die erzeugende
Funktion F ′ :=

∑
n≥0 F2nX

n ∈ Q[[X]] ist eine rationale Funktion, und schreibe
sie explizit als Quotient von Polynomen.

b) Es sei [gn ∈ N0;n ∈ N0] die durch g0 := 1 und gn :=
∑n−1
i=0 (n − i)gi,

für n ≥ 1, rekursiv definierte Folge. Man zeige: Die erzeugende Funktion∑
n≥0 gnX

n ∈ Q[[X]] ist eine rationale Funktion, schreibe sie explizit als Quo-
tient von Polynomen, und gebe eine geschlossene Formel für gn an.

(22.14) Aufgabe: Schachbrett und Domino-Steine.
Es sei an ∈ N0 die Anzahl der Überdeckungen eines (3 × n)-Schachbrettes mit
(2× 1)-Domino-Steinen, für n ∈ N0. Man bestimme die zugehörige erzeugende
Funktion, und gebe eine geschlossene Formel für an an.

Hinweis. Man betrachte auch die Anzahl der Überdeckungen, bei denen ein
Eckfeld frei bleibt.

(22.15) Aufgabe: Ballot-Problem.
Vor einer Theaterkasse warten 2n Personen, für n ∈ N0, um jeweils eine Karte
für 10 Euro zu kaufen. Von ihnen haben n Personen einen 10-Euro-Schein,
die anderen nur einen 20-Euro-Schein Wechselgeld zur Verfügung. Wieviele
Warteschlangen gibt es, so daß der Kassierer stets passend herausgeben kann,
wenn er zu Beginn kein Wechselgeld zur Verfügung hat?

(22.16) Aufgabe: Dyck-Wege.
Für n ∈ N0 betrachte man ein quadratisches Gitter mit der Kantenlänge n. Ein
kürzester Weg im Gitter von der linken unteren zur rechten oberen Ecke, der
nie die Diagonale übertritt, heißt ein Dyck-Weg. Man bestimme die Anzahl
der Dyck-Wege in Abhängigkeit von n.

(22.17) Aufgabe: Ebene binäre Bäume.
Ein ebener binärer Baum ist eine endliche Menge V von Ecken, zusammen
mit einer Wurzel v ∈ V und einer geordneten Partition V \ {v} = V1

.
∪ V2,

wobei die Unterbäume V1 und V2 wiederum ebene binäre Bäume sind. Ein
ebener binärer Baum heißt strikt binär, falls entweder V1 = ∅ = V2 oder V1 6=
∅ 6= V2 gilt, und dies auch für alle Unterbäume gilt. Ebene binäre Bäume mit
Eckenmengen V bzw. W heißen isomorph, falls es eine Bijektion π : V → W
gibt, die Isomorphismen π : Vi →Wi, für i ∈ {1, 2}, induziert.

a) Man bestimme die Anzahl der Isomorphieklassen ebener binärer Bäume mit
n ∈ N0 Ecken.
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b) Man bestimme ebenso die Anzahl der Isomorphieklassen ebener strikt binärer
Bäume mit 2n+ 1 Ecken.

(22.18) Aufgabe: Triangulierung.
Auf wieviele Weisen kann man ein konvexes n-Eck, für n ≥ 3, durch Einfügen
von sich im Inneren nicht schneidenden Diagonalen in n− 2 Dreiecke zerlegen?

(22.19) Aufgabe: Schröder-Problem.
Für n ∈ N ist eine vollständige binäre Partition einer n-elementigen Menge
N wie folgt rekursiv definiert: Für n ≥ 2 ist eine vollständige binäre Partition
vonN eine eine disjunkte ZerlegungN = N ′

.
∪ N ′′ mitN ′ 6= ∅ 6= N ′′, zusammen

mit jeweils einer vollständigen binären Partition von N ′ und N ′′; für n = 1 ist
N die einzige vollständige binäre Partition von N .

Es seien s(n) ∈ N0 die Anzahl der vollständigen binären Partitionen einer n-

elementigen Menge, und s :=
∑
n≥1

s(n)
n! X

n ∈ Q[[X]] die zugehörige exponen-

tiell erzeugende Funktion. Man zeige: Es gilt s(x) = 1−
√

1− 2x, für alle x ∈ C
in einer hinreichend kleinen offenen Umgebung von 0. Daraus bestimme man
eine geschlossene Formel für s(n).

(22.20) Aufgabe: Algebraische Funktionen.
a) Man zeige: Es gilt

∑
n≥0

(
2n
n

)
xn = 1√

1−4x
, für alle x ∈ C in einer hinreichend

kleinen offenen Umgebung von 0.

b) Man gebe eine analytische Beschreibung von
∑
n≥0

(
2n+1
n

)
xn an.

c) Man zeige: Für alle n ∈ N0 gilt
∑n
k=0

(
2k
k

)(
2(n−k)
n−k

)
= 4n.

(22.21) Aufgabe: Exponentiell erzeugende Funktionen.
Es sei [gn ∈ Z;n ∈ N0] die durch gn + 2ngn−1 =

∑n
k=0

(
n
k

)
gkgn−k, für n ≥ 1,

sowie g0 := 0 und g1 := 1, rekursiv definierte Folge. Man gebe eine geschlossene
Formel für gn an.

(22.22) Aufgabe: Involutionen.
Für n ∈ N0 sei in := |{π ∈ Sn;π2 = 1}| die Anzahl der Involutionen in Sn.

a) Man zeige: Es gilt die Rekursion in+1 := in + n · in−1, für alle n ∈ N.

b) Man zeige: Es gilt
∑
n≥0

in
n!X

n = exp(X + X2

2 ) ∈ Q[[X]].

c) Man zeige: Für n ∈ N0 gilt in =
∑
k≥0

(
n
2k

)
· (2k)!

2k·k!
∈ Q.

d) Man gebe eine geschlossene Formel für
∑n
k=0(−1)k

(
n
k

)
ik ∈ Z an.

Hinweis zu c). Man benutze exp(X + X2

2 ) = exp(X) exp(X
2

2 ).
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(22.23) Aufgabe: Arrangements.
Es seien n, k ∈ N0, und an,k ∈ N0 die Anzahl der k-Arrangements einer n-
elementigen Menge. Weiter sei bn :=

∑
k≥0 an,k ∈ N0 die Anzahl aller Arrange-

ments einer n-elementigen Menge. Für die zugehörigen exponentiell erzeugen-
den Funktionen zeige man:

a) Für n ∈ N0 gilt
∑
k≥0

an,k
k! X

k = (1 +X)n ∈ Q[[X]].

b) Für k ∈ N0 gilt
∑
n≥0

an,k
n! X

n = Xk · exp ∈ Q[[X]].

c) Es gilt
∑
n≥0

bn
n!X

n = exp
1−X ∈ Q[[X]].

(22.24) Aufgabe: Mengen von Abbildungen.
Für n ∈ N0 sei an ∈ N0 die Anzahl aller Abbildungen f : N → N , wobei
N := {1, . . . , n}, mit f(N) = {1, . . . , i} für ein i ∈ N .

a) Man zeige: Für die exponentiell erzeugende Funktion Ã :=
∑
n≥0

an
n! X

n ∈
Q[[X]] gilt Ã = 1

2−exp ∈ Q[[X]].

b) Man zeige: Es gilt an =
∑
k≥0

kn

2k+1 , für alle n ∈ N0.

(22.25) Aufgabe: Bernoulli-Zahlen.
Es sei [Bn ∈ Q;n ∈ N0] die durch B0 := 1 und

∑n
k=0

(
n+1
k

)
Bk = 0, für n ∈ N,

definierte Folge der Bernoulli-Zahlen.

a) Man zeige: Es gilt B̃(X) :=
∑
n≥0

Bn
n! X

n = X
exp(X)−1 ∈ Q[[X]]. Daraus

folgere man: Es ist B̃(X) ∈ C[[X]]∞, und es gilt B2n+1 = 0 für alle n ∈ N0.

b) Es sei bn(T ) :=
∑n
k=0

(
n
k

)
BkT

n−k ∈ Q[T ] das n-te Bernoulli-Polynom, für

n ∈ N0. Man zeige: Für n ∈ N0 gilt ∂
∂T (bn+1(T )) = (n+ 1) · bn(T ) ∈ Q[T ].

c) Für die exponentiell erzeugende Funktion B̃(T,X) :=
∑
n≥0

bn(T )
n! Xn ∈

Q[T ][[X]] zeige man: Es gilt B̃(T,X) := B̃(X) · exp(TX) = X·exp(TX)
exp(X)−1 .

(22.26) Aufgabe: Erzeugende Funktion der Potenzsummen.

Für k ≥ 1 sei sk ∈ Q[T ], so daß sk(n) =
∑n−1
i=0 i

k für alle n ∈ N0.

a) Für die exponentiell erzeugende Funktion S̃(T,X) :=
∑
k≥0

sk(T )
k! Xk ∈

Q[T ][[X]] zeige man: Es gilt S̃(T,X) = exp(TX)−1
exp(X)−1 ∈ Q[T ][[X]], und folglich

X · S̃(T,X) = B̃(T,X) − B̃(0, X) ∈ Q[T ][[X]]; dabei ist B̃(T,X) ∈ Q[T ][[X]]
die exponentiell erzeugende Funktion der Bernoulli-Polynome.

b) Daraus folgere man: Es gilt sk(T ) = 1
k+1

∑k
i=0

(
k+1
i

)
BiT

k+1−i ∈ Q[T ].

(22.27) Aufgabe: Konjugierte Partitionen.
Für eine Partition λ = [λ1, λ2, . . .] ` n ∈ N0 und die zugehörige konjugierte
Partition λ′ = [λ′1, λ

′
2, . . .] ` n zeige man:
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a) Es gilt
∑
i≥1(i− 1)λi =

∑
i≥1

(
λ′2i
2

)
.

b) Es gelten
∑
i≥1d

λ2i−1

2 e =
∑
i≥1d

λ2i−1

2 e und
∑
i≥1b

λ2i−1

2 c =
∑
i≥1d

λ2i

2 e sowie∑
i≥1b

λ2i

2 c =
∑
i≥1b

λ2i

2 c.

(22.28) Aufgabe: Durfee-Quadrat.
a) Man zeige: Es gilt die Identität

∏
i≥1

1

1− Y Xi
=
∑
k≥0

(
k∏
i=1

1

(1−Xi)(1− Y Xi)

)
Xk2Y k ∈ Q[[X]][[Y ]].

b) Man gebe einen kombinatorischen Beweis für die folgende Identität an:

∏
i≥1

(1 + Y X2i−1) =
∑
k≥0

(
k∏
i=1

1

1−X2i

)
Xk2Y k ∈ Q[[X]][[Y ]]

(22.29) Aufgabe: Selbst-konjugierte Partitionen.
Für n ∈ N0 sei en ∈ N0 die Anzahl der selbst-konjugierten Partitionen von n
in lauter gerade Teile. Man gebe eine geschlossene Formel für die erzeugende
Funktion

∑
n≥0 enX

n ∈ Q[[X]] an.

(22.30) Aufgabe: Erzeugende Funktionen für Partitionsanzahlen.
Für n ∈ N0 seien fn ∈ N0 die Anzahl der Partitionen von n, in denen der Teil i
höchstens i-mal vorkommt, für alle i ∈ {1, . . . , n}, und gn ∈ N0 die Anzahl der
Partitionen von n, die keinen Teil der Form i(i+ 1) haben, für ein i ∈ N. Man
zeige: Es gilt fn = gn, für alle ∈ N0, und gebe ein geschlossene Formel für die
erzeugende Funktion

∑
n≥0 fnX

n =
∑
n≥0 gnX

n ∈ Q[[X]] an.

23 Exercises for Part V (in German)

(23.1) Aufgabe: Double Counting.
Für n ∈ N seien τ(n) := |{i ∈ N; i | n}| ∈ N die Anzahl der Teiler von n, und

τ(n) := 1
n ·
∑n
i=1 τ(i) ∈ Q. Man zeige: Es gilt limn→∞

τ(n)
ln(n) = 1.

Hinweis. Man zeige limn→∞
τ(n)
hn

= 1, wobei hn :=
∑n
i=1

1
i ∈ Q die n-te

harmonische Zahl bezeichne, und benutze limn→∞
hn

ln(n) = 1.

(23.2) Aufgabe: Parkers Lemma.
Es sei G ≤ Sn, wobei n ∈ N. Für k ∈ N sei Ck ⊆ Sn die Menge der k-Zykel, die
in einem beliebigen Element von G vorkommen.

a) Man zeige: Sn operiert auf sich durch Konjugation Sn → Sn : σ 7→ πσπ−1,
für alle π ∈ Sn. Daraus folgere man: G operiert auf Ck durch Konjugation.
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b) Man zeige: Die G-Mengen C1 und {1, . . . , n} sind äquivalent. Was hat also
die Aussage in (c) mit dem Cauchy-Frobenius-Burnside-Lemma zu tun?

c) Für die Anzahl der G-Bahnen auf Ck zeige man |G\Ck| = 1
|G| ·

∑
π∈G kak(π);

dabei sei ak(π) ∈ N0 die Anzahl der Teile k im Zykeltyp von π.

Hinweis zu c). Man bestimme den Stabilisator eines Zykels in Ck, und
betrachte eine geeignete (|G| ×n)-Matrix wie im Beweis des Cauchy-Frobenius-
Burnside-Lemmas.

(23.3) Aufgabe: Türme auf dem Schachbrett.
Für n ∈ {1, . . . , 5} betrachte man ein (n × n)-Schachbrett, dessen Vorder- und
Rückseite nicht unterschieden werden können. Wieviele Muster gibt es, n Türme
so zu verteilen, daß sie sich nicht gegenseitig schlagen können? Können Sie eine
allgemeine Formel für diese Anzahl angeben?

(23.4) Aufgabe: Konstruktionen mit Permutationsgruppen.
Es seien G ≤ Sn und H ≤ Sm Permutationsgruppen, für n,m ∈ N, mit
zugehörigen Zykelindizes cG ∈ Q[X1, . . . , Xn] bzw. cH ∈ Q[X1, . . . , Xm]. Man
bestimme jeweils den Zykelindex für die natürliche Operation
a) des direkten Produkts G×H auf n+m Punkten, und
b) des Kranzprodukts G oH auf nm Punkten.

(23.5) Aufgabe: Zykelindex symmetrischer Gruppen.
Unter Benutzung des Zykelindexes für Sn, für n ∈ N0, bestimme man (erneut)
die exponentiell erzeugende Funktion

∑
n≥0

in
n!X

n ∈ Q[[X]] der Anzahl in :=

|{π ∈ Sn;π2 = 1}| ∈ N der Involutionen in Sn.

(23.6) Aufgabe: Zykelindex alternierender Gruppen.
Für n ≥ 2 bestimme man den Zykelindex der alternierenden Gruppe An.

Hinweis. Eine Permutation π ∈ Sn ist genau dann ungerade, wenn für ihren
Zykeltyp [nan(π), . . . , 1a1(π)] gilt: 1 + (−1)

∑
i≥1 a2i(π) = 0.

(23.7) Aufgabe: Zykelindex von Diedergruppen.
a) Für den Zykelindex der zyklischen Gruppe Cn := 〈(1, . . . , n)〉 ≤ Sn, wobei

n ∈ N, zeige man: Es gilt cCn = 1
n ·
∑
d |n ϕ(d)X

n
d

d ∈ Q[X1, . . . , Xn]; dabei sei

ϕ(n) := |{k ∈ {0, . . . , n− 1}; ggT(k, n) = 1}| ∈ N die Euler-Funktion.

b) Für den Zykelindex cD2n
∈ Q[X1, . . . , Xn] der Diedergruppe D2n ≤ Sn,

wobei n ≥ 3, zeige man: Es gilt

cD2n =
1

2
cCn +

{
1
2X1X

n−1
2

2 , falls n ungerade,
1
4 (X

n
2

2 +X2
1X

n
2−1

2 ), falls n gerade.
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(23.8) Aufgabe: Kleiner Satz von Fermat II.
Es seien n ∈ N und p ∈ N eine Primzahl. Man zeige: Es gilt np ≡ n (mod p).

Hinweis. Man benutze den Zykelindex der zyklischen Gruppe Cp.

(23.9) Aufgabe: Würfel.
Man bestimme die Drehgruppe eines Würfels im Euklidischen Raum R3×1 jew-
eils als Gruppe von Permutationen seiner i) acht Ecken, ii) zwölf Kanten, iii)
sechs Flächen, iv) vier Raumdiagonalen, und gebe die jeweiligen Zykelindizes
an. Zu welcher bekannten Gruppe ist die Drehgruppe isomorph?

(23.10) Aufgabe: Tetraeder.
a) Man bestimme die Symmetriegruppe eines gleichseitigen Tetraeders im Euk-
lidischen Raum R3×1 jeweils als Gruppe von Permutationen seiner i) vier Ecken,
ii) sechs Kanten, iii) vier Flächen, und gebe die jeweiligen Zykelindizes an.
Wieviele Drehungen gibt es? Zu welchen bekannten Gruppen sind die Symme-
triegruppe und die Drehgruppe isomorph?

b) Man bestimme die Anzahl der verschiedenen Färbungen der vier Ecken des
Tetraeders mit bis zu vier Farben, bezüglich der vollen Symmetriegruppe und
der Drehgruppe. Wie kann man das Ergebnis geometrisch interpretieren?

(23.11) Aufgabe: Prisma.
Man bestimme die Symmetriegruppe eines geraden Prismas über einem gleich-
seitigen Dreieck im Euklidischen Raum R3×1 jeweils als Gruppe von Permuta-
tionen seiner i) sechs Ecken, ii) neun Kanten, iii) fünf Flächen, und gebe die
jeweiligen Zykelindizes an. Wieviele Drehungen gibt es? Zu welchen bekannten
Gruppen sind die Symmetriegruppe und die Drehgruppe isomorph?

(23.12) Aufgabe: Gewichtsindex.
Es seienG eine endliche Gruppe, die treu aufN := {1, . . . , n} operiere, undK :=
{1, . . . , k}, wobei n ∈ N0 und k ∈ N0. Weiter seien S ⊆ Inj(N,K) eine Repräsen-
tantenmenge für G\Inj(N,K) und en(Y1, . . . , Yk) :=

∑
J⊆K,|J|=n

∏
j∈J Yj ∈

R := Z[Y1, . . . , Yk] das elementar-symmetrische Polynom vom Grad n.

Für den Gewichtsindex von G\Inj(N,K) zeige man: Es gilt
∑
f∈S

∏n
i=1 Yf(i) =

n!
|G| · en(Y1, . . . , Yk) ∈ R. Welche bekannten Formeln erhält man daraus für die

Spezialisierung R→ Z : Yj 7→ 1, für alle j ∈ K, und G = {1} bzw. G = SN?

(23.13) Aufgabe: Graphen.
Ein (endlicher einfacher) Graph Γ besteht aus einer endlichen Menge V
von Ecken und einer Menge von 2-elementigen Teilmengen von V, die Kanten
genannt werden. Ein Graph heißt zusammenhängend, falls man von jeder
Ecke auf einem Weg, also einer Kantenfolge, zu jeder anderen Ecke gelangen
kann. Graphen Γ und Γ′ heißen isomorph, falls es eine Bijektion zwischen den
Ecken von Γ und Γ′ gibt, die eine Bijektion der Kanten von Γ und Γ′ bewirkt.
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a) Es seien rn ∈ N und sn ∈ N die Anzahl der Isomorphieklassen von Graphen
bzw. von zusammenhängenden Graphen mit n ∈ N Ecken. Man zeige: Für
die erzeugenden Funktionen r :=

∑
n≥1 rnY

n ∈ Q[[Y ]] und s :=
∑
n≥1 snY

n ∈
Q[[Y ]] gilt die Funktionalgleichung r(Y ) = exp(

∑
k≥1

s(Y k)
k ) ∈ Q[[Y ]].

b) Es sei c
(2)
Sn ∈ Q[X1, . . . , X(n2)

] der Zykelindex der Operation von Sn auf den

2-elementigen Teilmengen von {1, . . . , n}. Man zeige: Die Anzahl rn,k ∈ N0 der
Isomorphieklassen von Graphen mit n ∈ N Ecken und k ∈ {0, . . . ,

(
n
2

)
} Kanten

ist der Koeffizient von Y k im Polynom c
(2)
Sn (1 +Y, . . . , 1 +Y (n2)) ∈ Q[Y ]. Daraus

folgere man: Es gilt rn = c
(2)
Sn (2, . . . , 2).

c) Man bestimme die Anzahl der Isomorphieklassen von Graphen bzw. von
zusammenhängenden Graphen mit n ∈ {1, . . . , 5} Ecken und k ∈ {0, . . . ,

(
n
2

)
}

Kanten, und stelle die zugehörigen Graphen graphisch dar.

(23.14) Aufgabe: Bäume mit Wurzel.
Ein Baum ist ein zusammenhängender kreisfreier Graph; eine Wurzel ist eine
ausgezeichnete Ecke. Zwei Bäume mit Wurzel heißen isomorph, falls es einen
Graphenisomorphismus zwischen ihnen gibt, der die Wurzeln respektiert.

Es sei tn ∈ N die Anzahl der Isomorphieklassen von Bäumen mit Wurzel auf
n ∈ N Ecken. Man zeige: Die erzeugende Funktion t :=

∑
n≥1 tnY

n ∈ Q[[Y ]]

erfüllt die Funktionalgleichung t(Y ) = Y · exp(
∑
k≥1

t(Y k)
k ) ∈ Q[[Y ]]. Daraus

bestimme man t1, . . . , t5, und stelle die zugehörigen Bäume graphisch dar.

(23.15) Aufgabe: Selbst-duale Muster.
a) Es seienG eine endliche Gruppe, die treu auf der endlichen MengeN operiere,
und cG der zugehörige Zykelindex. Eine Abbildung f ∈ Abb(N, {1, 2}) heißt
selbst-dual, falls das zugehörige Muster sich bei der Umbenennung durch σ :=
(1, 2) ∈ S2 nicht ändert, das heißt, wenn σ(f) ∈ Gf gilt. Man zeige:

Die Menge Abb(N, {1, 2})+ der selbst-dualen Abbildungen ist eine Vereinigung
von G-Bahnen, und es gilt |G\Abb(N, {1, 2})+| = cG(0, 2, 0, 2, . . .) ∈ N0.

b) Man bestimme die Anzahl selbst-dualer Halsketten mit n Perlen, die zwei
verschiedene Farben haben können, für i) n ≥ 3 ungerade, ii) n = 2k mit k ≥ 2.
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